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The almost sure limits of the minimal position and the additive martingale

in a branching random walk

Yueyun Hu1

Université Paris XIII

Summary. Consider a real-valued branching random walk in the boundary case. Using

the techniques developed by Aı̈dékon and Shi [5], we give two integral tests which de-

scribe respectively the lower limits for the minimal position and the upper limits for the

associated additive martingale.

1 Introduction

Let {V (u), u ∈ T} be a discrete-time branching random walk on the real line R, where T is an Ulam-Harris

tree which describes the genealogy of the particles and V (u) ∈ R is the position of the particle u. When a

particle u is at n-th generation, we write |u| = n for n ≥ 0. The branching random walk V can be described

as follows: At the beginning, there is a single particle ∅ located at 0. The particle ∅ is also the root of

T. At the generation 1, the root dies and gives birth to some point process L on R. The point process L
constitutes the first generation of the branching random walk {V (u), |u| = 1}. The next generations are

defined by recurrence: For each |u| = n (if such u exists), the particle u dies at the (n + 1)-th generation

and gives birth to an independent copy of L shifted by V (u). The collection of all children of all u together

with their positions gives the (n + 1)-th generation. The whole system may survive forever or die out after

some generations.

Plainly L =
∑
|u|=1 δ{V (u)}. Assuming E[L(R)] ∈ (1,∞) [namely T is a supercritical Galton-Watson

tree] and that

E

(∫
e−xL(dx)

)
= 1, E

(∫
xe−xL(dx)

)
= 0. (1.1)

When the hypothesis (1.1) is fulfilled, the branching random walk is called in the boundary case in the

literature (see e.g. Biggins and Kyprianou [9] and [10], Aı̈dékon and Shi [5]). Under some integrability con-

ditions, a general branching random walk can be reduced to the boundary case after a linear transformation,

see Jaffuel [19] for detailed discussions. We shall assume (1.1) throughout this paper.

Denote by Mn := min|u|=n V (u) the minimal position of the branching random walk at generation n
(with convention inf ∅ ≡ ∞). Hammersly [17], Kingman [20] and Biggins [8] established the law of large

numbers for Mn (for any general branching random walk), whereas the second order limits have recently

attracted many attentions, see [1, 18, 12, 2] and the references therein. In particular, Aı̈dékon [2] proved the
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convergence in law of Mn − 3
2 log n under (1.1) and some mild conditions, which gives a discrete analog of

Bramson [11]’s theorem on the branching brownian motion.

Concerning on the almost sure limits of Mn, there is a phenomena of fluctuation at the logarithmic

scale ([18]): Under (1.1) and some extra integrability assumption: ∃ δ > 0 such that E[L(R)1+δ] < ∞ and

E
[ ∫

R
(eδx + e−(1+δ)x)L(dx)

]
< ∞, the following almost sure limits hold:

lim sup
n→∞

Mn

log n
=

3

2
, P∗-a.s.,

lim inf
n→∞

Mn

log n
=

1

2
, P∗-a.s.,

where here and in the sequel,

P∗(·) := P (·|S) ,
and S denotes the event that the whole system survives. The upper bound 3

2 log n is the usual fluctuation for

Mn because Mn − 3
2 log n converges in law ([2]). It is a natural question to ask how Mn can approach the

unusual lower bound 1
2 log n.

Aı̈dékon and Shi [5] proved that under (1.1) and the following integrability condition

σ2 := E

[ ∫

R

x2e−xL(dx)
]
< ∞, (1.2)

E

[
η(log+ η)2 + η̃ log+ η̃

]
< ∞, (1.3)

where η :=
∫
R
e−xL(dx), η̃ :=

∫∞
0 x e−xL(dx) and log+ x := max(0, log x), then

lim inf
n→∞

(
Mn − 1

2
log n

)
= −∞, P∗-a.s.

Furthermore, they asked whether there is some deterministic sequence an → ∞ such that

−∞ < lim inf
n→∞

1

an

(
Mn − 1

2
log n

)
< 0, P∗-a.s.?

The answer is yes: we can choose an = log log n. Moreover, we can give an integral test to describe the

lower limits of Mn:

Theorem 1.1 Under (1.1), (1.2) and (1.3). For any function f ↑ ∞,

P∗
(
Mn − 1

2
log n < −f(n), i.o.

