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Abstract—Software Product Lines (SPLs) are families of prod-
ucts whose commonalities and variability can be captured by
Feature Models (FMs). T-wise testing aims at finding errors
triggered by all interactions amongst t features, thus reduc-
ing drastically the number of products to test. T-wise testing
approaches for SPLs are limited to small values of t – which
miss faulty interactions – or limited by the size of the FM.
Furthermore, they neither prioritize the products to test nor
provide means to finely control the generation process. This paper
offers (a) a search-based approach capable of generating products
for large SPLs, forming a scalable and flexible alternative to
current techniques and (b) prioritization algorithms for any set
of products. Experiments conducted on 124 FMs (including large
FMs such as the Linux kernel) demonstrate the feasibility and
the practicality of our approach.

Index Terms—SPL, Testing, T-wise Interactions, Search-based,
Prioritization, Similarity

I. INTRODUCTION

A Software Product Line (SPL) “is a set of software-
intensive systems that share a common, managed set of
features satisfying the specific needs of a particular market
segment or mission and that are developed from a common
set of core assets in a prescribed way” [1]. Features are thus the
key to the discrimination of SPL members by showing their
commonalities and differences. Features are often organized
in a Feature Model (FM) [2], [3] which represents all the
possible products of the SPL by expressing relationships
and constraints between features. Henceforth, we consider a
product to be a combination of features conforming to the
constraints of the FM.

Testing an SPL is an inherently difficult activity [4]. Al-
though testing all the products would be ideal, it is rarely
feasible in practice. Indeed, the number of possible configura-
tions (i.e. the products) induced by a given FM usually grows
exponentially with the number of features, quickly leading to
millions of possible products to test. As a result, test engineers
are seeking for solutions to reduce the size of their test suites
so that they can meet release deadlines and cost constraints.

Previous work [5], [6] has identified Combinatorial Interac-
tion Testing (CIT) as a relevant approach to reduce the number
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of products for testing. CIT is a systematic approach for sam-
pling large domains of test data. It is based on the observation
that most of the faults are triggered by the interactions between
a small number of variables. For example, Kuhn et al. [6] have
shown that 2-wise or pairwise interactions are able to disclose
80% of the bugs. In some cases, higher interaction strengths (t-
wise in general) may be needed [7]. Recently, such approaches
have been adapted to SPL testing [8], [9], [10], generating
products from the FM covering all the valid (with respect to
the FM constraints) pairwise combinations of features. Some
of them, like [10], also cover t-wise .

However, computing all t-wise interactions in the presence
of constraints, as it is the case for FMs, is known to be NP-
complete in the general case [10], [11]. As a result, although
t-wise generation techniques from FMs have greatly improved,
now relying on efficient satisfiability (SAT) solvers [12],
higher interaction strengths (t > 2) may remain inaccessible
for large FMs. This is particularly problematic since 3-wise
interactions were shown to commonly appear in SPL testing
practice [13]. Since such an exact computation may remain
out of reach, one may ask if it is possible to cope with these
difficult situations:

[RQ1] Can we mimic t-wise test generation, partially but
efficiently while achieving decent coverage?

While t-wise testing drastically reduces the number of
products to consider, this number may still be too high to fit the
budget allocated for SPL testing. For example, 2-wise coverage
for the Linux FM (over 6,000 features) already requires 480
products to be tested [12]. Therefore, being able to prioritize
the test suite with the most relevant products is critical. In
this paper, the most relevant products are those that exhibit
the highest number of t feature interactions. The process of
identifying these products is referred to as test prioritization.
This forms our second research question:

[RQ2] What are the most relevant products and how to
prioritize them?

To answer RQ1, we introduce a similarity heuristic [14]
given in the form of a fitness function. We assess the suitability
of the function to characterize t-wise coverage of a given
test suite. The intuitive idea underlying this approach is: the
more different the products (in terms of selected or unselected



features), the more likely their ability to cover different t-wise
interactions. We provide a search-based strategy to generate
valid sets of products (i.e. respecting the constraints of the
FM) for t-wise testing.

To answer RQ2, we first consider that the most important
products are those covering the most t-wise interactions.
Indeed, they can potentially reveal more bugs as they test
more feature interactions. We then introduce two prioritization
algorithms, named Greedy and Near Optimal.

Our approach introduces significant flexibility in the testing
process: the number of products that can be tested (i.e. fitting
the budget) can be specified as well as the time allowed for
generating them. The use of similarity has the following two
advantages. First, it is very fast to compute. Second, it is
independent of the t value. This implies that there is no need
to compute and enumerate the huge number of combinations
involved in the t feature interactions. The applicability of the
proposed strategies is evaluated on both real and generated
FMs. This holds even for the largest FM, which contains over
6,000 features. The experimental data and the implementation
are publicly available at http://research.henard.net/SPL/.

The remainder of this paper is organized as follows: Sec-
tions II and III introduce the context and the concepts underly-
ing the proposed approaches. Sections IV and V respectively
detail the product prioritization and generation techniques.
Section VI reports on the empirical study. Finally, Section VII
discuss related work before Section VIII concludes the paper.

II. BACKGROUND

A. SPL Products as Test Cases

In this work, we focus on a model-based testing of SPLs
where the variability model is an FM. In this context, one prod-
uct (an abstract test case) is represented as a set of n features of
an FM as P = {±f1, ...,±fn}, where +fi indicates a feature
which is selected by this product, and −fi an unselected
one. Table I illustrates an example of three products and four
features. For instance, product P1 = {+f1,+f2,+f3,−f4}
supports all the features except f4.

