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This paper proposes a hybrid multiagent learning algorithm for solving the dynamic 

simulation-based bilevel network design problem. The objective is to determine the op-
timal frequency of a multimodal transit network, which minimizes total users’ travel cost 
and operation cost of transit lines. The problem is formulated as a bilevel programming 
problem with equilibrium constraints describing non-cooperative Nash equilibrium in a 
dynamic simulation-based transit assignment context. A hybrid algorithm combing the 
cross entropy multiagent learning algorithm and Hooke-Jeeves algorithm is proposed. 
Computational results are provided on the Sioux Falls network to illustrate the perform-
ance of the proposed algorithm.  
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1. INTRODUCTION 
 

Transit network design problem (TNDP) has been an important problem in 
transportation science and widely studied in the past [1][2][3]. The objective is to 
determine optimal transit line frequencies in a transit network, which minimizes total 
user cost and transit operation cost under resource and user equilibrium flow constraints. 
The later results from the solution of traffic assignment problem aiming to determine the 
traffic flow at Nash equilibrium (user optimal) states. The TNDP can be generally 
formulated as a bilevel programming problem, where the upper-level is a constrained 
minimization problem for the optimal transit line frequency decision; the lower-level is a 
variational inequality (VI) problem for solving the user-optimal equilibrium flow. As the 
evaluation of the objective function at the upper-level requires a solution of the VI 
problem at the lower-level, the problem has been well known as a difficult problem in 
mathematical programming and transportation science.  

In the past, the TNDP has been studied by many authors. Gao et al. [4] formulated 
the TNDP as a bilevel programming model and proposed a solution procedure based on 
sensitivity analysis. The upper-level problem is formulated as a minimization problem 
under the equilibrium transit assignment constraints. The lower-level problem is 
formulated as the VI problem with differential cost functions. The proposed approach 
requires the calculation of the derivatives of flow with respect to the line frequency to 
obtain optimal solutions. Marcotte [1] proposed a formal description of the TNDP and 
provided several heuristic procedures for solving it. The user-optimal flow is obtained by 
solving the VI problem in a static network with asymmetric link cost functions. LeBlanc 
proposed a series of papers for the TNDP [2][5]. In [2], a bilevel static multimodal 
transit network design model has been proposed. The author first solved a mode-split 



 

  

assignment problem to obtain a user-optimal equilibrium flow by Frank-Wolfe algorithm 
and then applied Hooke-Jeeves algorithm to iteratively derive optimal frequencies in a 
static transit network. Other solution techniques for the bilevel programming problem 
can be found in [6]. However, for dynamic simulation-based transit assignment, the 
above derivative-based methods cannot be applied since the functional form of the 
derivatives is generally unavailable. The simulation-based VI problem is generally 
difficult to solve in the dynamic transit system. For this issue, Ma and Lebacque [7][8] 
proposed a cross entropy (CE) based solution algorithm to iteratively derive optimal 
travel choice probabilities towards user equilibrium based on minimizing the 
Kullback-Liebler relative entropy (cross entropy) between two consecutive probability 
distributions.  

In this work, a hybrid algorithm is proposed by combing the multiagent cross 
entropy learning algorithm and the Hooke-Jeeves algorithm for solving the 
simulation-based transit network design problem. The proposed algorithm is 
derivative-free, convenient for solving the simulation-based TNDP. For the transit 
system simulation, a multiagent approach is proposed to capture explicitly the transit 
system dynamics. We propose a multi-layer network to effectively represent the transit 
network and simulate the movement of different agents (passengers and vehicles). 
Passenger’s waiting time at stop is explicitly calculated subject to the capacity constraint 
of the vehicle. 

The rest of the paper is organized as follows. Section 2 describes the mathematical 
formulation of the bilevel programming problem for the TNDP. It follows in Section 3 
the dynamic transit system description based on the multiagent approach along with the 
transit network model and travel cost formulation. Section 4 presents the proposed 
solution algorithm by combining the Hooke-Jeeves algorithm and the CE multiagent 
approach. A state-of-the-art algorithm based on the method of successive average (MSA) 
for solving simulation-based dynamic traffic assignment problem is proposed. Section 5 
provides the computational results of the CE multagent approach and the MSA appraoch 
on the Sioux Falls network [2] to validate the obtained lower-level user euilibrium 
solution. Then we show the optimal transit frequency obtained by the hybrid algorithm. 
Section 6 concludes the paper. 

