
HAL Id: hal-00756003
https://hal.science/hal-00756003

Submitted on 22 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Simplest Analysis Method for Non-stationary
Sinusoidal Modeling

Sylvain Marchand

To cite this version:
Sylvain Marchand. The Simplest Analysis Method for Non-stationary Sinusoidal Modeling. 15th
International Conference on Digital Audio Effects (DAFx-12), Sep 2012, York, United Kingdom.
pp.23-26. �hal-00756003�

https://hal.science/hal-00756003
https://hal.archives-ouvertes.fr


Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

THE SIMPLEST ANALYSIS METHOD FOR NON-STATIONARY SINUSOIDAL MODELING

Sylvain Marchand

Lab-STICC – CNRS, University of Brest, France
Sylvain.Marchand@univ-brest.fr

ABSTRACT

This paper introduces an analysis method based on the generaliza-
tion of the phase vocoder approach to non-stationary sinusoidal
modeling. This new method is then compared to the reassign-
ment method for the estimation of all the parameters of the model
(phase, amplitude, frequency, amplitude modulation, and frequency
modulation), and to the Cramér-Rao bounds. It turns out that this
method compares to the state of the art in terms of performances,
with the great advantage of being much simpler.

1. INTRODUCTION

Sinusoidal modeling can be successfully used in digital audio ef-
fects such as pitch shifting or time scaling. It has recently gained
a new interest with its extension to the non-stationary case, where
amplitude / frequency modulations are taken into consideration.

The quality of the sound depends mainly on the analysis stage,
where the model parameters are extracted from real sounds. At the
first DAFx edition, I proposed to use the derivatives of the sig-
nal [1]. This analysis method was later generalized to the non-
stationary case [2, 3]. Non-stationary sinusoidal analysis has re-
cently become very active, with the works of Betser [4, 5, 6],
Hamilton and Depalle [7, 8, 9], Wen and Sandler [10], or Muševič
and Bonada [11, 12]. This has brought efficient methods, and a
deep understanding of how these complex methods are related.

However, to gain wide acceptance, a method has to be not
only efficient, but also simple and robust. Some methods (e.g.
high-resolution methods) are very precise but may perform poorly
if the signal model is not perfectly respected. Other methods lack
accuracy (e.g. simple peak picking in the Fourier spectrum), but
are widespread because of their simplicity. . .

In this paper, I propose to generalize the well-known phase
vocoder approach to the non-stationary case, in a very simple way.
This work must be seen as an extension of [2], with a new – sim-
ple – method but the same aims and experiments. The estimation
is based on the (discrete) Fourier spectrum and uses derivatives ap-
proximated by first-order differences. This makes the method ro-
bust and fast (Fourier spectrum, FFT-based), simple (phase vocoder
approach, first-order differences), and yet quite efficient (in com-
parison to state-of-the-art techniques or theoretical bounds).

After a presentation of non-stationary sinusoidal modeling in
Section 2, Section 3 makes a short survey on derivative-based anal-
ysis. The simple generalized difference method is introduced in
Section 4. This method is then compared to the reassignment
method and against the Cramér-Rao lower bounds in Section 5.

2. NON-STATIONARY SINUSOIDAL MODELING

Additive synthesis can be considered as a spectrum modeling tech-
nique. It is originally rooted in Fourier’s theorem, which states that
any periodic function can be modeled as a sum of sinusoids at var-
ious amplitudes and harmonically related frequencies. Let us con-
sider here the sinusoidal model under its most general expression,

which is a sum of complex exponentials (the partials) with time-
varying amplitudes ap and non-harmonically related frequencies
ωp (defined as the first derivative of the phases φp). The resulting
signal s is thus given by:

s(t) =

P
X

p=1

ap(t) exp(jφp(t)). (1)

In the context of this paper, amplitudes and frequencies are sup-
posed to evolve within an analysis frame under first-order am-
plitude and frequency modulations. Furthermore, as the present
study focuses on the statistical quality of the parameters’ estima-
tors rather than their frequency resolution, the signal model is re-
duced to only one partial (P = 1). The subscript notation for the
partials is then useless. Let us also define Π0 as being the value
of the parameter Π at time 0, corresponding to the center of the
analysis frame. The signal s is then given by:

s(t) = exp
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where µ0 (the amplitude modulation) is the derivative of λ (the
log-amplitude), and ω0 (the frequency), ψ0 (the frequency modu-
lation) are respectively, the first and second derivatives of φ (the
phase). Thus, the log-amplitude and the phase are modeled by
polynomials of degrees 1 and 2, which can be viewed either as
truncated Taylor expansions of more complicated amplitude and
frequency modulations (e.g. tremolo / vibrato), or either as an ex-
tension of the stationary case where µ0 = 0 and ψ0 = 0.