B. T-wise Testing and Coverage

T-wise testing focuses on the interactions between any t ≥ 2
features of an SPL [11]. Such an interaction is called a t-
set. It is noted that unselected features are also involved in
such interactions. For instance, with reference to Table I,
(+f1,−f2,−f4) is a 3-set covered by P3. The ability of a
given test suite to find bugs (i.e. its fault detection power)
can be estimated by the number of t-sets covered by the
products of the test suite and is called t-wise coverage. In

TABLE I
EXAMPLE OF THREE PRODUCTS FOR AN FM OF FOUR FEATURES

Features
f1 f2 f3 f4

Products
P1 × × ×
P2 × × ×
P3 × ×

this context, Vt denotes the set of all the valid t-sets of a
given FM, implying that all the t-sets containing incompatible
features, the t-sets where a given feature is both selected and
unselected or the t-sets violating the constraints are excluded.
More formally, Vt can be expressed as:

Vt = {(±fx1 , ...,±fxt) |fx1 , ..., fxt ∈ F ∧valid(±fx1 , ...,±fxt)},

where F represents the set of features of an FM and where
valid(±fx1

, ...,±fxt
) is a function checking the consistency

of a given t-set with respect to the FM. Since an FM can easily
be translated into a Boolean formula [15], the valid function
can be computed using an off-the-shelf SAT solver [16].

Similarly, the valid t-sets covered by one particular product
P are defined by the subset vPt , where vPt ⊆ Vt. In the same
lines, a test suite composed of m products {P1, ..., Pm} covers
a subset of Vt, i.e.

⋃m
i=1 v

Pi
t ⊆ Vt. Thus, test suite coverage

can be computed as the ratio of the number of t-sets covered
by the test suite to the number of total valid t-sets:

Coverage =
#

⋃m
i=1 v

Pi
t

#Vt
,

where #A denotes the cardinality of the set A.
Classical approaches [8], [9], [10] to t-wise testing have

coverage ratio of 1 as they cover all the t-sets. Finally,
set coverage redundancy expresses the possibility that, by
removing any product, the coverage value is not altered.

III. THE SIMILARITY HEURISTIC

Similarity is an heuristic used here to compare two products.
In model-based testing, it has been found that dissimilar test
suites have a higher fault detection power than similar ones
[14]. The results presented in this paper (Section VI) suggest
that two dissimilar products are more likely to cover a greater
number of valid t-sets than two similar ones.

In this context, we define a distance measure d between
two products Pi and Pj to evaluate their degree of similarity.
As explained in Section II-A, one product is considered as a
set of selected or unselected features. Thus, a straightforward
distance measure is a set-based one, like the Jaccard distance
[17] or any other set-based distance metrics such as the Dice
or Anti Dice measures [14]. In our context, if P represents
the possible products of an SPL, the Jaccard distance is
mathematically given by:

d :
P × P −→ [0, 1.0]

(Pi, Pj) 7−→ 1− #Pi∩Pj

#Pi∪Pj
, where Pi, Pj ∈ P.

The resulting distance varies between 0 and 1. More partic-
ularly, a distance equal to 1 indicates that the two considered
products are completely different. A distance equal to 0
denotes that the two products are the same (redundant). It is
noted that an unselected feature is also an element of the set
representing a product. For instance, with reference to Table
I, P1 = {+f1,+f2,+f3,−f4}, P2 = {+f1,+f2,−f3,+f4}
and P3 = {+f1,−f2,+f3,−f4}. Thus, d(P1, P2) = 1 −

#{+f1,+f2}
#{+f1,+f2,+f3,−f3,+f4,−f4} = 1− 2

6 ≈ 0.67, d(P1, P3) = 0.4

and d(P2, P3) ≈ 0.86. In this example, P1 and P3 are the most
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similar products (they share the lowest distance), whereas P2

and P3 are the most dissimilar ones. Thus, if we had to choose
only two products, P2 and P3 would be the most likely to
cover the greatest number of t-sets according to the similarity
heuristic.

IV. PRODUCT PRIORITIZATION

In this section, the similarity distances are used for prioritiz-
ing a given set of products. The aim of this process is to order
a set S of m products S = {P1, ..., Pm} according to their
ability to cover t-sets. Therefore, by testing k ≤ m products,
the greatest possible level of coverage, for any number of k
products and any t value, is achieved. More formally [18],

Given: a set of products, S, the set of all the permutations
of S, PS and a function f from PS to the real numbers, f :
PS −→ R+.

Problem: finding S′ ∈ PS such as (∀S′′ ∈ PS |S′′ 6=
S′)[f(S′) ≥ f(S′′)]. In this context, f is the t-wise coverage
achieved by S. To this end, two algorithms named Greedy and
Near Optimal are introduced. They produce a list L, which is
the result of the prioritization.

A. Greedy Prioritization

Informally, this approach iterates over the initial unordered
set of products S, looking for the two products sharing the
maximum distance. These two products are then removed from
S and added to the resulting list L. This process is repeated
until all the products from S are added to L. Algorithm 1
formalizes this procedure.