2. THE TRANSIT NETWORK DESIGN MODEL 

Notation 
l transit line 
L set of transit lines 

lY  upper bound of the frequency of transit line l 
lY  lower bound of the frequency of transit line l 
ly  frequency of transit line l  

y  vector of the frequency of transit lines   
lθ  cost increase for frequency in transit line l   

m designation of a user   
mC  generalized travel cost of user m 
k origin-destination pair 
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K set of origin-destination (o-d) pair k 
)(tf r  flow on path r at time t 

f vector of flows 
r path index 
kR  set of paths connecting o-d pair k  

)(tdk  demand of origin-destination pair at time t 
kD  demand of origin-destination pair  

t time index 
T the time of the last vehicle/user leaves the network 
 
The TNDP is formulated as a bilevel programming problem. For the upper-level 

problem, a decision maker aims to minimize the total cost of the transit system under 
feasible frequency constraints and dynamic user equilibrium at the lower-level. For the 
lower-level problem, each user aims to minimize his/her travel cost, this is a problem of 
noncooperative Nash equilibrium in a multiagent system. At the upper-level, the problem 
is formulated as a constrained minimization problem subject to feasible line frequency 
and to the equilibrium path flow determined at the lower-level. At the lower-level, the 
problem is formulated as a VI problem with the line frequencies imposed at the 
upper-level.  
 
(Upper-level) 
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        *f  is the noncooperative Nash equilibrium path flow vector determined  
        by solving the minimization problem of (4)-(7).                        
(3) 
(Lower-level, VI problem)  
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where the function ),0max(][ qq =+ .  
The objective function (1) minimizes total generalized travel cost of users and total 
operation cost. The constraints (2) mean that the line frequencies are bounded. The 
constraint (3) is the user optimal path flow vector satisfying the equilibrium condition 



 

  

solved by (4)-(7) [9]. At the lower-level, the user equilibrium flow is stated as 

0)],(),([ =− +ff tCtCf srr , ],[,,, 0 TttkRsr k ∈∀∀∈∀                                         (8) 

can be obtianed by solving the minimization problem of (4)-(7). The user equilibrium 
flow states that for users of the same origin and destination (OD) the generalized travel 
cost resulting from departure time and route choices is equal and no less than that of 
unused choice alternatives. The constraints (5)-(7) state the conservation of flow and 
non-negativity of path flow.  

Previous studies [10][11] showed that we can define a relative gap function to 
measure how the generalized travel cost is far from the idealized shortest path cost. The 
gap function is defiend as 

∑ ∑
∑ ∑ ∑

∈ ∈

∈ ∈ ∈

−
=

Hh Kk
hkhk

Hh Kk Rr
hkhkrhkr

Cd

CCf
hk
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* ][
)(Gap f ,                              (9) 

where  
h :departure time choice index Hh ∈∀  with { }nH ,...,2,1,0= . Given a selected de-

parture time interval h, a random departure time will be taken within 
))1(,[ 00 ∆++∆+ htht with 0t  the earliest departure time and ∆  a small discretized 

time interval (e.g. 5 minuites). 

hkrC : experienced travel cost with respect to (h, k, r) 

hkd : time-dependent travel demand with respect to (h, k)  
*
hkC : minimum path generalized travel cost with respect to (h, k)  

The gap function reports the average gap towards to dynamic user equilibrium. 
When the gap function converges to a stable value and the obtained average travel cost 
for utilized departure time intervals and paths are no more than that on unused alterna-
tives, the approximate of user equilibrium is achieved.      

3. MULTIAGENT-BASED TRANSIT SYSTEM 

To capture the dynamics of the movements of the users and the effect of congestion 
at stations, the multiagent approach is adopted. The multiagent approach is very conven-
ient for simulating the dynamics of operations of transit vehicles and user flow on the 
system [12]. Its advantage resides on its flexibility in capturing the interactions between 
agents with their environment. We utilize a multilayer network structure to explicitly 
model complex connections within multimodal stations with the presence of different 
transport modes and service lines. The detail of the transit network and multiagent simu-
lation is described as follows. 
 