)
=





0

1
⇐⇒

∫ ∞ dt

t exp(f(t))





< ∞

= ∞
, (1.4)

where i.o. means infinitely often as the relevant index n → ∞.

As a consequence of the integral test (1.4), we have that for any ε > 0, P∗-a.s. for all large n ≥ n0(ω),
Mn − 1

2 log n ≥ −(1 + ε) log log n whereas there exists infinitely often n such that Mn − 1
2 log n ≤

− log log n. Hence P∗-a.s., lim infn→∞ 1
log logn(Mn − 1

2 log n) = −1.

2



The behaviors of the minimal position Mn are closely related to the so-called additive martingale

(Wn)n≥0:

Wn :=
∑

|u|=n

e−V (u), n ≥ 0,

with the usual convention:
∑
∅ ≡ 0. By Biggins [8] and Lyons [23], Wn → 0 almost surely as n → ∞.

The problem to find the rate of convergence (or a Seneta-Heyde norming) for Wn was arisen in Biggins and

Kyprianou [9] and was studied in [18]. Aı̈dékon and Shi [5] gave a definite result to this problem. Let

Dn :=
∑

|u|=n

V (u)e−V (u), n ≥ 1, (1.5)

be the derivative martingale (which is a martingale under the boundary condition (1.1)). It was shown in

Biggins and Kyprianou [9] that P-a.s., Dn converges to some nonnegative random variable D∞. Moreover

under (1.1), (1.2) and (1.3), P∗-a.s., D∞ > 0, as shown in [9] and [2].

Theorem (Aı̈dékon and Shi [5]). Under (1.1), (1.2) and (1.3). Then under P∗,

√
nWn

(p)→
√

2

πσ2
D∞,

as n → ∞. Moreover

lim sup
n→∞

√
nWn = ∞, P∗-a.s.

Furthermore they conjectured that

lim inf
n→∞

√
nWn =

√
2

πσ2
D∞, P∗-a.s. (1.6)

The upper limits of Wn can be described as follows:

Theorem 1.2 Under (1.1), (1.2) and (1.3). For any function f ↑ ∞, P∗-almost surely,

lim sup
n→∞

√
nWn

f(n)
=





0

∞
⇐⇒

∫ ∞ dt

tf(t)





< ∞

= ∞
. (1.7)

Concerning the lower limits of Wn, we confirm (1.6) under a stronger integrability assumption: There

exists some small constant ε0 > 0 such that

E

[
η1+ε0 +

∫
e−x|x|2+ε0L(dx)

]
< ∞. (1.8)

It is easy to see that the condition (1.8) is stronger than (1.2) and (1.3).

Proposition 1.3 Under (1.1) and (1.8). We have

lim inf
n→∞

√
nWn =

√
2

πσ2
D∞, P∗-a.s.
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Combining Theorems 1.1 and 1.2, we can roughly say that the main contribution to the upper limits

of Wn comes from the term e−Mn . According to Madaule [25], and Aı̈dékon, Berestichi, Brunet and Shi

[3], Arguin, Bovier and Kistler [6] (for the branching brownian motion), the branching random walk seen

from the minimal position converges in law to some point process, in particular, Wne
Mn converges in law

as n → ∞, but we are not able to determine the almost sure fluctuations of Wne
Mn .

The whole paper uses essentially the techniques developed by Aı̈dékon and Shi [5]. To show Theorems

1.1 and 1.2, we firstly remark that both two theorems share the same integral test and that Wn ≥ e−Mn ,

then it is enough to prove the convergence part in the integral test (1.7) and the divergence part in (1.4).

The convergence part in (1.7) will follow from an application of Doob’s maximal inequality to a certain

martingale. To prove the divergence part in (1.4), we shall use the arguments in Aı̈dékon and Shi [5] (the

proof of their Lemma 6.3) to estimate a second moment, then apply Borel-Cantelli’s lemma. We can also

directly prove Theorem 1.2 without the use of the divergence part of (1.4). Finally, the proof of Proposition

1.3 relies on a result (Lemma 4.1) which is also implicitly contained in Aı̈dékon and Shi [5] (by following

the proof of their Proposition 4.1).