B. Near Optimal Prioritization

Informally, this approach selects at each step the product
which is the most distant to all the products already selected
during the previous steps. To this end, the two products
belonging to S and sharing the highest distance are first added
to L. These two products are then removed from S. The next
step consists in adding to L and removing from S the product
sharing the maximum distance to all the products already
added to L: for each product of S, we sum the individual
distances with the other products of L, thus giving a value for
the set. Then the maximum is obtained by comparing these

Algorithm 1 Greedy Prioritization(S)
1: input: S = {P1, ..., Pm} . Unordered set of m products
2: output: L . Prioritized list of m products
3: L← []
4: while #S > 0 do
5: if #S > 1 then
6: Select Pi, Pj from S where max (d(Pi, Pj))
7: . Take the first one in case of equality
8: L.add(Pi)
9: L.add(Pj)

10: S ← S \ {Pi, Pj}
11: else . S contains only one element
12: L.add(Pi) where Pi ∈ S
13: S ← ∅
14: end if
15: end while
16: return L

Algorithm 2 Near Optimal Prioritization(S)
1: input: S = {P1, ..., Pm} . Unordered set of m products
2: output: L . Prioritized list of m products
3: L← []
4: Select Pi, Pj from S where max (d(Pi, Pj))
5: . Take the first ones in case of equality
6: L.add(Pi)
7: L.add(Pj)
8: S ← S \ {Pi, Pj}
9: while #S > 0 do

10: s← size(L)

11: Select Pi ∈ S where max
(∑s

j=1 d(Pi, L.get(j)
)

12: . Take the first one in case of equality
13: L.add(Pi)
14: S ← S \ {Pi}
15: end while
16: return L

set values (Alg.2, line 11). This process is repeated until S is
empty and is more formally described in Algorithm 2.

This technique allows having more diversity than the greedy
one for k < m products, but it is computationally more
expensive. This is due to the need of calculating all the
distances from one product to the others (Alg.2, line 11).

V. SEARCH-BASED PRODUCT GENERATION

In this section, we go one step further and take benefit from
the similarity heuristic to guide the generation of products (i.e.
the test cases). The objective of the test generation process is
to provide a set of products that fulfills the requirements of a
test criterion. In the present context, this criterion is the t-wise
coverage. If Pp denotes the set of all the possible products and
Pm a set of m products, this process is formally defined as:

Given: a FM, the desired number of products, m, a given
amount of time, T , and a function f from Pm to the real
numbers, f : Pm −→ R+.

Problem: finding Pm ∈ Pp with respect to T such as
[max(f(Pm))]. In this context, f is the t-wise coverage
achieved by S. Toward this direction, we introduce a test gen-
eration approach, based on the (1+1) Evolutionary Algorithm
[19]. Specifically, the test generation problem is formulated
as a search-based one. Instead of using complex constraints,
the space of all the valid products is defined as the search
space. Thus, meta-heuristic techniques can be used in order
to efficiently explore this space. In view of this, similarity is
used as a fitness function towards searching for products in this
space. It enables: (a) a computationally interesting approach,
as it will be explicitly explained in the following section and
(b) prioritizing the generated products without necessitating
much additional computation.

A. A Similarity-based Fitness Function

Our intuition, which will be confirmed in the next section,
is that the similarity heuristic is a relevant choice to define
a fitness function f to evaluate a set of products. Thus, if
we consider a set S of m products S = {P1, ..., Pm}, f is
formally defined as follows:

f :
Pm −→ R+

(P1, ..., Pm) 7−→
∑m

j>i≥1 d(Pi, Pj).



For instance, with reference to Table I and Section III,
f(P1, P2, P3) = d(P1, P2) + d(P1, P3) + d(P2, P3) ≈ 1.93.

This function, which generalizes the similarity distances for
m products, allows evaluating the quality of a set of products
in terms of t-wise coverage. Indeed, the information conveyed
by this function is: the higher the fitness value of the given set
of m products, the higher the distances between the products,
resulting in a potentially higher t-wise coverage.

Although evaluating the exact coverage would be a natural
choice for a fitness function, say fc, it would be computa-
tionally expensive for such a use. Indeed, for each product, it
requires computing all the t-sets covered by this product. Let
us consider an FM with n features and a set of m products. If(
n
k

)
denotes the binomial coefficient, fc requires to compute:

N = m
(n
t

)
=

mn!

t!(n− t)!
(1)

t-sets to evaluate the coverage of the whole set of products,
which represents N operations. On the contrary, f requires:

N ′ =
(m
2

)
=

m(m− 1)

2

distances computation plus the sum evaluation, which rep-
resents m additions.

We assume that 2 ≤ t� n. Therefore, the time required to
compute one particular distance between two given products
is small compared to the coverage evaluation of these two
products, i.e. N � N ′. Indeed, f depends neither on t nor
on n. We also assume that one will test fewer products than
the number of features, and thus that m � n. Especially, in
a realistic and industrial context (with large FMs), the testing
process is usually subjected to time and budget limitations. It
thus does not allow testing as much products as features. It
results that N � N ′ and even more while t increases. Recall
that we focus on t-wise, for high t-values. This fact implies a
computationally lower cost for f compared to fc. As a result,
f is used as the fitness function1 for the product generation.

B. Scalable Search-based Product Generation

Classical constraint-based t-wise techniques, e.g. [12], are
unable to scale to large FMs and to high values of t. This
is mainly due to the number of t feature combinations. The
proposed approach, which is independ of t, is composed of two
steps. The first one is the generation of valid products using a
SAT solver, and the second one is the product selection. The
search process is formed by iteratively repeating these two
steps. A similar technique that combines constraint solving and
search-based approaches in a scalable way has been proposed
by Harman et al. [20] for mutation-based test generation.

1) Generating Products: A SAT solver is used to produce
valid products. Once an FM is converted into a Boolean
formula [15], the solver can generate valid products. As a
result, a search space containing only valid products is formed.

1Additional elements showing how the similarity distance presented in
Section III and how f are relevant to appreciate the t-wise coverage of sets
of products can be consulted at http://research.henard.net/SPL/
Resources/twise_similarity.pdf.

Typically, a product is a correct solver configuration. To this
end, the literals of the logical clauses (i.e. clauses represent the
constraints of the FM) are assigned values. If the constraints
are satisfied, one product is returned. However, assignments
to the literals are done in a particular order which involves
the following problem: no uniform exploration of the space
of all the valid products is possible. Indeed, the order used
by the solver to parse the logical clauses and literals enables
their prediction. In that case, the approach always returns the
same solution in a deterministic way. As a result, the products
enumeration is driven by the order used by the solver.