3.1 Transit network and transit paths 
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The transit network is represented by a directed graph G(N, A), where N is the set of 

nodes and A the set of arcs. The nodes are classified into three types: origin/destination, 
station, and line node [13]. The network structure is illustrated in Figure 1. As shown in 
Fig. 1, the origin/destination nodes are connected with related serviced station nodes by 
walking arcs. The station nodes are connected with its service transit lines, with other 
station nodes within the same multimodal station and with origin/destination nodes. Each 
arc is characterized by its travel time calculated as its length divided by walking or con-
stant mode-specific vehicle speed. A transit path (called path hereafter) is an acyclic 
path connecting an origin-destination (OD) pair in the multilayer transit network. The 
travel time of a path comprises walking time accessing to O/D, transit line nodes by 
boarding/alighting arcs, waiting time at line nodes, and transfer time between stations 
within the same multimodal station. The travel time on the boarding arcs represents av-
erage walking time from the station center to the boarding point of the vehicle. Hence, 
the generalized travel cost function for the path consists of the following parts: (a) 
walking time w

rπ ; (b) in-vehicle time v
rπ ; (c) waiting time ),(s ftrπ ; (d) mode transfer pen-

alty λ ; (e) early/late arrival penalty ),( ftrρ ; (f) fare rΓ . By assuming the 
First-In-First-Out principle for boarding a vehicle [14], the waiting time depends on the 
supply (vehicle capacity and service frequency) and the demand at each transit line node. 
Hence, the waiting time )(tiπ  for a user arriving at line node i at time t is calculated as 

ttSDt iii −=π − ))(()( 1 , where )(tSi  is cumulative arrivals at line node i by time t, 
)(1 tDi

−  is the inverse function of cumulative departure from line node i by time t. 
The generalized travel cost of path r when departing from origin at time t is then 

evaluated as: 

rrrrrrr tnttC Γ+ρ+λ+π+π+πα= ),()),((),( svw fff ,                       (10) 

where α  is the unitary monetary value of travel time obtained by travel survey data; 
rn  is the number of mode change which can be directly calculated by the used multi-

modal path; λ  is the unitary penalty per change obtained by travel survey data ; rΓ  is 
fare of path r.  
Based on the experimental study of Small [15], the early/late arrival penalty when arriv-
ing at destination at time arrt  is defined as: 

),0max(),0max(),( arrarr ϖ−τ−×µ+−ϖ−τ×µ=ρ ttt bar f ,                     (11) 

where aµ  and bµ  are unitary penalty associated with early and late arrival, respec-
tively. The value of unitary penalty can be generally obtained by travel behavior survey.  
τ  is the desired arrival time at destination which is set as identical for simplicity; ϖ is 
the half of tolerable schedule delay interval without penalty, generally set as 2-5 minutes.  
 
3.2 Multiagent-based transit system 
 
The system is composed of two classes of agents, i.e. transit vehicles and users. For the 
vehicle agent, it represents a mode-specific vehicle such as tramway/metro/train operat-
ing on respective transit lines with predefined frequency and capacity constraints. For 
simplicity, the vehicle agents move with constant speed neglecting accidents or delayed 



 

  

situation. The vehicle capacity is assumed fixed and transport mode-specific. When the  

Metro/bus line node
Metro/bus station node
O/D

Boarding/Aligting arc
Walking arc
Transit line arc

Non-road mode transit networkBus network

Bus lines Transit lines

 
Figure 1 Transit t network structure 

 
vehicle agent arrives to a line node, a constant stop time makes the users board the vehi-
cle. If the vehicle capacity is achieved, not serviced users need to wait for the next vehi-
cle at the same line node.  

