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The almost sure limits of the minimal position and the additive martingale in a branching random walk

Consider a real-valued branching random walk in the boundary case. Using the techniques developed by Aïdékon and Shi [5], we give two integral tests which describe respectively the lower limits for the minimal position and the upper limits for the associated additive martingale.

Introduction

Let {V (u), u ∈ T} be a discrete-time branching random walk on the real line R, where T is an Ulam-Harris tree which describes the genealogy of the particles and V (u) ∈ R is the position of the particle u. When a particle u is at n-th generation, we write |u| = n for n ≥ 0. The branching random walk V can be described as follows: At the beginning, there is a single particle ∅ located at 0. The particle ∅ is also the root of T. At the generation 1, the root dies and gives birth to some point process L on R. The point process L constitutes the first generation of the branching random walk {V (u), |u| = 1}. The next generations are defined by recurrence: For each |u| = n (if such u exists), the particle u dies at the (n + 1)-th generation and gives birth to an independent copy of L shifted by V (u). The collection of all children of all u together with their positions gives the (n + 1)-th generation. The whole system may survive forever or die out after some generations.

Plainly L = |u|=1 δ {V (u)} . Assume E[L(R)] > 1 and that

E e -x L(dx) = 1, E xe -x L(dx) = 0. (1.1) 
When the hypothesis (1.1) is fulfilled, the branching random walk is called in the boundary case in the literature (see e.g. Biggins and Kyprianou [START_REF] Biggins | Measure change in multitype branching[END_REF] and [START_REF] Biggins | Fixed points of the smoothing transform: the boundary case[END_REF], Aïdékon and Shi [START_REF] Aïdékon | The Seneta-Heyde scaling for the branching random walk[END_REF]). Under some integrability conditions, a general branching random walk can be reduced to the boundary case after a linear transformation, see Jaffuel [START_REF] Jaffuel | The critical barrier for the survival of the branching random walk with absorption[END_REF] for detailed discussions. We shall assume (1.1) throughout this paper.

Denote by M n := min |u|=n V (u) the minimal position of the branching random walk at generation n (with convention inf ∅ ≡ ∞). Hammersly [START_REF] Hammersley | Postulates for subadditive processes[END_REF], Kingman [START_REF] Kingman | The first birth problem for an age-dependent branching process[END_REF] and Biggins [START_REF] Biggins | The first-and last-birth problems for a multitype age-dependent branching process[END_REF] established the law of large numbers for M n (for any general branching random walk), whereas the second order limits have recently attracted many attentions, see [START_REF] Addario-Berry | Minima in branching random walks[END_REF][START_REF] Hu | Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees[END_REF][START_REF] Bramson | Tightness for a family of recursion equations[END_REF][START_REF] Aïdékon | Convergence in law of the minimum of a branching random walk[END_REF] and the references therein. In particular, Aïdékon [START_REF] Aïdékon | Convergence in law of the minimum of a branching random walk[END_REF] proved the convergence in law of M n - 3 2 log n under (1.1) and some mild conditions, which gives a discrete analog of Bramson [START_REF] Bramson | Maximal displacement of branching Brownian motion[END_REF]'s theorem on the branching brownian motion.

Concerning the almost sure limits of M n , there is a phenomena of fluctuation at the logarithmic scale ( [START_REF] Hu | Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees[END_REF]): Under (1.1) and some extra integrability assumption: ∃ δ > 0 such that E[L(R) 1+δ ] < ∞ and E R (e δx + e -(1+δ)x )L(dx) < ∞, the following almost sure limits hold: and S denotes the event that the whole system survives. The upper bound 3 2 log n is the usual fluctuation for M n because M n - 3 2 log n converges in law ( [START_REF] Aïdékon | Convergence in law of the minimum of a branching random walk[END_REF]). It is a natural question to ask how M n can approach the unusual lower bound 1 2 log n. Aïdékon and Shi [START_REF] Aïdékon | The Seneta-Heyde scaling for the branching random walk[END_REF] proved that under (1.1) and the following integrability conditions

σ 2 := E R x 2 e -x L(dx) < ∞, (1.2) 
E η(log + η) 2 + η log + η < ∞, (1.3) 
where η := R e -x L(dx), η := ∞ 0 x e -x L(dx) and log + x := max(0, log x), then

lim inf n→∞ M n - 1 2 log n = -∞, P * -a.s.
Furthermore, they asked whether there is some deterministic sequence a n → ∞ such that

-∞ < lim inf n→∞ 1 a n M n - 1 2 log n < 0, P * -a.s.?
The answer is yes: we can choose a n = log log n. Moreover, we can give an integral test to describe the lower limits of M n : Theorem 1.1 Assume (1.1), (1.2) and (1.3). For any function f ↑ ∞,

P * M n - 1 2 log n < -f (n), i.o. =    0 1 ⇐⇒ ∞ dt t exp(f (t))    < ∞ = ∞ , (1.4) 
where i.o. means infinitely often as the relevant index n → ∞.

As a consequence of the integral test (1.4), we have that for any ε > 0, P * -a.s. for all large n ≥ n 0 (ω), M n -1 2 log n ≥ -(1 + ε) log log n whereas there exists infinitely often n such that M n -1 2 log n ≤ log log n. Hence P * -a.s., lim inf n→∞

1 log log n (M n -1 2 log n) = -1.
The behaviors of the minimal position M n are closely related to the so-called additive martingale

(W n ) n≥0 : W n := |u|=n e -V (u) , n ≥ 0,
with the usual convention: ∅ ≡ 0. By Biggins [START_REF] Biggins | The first-and last-birth problems for a multitype age-dependent branching process[END_REF] and Lyons [START_REF] Lyons | A simple path to Biggins' martingale convergence for branching random walk[END_REF], W n → 0 almost surely as n → ∞. The problem to find the rate of convergence (or a Seneta-Heyde norming) for W n arose in Biggins and Kyprianou [START_REF] Biggins | Measure change in multitype branching[END_REF] and was studied in [START_REF] Hu | Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees[END_REF]. Aïdékon and Shi [START_REF] Aïdékon | The Seneta-Heyde scaling for the branching random walk[END_REF] gave a definite result to this problem. Let

D n := |u|=n V (u)e -V (u) , n ≥ 1, (1.5) 
be the derivative martingale (which is a martingale under the boundary condition (1.1)). It was shown in Biggins and Kyprianou [START_REF] Biggins | Measure change in multitype branching[END_REF] that P-a.s., D n converges to some nonnegative random variable D ∞ . Moreover under (1.1), (1.2) and (1.3), P * -a.s., D ∞ > 0, as shown in [START_REF] Biggins | Measure change in multitype branching[END_REF] and [START_REF] Aïdékon | Convergence in law of the minimum of a branching random walk[END_REF].