To overcome this issue, and thus to get products in an
unpredictable way, one solution is to randomize how the solver
parses the logical clauses and the literals. It prevents from
predicting the next product that will be returned. Additionally,
it allows selecting products from the full space instead of
enumerating them in a predictable order.

2) Selecting Products: Suppose we want to generate and
prioritize a list L (i.e. prioritized on the fly during the search-
based generation) of m products. From this perspective, the
search-based method informally starts by selecting m products
in an unpredictable way. Then, these products are evaluated
by the fitness function f (see Section V-A). These products
define the initial list L. Then, by using the distances computed
while evaluating f , the worst product is determined. The worst
product is the one which has the lowest participation in the
fitness function. In other words, it is the last element of L.
The next step consists of trying to replace this product by
an unpredictable one got from the solver. This replacement
is conserved if and only if the fitness of the resulting list
increases. This whole process is repeated during a certain
allowed amount of time t. It is noted that, at each iteration, the

Algorithm 3 Search-based Product Generation(m, t)
1: input: m, t . Number of products to generate and execution time
2: output: L . List of generated products (prioritized)
3: L← []
4: S ← ∅
5: for i← 1 to m do
6: Punpredictable ← Request to the solver
7: . If the solver cannot give a new product because it has already
8: iterated over all the valid configurations, reinitialize it
9: S ← S ∪ {Punpredictable}

10: end for
11: s← size(L)
12: while the elapsed time is lower than t do
13: fitness← f(L.get(1), ..., L.get(s))
14: L←Greedy/Near Optimal prioritization(S) . Facilitated by f
15: Pworst ← L.get(s) . Pworst verifies min

(∑s
k=1 d(Pworst, L.get(k)

)
16: repeat
17: Punpredictable ← Request to the solver
18: . If the solver cannot give a new product because it has already
19: iterated over all the valid configurations, reinitialize it
20: until Punpredictable 6= Pworst
21: L.set(s, Punpredictable) . The worst product is replaced
22: newFitness← f(L.get(1), ..., L.get(s))
23: if newFitness ≤ fitness then . The new fitness is not better
24: L.set(s, Pworst) . The worst product is taken back
25: end if
26: end while
27: return L

http://research.henard.net/SPL/Resources/twise_similarity.pdf
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resulting list L is prioritized based on the distances computed
by f . This approach is formalized in Algorithm 3.

This technique can be considered as a genetic algorithm
without crossover. It can thus be seen as an adaptation of
the (1+1) Evolutionary Algorithm [19]. Indeed, instead of
removing a random product, the worst ranked product, in terms
of fitness, is removed.

VI. EMPIRICAL STUDY

In this section, the product generation and prioritization
approaches are assessed. In test generation, we aim at selecting
products providing the highest coverage. In test prioritization,
the emphasis is on maximizing the coverage increase observed
each time a product is tested. Empirical results regarding the
stated research questions along with threats to the validity
of this study are presented and analyzed. All the conducted
experiments2 are performed on a Quad Core@2.40 GHz with
24GB of RAM.

The study employs 124 FMs3 divided into two categories.
The first 120 FMs are small to medium size (with a number
of features lower or equal to 1000); they are referred to as the
moderate size FMs. A second subset is composed of 4 FMs
of large size; they are referred to as the large FMs.

Regarding the moderate size FMs, 10 of them are real
and 110 are artificially generated. The real FMs are taken
from [21], [22] while the artificial ones are produced with the
Software Product Line Online Tools (SPLOT) FM generator
[21], [23]. All involved FMs are consistent (i.e. the constraints
are possible to fulfill). Details about the moderate FMs are
recorded in Table II. It presents: the number of features, the
number of valid products4 and the number of valid 2-sets.
Concerning the large FMs, three FMs are real, taken from
[22] and one is artificially created. The details of these FMs
are recorded in Table III. This table presents, for each FM, the
number of features and the number of valid t-sets. The number
of products cannot be computed in a reasonable amount of
time (in days) due to the high number of constraints and
features of these FMs.

For the needs of the experiment, the t-sets of the moderate
FMs are computed using the following procedure for each FM.

2The source code of the implemented approaches and the data used for the
experiments are available at http://research.henard.net/SPL/.

3Handled via the SPLAR library [21] and the SAT solver Sat4j [16].
4Computed via a Binary Decision Diagram.

TABLE III
4 LARGE FEATURE MODELS

eCos 3.0
i386pc [22]

FreeBSD
kernel 8.0.0

[22]
Generated FM

Linux kernel
2.6.28.6 [22]

#Features 1,244 1,396 5,000 6,888
#Valid 2-sets 2,910,229 3,765,597 49,080,075 92,540,449
#Valid 3-sets (≈) 2.25E9 3.44E9 1.61E11 4.19E11
#Valid 4-sets (≈) 1.27E12 2.34E12 3.97E14 1.50E15
#Valid 5-sets (≈) 5.79E14 1.26E15 7.70E17 3.85E18
#Valid 6-sets (≈) 2.22E17 5.76E17 1.26E21 8.71E21

First, a list of all the features of the FM is recovered. Then, all
the possible t-sets are enumerated and provided to the solver
to determine whether they are valid or not. For the large FMs,
computing the exact number of valid t-sets is a non-trivial
and time consuming task. For instance, it took around 3 days
to a 10-threaded program running on our system to compute
the 92,540,449 valid 2-sets of the Linux FM. As t increases,
the number of valid t-sets explodes. As a result, for the large
FMs and for t ≥ 3, we estimate the number of t-sets. To this
end, 1,000 t-wise sets are randomly sampled and checked.
Since the total number of possible t-sets of an FM is known
and equal to

(
2n
t

)
for n features (2n because each feature is

either selected or unselected), the valid t-sets can be directly
estimated (law of large numbers). For example, if 800 t-sets
out of 1,000 sampled are valid, the number of estimated valid

t-sets is equal to
800∗(2nt )
1,000 .