For the user agent, each one iteratively adapts his/her departure time and path choice 
in order to minimize his/her generalized travel cost. The user behavior is based on the 
bounded-rationality assumption [16], assuming that the users have no complete informa-
tion about the travel choice decision of the other users, neither the real-time congestion 
information of the transit network. The departure time and path choices are adjusted in a 
day-to-day basis based on the performance of choice alternatives on the previous day. 
The learning process is similar to the reinforcement learning process where users shift 
their choices to more attractive alternatives based on past experiences. The difficulty is 
how to update the choice probability towards the user equilibrium in a multiagent sys-
tem. 

4. SOLUTION ALGORITHM 

In this section, a hybrid solution algorithm is proposed for solving the dynamic simula-
tion-based TNDP. As user’s experienced travel cost depends on transit network supply 
(vehicle capacity and line frequency) and travel demand dynamics (users of the same OD 
competing the same resources), the derivative-based methods cannot be applied to solve 
the proposed bilevel programming problem. The algorithm is composed of two main 
steps. First, the cross entropy learning algorithm is applied for solving the lower-level VI 
problem. The solution obtained at this stage is then utilized for the computation of the 
value of the objective function at the upper-level. Secondly, to optimize the line frequen-
cies, the Hooke-Jeeves algorithm is applied, which iteratively finds the optimal configu-
ration of line frequency by moving each line frequency towards to better solutions 
[17][2]. The solution algorithms are described as follows. 
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4.1 Hooke-Jeeves algorithm 
 
Step 1: Initialize the vector 0y of line frequency, set exploratory search step size 
as 0∆=∆ . Set iteration index i=0.    
 
Step 2: For each Ll ∈ , set trial frequency vector 'y  by increasing ly in iy  by ∆ , if 

ll Yy >∆+  set ll Yy = . Calculate the value of the objective function in (1) by sum-
ming total generalized travel cost of users (obtained by the cross entropy learning algo-
rithm described below) and operation cost.  
If ),(),'( ** fyfy iZZ < , set 'yy =i  and ),'(),( ** fyfy ZZ i = ; otherwise set trial fre-
quency vector 'y  by decreasing ly in iy  by ∆ . If the resulting ll Yy <∆− , then set 

ll Yy = .  
Compute ),'( *fyZ , if ),(),'( ** fyfy iZZ < , set 'yy =i  and ),'(),( ** fyfy ZZ i = . 
Set 1: += ii .  
 
Step 3: If no improvement found, set ∆ := ∆ /2. If the resulting step size smaller than a 
small positive value, i.e., ξ<∆ , stop the algorithm; otherwise goto Step 2. 

 
4.2 Cross entropy learning algorithm 

 
The cross entropy learning algorithm is designed for solving dynamic multimodal 

user equilibrium (UE) problems. The algorithm considers the user equilibrium is a rare 
event to be learned. Based on an iterative procedure, the proposed algorithm adaptively 
learns optimal travel choice probability by minimizing the Kullback-Liebler relative en-
tropy between two consecutive probability distributions. The resulting probability up-
dates shift the users to cheaper choice alternatives towards the UE. The reader is referred 
to [7][8] for more detailed description. In current application, the user’s decision choice 
concerns only the departure time choice and path choice in the dynamic capacitated tran-
sit network.  

Consider the users are located at origins aiming to arrive to respective destinations 
within the desired arrival time τ , assumed the same for all travelers for simplicity. 
Based on the bounded-rationality assumption, each traveler is assumed to choose a de-
parture time and path following related choice probability distributions hp  and rp . 
Based on the experienced generalized travel cost ),( ftCr , the optimal choice probabili-
ties towards the UE are iteratively derived. The detail of the cross entropy learning algo-
rithm is described as follows.   
 
Step 1: Initialize uniform probability distributions for departure time choice and path 
choice. Set HhHph ∈∀= ,/1  and kkr RrRp ∈∀= ,/1 . kR  is the path set of OD 
pair k. 

Step 2: Dynamic transit system simulation and the travel cost calculation. The user 
agents move into the network according to his/her departure time and path choice. When 
arriving at his/her destination, compute the experienced generalized travel cost by 
(10)-(11).    