Theorem (Aïdékon and Shi [START_REF] Aïdékon | The Seneta-Heyde scaling for the branching random walk[END_REF]). Assume (1.1), (1.2) and (1.3). Then under P * ,

√ nW n (p) → 2 πσ 2 D ∞ , as n → ∞. Moreover lim sup n→∞ √ n W n = ∞, P * -a.s.

Furthermore Aïdékon and Shi conjectured that

lim inf n→∞ √ n W n = 2 πσ 2 D ∞ , P * -a.s. (1.6)
The upper limits of W n can be described as follows:

Theorem 1.2 Assume (1.1), (1.2) and (1.3). For any function f ↑ ∞, P * -almost surely,

lim sup n→∞ √ n W n f (n) =    0 ∞ ⇐⇒ ∞ dt tf (t)    < ∞ = ∞ . (1.7)
Concerning the lower limits of W n , we confirm (1.6) under a stronger integrability assumption: There exists some small constant ε 0 > 0 such that

E η 1+ε 0 + e -x |x| 2+ε 0 L(dx) < ∞. (1.8)
It is easy to see that the condition (1.8) is stronger than (1.2) and (1.3).

Proposition 1.3 Assume (1.1) and (1.8). We have

lim inf n→∞ √ n W n = 2 πσ 2 D ∞ , P * -a.s.
Combining Theorems 1.1 and 1.2, we can roughly say that the main contribution to the upper limits of W n comes from the term e -Mn . According to Madaule [START_REF] Madaule | Convergence in law for the branching random walk seen from its tip[END_REF], and Aïdékon, Berestycki, Brunet and Shi [START_REF] Aïdékon | The branching Brownian motion seen from its tip[END_REF], Arguin, Bovier and Kistler [START_REF] Arguin | The Extremal Process of Branching Brownian Motion[END_REF] (for the branching brownian motion), the branching random walk seen from the minimal position converges in law to some point process, in particular, W n e Mn converges in law as n → ∞, but we are not able to determine the almost sure fluctuations of W n e Mn .

The whole paper uses essentially the techniques developed by Aïdékon and Shi [START_REF] Aïdékon | The Seneta-Heyde scaling for the branching random walk[END_REF]. To show Theorems 1.1 and 1.2, we firstly remark that both two theorems share the same integral test and that since W n ≥ e -Mn , it is enough to prove the convergence part in the integral test (1.7) and the divergence part in (1.4). The convergence part in (1.7) will follow from an application of Doob's maximal inequality to a certain martingale. To prove the divergence part in (1.4), we shall use the arguments in Aïdékon and Shi [START_REF] Aïdékon | The Seneta-Heyde scaling for the branching random walk[END_REF] (the proof of their Lemma 6.3) to estimate a second moment, then apply Borel-Cantelli's lemma. We can also directly prove Theorem 1.2 without the use of the divergence part of (1.4). Finally, the proof of Proposition 1.3 relies on a result (Lemma 4.1) which is also implicitly contained in Aïdékon and Shi [START_REF] Aïdékon | The Seneta-Heyde scaling for the branching random walk[END_REF] (by following the proof of their Proposition 4.1).

The rest of this paper is organized as follows: In Section 2, we recall some known results on the branching random walk (many-to-one formula, change of measure) and on a real-valued random walk. In Section 3, we prove Theorems 1.1 and 1.2, whereas the proof of Proposition 1.3 will be given in Section 4.

Throughout this paper,

f (n) ∼ g(n) as n → ∞ means that lim n→∞ f (n) g(n) = 1 and (c i , 1 ≤ i ≤ 36) denote some positive constants.

Preliminaries

Many-to-one formula for the branching random walk

In this subsection, we recall some change of measure formulas in the branching random walk, for the details we refer to [START_REF] Biggins | Measure change in multitype branching[END_REF][START_REF] Chauvin | Growing conditioned trees[END_REF][START_REF] Lyons | Conceptual proofs of L log L criteria for mean behavior of branching processes[END_REF][START_REF] Aïdékon | The Seneta-Heyde scaling for the branching random walk[END_REF][START_REF] Shi | Branching random walks. Saint-Flour's summer course[END_REF] and the references therein.

At first let us fix some notations which will be used throughout this paper: For |u| = n, we write [∅, u] ≡ {u 0 := ∅, u 1 , ..., u n-1 , u n = u} the shortest path from the root ∅ to u such that |u i | = i for any 0 ≤ i ≤ n. For any u, v ∈ T, we use the partial order u < v if u is an ancestor of v and u ≤ v if u < v or u = v. We also denote by ← v the parent of v. Under (1.1), there exists a centered real-valued random walk {S n , n ≥ 0} such that for any n ≥ 1 and any measurable function f :

R n → R + , E |u|=n e -V (u) f (V (u 1 ), ..., V (u n )) = E [f (S 1 , ..., S n )] . (2.1) Moreover under (1.2), σ 2 = Var(S 1 ) = E |u|=1 (V (u)) 2 e -V (u) ∈ (0, ∞).
The renewal function R(x) related to the random walk S is defined as follows:

R(x) := ∞ k=0 P S k ≥ -x, S k < min 0≤j≤k-1 S j , x ≥ 0, (2.2) 
and R(x) = 0 if x < 0. Moreover,

lim x→∞ R(x) x = c R , (2.3) 
with some positive constant c R (see Feller [START_REF] Feller | An Introduction to Probability Theory and its Applications[END_REF], pp.612).