The rest of this paper is organized as follows: In Section 2, we recall some known results on the branch-

ing random walk (many-to-one formula, change of measure) and on a real-valued random walk. In Section

3, we prove Theorems 1.1 and 1.2, whereas the proof of Proposition 1.3 will be given in Section 4.

Throughout this paper, (ci, 1 ≤ i ≤ 36) denote some positive constants.

2 Preliminaries

2.1 Many-to-one formula for the branching random walk

In this subsection, we recall some change of measure formulas in the branching random walk, for the details

we refer to [9, 13, 24, 5, 27] and the references therein.

At first let us fix some notations which will be used throughout this paper: For |u| = n, we write

[∅, u] ≡ {u0 := ∅, u1, ..., un−1, un = u} the shortest path related u from the root ∅ such that |ui| = i for

any 0 ≤ i ≤ n. For any u, v ∈ T, we use the partial order u < v if u is an ancestor of v and u ≤ v if u < v
or u = v. We also denote by

←
v the parent of v.

Under (1.1), there exists a centered real-valued random walk {Sn, n ≥ 0} such that for any n ≥ 1 and

f : Rn → R+,

E

[ ∑

|u|=n

e−V (u)f(V (u1), ..., V (un))
]
= E (f(S1, ..., Sn)) . (2.1)

Moreover under (1.2), σ2 = Var(S1) = E
[∑

|u|=1(V (u))2e−V (u)
]
∈ (0,∞).

The renewal function R(x) related to the random walk S is defined as follows:

R(x) :=

∞∑

k=0

P

(
Sk ≥ −x, Sk < min

0≤j≤k−1
Sj

)
, x ≥ 0, (2.2)

and R(x) = 0 if x < 0. Moreover,

lim
x→∞

R(x)

x
= cR, (2.3)

with some positive constant cR (see Feller [16], pp.612).
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For α ≥ 0, we define as in Aı̈dékon and Shi [5] two truncated processes: For any n ≥ 0,

W (α)
n :=

∑

|u|=n

e−V (u)1(V (u)≥−α), (2.4)

D(α)
n :=

∑

|u|=n

Rα(V (u))e−V (u)1(V (u)≥−α)), (2.5)

where V (u) := min∅≤v≤u V (v), Rα(x) := R(α+ x) and R is the renewal function defined in (2.2).

Denote by (Fn, n ≥ 0) the natural filtration of the branching random walk. If the branching random walk

starts from V (∅) = x, then we denote its law by Px (with P = P0). According to Biggins and Kyprianou

[9], (D
(α)
n , n ≥ 0) is a (Px, (Fn))-martingale and on some enlarged probability space (more precisely on

the space of marked trees enlarged by an infinite ray (ξn, n ≥ 0), called spine), we may construct a family

of probabilities (Q
(α)
x , x ≥ −α) such that for any x ≥ −α, the following statements (i), (ii) and (iii) hold:

(i) For all n ≥ 1,

dQ
(α)
x

dPx

∣∣
Fn

=
D

(α)
n

D
(α)
0

, (2.6)

Q(α)
x

(
ξn = u

∣∣Fn

)
=

1

D
(α)
n

Rα(V (u))e−V (u)1(V (u)≥−α), ∀|u| = n. (2.7)

(ii) Under Q
(α)
x , the process {V (ξn), n ≥ 0} along the spine (ξn)n≥0, is distributed as the random walk

(Sn, n ≥ 0) under P conditioned to stay in [−α,∞). Moreover for any n ≥ 1, x ≥ −α and f : Rn → R+,

E
Q

(α)
x

[
f(V (ξ1), ..., V (ξn))

]
=

1

Rα(x)
Ex

[
f(S1, ..., Sn)Rα(Sn)1(Sn≥−α)

]
. (2.8)

(iii) Let Gn := σ{u, V (u) :
←
u ∈ {ξk, 0 ≤ k < n}}, n ≥ 0. Under Q

(α)
x and conditioned on G∞,

for all u 6∈ {ξk, k ≥ 0} but
←
u ∈ {ξk, k ≥ 0} the induced branching random walk (V (uv), |v| ≥ 0) are

independent and are distributed as PV (u), where {uv, |v| ≥ 0) denotes the subtree of T rooted at u.