A. Product Generation Assessment (RQ1)

Here, we assess the ability of the proposed approaches to
cover t-sets. A state of the art tool named SPLCAT [10], the
most recent tool available handling large FMs, is employed to
provide a basis for comparison.

However, SPLCAT and other approaches fail on large FMs
for 2-wise. For moderate FMs, SPLCAT does not scale well
to 3-wise or above (at least in a reasonable amount of time,
in days). As a result, we can only compare our approach with
SPLCAT for moderate FMs and 2-wise. As far as we know, our
search-based approach is the only one which allows scaling
to any t value, even for large FMs. Since no other technique
can serve as a basis for comparison for the large FMs, we
compare the search-based approach with products selected in
an unpredictable way from the SAT solver (Section V-B1).

TABLE II
120 MODERATE FEATURE MODELS

Real FMs [21] Generated FMs
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#Features 11 24 32 41 52 60 71 88 94 172 15 50 100 200 500 1,000
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Fig. 1. Product Generation on the 120 Moderate FMs for t = 2 (1 Minute
Execution for the Search-based Approach, 10 Runs for Each Approach)

In the following, this approach will be referred to as the
unpredictable one and will also serve as a comparison basis.

1) Moderate Feature Models: Here, we compare the
search-based approach with both the unpredictable approach
and SPLCAT. As a consequence, this study is only based on
the 2-wise coverage and considers only the moderate FMs.

a) Experiment Setup: To enable a fair comparison, the
search-based and unpredictable approaches generate sets of
products of the same size as those provided by SPLCAT. The
search-based approach is allowed to run for one minute. The
results are averaged on 10 runs for each FM.

b) Experiment Results: The results are presented in Fig-
ure 1. SPLCAT is not represented as it always achieves 100%
of coverage. Following this figure, it appears that the proposed
search-based approach, as an approximation technique, is close
to SPLCAT. Indeed, in the best case, it is able to achieve
100% of 2-wise coverage with only 1 minute of processing
time allowed. In the worst case, 95% is achieved. Besides,
the search-based approach is much more stable than the
unpredictable one, which can drop down to 76% of coverage
in the worst case. Although 100% of coverage might be
desirable, the focus of our approach, as explicitly stated in the
introduction section, is the partial but scalable t-wise coverage.

Finally, the performance of SPLCAT varies. For FMs up to
200 features, SPLCAT requires less than a minute. However,
it takes around 6.2 minutes for the FMs of more than 200
features, and around 159 minutes for the 1,000 features ones.

2) Large Feature Models: Scaling to large FMs is a quite
difficult task, even for 2-wise. Neither SPLCAT nor the tools
we found (see Section VII) are able to scale well to these sizes
[10]. On the contrary, the search-based approach efficiently
handles the t-wise combinations where no other approach
is able to do so, by producing a partial coverage. Here, we
evaluate the t-wise coverage ability of the search-based and
unpredictable approaches on the large FMs for t = 2, ..., 6.

a) Experiment Setup: Evaluating the t-wise coverage
requires computing the number of unique t-sets covered by
the products. However, this is intractable in practice due to
the combinatorial explosion (each products covers

(
n
t

)
t-sets

for n features). Therefore, we sample valid t-sets from those
covered by the products. The coverage is then estimated based

on the sample, considering that the latter represents all the t-
sets covered by the products. The sampling process is repeated
10 times per each examined t value (t = 2 to t = 6) with
samples of size 100,000. The search-based and unpredictable
approaches are executed on all the large FMs to produce 5
times 50 and 100 products, with the time restriction of 30
minutes. Another experiment involves the generation of 1,000
products and the recording of the coverage over the runs of
the search-based approach.

b) Experiment Results: The results are recorded in Table
IV. This table presents the mean coverage achieved with
respect to t-wise per FM and per approach. Additionally, it
records the standard deviation of these values. A score above
90% with respect to 2-wise is achieved by both the approaches
and for all the studied FMs when producing 50 products. With
respect to 6-wise, scores of 40% to 50% are achieved. By
producing 100 products, higher scores are achieved for both
the approaches. It should be mentioned, based on the standard
deviation values recorded in Table IV, that a small variation
on the achieved coverage is observed. It is a fact indicating
that the approaches are quite stable.

Generally, the search-based strategy provides a higher cov-
erage compared to the unpredictable approach and especially
for high values of t. This is true for all the t-wise coverage
measures. Allowing more time to the search-based technique
should increase the gap with the unpredictable approach since
the iterations improve the set of products. However, the results
are based on the selection of 50 and 100 products. There-
fore, the maximum difference between the two approaches
lies between the coverage of the unpredictable selection and
the maximum possible coverage achievable with 50 or 100
products. Achieving 100% of t-wise coverage with 50 or

TABLE IV
T-WISE COVERAGE ACHIEVED (%) PER APPROACH ON THE LARGE FMS

WITH 50 AND 100 PRODUCTS

Search-Based Unpredictable Search-Based Unpredictable
50 products 100 products

FM t-wise Mean Std.Dev. Mean Std.Dev. Mean Std.Dev. Mean Std.Dev.
2 99.12 0.09 98.19 0.40 99.62 0.04 99.44 0.24
3 94.53 0.18 92.24 0.61 97.55 0.11 96.92 0.46

eCos 4 83.62 0.28 80.85 0.54 91.40 0.22 90.51 0.56
5 67.63 0.29 65.64 0.38 80.06 0.31 79.56 0.48
6 50.11 0.29 49.36 0.26 64.79 0.34 65.05 0.30
2 91.75 0.12 91.41 0.13 92.19 0.12 92.23 0.14
3 85.75 0.18 83.99 0.20 87.59 0.16 87.05 0.15