For α ≥ 0, we define as in Aïdékon and Shi [START_REF] Aïdékon | The Seneta-Heyde scaling for the branching random walk[END_REF] two truncated processes: For any n ≥ 0,

W (α) n := |u|=n e -V (u) 1 (V (u)≥-α) , (2.4) 
D (α) n := |u|=n R α (V (u))e -V (u) 1 (V (u)≥-α)) , (2.5) 
where

V (u) := min ∅≤v≤u V (v), R α (x) := R(α + x) and R is the renewal function defined in (2.2).
Denote by (F n , n ≥ 0) the natural filtration of the branching random walk. If the branching random walk starts from V (∅) = x, then we denote its law by P x (with P = P 0 ). According to Biggins and Kyprianou [START_REF] Biggins | Measure change in multitype branching[END_REF], (D

(α) n , n ≥ 0) is a (P x , (F n ))
-martingale and on some enlarged probability space (more precisely on the space of marked trees enlarged by an infinite ray (ξ n , n ≥ 0), called spine), we may construct a family of probabilities (Q

(α)
x , x ≥ -α) such that for any x ≥ -α, the following statements (i), (ii) and (iii) hold: (i) For all n ≥ 1,

dQ (α) x dP x Fn = D (α) n D (α) 0 , (2.6) 
Q (α) x ξ n = u F n = 1 D (α) n R α (V (u))e -V (u) 1 (V (u)≥-α) , ∀|u| = n. (2.7) (ii) Under Q (α)
x , the process

{V (ξ n ), n ≥ 0} along the spine (ξ n ) n≥0 , is distributed as the random walk (S n , n ≥ 0) under P conditioned to stay in [-α, ∞). Moreover for any n ≥ 1, x ≥ -α and f : R n → R + , E Q (α) x f (V (ξ 1 ), ..., V (ξ n )) = 1 R α (x) E x f (S 1 , ..., S n )R α (S n )1 (S n ≥-α) . (2.8) (iii) Let G n := σ{u, V (u) : ← u ∈ {ξ k , 0 ≤ k < n}}, n ≥ 0. Under Q (α)
x and conditioned on G ∞ , for all u ∈ {ξ k , k ≥ 0} but ← u ∈ {ξ k , k ≥ 0} the induced branching random walk (V (uv), |v| ≥ 0) are independent and are distributed as P V (u) , where {uv, |v| ≥ 0} denotes the subtree of T rooted at u.

Let us mention that as a consequence of (i), the following many-to-one formula holds: For any n ≥ 1, x ≥ -α and f : R n → R + ,

E x |u|=n e -V (u) R α (V (u))f (V (u 1 ), ..., V (u n ))1 (V (u)≥-α) = R α (x)e -x E Q (α) x f (V (ξ 1 ), ..., V (ξ n )) .
(2.9)

Estimates on a centered real-valued random walk

We collect here some estimates on a real-valued random walk {S k , k ≥ 0}, centered and with finite variance

σ 2 > 0. Let S n := min 0≤i≤n S i , ∀ n ≥ 0. Recall (2.2) for the renewal function R(•).
Fact 2.1 There exists some constant c 1 > 0 such that for any x ≥ 0,

P x S n ≥ 0 ≤ c 1 (1 + x)n -1/2 , ∀ n ≥ 1, (2.10) 
P x S n-1 > S n ≥ 0 ≤ c 1 (1 + x)R(x)n -3/2 , ∀ n ≥ 1, (2.11) 
P x S n ≥ 0 ∼ θ R(x)n -1/2 , as n → ∞, (2.12 
)

with θ = 1 c R 2 πσ 2 .
Moreover there is c 2 > 0 such that for any b ≥ a ≥ 0, x ≥ 0, n ≥ 1,

P x S n ∈ [a, b], S n ≥ 0 ≤ c 2 (1 + x)(1 + b -a)(1 + b)n -3/2 , (2.13) 
For any 0 < r < 1, there exists some c 3 = c 3 (r) > 0 such that for all b ≥ a ≥ 0, x, y ≥ 0, n ≥ 1, 

P x S n ∈ [y + a, y + b], S n ≥ 0, min rn≤j≤n S j ≥ y ≤ c 3 (1 + x)(1 + b -a)(1 + b)n -3/2 . ( 2 
constant θ = 1 c R 2 πσ 2 .
We end this section by an estimate on the stability on x in the convergence (2.12). Lemma 2.2 Let S be a centered random walk with positive variance. There exists a constant c 4 > 0 such that for all n ≥ 1 and x ≥ 0,

P x (S n ≥ 0) R(x)P(S n ≥ 0) -1 ≤ c 4 1 + x √ n . Proof of Lemma 2.2. Denote in this proof by ̺(n) := P(S n ≥ 0) for n ≥ 0. Let x ≥ 0. By considering the first k ∈ [0, n] such that S k = S n , we get that P x (S n ≥ 0) = P x (S n ≥ x) + n k=1 P x S k-1 > S k ≥ 0, min k<j≤n S j ≥ S k = ̺(n) + n k=1 P x S k-1 > S k ≥ 0 ̺(n -k), by the Markov property at k. Note that R(x) = 1 + ∞ k=1 P x S k-1 > S k ≥ 0 . It follows that P x (S n ≥ 0) ≤ R(x)̺(n) + n k=1 P x S k-1 > S k ≥ 0 [̺(n -k) -̺(n)], (2.15) 
and ). Let T -:= inf{j ≥ 1 : S j < 0}. By the local limit theorem (Eppel [START_REF] Eppel | A local limit theorem for the first overshoot[END_REF], see also [START_REF] Vatutin | Local probabilities for random walks conditioned to stay positive[END_REF], equation ( 22)), if the distribution of S 1 is non-lattice, then

P x (S n ≥ 0) ≥ R(x)̺(n) - ∞ k=n+1 P x S k-1 > S k ≥ 0 ̺(n). ( 2 
P T -= k ∼ C - k 3/2 , k → ∞, (2.17) 
with some positive constant C -. Moreover Eppel [START_REF] Eppel | A local limit theorem for the first overshoot[END_REF] mentioned that a modification of (2.17) holds in the lattice distribution case. Then there exists some constant c 5 > 0 such that for all k ≥ 1,

P T -= k ≤ c 5 k 3/2 . (2.18) It follows that for any k ≤ n, ̺(n -k) -̺(n) = P n -k < T -≤ n ≤ c 5 n i=n-k+1 i -3/2 .
Then by (2.11),

I (2.15) ≤ c 6 (1 + x)R(x) n k=1 k -3/2 n i=n-k+1 i -3/2 .