Let us mention that as a consequence of (i), the following many-to-one formula holds: For any n ≥
1, x ≥ −α and f : Rn → R+,

Ex

[ ∑

|u|=n

e−V (u)Rα(V (u))f(V (u1), ..., V (un))1(V (u)≥−α)
]
= R(α)e−x E

Q
(α)
x

[
f(V (ξ1), ..., V (ξn))

]
.

(2.9)

2.2 Estimates on a centered real-valued random walk

We collect here some estimates on a real-valued random walk {Sk, k ≥ 0}, centered and with finite variance

σ2 > 0. Let Sn := min0≤i≤n Si, ∀n ≥ 0. Recall (2.2) for the renewal function R(·).

Fact 2.1 There exists some constant c1 > 0 such that for any x ≥ 0,

Px

(
Sn ≥ 0

)
≤ c1 (1 + x)n−1/2, ∀n ≥ 1, (2.10)

Px

(
Sn−1 > Sn ≥ 0

)
≤ c1(1 + x)R(x)n−3/2, ∀n ≥ 1, (2.11)

Px

(
Sn ≥ 0

)
∼ θ R(x)n−1/2, as n → ∞, (2.12)
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with θ = 1
cR

√
2

πσ2 . Moreover there is c2 > 0 such that for any b ≥ a ≥ 0, x ≥ 0, n ≥ 1,

Px

(
Sn ∈ [a, b], Sn ≥ 0

)
≤ c2(1 + x)(1 + b− a)(1 + b)n−3/2, (2.13)

For any 0 < r < 1, there exists some c3 = c3(r) > 0 such that for all b ≥ a ≥ 0, x, y ≥ 0, n ≥ 1,

Px

(
Sn ∈ [y + a, y + b], Sn ≥ 0, min

rn≤j≤n
Sj ≥ y

)
≤ c3 (1 + x)(1 + b− a)(1 + b)n−3/2. (2.14)

See Feller ([16], Theorem 1a, pp.415) for (2.10), Aı̈dékon and Jaffuel ([4], equation (2.8)) for (2.11),

Aı̈dékon and Shi [5] for (2.13) and (2.14), and Kozlov [22] and Lemma 2.1 in [5] for (2.12) with the

identification of the constant θ = 1
cR

√
2

πσ2 .

We end this section by an estimate on the stability on x in the convergence (2.12).

Lemma 2.2 Let S be a centered random walk with positive variance. There exists a constant c4 > 0 such

that for all n ≥ 1 and x ≥ 0, ∣∣∣ Px(Sn ≥ 0)

R(x)P(Sn ≥ 0)
− 1
∣∣∣ ≤ c4

1 + x√
n

.

Proof of Lemma 2.2. Denote in this proof by ̺(n) := P(Sn ≥ 0) for n ≥ 0. Let x ≥ 0. By considering

the first k ∈ [0, n] such that Sk = Sn, we get that

Px(Sn ≥ 0) = Px(Sn ≥ x) +

n∑

k=1

Px

(
Sk−1 > Sk ≥ 0, min

k<j≤n
Sj ≥ Sk

)

= ̺(n) +

n∑

k=1

Px

(
Sk−1 > Sk ≥ 0

)
̺(n− k),

by the Markov property at k. Note that R(x) = 1 +
∑∞

k=1 Px

(
Sk−1 > Sk ≥ 0

)
. It follows that

Px(Sn ≥ 0) ≤ R(x)̺(n) +

n∑

k=1

Px

(
Sk−1 > Sk ≥ 0

)
[̺(n− k)− ̺(n)]. (2.15)

Px(Sn ≥ 0) ≥ R(x)̺(n)−
∞∑

k=n+1

Px

(
Sk−1 > Sk ≥ 0

)
̺(n). (2.16)

Denote respectively by I(2.15) and I(2.16) the sum
∑n

k=1 in (2.15) and the sum
∑∞

k=n+1 in (2.16). Let

T− := inf{j ≥ 1 : Sj < 0}. By the local limit theorem (Eppel [15], see also [28], equation (22)), if the

distribution of S1 is non-lattice, then

P

(
T− = k

)
∼ C−

k3/2
, k → ∞, (2.17)

with some positive constant C−. Moreover Eppel [15] mentioned that a modification of (2.17) holds in the

lattice distribution case. Then there exists some constant c5 > 0 such that for all k ≥ 1,

P

(
T− = k

)
≤ c5

k3/2
. (2.18)
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It follows that for any k ≤ n, ̺(n − k) − ̺(n) = P
(
n − k < T− ≤ n

)
≤ c5

∑n
i=n−k+1 i

−3/2. Then by

(2.11),

I(2.15) ≤ c6(1 + x)R(x)

n∑

k=1

k−3/2
n∑

i=n−k+1

i−3/2.