FreeBSD 4 74.94 0.19 71.67 0.24 80.82 0.14 79.09 0.15
5 58.54 0.20 55.18 0.24 69.74 0.15 67.07 0.15
6 40.39 0.16 37.99 0.17 54.30 0.14 51.58 0.21
2 99.11 0.09 94.77 0.20 99.62 0.03 97.76 0.19
3 94.53 0.18 83.91 0.22 97.55 0.11 91.10 0.27

FM Generated 4 83.62 0.28 68.16 0.20 91.40 0.22 79.21 0.25
5 67.63 0.29 50.89 0.17 80.06 0.31 63.75 0.23
6 50.11 0.29 35.16 0.18 64.79 0.34 47.53 0.26
2 96.92 0.12 96.05 0.18 97.71 0.09 97.28 0.11
3 91.96 0.16 90.49 0.20 94.60 0.18 93.82 0.17

Linux 4 81.37 0.18 79.51 0.19 88.53 0.20 87.42 0.23
5 64.42 0.17 62.75 0.20 77.38 0.22 76.13 0.21
6 45.24 0.14 44.07 0.17 61.13 0.18 60.05 0.19



100 products seems to be impossible for the large FMs. It
is expected that more products are required to achieve 100%
of coverage for high values of t.

Table V records the coverage achieved by the search-based
approach each 5,000 runs repetitions for 1,000 products with
respect to 6-wise. Here, we observe that a higher level of cov-
erage is achieved with more products. For instance, the search-
based approach achieves 90,671% of 6-wise coverage for the
Linux FM. It also shows that allowing more processing time
to the approach allows reaching a higher coverage. Indeed,
at each 5,000 runs, the coverage recorded is higher than the
previous one. Here, the unpredictable approach, represented
by the “0 run”, is also the initialization stage of the search-
based strategy (Alg. 3, lines 5 to 10). For example, considering
the eCos FM, 94.191% of 6-wise coverage is achieved at
the initialization. After 15,000 runs, it is 95.343%, which
represents ≈ 2.475744E15 additional 6-sets covered compared
to the unpredictable approach. Here, it should be mentioned
that the number of valid t-sets is extremely high (see Table
III) and thus, a small increase in the coverage represents a
high increase in the number of additional valid t-sets covered.
Finally, the 15,000 runs require about 10 to 20 hours of
processing time per FM.

3) Fitness Function: So far, the presented results suggest
that the search-based approach is effective and able to scale
to large FMs. Scalability is reached thanks to the ability of
the similarity fitness function to mimic the t-wise coverage.
To illustrate this fact, Table V records the fitness function
values with respect to 6-wise coverage for the large FMs as
the search-based approach evolves. It shows that the fitness
increases with the coverage over the runs of the approach. The
same trend holds for all the FMs and values of t considered
in this study. Figure 2 illustrates the correlation between the
fitness and the t-wise coverage for the Linux FM. Therefore,
the quality assessment of a set of products can be performed
without computing any t-set, thanks to the fitness function.
Recall that computing the t-sets requires vast computational
resources (Section V-A, Equation 1).

4) RQ1: The experiments conducted for the product gen-
eration approach emphasize the following outcomes. First,
the similarity heuristic and the fitness function driving the
approach form an efficient guide toward the products selection.
That technique mimics t-wise coverage, does not depend at all
on t and thus avoids the combinatorial explosion due to the
combinations of t features. Second, the proposed technique
is the first one, to the authors’ knowledge, which scales

TABLE V
6-WISE COVERAGE AND FITNESS EVOLUTION OVER TIME FOR THE

SEARCH-BASED APPROACH ON THE LARGE FMS WITH 1,000 PRODUCTS

0 run (=unpred.) 5,000 runs 10,000 runs 15,000 runs
Cov. Fit. Cov. Fit. Cov. Fit. Cov. Fit.

eCos 94.191% 271,880 94.225% 286,304 94.263% 288,039 95.343% 288,818
FreeBSD 76.236% 294,184 76.395% 299,962 76.465% 300,892 76.494% 301,634

FM Generated 82.986 258,763 84.492% 263,243 84.605% 263,974 84.778% 264,362
Linux 89.411% 296,661 90.404% 298,709 90.640% 299,114 90,671% 299,363

Fig. 2. Fitness Function Correlation with t-wise Coverage for the Linux FM

well to large FMs while achieving a decent level of t-wise
coverage (depending on the number of products desired).
Finally, in addition to be a close approximation of SPLCAT,
it is more flexible than the latter as it allows specifying the
processing time and the number of desired products. These
are characteristics conforming to an industrial context where
the testing process is subjected to budget constraints.

B. Similarity-based Product Prioritization Assessment

The objective of this part is to evaluate the proposed priori-
tization approaches. The first experiment focuses on t = 2 for
the moderate FMs, due to the limitations of SPLCAT (see Sec-
tion VI-A and VI-A1). The second experiment demonstrates
its ability to scale to any t value for the large FMs.

To compare the prioritization approaches, the area under
curve is evaluated [24]. This area is the numerical approxi-
mation of the integral of the coverage curve and is computed
using the trapezoidal rule, i.e.

∫ b

a
g(x)dx ≈ (b− a) g(a)+g(b)

2 .
Thus, for each prioritization method, if cov(x) denotes the
percentage of t-wise coverage achieved with the x-th product,
then the area value is given by

∑99
i=1

∫ i+1

i
cov(x)dx =∑99

i=1
cov(i)+cov(i+1)

2 . A higher area under curve value ex-
presses a more effective prioritization.