Elementary computations show that

n/2 k=1 k -3/2 n i=n-k+1 i -3/2 ≤ n/2 k=1 k -3/2 × k( n 2 ) -3/2 = O( 1 n ) and n k=n/2 k -3/2 n i=n-k+1 i -3/2 ≤ ( n 2 ) -3/2 n i=1 i -3/2 ×i = O( 1 n ). Hence I (2.15) ≤ c 7 (1+x)R(x) 1 n ≤ c 8 (1 + x)R(x) 1 √ n ̺(n) by (2.12).
Finally again by (2.11), we get that

I (2.16) ≤ c 9 (1 + x)R(x) 1 √ n ̺(n).
Then the Lemma follows from (2.15) and (2.16).

3 Proofs of Theorems 1.1 and 1.2

In view of the inequality: W n ≥ e -Mn , the convergence part of the integral test (1.7) yields that of (1.4), whereas the divergence part of the integral test (1.4) implies that of (1.7). We only need to show the convergence part in (1.7) and the divergence part in (1.4).

3.1 Proof of the convergence part in Theorem 1.2: Lemma 3.1 Assume (1.1). For any α ≥ 0, there exists some constant c 10 = c 10 (α) > 0 such that for any 1 < n ≤ m and λ > 0, we have

P max n≤k≤m √ kW (α) k > λ ≤ c 10 log n √ n + c 10 1 λ m n .
Proof of Lemma 3.1.

For n ≤ k ≤ m + 1, define W (α,n) k := |u|=k e -V (u) 1 (V (un)≥-α) ,
where as before V (u n ) := min 1≤j≤n V (u j ) and u n is the ancestor of u at n-th generation. Then W u) . The branching property implies that

(α,n) n = W (α) n . For k ∈ [n, m], W (α,n) k+1 = |v|=k 1 (V (vn)≥-α) u: ← u =v e -V (
E W (α,n) k+1 |F k = W (α,n) k for k ∈ [n, m]. By Doob's maximal inequality, P max n≤k≤m √ k W (α,n) k ≥ λ ≤ √ m λ E( W (α,n) m ) = √ m λ E(W (α) n ).
By the many-to-one formula (2.1) and the random walk estimate (2.10),

E(W (α) n ) = P S n ≥ -α ≤ c 11 √ n , with c 11 := c 1 (1 + α). It follows that P max n≤k≤m √ k W (α,n) k ≥ λ ≤ c 11 λ m n . Comparing W (α,n) k and W (α)
k , we get that

P max n≤k≤m √ kW (α) k > λ ≤ P min n≤k≤m min |u|=k V (u) < -α + c 11 λ m n .
The proof of the Lemma will be finished if we can show that for all n ≥ 2,

P min |u|≥n V (u) < -α ≤ c 10 log n √ n . ( 3.1) 
To this end, let us apply the following known result (see e.g. [START_REF] Shi | Branching random walks. Saint-Flour's summer course[END_REF]):

P inf u∈T V (u) < -x ≤ e -x , ∀ x ≥ 0.
Then for all n ≥ 2,

P min k≥n min |u|=k V (u) < -α ≤ P inf u∈T V (u) < -log n + P min k≥n min |u|=k V (u) < -α, inf v∈T V (v) ≥ -log n ≤ 1 n + ∞ k=n E |u|=k 1 (V (u)<-α,V (un)≥-α,...,V (u k-1 )≥-α, V (u)≥-log n) = 1 n + ∞ k=n E e S k 1 (S k <-α,Sn≥-α,...,S k-1 ≥-α, S k ≥-log n) ≤ 1 n + e -α P S n ≥ -log n ,
where the above equality is due to the many-to-one formula (2.1). Using (2.10) to bound the above probability term, we get (3.1) and the Lemma.

Proof of the convergence part in Theorem 1.2: Let f be nondecreasing such that

∞ dt tf (t) < ∞. Let n j := 2 j for large j ≥ j 0 . Then ∞ j=j 0 1 f (n j ) < ∞. By using Lemma 3.1, P max n j ≤k≤n j+1 √ kW (α) k > f (n j ) ≤ c 10 log n j √ n j + c 10 √ 2 f (n j ) ,
whose sum on j converges. The Borel-Cantelli lemma implies that P-a.s. for all large k, √ kW

(α) k ≤ f (k). Replacing f (k) by εf (k) with an arbitrary constant ε > 0, we get that lim sup k→∞ √ kW (α) k f (k) = 0, P-a.s.,
for any α ≥ 0. By considering a countable α → ∞ (for instance α integer) and by using the fact that W (α) k = W k on the set {inf u∈T V (u) ≥ -α}, we get the convergence part. .

Proof of the divergence part in Theorem 1.1:

The following lemma is a slight modification of Aïdékon and Shi [START_REF] Aïdékon | The Seneta-Heyde scaling for the branching random walk[END_REF]'s Lemma 6.3:

Lemma 3.2 ([5]

) There exist some constants K > 0 and c 12 = c 12 (K) > 0 such that for all n ≥ 2, 0 ≤ λ ≤ 1 3 log n,

c 12 e -λ ≤ P 2n k=n+1 E (n,λ) k ∩ F (n,λ) k = ∅ ≤ 1 c 12 e -λ , (3.2) 
where for n < k ≤ 2n,

E (n,λ) k := u : |u| = k, 1 2 log n -λ ≤ V (u) ≤ 1 2 log n -λ + K, V (u i ) ≥ a (n,λ) i , ∀ 0 ≤ i ≤ k , F (n,λ) k := u : |u| = k, v∈Υ(u i+1 ) (1 + (V (v) -a (n,λ) i ) + )e -(V (v)-a (n,λ) i ) ≤ K e -b (k,n) i , ∀ 0 ≤ i < k ,
where for u ∈ T\{∅}, Υ(u) :

= {v : v = u, ← v = ←
u} denotes the set of brothers of u, x + := max(x, 0),

a (n,λ) i := 1 2 log n -λ 1 ( n 2 <i≤2n) , 0 ≤ i ≤ 2n,
and for n < k ≤ 2n, b (k,n) i := i 1/12 1 (0≤i≤ n 2 ) + (k -i) 1/12 1 ( n 2 <i≤k) , 0 ≤ i ≤ k.
Proof of Lemma 3.2. The proof of the lower bound in (3.2) [by the second moment method] goes in the same way as that of Lemma 6.3 in Aïdékon and Shi [START_REF] Aïdékon | The Seneta-Heyde scaling for the branching random walk[END_REF] [We also keep their notations], by replacing 1 2 log n in their proof by 1 2 log nλ. Moreover, a similar computation of the second moment will be given in the proof of Lemma 3.3. Then we omit the details.