Elementary computations show that
∑n/2

k=1 k
−3/2∑n

i=n−k+1 i
−3/2 ≤∑n/2

k=1 k
−3/2×k(n2 )

−3/2 = O( 1n)

and
∑n

k=n/2 k
−3/2∑n

i=n−k+1 i
−3/2 ≤ (n2 )

−3/2∑n
i=1 i

−3/2×i = O( 1n). Hence I(2.15) ≤ c7(1+x)R(x) 1n ≤
c8(1 + x)R(x) 1√

n
̺(n) by (2.12).

Finally again by (2.11), we get that I(2.16) ≤ c9(1 + x)R(x) 1√
n
̺(n). Then the Lemma follows from

(2.15) and (2.16). �

3 Proofs of Theorems 1.1 and 1.2

In view of the inequality: Wn ≥ e−Mn , the convergence part of the integral test (1.7) yields that of (1.4),

whereas the divergence part of the integral test (1.4) implies that of (1.7). We only need to show the conver-

gence part in (1.7) and the divergence part in (1.4).

3.1 Proof of the convergence part in Theorem 1.2:

Lemma 3.1 Under (1.1). For any α ≥ 0, there exists some constant c10 = c10(α) > 0 such that for any

1 < n ≤ m and λ > 0, we have

P

(
max

n≤k≤m

√
kW

(α)
k > λ

)
≤ c10

log n√
n

+ c10
1

λ

√
m

n
.

Proof of Lemma 3.1. For n ≤ k ≤ m+ 1, define

W̃
(α,n)
k :=

∑

|u|=k

e−V (u)1(V (un)≥−α),

where as before V (un) := min1≤j≤n V (uj) and un is the ancestor of u at n-th generation. Then W̃
(α,n)
n =

W
(α)
n .

For k ∈ [n,m], W̃
(α,n)
k+1 =

∑
|v|=k 1(V (vn)≥−α)

∑
u:
←

u=v
e−V (u). The branching property implies that

E

(
W̃

(α,n)
k+1 |Fk

)
= W̃

(α,n)
k for k ∈ [n,m]. By Doob’s maximal inequality,

P

(
max

n≤k≤m

√
kW̃

(α,n)
k ≥ λ

)
≤

√
m

λ
E(W̃ (α,n)

m ) =

√
m

λ
E(W (α)

n ).

By the formula many-to-one (2.1) and the random walk estimate (2.10),

E(W (α)
n ) = P

(
Sn ≥ −α

)
≤ c11√

n
,

with c11 := c1(1 + α). It follows that

P

(
max

n≤k≤m

√
kW̃

(α,n)
k ≥ λ

)
≤ c11

λ

√
m

n
.
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Comparing W̃
(α,n)
k and W

(α)
k , we get that

P

(
max

n≤k≤m

√
kW

(α)
k > λ

)
≤ P

(
min

n≤k≤m
min
|u|=k

V (u) < −α
)
+

c11
λ

√
m

n
.

The proof of the Lemma will be finished if we can show that for all n ≥ 2,

P

(
min
|u|≥n

V (u) < −α
)
≤ c10

log n√
n

. (3.1)

To this end, let us apply the following known result (see e.g. [27]):

P

(
inf
u∈T

V (u) < −x
)
≤ e−x, ∀x ≥ 0.