 

  

 
Step 3: Update the departure time choice probability by   
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ep

epp

Hh

Cw
h

C
w
h

w
h ww

h

ww
h

∈∀=
∑
∈

−

−
+ ,

'

γ/
'

γ/
1

'

                                 (12) 

, where w
hC  is the average generalized travel cost with respect to the users choosing the 

departure time interval h at iteration w. wγ  is the control parameter resulting from the 
solution of the following minimization problem: 

    Min wγ subject to  ∑
∈

+ ≤−
Hh

ww
h

w
h pp α|| 1                             (13) 

, where ww /α κ=  is a numerical divergent series such that the flow adjustment con-
verges. κ  is a positive constant. w is an iteration index. 
 
Step 4: Update the path choice probability according to the average performance of path 
choice samples by applying the formulas (12)-(13). Set 1: += ww .    
  
Step 5: When maxww =  or the resulting probability updates stabilize, stop; otherwise 
goto Step 2. 
 
4.3. Method of Successive Averages (MSA) 
 

The method of successive averages approach has been widely applied for solving 
the simulation-based dynamic traffic assignment problem [11][18][19]. The MSA 
method is a general iterative path flow adjustment scheme for solving fixed point prob-
lems. The adjustment process consists of shifting iteratively travelers to cheaper routes. 
Given known OD demand, the travelers are initially loaded on the time-dependent short-
est paths based on free flow travel time. The shortest paths are then iteratively updated 
based on travelers’ experienced travel cost. By shifting travelers to current found shortest 
paths, user equilibrium can be approximately achieved by an iterative adjustment process. 
The algorithm is terminated when the gap function converges to a small value or the 
maximum iteration is achieved.  

Existing applications of the MSA method treat only the path choice problem, given 
known time-dependent demand [11][19]. As we aim at solving the dynamic user equilib-
rium problem with respect to departure time and path choice, a MSA-based solution 
scheme is proposed as follows.  
 
Step 1: Initialization. Compute the time-dependent shortest paths for each OD pair and 
assign OD demand on departure time intervals. Set iteration index w=0.   
a) Generate the shortest path 0

hku  for OD pair k and departure time interval h as  

])([minarg vw0
rrrrRrhk nu

hk

Γ++π+πα=
∈

, kh,∀                        (14)  
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  Initialize the shortest path set { }00
hkhk uU =  for all h and k.  

b) Departure time assignment of travel demand kD . Estimate the generalized travel cost 
0
hkC  on the shortest path 0

hku  by 

hkhkhkhkhk uuuuuhk tnC Γ+ρ+λ+π+πα= ),()( vw0 f , kh,∀ ,                 (15) 

where ),( ft
hkuρ  is the early/late arrival penalty on the shortest path 0

hku  when depart-

ing at time ∆+= htt 0 . For each OD pair k, sorting the departure time index set H in a 

ascending way with respect to 0
hkC . The obtained ascending departure time choice set 

for OD pair k is denoted as '
kH . Assign uniformly the travel demand kD  on the de-

parture time intervals s,...,2,1  in '
kH , denoted as 0~

kH , such that 

hkhk uku QsDsQ )1( +<≤ , where 
hkuQ  is the maximum allowed passenger flow (i.e. 

number of users transported per departure time interval for a given OD) on the path 0
hku  

for one departure time interval ∆ . The obtained time-dependent demand for h and k is 
00 ~, k

k
hk Hh

s
Dd ∈∀= , and 0 otherwise. This assignment makes users utilize the lowest 

travel cost departure time intervals under path flow capacity constraints.  

Step 2: Dynamic network loading. Load all passengers on the network based on their 
departure time and path choice and run the simulation until all passengers arrive at their 
destination. Compute the generalized travel cost for all passengers and the value of the 
gap function.   
 
Step 3: If the gap function value is stabilized or the maximum iteration is achieved then 
stop; otherwise, goto Step 4.      
 
Step 4: Update time-dependent link travel time for all used links and compute new 
time-dependent shortest paths 1+w

hku  based on Dikjstra’s algorithm for each h and k. 