The upper bound in (3.2) is a simple consequence of the many-to-one formula: Defining s := 1 2 log n-λ, we have that

P 2n k=n+1 E (n,λ) k = ∅ ≤ 2n k=n+1 E |u|=k 1 (s≤V (u)≤s+K,V (u i )≥a (n,λ) i ,∀i≤k) = 2n k=n+1 E e S k 1 (s≤S k ≤s+K,S i ≥a (n,λ) i ,∀i≤k) ≤ 2n k=n+1 e s+K P s ≤ S k ≤ s + K, S i ≥ a (n,λ) i , ∀i ≤ k . By (2.14), P s ≤ S k ≤ s + K, S i ≥ a (n,λ) i
, ∀i ≤ k ≤ c 13 n -3/2 for all n < k ≤ 2n. Hence Using the notations in Lemma 3.2 with the constant K, we define for n ≥ 2 and 0 ≤ λ

≤ 1 3 log n, A(n, λ) := ∪ 2n k=n+1 E (n,λ) k ∩ F (n,λ) k = ∅ . (3.3)
The following estimate will be useful in the application of Borel-Cantelli's lemma: Lemma 3.3 There exists some constant c 14 > 0 such that for any n ≥ 2, 0 ≤ λ ≤ 1 3 log n and m ≥ 4n, 0 ≤ µ ≤ 1 3 log m, P A(n, λ) ∩ A(m, µ) ≤ c 14 e -λ-µ + c 14 e -µ log n √ n .

Proof of Lemma 3.3. As we mentioned before, the arguments that we use are very close to the computation of the second moment in the proof of Lemma 6.3 in [START_REF] Aïdékon | The Seneta-Heyde scaling for the branching random walk[END_REF]. The introduction of the events F (n,λ) k in A(n, λ), sometimes called a truncation argument, is necessary to control the second moment: the event

F (n,λ) k keeps the path (V (u i ), 0 ≤ i ≤ k) of a particle u in E (n,λ) k
to stay far away from (a (n,λ) i , 0 ≤ i ≤ k), otherwise the particle u would give a too large expectation in the second moment. Such truncation argument was already introduced in Aïdékon [START_REF] Aïdékon | Convergence in law of the minimum of a branching random walk[END_REF].

Let us enter into the details of the proof of Lemma 3.3. Write for brevity

s := 1 2 log n -λ, t := 1 2 log m -µ.
Similarly to (2.6) and (2.7), we may construct a new probability Q such that for all n ≥ 1,

dQ dP Fn = W n , Q ξ n = u F n ) = e -V (u)
Wn , ∀|u| = n. Moreover under Q, (V (ξ n ), n ≥ 0) is distributed as the random walk (S n , n ≥ 0) defined in Section 2, and the spine decomposition similar to (iii) in Section 2 holds under Q. We refer to [START_REF] Biggins | Measure change in multitype branching[END_REF][START_REF] Chauvin | Growing conditioned trees[END_REF][START_REF] Lyons | Conceptual proofs of L log L criteria for mean behavior of branching processes[END_REF][START_REF] Aïdékon | The Seneta-Heyde scaling for the branching random walk[END_REF][START_REF] Shi | Branching random walks. Saint-Flour's summer course[END_REF] for details. It follows that

P A(n, λ) ∩ A(m, µ) ≤ E 1 A(n,λ) 2m k=m+1 |u|=k 1 (u∈E (m,µ) k ∩F (m,µ) k ) = 2m k=m+1 E Q 1 A(n,λ) e V (ξ k ) 1 (ξ k ∈E (m,µ) k ∩F (m,µ) k ) ≤ e t+K 2m k=m+1 E Q A(n, λ), ξ k ∈ E (m,µ) k ∩ F (m,µ) k ≤ e t+K 2m k=m+1 2n l=n+1 E Q |v|=l 1 (v∈E (n,λ) l ∩F (n,λ) l , ξ k ∈E (m,µ) k ∩F (m,µ) k ) =: e t+K 2m k=m+1 2n l=n+1 I (3.4) (k, l). (3.4)
For n < l ≤ 2n ≤ m 2 < k ≤ 2m, we may decompose the sum on |v| = l as follows:

|v|=l 1 (v∈E (n,λ) l ∩F (n,λ) l ) = 1 (ξ l ∈E (n,λ) l ∩F (n,λ) l ) + l p=1 u∈Υ(ξp) v∈T(u),|v|u=l-p 1 (v∈E (n,λ) l ∩F (n,λ) l ) ,
where T(u) denotes the subtree of T rooted at u and |v| u = |v| -|u| the relative generation of v ∈ T(u). Then

I (3.4) (k, l) = Q ξ l ∈ E (n,λ) l ∩ F (n,λ) l , ξ k ∈ E (m,µ) k ∩ F (m,µ) k + l p=1 E Q 1 (ξ k ∈E (m,µ) k ∩F (m,µ) k ) u∈Υ(ξp) f k,l,p (V (u)) =: I (3.5) (k, l) + l p=1 J (3.5) (k, l, p), (3.5) with f k,l,p (x) := E Q v∈T(u),|v|u=l-p 1 (v∈E (n,λ) l ∩F (n,λ) l ) V (u) = x , x ∈ R.
In what follows, we shall at first estimate J (3.5) (k, l, p) then I (3.5) (k, l). By the branching property at u and by removing the event F

(n,λ) l from the indicator function in f k,l,p (r), we get that

f k,l,p (x) ≤ E x |v|=l-p 1 (s≤V (v)≤s+K,V (v i )≥a (n,λ) i+p ,∀ 0≤i≤l-p) = e -x E x e S l-p 1 (s≤S l-p ≤s+K,S i ≥a (n,λ) i+p ,∀ 0≤i≤l-p) ≤ e -x+s+K P x s ≤ S l-p ≤ s + K, S i ≥ a (n,λ) i+p , ∀ 0 ≤ i ≤ l -p , (3.6) 
where to get the above equality, we applied an obvious modification of (2.1) for E x instead of E.