Then for all n ≥ 2,

P
(
min
k≥n

min
|u|=k

V (u) < −α
)

≤ P

(
inf
u∈T

V (u) < − log n
)
+ P

(
min
k≥n

min
|u|=k

V (u) < −α, inf
v∈T

V (v) ≥ − log n
)

≤ 1

n
+

∞∑

k=n

E

[ ∑

|u|=k

1(V (u)<−α,V (un)≥−α,...,V (uk−1)≥−α, V (u)≥− logn)

]

=
1

n
+
∞∑

k=n

E

[
eSk1(Sk<−α,Sn≥−α,...,Sk−1≥−α, Sk≥− logn)

]

≤ 1

n
+ e−αP

(
Sn ≥ − log n

)
,

where the above equality is due to the many-to-one formula (2.1). Using (2.10) to bound the above proba-

bility term, we get (3.1) and the Lemma. �

Proof of the convergence part in Theorem 1.2: Let f be nondecreasing such that
∫∞ dt

tf(t) < ∞. Let

nj := 2j for large j ≥ j0. Then
∑∞

j=j0
1

f(nj)
< ∞. By using Lemma 3.1,

P

(
max

nj≤k≤nj+1

√
kW

(α)
k > f(nj)

)
≤ c10

log nj√
nj

+ c10

√
2

f(nj)
,

whose sum on j converges. The Borel-Cantelli lemma implies that P-a.s. ω, for all large k ≥ k0(ω),√
kW

(α)
k ≤ f(k). Replacing f(k) by εf(k) with an arbitrary constant ε > 0, we get that

lim sup
k→∞

√
kW

(α)
k

f(k)
= 0, P-a.s.,

for any α ≥ 0. By considering a countable α → ∞ (for instance α integer) and by using the fact that

W
(α)
k = Wk on the set {infu∈T V (u) ≥ −α}, we get the convergence part. �.
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3.2 Proof of the divergence part in Theorem 1.1:

The following lemma is a slight modification of Aı̈dékon and Shi [5]’s Lemma 6.3:

Lemma 3.2 ([5]) There exist some constants K > 0 and c12 = c12(K) > 0 such that for all n ≥ 2, 0 ≤
λ ≤ 1

3 log n,

c12 e
−λ ≤ P

( 2n⋃

k=n+1

(
E

(n,λ)
k ∩ F

(n,λ)
k

)
6= ∅
)
≤ 1

c12
e−λ, (3.2)

where for n < k ≤ 2n,

E
(n,λ)
k :=

{
u : |u| = k,

1

2
log n− λ ≤ V (u) ≤ 1

2
log n− λ+K, V (ui) ≥ a

(n,λ)
i ,∀ 0 ≤ i ≤ k

}
,

F
(n,λ)
k :=

{
u : |u| = k,

∑

v∈Υ(ui+1)

(1 + (V (v)− a
(n,λ)
i )+)e

−(V (v)−a(n,λ)
i ) ≤ K e−b

(k,n)
i , ∀ 0 ≤ i < k

}
,

where for u ∈ T\{∅}, Υ(u) := {v : v 6= u,
←
v =

←
u} denotes the set of brothers of u, x+ := max(x, 0),

a
(n,λ)
i :=

(1
2
log n− λ

)
1(n

2
<i≤2n), 0 ≤ i ≤ 2n,

and for n < k ≤ 2n,

b
(k,n)
i := i1/121(0≤i≤n

2
) + (k − i)1/12 1(n

2
<i≤k), 0 ≤ i ≤ k.

Proof of Lemma 3.2. The proof of the lower bound in (3.2) [by the second moment method] goes in the

same way as that of Lemma 6.3 in Aı̈dékon and Shi [5] [We also keep their notations], by replacing 1
2 log n

in their proof by 1
2 log n − λ. Moreover, a similar computation of the second moment will be given in the

proof of Lemma 3.3. Then we omit the details.

The upper bound in (3.2) is a simple consequence of the many-to-one formula: Define s := 1
2 log n−λ,

we have that

P

( 2n⋃

k=n+1

E
(n,λ)
k 6= ∅

)
≤

2n∑

k=n+1

E

[ ∑

|u|=k

1
(s≤V (u)≤s+K,V (ui)≥a(n,λ)

i ,∀i≤k)

]

=

2n∑

k=n+1

E

[
eSk1

(s≤Sk≤s+K,Si≥a(n,λ)
i ,∀i≤k)

]

≤
2n∑

k=n+1

es+K P

(
s ≤ Sk ≤ s+K,Si ≥ a

(n,λ)
i ,∀i ≤ k

)
.