Step 5: Update time-dependent demand 1+w
hkd . Compute average generalized cost for all 

departure time intervals. Find the least average cost departure time interval 1~ +w
kh . If 

w
k

w
k Hh ~~ 1 ∉+ , then updated time-dependent demand is determined by 
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However, if w
k

w
k Hh ~~ 1 ∈+ , update time-dependent demand by 
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Step 6: Update path flow assignment for h, k, r 1+w
hkrf  based on similar formula of (16) 

and (17). Set w := w+1, and goto Step 2.  

5. NUMERICAL STUDY 

In this section, we present and validate the solutions obtained for the lower-level 
problem by the CE learning algorithm and the MSA algorithm. Then we report the ob-
tained solution of the bilevel problem based on the hybrid algorithm. 

The simulation of the transit system is based on the discrete event simulation tech-
nique implemented in C++ on a Dell Latitude E6400 with 2.53GHz and 3.48G memory. 
The proposed algorithm is tested on the multilayer Sioux Falls transit networks (146 
nodes and 446 arcs in a multilevel directed graph) by extending LeBlanc’s network in [2] 
(24 nodes and 76 links) (Fig. 2). There are three tramway lines (1, 2, 3) and two metro 
lines (A and B) with service runs in both directions. The length of arcs is shown in the 
square brackets of Fig. 2.   

The global parameter setting for the experiment is described as follows. The transit 
modes contain only tramway and metro with strict capacity constraints. The capacity per 
vehicle for (tramway, metro) are set as (300, 600) and (250, 300) for low and high con-
gestion scenarios. The speed for tramway and metro is set respectively as 5.0 and 12.5 
m/sec. The stop time at metro and tramway line nodes is set as 20 seconds for all the 
vehicles. The walking speed is set as 1.4 m/sec. The length of the boarding, alighting and 
transfer arcs (between two different stations) is 100 m. The transfer arc from the O/D to 
connected station node is 300m. For simplicity, the desired arrival time to destination is 
uniformly set as 9:00. The departure time choice range is set between 7:00 and 9:00 with 
discretized time interval of 5 minutes. For simplification, rΓ  and λ  are set as 0. The 
detail of the parameter settings is listed in Table 1.  

Table 1 The parameter settings of the experiments 
Eq. Parameter Value Eq. Parameter Value 

(2) lY 1 1 (10) ϖ  300 
sec. 

(2) lY  20 Below 
(12) 

κ  1.6 

(1) tramway,lθ  100 (1) metrol,θ  400 
(9) α  7  (9) rΓ , λ  0 
(10) aµ  4 (10) bµ  15 
 0y  {10,10,10,10,10} (10) τ  9:00 

   Remark: 1. vehicle/hour 
 

5.1. Results for the CE learning algorithm and the MSA approach  
 
Before solving the TNDP, we illustrate the performance of the CE learning algo-

rithm and the MSA algorithm for the lower-level problem. The algorithms are tested on 
different demand level (1600, 4000 and 8000 passengers), vehicle capacity (low and 
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high) and service frequency (2 minutes and 10 minutes). Table 2 shows the computa-
tional results of the algorithms. It indicates that at higher congestion level (de-
mand=8000, frequency=10 minutes), the gap function converges to a higher level. This 
is due to insufficient transit service which makes travelers leave their home quite early 
and generate higher early arrival penalty. As for the performance of the algorithms, the 
gap function quickly converges to a stable value after 10 iterations for the CE algorithm. 
When compared with the MSA method, the CE learning algorithm has similar perform-
ance in terms of solution quality and computational times. The validation of obtained 
user equilibrium solution for the lower-level problem is reported in Table 3, where for 
each 5 minute departure time interval, the number of users and the average generalized 
travel cost on the k-shortest (k=5) paths are presented. The result indicates that the gen-
eralized travel costs on all used paths are no more than that on all unused paths except 
few exceptions. Note that the generalized travel cost for unused paths on some departure 
time intervals is estimated by summing in-vehicle travel time, average waiting time (half 
headway between vehicles) and arrival penalty when departing at the middle point of the 
departure time interval.    