Let us denote by (3.6) k,l,p the probability term in (3.6). To estimate (3.6) k,l,p , we distinguish as in [START_REF] Aïdékon | The Seneta-Heyde scaling for the branching random walk[END_REF] 

two cases: p ≤ n 2 and n 2 < p ≤ l. Recall that n < l ≤ 2n ≤ m 2 < k ≤ 2m. If p ≤ n 2 , (3.6) k,l,p ≤ 1 (x≥0) c 15 1 + x (l -p) 3/2 , by using (2.14). Then for 1 ≤ p ≤ n 2 , f k,l,p (x) ≤ c 15 1 (x≥0) e s+K-x (1 + x)(l -p) -3/2 . It follows that for all n < l ≤ 2n, m < k ≤ 2m, 1≤p≤n/2 J (3.5) (k, l, p) ≤ n/2 p=1 E Q 1 (ξ k ∈E (m,µ) k ∩F (m,µ) k ) u∈Υ(ξp) c 15 1 (V (u)≥0) e s+K-V (u) 1 + V (u) (l -p) 3/2 ≤ c 16 e s n -3/2 n/2 p=1 E Q 1 (ξ k ∈E (m,µ) k ∩F (m,µ) k ) u∈Υ(ξp) 1 (V (u)≥0) e -V (u) (1 + V (u)) ≤ c 16 K e s n -3/2 n/2 p=1 E Q 1 (ξ k ∈E (m,µ) k ∩F (m,µ) k ) e -(p-1) 1/12 ,
where the last inequality is due to the definition of

ξ k ∈ F (m,µ) k [noticing that a (m,µ) p = 0 and b (k,m) p = p 1/12 for all p ≤ n/2 < m/2]. Then we get that 1≤p≤n/2 J (3.5) (k, l, p) ≤ c 17 e s n -3/2 Q ξ k ∈ E (m,µ) k ≤ c 18 e s n -3/2 m -3/2 , (3.7) 
since 

Q ξ k ∈ E (m,µ) k = P(t ≤ S k ≤ t + K, S i ≥ a (m,µ) i , ∀ 0 ≤ i ≤ k ≤ c 19 m -3/2 for all m < k ≤ 2m, by using (2.14). Now considering n 2 < p ≤ l, a (n,λ) i+p = s for any 0 ≤ i ≤ l -p, hence (3.6) k,l,p = 1 (x≥s) P x s ≤ S l-p ≤ s + K, S l-p ≥ s ≤ 1 (x≥s) c 2 (1 + K) 2 1 + x -s (1 + l -p)
J (3.5) (k, l, p) ≤ n 2 <p≤l E Q 1 (ξ k ∈E (m,µ) k ∩F (m,µ) k ) u∈Υ(ξp) c 2 (1 + K) 2 1 (V (u)≥s) e s+K-V (u) 1 + V (u) -s (1 + l -p) 3/2 .
By the definition of

ξ k ∈ F (m,µ) k , for all p ≤ l ≤ 2n ≤ m 2 , we have that u∈Υ(ξp) 1 (V (u)≥s) e -V (u) (1 + V (u) -s) ≤ u∈Υ(ξp) 1 (V (u)≥0) e -V (u) (1 + V (u)) ≤ Ke -(p-1) 1/12 .
Then 

It remains to estimate I (3.5) (k, l) for n < l ≤ 2n and m < k ≤ 2m [in particular l < k]. We have

I (3.5) (k, l) ≤ Q ξ l ∈ E (n,λ) l , ξ k ∈ E (m,µ) k = P s ≤ S l ≤ s + K, S i ≥ a (n,λ) i , ∀ i ≤ l, t ≤ S k ≤ t + K, S j ≥ a (m,µ) j , ∀ j ≤ k . (3.10)
Let us denote by (3.10) k,l the probability term in (3.10). Using the Markov property at l, we get that

(3.10) k,l = E 1 (s≤S l ≤s+K,S i ≥a (n,λ) i ,∀ 0≤i≤l) P S l t ≤ S k-l ≤ t + K, S j ≥ a (m,µ) j+l , ∀ 0 ≤ j ≤ k -l ≤ c 21 (k -l) 3/2 E 1 (s≤S l ≤s+K,S i ≥a (n,λ) i ,∀ 0≤i≤l) (1 + S l )
(by (2.13))

≤ c 22 (1 + s + K)(k -l) -3/2 l -3/2 .
Based on the above estimate and (3.9), we deduce from (3.4) and (3.5) that

P A(n, λ) ∩ A(m, µ) ≤ c 23 e t+K 2m k=m+1 2n l=n+1 (1 + s + K)(k -l) -3/2 l -3/2 + e s e -n 1/13 m -3/2 + e s n -3/2 m -3/2
≤ c 24 e -λ-µ + c 24 e -µ log n √ n , proving the Lemma.

Proof of the divergence part in Theorem 1.1. Let f be nondecreasing such that

∞ dt te f (t) = ∞.
Without any loss of generality we may assume that √ log t ≤ e f (t) ≤ (log t) 2 for all large t ≥ t 0 (see e.g. [START_REF] Erdős | On the law of the iterated logarithm[END_REF] for a similar justification). Denote by

B x (k) := M n + x ≤ 1 2 log n -f (n + k), i.o. as n → ∞ , x ∈ R, k ≥ 0.
Let us first prove that there exists some constant c 25 > 0 such that for any x ∈ R and k ≥ 0,

P B x (k) ≥ c 25 . (3.11) 
To this end, we take n i := 2 i for i ≥ 1, λ i := f (n i+1 +k)+x+K and consider the event

A i := A(n i , λ i ) in (3.
3). There is some integer i 0 ≡ i 0 (x, k) ≥ 1 such that for all i ≥ i 0 , 0 ≤ λ i ≤ 1 3 log n i . By Lemma 3.2,

c 12 e -λ i ≤ P(A i ) ≤ 1 c 12 e -λ i , ∀i ≥ i 0 .
Note that

∞ dt te f (t+k) ≥ ∞ dt
(t+k)e f (t+k) = ∞, and

n i+2 n i+1
dt te f (t+k) ≤ (log 2)e -f (n i+1 +k) by the monotonicity of f . Hence i e -λ i = ∞. By Lemma 3.3, we have for any i ≥ i 0 and j ≥ i + 2,

P A i ∩ A j ≤ c 14 e -λ i -λ j + c 14 e -λ j log n i √ n i , which implies that k i,j=i 0 P A i ∩ A j ≤ c 14 k i=i 0 e -λ i 2 + 2c 14 k i=i 0 e -λ i × ∞ i=1 log n i √ n i .
Using the lower bound P(A i ) ≥ c 12 e -λ i and the fact that k i=i 0 e -λ i → ∞ as k → ∞, we obtain that

lim sup k→∞ 1≤i,j≤k P(A i ∩ A j ) k i=1 P(A i ) 2 ≤ c 14 c 2 12 
.