By (2.14), P
(
s ≤ Sk ≤ s + K,Si ≥ a

(n,λ)
i ,∀i ≤ k

)
≤ c13n

−3/2 for all n < k ≤ 2n. Hence

P
(⋃2n

k=n+1E
(n,λ)
k 6= ∅

)
≤ c13e

−λ+K proving the upper bound in (3.2). �

Using the notations in Lemma 3.2 with the constant K , we define for n ≥ 2 and 0 ≤ λ ≤ 1
3 log n,

A(n, λ) :=
{
∪2n
k=n+1

(
E

(n,λ)
k ∩ F

(n,λ)
k

)
6= ∅
}
. (3.3)

The following estimate will be useful in the application of Borel-Cantelli’s lemma:
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Lemma 3.3 There exists some constant c14 > 0 such that for any n ≥ 2, 0 ≤ λ ≤ 1
3 log n and m ≥ 4n, 0 ≤

µ ≤ 1
3 logm,

P

(
A(n, λ) ∩A(m,µ)

)
≤ c14 e

−λ−µ + c14 e
−µ log n√

n
.

Proof of Lemma 3.3. As we mentioned before, the arguments that we use are very close to the computation

of the second moment in the proof of Lemma 6.3 in [5]. Write for brevity in this proof

s :=
1

2
log n− λ, t :=

1

2
logm− µ.

Similarly to (2.6) and (2.7), we may construct a new probability Q such that for all n ≥ 1, dQ
dP

∣∣
Fn

= Wn,

Q
(
ξn = u

∣∣Fn) =
e−V (u)

Wn
,∀|u| = n. Moreover under Q, (V (ξn), n ≥ 0) is distributed as the random walk

(Sn, n ≥ 0) defined in Section 2, and the spine decomposition similar to (iii) in Section 2 holds under Q.

We refer to [9, 13, 24, 5, 27] for details. It follows that

P
(
A(n, λ) ∩A(m,µ)

)
≤ E

[
1A(n,λ)

2m∑

k=m+1

∑

|u|=k

1
(u∈E(m,µ)

k ∩F (m,µ)
k )

]

=

2m∑

k=m+1

EQ

[
1A(n,λ)e

V (ξk)1
(ξk∈E(m,µ)

k ∩F (m,µ)
k )

]

≤ et+K
2m∑

k=m+1

EQ

[
A(n, λ), ξk ∈ E

(m,µ)
k ∩ F

(m,µ)
k

]

≤ et+K
2m∑

k=m+1

2n∑

l=n+1

EQ

[∑

|v|=l

1
(v∈E(n,λ)

l ∩F (n,λ)
l , ξk∈E(m,µ)

k ∩F (m,µ)
k )

]

=: et+K
2m∑

k=m+1

2n∑

l=n+1

I(3.4)(k, l). (3.4)

For n < l ≤ 2n ≤ m
2 < k ≤ 2m, we may decompose the sum on |v| = l as follows:

∑

|v|=l

1
(v∈E(n,λ)

l ∩F (n,λ)
l )

= 1
(ξl∈E(n,λ)

l ∩F (n,λ)
l )

+

l∑

p=1

∑

u∈Υ(ξp)

∑

v∈T(u),|v|u=l−p
1
(v∈E(n,λ)

l ∩F (n,λ)
l )

,

where T(u) denotes the subtree of T rooted at u and |v|u = |v| − |u| the relative generation of v ∈ T(u).
Then

I(3.4)(k, l)

= Q

(
ξl ∈ E

(n,λ)
l ∩ F

(n,λ)
l , ξk ∈ E

(m,µ)
k ∩ F

(m,µ)
k

)
+

l∑

p=1

EQ

[
1
(ξk∈E(m,µ)

k ∩F (m,µ)
k )

∑

u∈Υ(ξp)

fk,l,p(V (u))
]

=: I(3.5)(k, l) +

l∑

p=1

J(3.5)(k, l, p), (3.5)
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with

fk,l,p(x) := EQ

[ ∑

v∈T(u),|v|u=l−p
1
(v∈E(n,λ)

l ∩F (n,λ)
l )

∣∣V (u) = x
]
, x ∈ R.