1) Moderate Feature Models: This experiment focuses on
comparing our prioritization techniques with SPLCAT for t =
2. This tool does not prioritize the products, but it tries to
cover the maximum of 2-sets each time a product is added.
The resulting products can thus be considered as ordered for
covering faster the highest amount of 2-sets.

a) Experiment Setup: For each moderate FMs, three
different sets of products are used to apply the prioritization
techniques. The first set is the set of products produced by
SPLCAT (Case I). The second one is a set of n products, where
n = #features

2 , selected with the unpredictable method (Case
II). Finally, the last set is composed of the products generated
by SPLCAT plus the same amount of products selected by
the unpredictable method (Case III). Using these different sets
allows ensuring that the prioritization approaches are relevant
whatever the nature of the products.

All these sets of products are randomized before executing
the prioritization techniques. This practice ensures that our



TABLE VI
PRIORITIZATION RESULTS: AREA UNDER CURVE (SCALE 1:1,000)

Case I Case II Case III Case IV with 100 products Case IV with 500 products Case V with 100 products Case V with 500 products
Technique \ T-wise 2 2 2 2 3 4 5 6 2 3 4 5 6 2 3 4 5 6 2 3 4 5 6

Random 8.51 8.37 9.24 9.23 8.34 7.10 5.57 4.05 49.06 47.69 45.09 40.88 35.22 8.65 7.33 5.67 4.02 2.67 47.47 44.70 40.42 34.40 27.40
Greedy 8.84 8.50 9.35 9.28 8.43 7.17 5.61 4.07 49.16 47.77 45.15 40.97 35.32 8.89 7.68 6.13 4.45 3.03 47.76 45.28 41.44 36.14 29.55

Near Optimal 8.93 8.60 9.44 9.33 8.48 7.22 5.65 4.11 49.23 47.92 45.46 41.32 35.66 9.06 8.00 6.56 4.91 3.37 48.15 46.19 42.95 38.03 31.71
SPLCAT 8.88

approaches are independent of the original order. On each of
the three cases and for each FM, a random prioritization is
averaged 10 times. Cases II and III are independently repeated
10 times to avoid any bias from the initial set of products.

b) Experiment Results: Table VI presents the area under
curve for each case and technique. Recall that a higher surface
value indicates a better prioritization. With respect to Table VI
and focusing on Case I, we observe the following ordering:
Random < Greedy < SPLCAT < Near Optimal. For Case II
and Case III, the order Random < Greedy < Near Optimal is
observed. Thus, in all the cases, the Near Optimal prioritization
provides the best prioritization as its area under curve is the
greatest one.

Figure 3 illustrates this behavior. For each case, the results
are averaged on all the FMs by normalizing the number of
products selected from 0 to 100%. For instance, with respect
to Case I, the Near Optimal prioritization approach enables
covering more than 90% of the 2-set with only 28% of the
products. On the contrary, the random prioritization needs
more than 40% of the products. For Case II and Case III
(Figure 3b and 3c), the same trends are observed. These results
emphasize that the prioritization techniques are either able
to perform similarly (Greedy) or better (Near Optimal) as
SPLCAT.

2) Large Feature Models: This experiment focuses on the
evaluation of the Near Optimal and Greedy prioritization on
the large FMs and for t = 2 to t = 6.

a) Experiment Setup: We generate two sets of 100 and
500 products containing dissimilar products (Case IV) and two
sets of the same sizes containing half similar and dissimilar
products (Case V). We choose these two kinds of sets of

products since the prioritization approaches are similarity-
driven and can thus be influenced by the nature of the used
sets. Indeed, applying these approaches on sets containing
dissimilar products can be less effective than applying them
on sets containing similar products. We randomize each set of
products and execute the Greedy and Near Optimal prioritiza-
tions on each of them. We also produce 10 random orderings
to compare with our approaches. This practice shows that the
prioritization techniques are not affected by random orders.

b) Experiment Results: As for the results presented in
Section VI-B1b, we evaluate the area under curve. The results
are recorded in Table VI. The random is averaged on 10 runs
for each value of t. The presented values are averaged on
the 4 large FMs. We observe the following ordering for both
Case IV and Case V: Random < Greedy < Near Optimal.
This shows that the prioritizations approaches are relevant for
finding the dissimilarities in the sets containing both similar
and dissimilar products. The Near Optimal prioritization tends
to be the most relevant approach.

As expected, when products are already dissimilar (Case
IV), the gain is lesser than when the set of products is any
(Case V). Additionally, Figure 4 presents the t-wise coverage
difference between the Near Optimal prioritization and the
random ordering for 500 products, averaged on the 4 FMs. For
Case IV (Figure 4a) and t = 4, 3% of difference is observed
with 30 products selected. For Case V (Figure 4b), 14% of
difference is observed with 100 products for t = 6.

3) RQ2: The experiments conducted for the prioritization
bring out the following observations. First, our approaches
compete with existing ones that could produce a kind of
ordering, like SPLCAT. Second, the most relevant products

(a) Case I: SPLCAT products (b) Case II: unpredictable products (c) Case III: SPLCAT + unpredictable products

Fig. 3. Prioritization on Moderate FMs (t = 2)



(a) Dissimilar Set of Products

(b) Similar + Dissimilar Products

Fig. 4. Near Optimal VS Random Prioritization on Large FMs

contributing to t-wise coverage are the most dissimilar ones.
This is enabled by the similarity heuristic. Finally, the pro-
posed prioritization approaches are able to prioritize any set of
products, by looking for the dissimilarities. This is performed
without computing any t-sets and regardless of the value of t.