3. SINUSOIDAL ANALYSIS

The problem we are interested in is the estimation of the model
parameters, namely a0 = exp(λ0), µ0, φ0, ω0, and ψ0. This can
be achieved using the short-time Fourier transform (STFT):

Sw(t, ω) =

Z +∞

−∞

s(τ)w(τ − t) exp (−jω(τ − t)) dτ (3)

where Sw is the short-time spectrum of the signal s. Note that,
as in [2], we use here a slightly modified definition of the STFT.
Indeed we let the time reference slide with the window, which is
also the case in practice when the STFT is implemented using a
sliding FFT. Sw involves an analysis window w, band-limited in
such a way that for any frequency corresponding to one specific
partial (corresponding to some local maximumm in the magnitude
spectrum), the influence of the other partials can be neglected (in
the general case when P > 1). In the stationary case (µ0 = 0 and
ψ0 = 0), the spectrum of the analysis window is simply centered
on the frequency ω0 and multiplied by the complex amplitude

s0 = a0 exp(jφ0) = exp(λ0 + jφ0). (4)
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In the non-stationary case however, s0 gets multiplied by

Γw(ω, µ0, ψ0) =

Z +∞

−∞

w(t) exp

„

µ0t+ j

„

ωt+
ψ0

2
t2

««

dt.

(5)
In the special case of using a Gaussian window for w, an ana-
lytic formula can be derived [13]. This is also feasible, but more
complicated, for other windows [11]. Else, it is always possible –
although time consuming – to compute Γw directly from Equation
(5). Once the estimated frequency ω̂0 and modulations µ̂0, ψ̂0 are
known, the amplitude and phase can eventually be estimated since

ŝ0 =
Sw(t, ωm)

Γw(ω̂0 − ωm, µ̂0, ψ̂0)
, (6)

where ωm is the (discrete) frequency of the local maximum of the
(discrete) magnitude spectrum where the partial is detected.

The problem is yet to estimate the frequency and the modula-
tions. The frequency modulation is the derivative of the frequency.
And the amplitude modulation and frequency can be estimated us-
ing the derivatives of the real and imaginary parts, respectively,
of the logarithm of the spectrum (see [2]). Indeed, these real and
imaginary parts of the spectrum are the log-amplitude and phase,
respectively, since in the (log-)polar notation Sw = a exp(jφ) =
exp(λ + jφ). This estimation can involve either the derivatives
of the signal (derivative method) or the derivatives of the analysis
window (reassignment method). The equivalence of these two ap-
proaches can be shown by a change of variable in the integral of
Equation (3), see [2], or by integration by parts, see [10].

The last problem is now to be able to compute the derivative
of the signal or of the window. Sometimes, this can be done ana-
lytically. Else, it is possible to use a differentiator filter [2]. But a
much simpler way is to approximate the derivative using the (first-
order) difference. This is the case in the phase vocoder, where the
instantaneous frequency is estimated from the phase difference.

4. THE SIMPLEST METHOD

Let us generalize the phase vocoder approach to the non-stationary
case, considering frames x of N consecutive samples of the sig-
nal s, and their discrete spectraX obtained by zero-phase Discrete
Fourier Transform (DFT). ThusX(ω) = Sw(t, ω) is the spectrum
of the frame centered at the desired (discrete) estimation time, and
letX∓(ω) = Sw(t∓1/Fs, ω) be its left (previous, i.e. one sample
before) and right (next, i.e. one sample after) neighboring spec-
tra, respectively (Fs denoting the sampling frequency). Thus, the
derivative is approximated by the first-order difference. As used in
[14], let us notice that the log-amplitude and phase differences cor-
respond to the real and imaginary parts of the logarithm of spectral
ratios, respectively, and define:

∆λ(X1, X2) = log |X1| − log |X2|

= ℜ (log (X1/X2)) , (7)

∆φ(X1, X2) = ∠X1 − ∠X2

= ℑ (log (X1/X2)) (8)

(X1 and X2 denoting two complex spectra).
Since we can measure the amplitude of the spectra, we can

compute the left and right estimates of the amplitude modulation,
and retain their mean as the final estimation:

µ− = ∆λ(X,X−) · Fs, (9)

µ+ = ∆λ(X+, X) · Fs, (10)

µ̂0 = (µ− + µ+)/2. (11)

Similarly, with the measured phase of the spectra, we can compute
an estimation of the instantaneous frequency:

ω− = unwrap (∆φ(X,X−)) · Fs, (12)

ω+ = unwrap (∆φ(X+, X)) · Fs, (13)

ω̂0 = (ω− + ω+)/2, (14)

where unwrap(α) is the function consisting in adding 2π to α if it
is lower than 0 (i.e. the same phase unwrapping procedure as in the
phase vocoder). With the left and right estimates of the frequency,
again by first-order difference we can derive an estimate of the
frequency modulation:

ψ̂0 = (ω+ − ω−) · Fs. (15)

Finally, to get the amplitude and phase estimates, we apply the
procedure described in the previous section (see Equations (4–6)).
The least-square estimation of the coefficients of the (order-1) λ(t)
and (order-2) φ(t) polynomials of Equation (2) – using the obser-
vations of the log-amplitude and phase on the 3 consecutive spectra
– turned out to be much less accurate.

5. EXPERIMENTS AND RESULTS

To quantitatively evaluate the precision of the difference method
(D) for the estimation of all the model parameters, we ran the same
experiments as in [2] and made comparisons to the reassignment
method (R) and to the Cramér-Rao bounds (CRB) – again, see [2].

When looking at the results of these experiments (see Figures
1–3), we see that the simple difference method is in fact very good,
and compares to the reassignment method.

Regarding the phase, frequency, amplitude, and amplitude mod-
ulation, both methods produce very similar and excellent results.
In the stationary case (see Figure 2), the simple difference method
performs even slightly better. This is also true in case of amplitude
modulation only (not shown here to save some space). But when
frequency modulation is present (see Figure 3), the performances
of both methods degrade in exactly the same way.

The most noticeable differences are for the estimation of the
frequency modulation (see Figure 1). The same trend is confirmed:
when this frequency modulation is absent, the simple difference
method is as good (a) or even better (b). But when the frequency
modulation is present, the results are getting worse (c,d) – although
acceptable: the difference method exhibits a bias, for very high
signal-to-noise ratios (SNRs) though.

6. CONCLUSION AND FUTURE WORK

In this paper, the generalization of the phase vocoder approach to
the non-stationary case has been proposed. This difference method
gives indeed very good results, comparable to the state of the art.
And since it is clearly the simplest method, this makes it a perfect
candidate for the implementation in sinusoidal analysis systems.
However, there is room for improvement especially regarding the
estimation of the frequency modulation when present. Moreover,
there is a need for a simple and efficient computation of the Γw

function for popular analysis windows.
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(a) stationary case (µ = 0,ψ = 0)
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(b) AM-only case (|µ| ≤ 100,ψ = 0)
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(c) FM-only case (µ = 0,|ψ| ≤ 10000)
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(d) AM/FM case (|µ| ≤ 100,|ψ| ≤ 10000)

Figure 1: Frequency modulation estimation error as a function of
the SNR (stationary, AM-only, FM-only, and AM/FM cases) for the
reassignment (R) and difference (D) methods, and comparison to
the Cramér-Rao Bound (CRB).
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Figure 2: Estimation errors as functions of the SNR in the station-
ary case, for the amplitude (a), amplitude modulation (b), phase
(c), and frequency (d), with the reassignment (R) and difference
(D) methods, and comparison to the Cramér-Rao Bounds (CRB).
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Figure 3: Estimation errors as functions of the SNR in the AM/FM
case, for the amplitude (a), amplitude modulation (b), phase (c),
and frequency (d), with the reassignment (R) and difference (D)
methods, and comparison to the Cramér-Rao Bounds (CRB).
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