 

 
Figure 2 The Sioux Falls network with transit lines 

   



 

  

Table 2 Comparative study of CE and MSA methods for lower-level problem 
 Demand  
 1600 (400 per OD) 4000 (1000 per OD) 8000 (2000 per OD) 
 CE MSA CE MSA CE MSA 
Value of the gap function1  3.03 3.00 3.03 3.05 3.07 3.14
Total generalized cost 11878.4 11783.2 29695.5 29811.7 60722.0 61800.9
Computational time (sec.) 122.3 129.3 301.6 289.2 681.0 628.0
Value of the gap function2  4.00 4.19 7.17 7.05 14.29 14.14
Total generalized cost 15185.7 15872.5 82565.3 80066.0 335274.0 331808.0
Computational time (sec.) 110.0 106.6 284.3 280.9 641.2 640.0

Remarks:  
1. Frequency = 2 minutes, capacity for metro and tramway: 600 passengers/veh and 500 
passengers/veh, respectively. 
2. Frequency = 6 minutes, capacity for metro and tramway: 300 passengers/veh and 250 
passengers/veh, respectively. 
3 The runtime for 20 iterations.  
 

Table 3 Validation of obtained solution based on the CE method (total demand = 8000 
(2000 for each OD pair), with frequency = 2 minutes for metro and tramway, 
capacity for metro and tramway : 600 passengers/veh and 500 passengers/veh, 

respectively) 

OD = (1,13) 
Number of passengers on each 

path 
Average generalized travel cost on 

each path 
Departure 

time interval r1 r2 r3 r4 r5 r1 r2 r3 r4 r5 

7:25-7:30 0 0 0 0 0 9.11 10.14 10.14 10.27 10.53 

7:30-7:35 3 0 0 0 0 8.70 10.06 10.06 10.27 10.53 

7:35-7:40 22 0 0 0 0 8.41 10.06 10.06 10.40 11.21 

7:40-7:45 117 0 0 0 0 8.07 10.99 10.99 11.65 12.46 

7:45-7:50 512 0 0 0 0 7.75 12.24 12.24 12.90 13.71 

7:50-7:55 660 0 0 0 0 7.59 13.49 13.49 14.15 14.96 

7:55-8:00 674 0 0 0 0 7.57 14.74 14.74 15.40 16.21 

8:00-8:05 12 0 0 0 0 8.26 15.99 15.99 16.65 17.46 

8:05-8:10 0 0 0 0 0 9.67 17.24 17.24 17.90 18.71 



 

 

13 

 

 
OD = (1,20) 

Number of passengers on each 
path 

Average generalized travel cost on 
each path 

Departure 
time interval r1 r2 r3 r4 r5 r1 r2 r3 r4 r5 

7:15-7:20 0 0 0 0 0 10.31 10.40 11.04 11.17 11.34 

7:20-7:25 1 0 0 0 0 10.24 10.07 10.71 10.90 11.29 

7:25-7:30 22 4 0 0 0 9.74 9.91 10.59 10.90 11.29 

7:30-7:35 128 6 0 0 0 9.42 9.61 10.59 11.14 12.36 

7:35-7:40 988 12 0 0 0 9.15 9.50 11.42 12.39 13.61 

7:40-7:45 591 126 0 0 0 9.13 9.58 12.67 13.64 14.86 

7:45-7:50 122 0 0 0 0 9.31 9.25 13.92 14.89 16.11 

7:50-7:55 0 0 0 0 0 9.78 10.50 15.17 16.14 17.36 
OD = (2,13) 

Number of passengers on each 
path 

Average generalized travel cost on 
each path 

Departure 
time interval r1 r2 r3 r4 r5 r1 r2 r3 r4 r5 

7:40-7:45 0 0 0 0 0 7.34 7.96 8.16 8.37 8.47 

7:45-7:50 1 0 0 0 0 7.00 7.62 7.82 8.26 8.47 

7:50-7:55 9 0 0 0 0 6.67 7.29 7.76 8.26 8.50 

7:55-8:00 52 0 0 0 0 6.41 7.29 7.76 9.09 9.75 

8:00-8:05 287 0 0 0 0 6.01 7.29 8.75 10.34 11.00 

8:05-8:10 853 0 0 0 0 5.70 8.53 10.00 11.59 12.25 

8:10-8:15 727 0 0 0 0 5.70 9.78 11.25 12.84 13.50 

8:15-8:20 71 0 0 0 0 5.98 11.03 12.50 14.09 14.75 

8:20-8:25 0 0 0 0 0 7.76 12.28 13.75 15.34 16.00 

 
 