C. Threats to Validity

Although we used various FMs, there is an external validity
threat. Indeed, we cannot ensure that the proposed strategies
will provide similar results on different sets of FMs (larger or
more constrained). To reduce this threat, we used a relatively
large set of 124 FMs of different sizes, combined real and
generated FMs to cope with a variety of situations. Addition-
ally, potential errors in our implementation could affect the
presented results and lead to internal validity threats. To over-
come these threats, we divided the implementation into sub
stages to have a better control on each of the steps composing
the proposed approaches. The comparison with SPLCAT also
gave us confidence in our implementation. Besides that, to
prevent as possible a construct validity threat, we sampled each
technique on 10 runs. To enable reproducibility and to reduce
the above-mentioned threats, we made our implementation and
the experiment data publicly available.

VII. RELATED WORK

A. Prioritization

As surveyed by Nie and Leung [25], efforts have been
made to prioritize test suites. For instance, Bryce and Colbourn

[26] use search-based techniques (e.g. hill climbing) to select
the “best test” in terms of t-wise coverage. We share their
motivation of focusing on the most relevant test. Additionally,
the proposed techniques offer improvements over the “natural”
ordering provided by the AETG algorithm [5] in line with
our experimentations. However, computing t-wise coverage
for each product is expensive, especially for constrained cases,
which are not taken into account in their approach and thus
unsuitable in SPLs context. Some approaches combine t-wise
prioritization and generation (see below). Finally, there are
SPL-dedicated efforts, also in the context of test generation,
but not directed to t-wise, such as Uzuncaova et al. [27] work.

B. T-wise generation

SPL t-wise testing approaches typically fall into two cate-
gories: constraint-based and search-based.

1) Constraint-based Approaches: Since t-wise testing of
SPLs is made difficult by the presence of constraints [28],
the use of constraint solving solutions have been investigated.
In Perrouin et al. work [11], a solution based on Alloy, a
SAT solver, was devised. The approach was non-predictable
in terms of generated solutions and strategies to improve scal-
ability were proposed. Oster et al. [8] optimized the problem
upfront by flattening the FM and using CIT algorithms [5],
[29] within a dedicated constraint solver, producing predictable
solutions. Both cannot handle thousand-sized FMs. Recently,
SPLCAT [10], used as a reference throughout this paper has
been proposed. It also produces predictable solutions and
handles larger FMs, but it does not scale to the Linux FM.
An optimization of SPLCAT has been recently proposed [12]:
it handles larger FMs than SPLCAT but is limited to t = 3.
While prioritization is induced in some approaches [8], [10], it
is not explicit and thus not applicable directly. Logic was also
used. Calvagna et al. explain how to deal with constraints
in CIT [30] by encoding them in first order logic, offer
various reductions algorithms to simplify them and use a
model checker to solve them. Since this work was not related
to FMs, it is difficult to assess its scalability. Hervieu et al.
[31] also use reduction techniques in the aim of finding the
minimal test suite in a Prolog-based implementation. However,
this approach does not scale well to FMs of over 200 features,
according to our experiments.

2) Search-based Approaches: Due to the computational
complexity of t-wise testing of SPLs, using search-based
heuristics is an option. However, we are only aware of two
approaches [32], [33]. Garvin et al. [32] report on their
experience applying and improving an extension to the AETG
algorithm [5] using simulated annealing. The simulated an-
nealing approach incrementally populates a constrained cover-
ing array [28] (which can be simply viewed as a table where
lines represent products and columns features, like Table I)
by making some moves, i.e. changing the valuation of the
features. Each move is controlled by a SAT solver to ensure it
is legal with respect to the FM constraints. Moves are guided
by a fitness function defined over the remaining pairs to be
covered: the fewer pairs to be covered, the lower the proba-



bility to make a move. As we have seen, using pairs coverage
as a fitness function induces scalability issues which may be
intractable for very large FMs or high t values. Similarly
to ours, Ensan et al. devised a genetic algorithm approach
to generate SPL test suites [33]. They took a fine-grained
perspective where each gene is a feature to be mutated and
where crossover is applied, inducing possible invalid products
which need to be removed. Their fitness function indirectly
measures coverage by evaluating the variability points to be
bound and the constraints concerned by the features of a
product. Rather, we adopt a coarse-grained approach which
copes better with large FMs ([33] does not scale over 300
features) and does not produce invalid configurations (since
a product is always replaced as a whole). As opposed to
other approaches, Ensan et al. and our approaches yield partial
t-wise coverage due to the choice of the fitness function.
This, however, allows dealing more easily with time and cost
constraints, looking for a “good enough” test suite.

VIII. CONCLUSION

T-wise testing aims at finding bugs due to interactions
amongst faulty features, which is particularly relevant in an
SPL context. However, full t-wise testing is NP-complete and
scalability an issue: no approach is able to handle high values
of t (≥ 3) for large feature models in a reasonable amount
of time (in days). Moreover, there is no suitable technique
supporting the selection of only a fixed number of products,
according to a limited budget. In this paper, we tackled these
problem by proposing (a) approaches to prioritize products
while maximizing the t-wise coverage and (b) a scalable and
flexible search-based technique to generate products under
budget and time constraints for large feature models. Both
these techniques are computationally independent from t.

Our experiments, performed on 124 feature models for
t = 2 to t = 6, show the feasibility and the scalability of
our solutions. We managed to deal with the largest feature
models available, such as the Linux kernel (≈ 7,000 features,
≈ 200,000 constraints and ≈ 8.71E21 valid 6-sets) with up
to 90.671% of 6-wise coverage achieved with 1,000 products.
Thus, by enabling a partial but scalable t-wise coverage and by
introducing flexibility in the testing process, our approaches
pave the way to a potentially t-unrestricted combinatorial
interaction testing.
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