By Kochen and Stone [START_REF] Kochen | A note on the Borel-Cantelli lemma[END_REF]'s version of the Borel-Cantelli lemma, P(A i , i.o. i → ∞) ≥ c 2 12 /c 14 =: c 25 which does not depend on (x, k). Observe that {A i , i.o. i → ∞} ⊂ B x (k), in fact, for those i such that A i ≡ A(n i , λ i ) holds, by the definition (3.3), there exits some n ∈ (n i , n i+1 ] such that M n ≤ 1 2 log n i -

λ i + K = 1 2 log n i -f (n i+1 + k) -x ≤ 1 2 log n -f (n + k) -x.
Hence we get (3.11). We have proved that for any x ∈ R and k ≥ 0, P(B x (k)) ≥ c 25 . For any k ≥ 0, the events B x (k) are non-increasing on x.

Let B ∞ (k) := ∩ ∞ i=1 B i (k) [then B ∞ (k) is nothing but {lim inf n→∞ (M n -1 2 log n + f (n + k)) = -∞}]
. By the monotone convergence, P(B ∞ (k)) ≥ c 25 , for all k ≥ 0. Moreover, for any x ∈ R, P x (B ∞ (k)) = P(B ∞ (k)) ≥ c 25 . On the other hand, if we denote by Z k := |u|=k 1 the number of particles in the k-th generation, then by the branching property,

P B ∞ (0) F k = 1 (Z k >0) 1 - |u|=k (1 -P V (u) (B ∞ (k))) ≥ 1 (Z k >0) 1 -(1 -c 25 ) Z k .
It is well-known (cf. [START_REF] Athreya | Branching processes[END_REF], pp.8) that S = {lim k→∞ Z k = ∞}. Then by letting k → ∞ in the above inequality, we get that

1 B∞(0) = lim k→∞ P B ∞ (0) F k ≥ 1 S , P-a.s.
Clearly S c ⊂ B ∞ (0) c by the convention on the definition of M n on S c . Hence S = B ∞ (0), P-a.s. This proves the divergence part of Theorem 1.1.

Proof of Proposition 1.3

The main technical part was already done in Aïdékon and Shi [START_REF] Aïdékon | The Seneta-Heyde scaling for the branching random walk[END_REF]: 

Var Q (α) √ nW (α) n D (α) n ≤ c 26 n -δ + sup k 1/3 n ≤x≤kn h x+α (n -k n ) h α (n) -1 , (4.1) 
where k n := ⌊n 1/3 ⌋ and h x (j) :=

√ j Px(S j ≥0) R(x)
for j ≥ 1, x ≥ 0.

Proof of Lemma 4.1. The Lemma was implicitly contained in the proof of Proposition 4.1 in [START_REF] Aïdékon | The Seneta-Heyde scaling for the branching random walk[END_REF]. In fact, in their proof of the convergence that Var Q

(α) √ nW (α) n D (α) n → 0, we choose k n := ⌊n 1/3 ⌋ in their definition of E n := E n,1 ∩ E n,2 ∩ E n,3 ( 
see the equation (4.6) in [START_REF] Aïdékon | The Seneta-Heyde scaling for the branching random walk[END_REF], Section 4). We claim that for some constant δ 1 = δ 1 (ε 0 ) > 0, there is some c 27 = c 27 (δ 1 , α) > 0 such that for all n ≥ 1,

Q (α) E c n ≤ c 27 n -δ 1 , (4.2) 
sup k 1/3 n ≤x≤kn Q (α) E c n V (ξ kn ) = x ≤ c 27 n -δ 1 . (4.3) 
In fact, according to the definition of E n,1 in [START_REF] Aïdékon | The Seneta-Heyde scaling for the branching random walk[END_REF],

Q (α) E c n,1 ≤ Q (α) {V (ξ kn ) > k n } ∪ {V (ξ kn ) < k 1/3 n } + sup k 1/3 n ≤x≤kn Q (α) x ∪ n-kn i=0 {V (ξ i ) < k 1/6 n } . By (2.8), Q (α) V (ξ kn ) < k 1/3 n = 1 R α (0) E 1 (S kn ≥-α,S kn <k 1/3 n ) R α (S kn ) ≤ R α (k 1/3 n ) R α (0) P(S kn ≥ -α) ≤ c 28 k -1/6 n , and 
Q (α) V (ξ kn ) > k n ≤ E 1 (S kn >kn) R α (S kn ) ≤ P S kn > k n E[R α (S kn ) 2 ] ≤ c 29 k n P S kn > k n , since R α (x) ∼ c R x as x → ∞. The condition (1.8) ensures that E(|S 1 | 2+ε 0 ) < ∞ which in turn implies that E(|S k | 2+ε 0 ) ≤ c 30 k 1+ε 0 /2
for any k ≥ 1 (see Petrov [START_REF] Petrov | Limit Theorems of Probability Theory[END_REF], pp.60). Hence

Q (α) V (ξ kn ) > k n ≤ c 31 k -ε 0 /4 n . Now for k 1/3 n ≤ x ≤ k n , let τ = inf{i ≥ 0 : S i < k 1/6
n }, then the absolute continuity (2.8) at τ reads as

Q (α) x ∪ n-kn i=0 {V (ξ i ) < k 1/6 n } = 1 R α (x) E x 1 (τ ≤n-kn) R α (S τ )1 (S τ ≥-α) ≤ R α (k 1/6 n ) R α (x) ≤ R α (k 1/6 n ) R α (k 1/3 n ) ≤ c 32 k -1/6 n , since x ≥ k 1/3
n . Assembling the above estimates yields that

Q (α) E c n,1 ≤ c 33 k -ε 0 /4 n ,
[we may assume ε 0 ≤ 2/3]. Let us follow the proof of Lemma 4.7 in [START_REF] Aïdékon | The Seneta-Heyde scaling for the branching random walk[END_REF], we remark that on