 
 
 



 

  

 
OD = (2,20) 

Number of passengers on each 
path 

Average generalized travel cost on 
each path 

Departure 
time interval r1 r2 r3 r4 r5 r1 r2 r3 r4 r5 

7:30-7:35 0 0 0 0 0 8.53 8.63 9.15 9.25 9.27 

7:35-7:40 2 0 1 0 0 8.32 8.30 9.00 8.92 8.94 

7:40-7:45 16 3 0 0 0 7.92 8.01 8.52 8.75 8.80 

7:45-7:50 188 9 0 0 0 7.58 7.75 8.52 8.75 8.80 

7:50-7:55 753 236 0 0 0 7.42 7.74 8.65 9.36 9.52 

7:55-8:00 668 23 0 0 0 7.58 8.21 9.90 10.61 10.77 

8:00-8:05 101 0 0 0 0 7.61 7.34 11.15 11.86 12.02 

8:05-8:10 0 0 0 0 0 7.88 8.59 12.40 13.11 13.27 
 
5.2. Results for the hybrid algorithm 
 
The performance of the Hooke-Jeeves algorithm for solving the upper-level problem is 
shown in Table 4. Two scenarios with respect to different levels of demand are set as 
1600 and 8000 users. As can be seen in Table 4, the Hooke-Jeeves algorithm converges 
efficiently to near-optimal line frequency. Note that we utilize 10 iterations to obtain 
near user-optimal flow by the CE learning algorithm for solving the lower-level problem 
in order to reduce the computational time.   

6. CONCLUSION 

In this work, a hybrid multiagent learning algorithm is proposed to solve the dy-
namic simulation-based transit network design problem. The problem is formulated as a 
bilevel programming problem where the upper-level is a constrained minimization 
problem for the optimal transit line frequency decision, and the lower-level is a 
variational inequality (VI) problem for solving user-optimal equilibrium flow problem. 
The proposed hybrid algorithm is composed of two main steps to iteratively solve the 
bilevel problem. In the first step, the cross entropy learning algorithm is proposed to 
solve the lower-level problem. Then the Hooke-Jeeves algorithm is applied to iteratively 
find optimal line frequencies for the upper-level problem. Computational results on the 
extended Sioux Falls network illustrate that the proposed method can find near-optimal 
solution under dynamic user equilibrium constraints. We compare the cross entropy 
learning algorithm with the method of successive average for solving dynamic transit 
assignment problem. The results show that the performance of the two approaches is 
similar for the test network. Future extensions include applying the queuing theory for 
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modeling passenger flow at stations, and modeling the heterogeneity of passenger’s route 
choice behavior. 

 

Table 4 Summary of Hooke-Jeeves iterations 

Total demand= 1600 (400 per OD) Total demand = 8000 (2000 per OD) 

∆  1f  2f  3f  Af  Bf Z ∆  1f 2f 3f Af Bf Z 

-- 10 5 5 5 10 22834.3 -- 10 10 10 10 10 102850.0 

4 6 5 1 5 6 20724.9 4 10 10 10 10 14 92728.5 

4 6 5 1 5 6 20724.9 4 10 14 10 10 18 87048.5 

2 4 5 1 3 6 20251.3 4 10 14 6 10 20 86669.1 

2 2 5 1 3 6 20186.1 4 14 18 6 10 20  84558.6 

2 2 5 1 3 6 20186.1 4 10 20 2 10 20 83761.2 

1 2 5 1 3 6 19924.9 2 10 20 2 10 20 83761.2 

- - - - - - - 1 10 20 1 10 20 83617.7 
Remark: 
1. 1f : tramway line 1; 2f  tramway line 2, 3f  tramway line 3; Af  metro line           
A, Bf  metro line B.  
2. The vehicle capacity setting is 600 passengers and 300 passengers for metro and 
tramway, respectively.  
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