E n,1 , V (ξ i ) ≥ k 1/6
n for all k n ≤ i ≤ n, and it was shown in [START_REF] Aïdékon | The Seneta-Heyde scaling for the branching random walk[END_REF] that

Q (α) x E n,1 ∩ E c n,2 ≤ n-1 i=kn E x 1 (η+ η>e S i /2 ) η + η S i + α + 1 1 (S i ≥k 1/6 n ) .
By the integrability assumption (1.8), since η

= ∞ 0 xe -x L(dx) ≤ η ∞ 0 x 2 e -x L(dx), it is easy to see that E( η p ) < ∞ for some p > 1. It follows that Q (α) x E n,1 ∩ E c n,2 ≤ n E 1 (η+ η>e k 1/6 n /2 ) η + η ≤ c 34 n -10
. Finally by (4.9) in [START_REF] Aïdékon | The Seneta-Heyde scaling for the branching random walk[END_REF],

Q (α) (E n,1 ∩ E n,2 ∩ E c n,3 ) ≤ c 35 n -10
, hence we get (4.2). From (4.2), it suffices to follow line-by-line the proof of Proposition 4.1 in [START_REF] Aïdékon | The Seneta-Heyde scaling for the branching random walk[END_REF]: In Lemma 4.4 of [START_REF] Aïdékon | The Seneta-Heyde scaling for the branching random walk[END_REF], we can get n -1-δ 1 /4 instead of o( 1n ) [by replacing in its proof ε by n -δ 1 /4 ]. In their proof of Lemma 4.5, taking η 1 = 1 n and we arrive at where θ is defined in (2.12). In fact, under (1.1), (1.2) and (1.3), D

E Q (α) √ n W (α) n D (α) n 2 ≤ c 36 n -δ 1 /4 + (1 + O( 1 n ))E Q (α) √ n W ( 
n converges in mean to D (α) ∞ (see [START_REF] Shi | Branching random walks. Saint-Flour's summer course[END_REF], Chapter 5, also see [START_REF] Biggins | Measure change in multitype branching[END_REF], Theorem 10.2 (i) with an extra log log log-term). Then on {D (α) ∞ > 0}, P and Q (α) are equivalent. Moreover, as shown in [START_REF] Aïdékon | The Seneta-Heyde scaling for the branching random walk[END_REF], P-almost surely on {inf |u|≥0 V (u) ≥ -α}, W To this end, using Lemmas 4.1 and 2.2 we get some constant δ 2 > 0 such that for all n ≥ n 0 ,

Var Q (α) √ n W (α) n D (α) n ≤ n -δ 2 . (4.6)
Let n j := j -3/δ 2 for j ≥ j 0 and choose an arbitrary small ε > 0. We are going to show that j≥j 0

Q (α) inf n j ≤n≤n j+1 √ n W (α) n D (α) n < (1 -ε)θ < ∞, (4.7) 
from which the Borel-Cantelli lemma yields (4.5).

To prove (4.7), let F n := F n ∨ G n , where G n , defined in Section 2, denotes the σ-fields generated by the spine up to generation n. Then Q (α) -a.s.,

E Q (α) 1 R α (V (ξ n j+1 )) F n = E Q (α) V (ξn) 1 R α (V (ξ n j+1 -n )) = 1 R α (V (ξ n ))
P V (ξn) S n j+1 -n ≥ -α (by (2.8))

≤ 1 R α (V (ξ n ))
.

It follows that for all n ≤ n j+1 ,

E Q (α) 1 R α (V (ξ n j+1 )) F n ≤ E Q (α) 1 R α (V (ξ n )) F n = W (α) n D (α) n
, where the last equality comes from Lemma 4.2 in [START_REF] Aïdékon | The Seneta-Heyde scaling for the branching random walk[END_REF]. Consequently for all n j ≤ n ≤ n j+1 ,

√ n W (α) n D (α) n ≥ Y n := √ n j E Q (α) 1 R α (V (ξ n j+1 )) F n .
Remark that (Y n , n j ≤ n ≤ n j+1 ) is a martingale with mean E Q (α) (Y n j ) = √ n j E Q (α) ( 1 Rα(Sn j ) ) ≥ (1ε)θ. The Doob L 2 -inequality implies that Q (α) max . Finally for all large j, Q (α) inf

n j ≤n≤n j+1 Y n -E Q (α) (Y n j ) ≥ ε 2 θ ≤ 4 ε 2 θ 2 Var Q (α) (Y n j+1 ) ≤ c 36 n -δ 2
n j ≤n≤n j+1 √ n W (α) n D (α) n < (1 -ε)θ ≤ Q (α) max n j ≤n≤n j+1 Y n -E Q (α) (Y n j ) ≥ ε 2 θ ≤ c 36 j -3 ,
proving (4.7) and then completing the proof of Proposition 1.3.

  a.s., where here and in the sequel, P * (•) := P (•|S) ,

=

  ∅ ≤ c 13 e -λ+K proving the upper bound in (3.2).

J ( 3 . 5 )

 35 (k, l, p) ≤ c 20 e s e -n 1/13 Q(ξ k ∈ E (m,µ) k ) ≤ c 21 e s-n 1/13 m -3/2 . (3.8) Combining (3.7) and (3.8), we get that 1≤p≤l J (3.5) (k, l, p) ≤ (c 18 n -3/2 + c 21 e -n 1/13 )e s m -3/2 . (

Lemma 4 . 1 (

 41 [START_REF] Aïdékon | The Seneta-Heyde scaling for the branching random walk[END_REF]) Assume (1.1) and (1.8). For any fixed α ≥ 0, there exist some δ = δ(ε 0 ) > 0 and c 26 = c 26 (α, δ) > 0 such that for all n ≥ 2,

=

  n-kn ≥ -αx) R α (x).The Lemma follows because E Q (α) h α (n), and h α (n) → θ when n → ∞, as shown in[START_REF] Aïdékon | The Seneta-Heyde scaling for the branching random walk[END_REF].Proof of Proposition 1.3. It is enough to prove that for any α ≥ 0

n→

  = c R D ∞ , therefore Proposition 1.3 follows easily from (4.4). Now to prove (4.4), since √ n W (α) θ in probability under Q (α) ([START_REF] Aïdékon | The Seneta-Heyde scaling for the branching random walk[END_REF]), it suffices to prove that

j=

  c 36 j -3 , 16 by (4.6) and the fact that Y n j+1 =
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