In what follows, we shall at first estimate J(3.5)(k, l, p) then I(3.5)(k, l). By the branching property at u

and by removing the event F
(n,λ)
l from the indicator function in fk,l,p(r), we get that

fk,l,p(x) ≤ Ex

[ ∑

|v|=l−p
1
(s≤V (v)≤s+K,V (vi)≥a(n,λ)

i+p ,∀ 0≤i≤l−p)

]

= e−x Ex

[
eSl−p1

(s≤Sl−p≤s+K,Si≥a(n,λ)
i+p ,∀ 0≤i≤l−p)

]

≤ e−x+s+K Px

(
s ≤ Sl−p ≤ s+K,Si ≥ a

(n,λ)
i+p ,∀ 0 ≤ i ≤ l − p

)
, (3.6)

where to get the above equality, we applied an obvious modification of (2.1) for Ex instead of E.

Let us denote by (3.6)k,l,p the probability term in (3.6). To estimate (3.6)k,l,p, we distinguish as in [5]

two cases: p ≤ n
2 and n

2 < p ≤ l. Recall that n < l ≤ 2n ≤ m
2 < k ≤ 2m. If p ≤ n

2 ,

(3.6)k,l,p ≤ 1(x≥0)c15
1 + x

(l − p)3/2
,

by using (2.14). Then for 1 ≤ p ≤ n
2 ,

fk,l,p(x) ≤ c151(x≥0)e
s+K−x(1 + x)(l − p)−3/2.

It follows that for all n < l ≤ 2n,m < k ≤ 2m,

∑

1≤p≤n/2
J(3.5)(k, l, p) ≤

n/2∑

p=1

EQ

[
1
(ξk∈E(m,µ)

k ∩F (m,µ)
k )

∑

u∈Υ(ξp)

c151(V (u)≥0)e
s+K−V (u) 1 + V (u)

(l − p)3/2

]

≤ c16 e
sn−3/2

n/2∑

p=1

EQ

[
1
(ξk∈E(m,µ)

k ∩F (m,µ)
k )

∑

u∈Υ(ξp)

1(V (u)≥0)e
−V (u)(1 + V (u))

]

≤ c16 K esn−3/2
n/2∑

p=1

EQ

[
1
(ξk∈E(m,µ)

k ∩F (m,µ)
k )

e−(p−1)
1/12
]
,

where the last inequality is due to the definition of ξk ∈ F
(m,µ)
k [noticing that a

(m,µ)
p = 0 and b

(k,m)
p = p1/12

for all p ≤ n/2 < m/2]. Then we get that

∑

1≤p≤n/2
J(3.5)(k, l, p) ≤ c17e

sn−3/2Q
(
ξk ∈ E

(m,µ)
k

)
≤ c18e

sn−3/2 m−3/2, (3.7)

since Q

(
ξk ∈ E

(m,µ)
k

)
= P(t ≤ Sk ≤ t+K,Si ≥ a

(m,µ)
i ,∀ 0 ≤ i ≤ k

)
≤ c19m

−3/2 for all m < k ≤ 2m,

by using (2.14).

Now considering n
2 < p ≤ l, a

(n,λ)
i+p = s for any 0 ≤ i ≤ l − p, hence

(3.6)k,l,p = 1(x≥s)Px

(
s ≤ Sl−p ≤ s+K,S l−p ≥ s

)
≤ 1(x≥s)c2(1 +K)2

1 + x− s

(1 + l − p)3/2
,
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by (2.13). It follows that

∑

n
2
<p≤l

J(3.5)(k, l, p) ≤
∑

n
2
<p≤l

EQ

[
1
(ξk∈E(m,µ)

k ∩F (m,µ)
k )

∑

u∈Υ(ξp)

c2(1 +K)21(V (u)≥s)e
s+K−V (u) 1 + V (u)− s

(1 + l − p)3/2

]
.

By the definition of ξk ∈ F
(m,µ)
k , for all p ≤ l ≤ 2n ≤ m

2 , we have that

∑

u∈Υ(ξp)

1(V (u)≥s)e
−V (u)(1 + V (u)− s) ≤

∑

u∈Υ(ξp)

1(V (u)≥0)e
−V (u)(1 + V (u)) ≤ Ke−(p−1)

1/12
.

Then ∑

n
2
≤p≤l

J(3.5)(k, l, p) ≤ c20e
s e−n

1/13
Q(ξk ∈ E

(m,µ)
k ) ≤ c21e

s−n1/13
m−3/2. (3.8)

Combining (3.7) and (3.8), we get that

∑

1≤p≤l
J(3.5)(k, l, p) ≤ (c18n

−3/2 + c21e
−n1/13

)es m−3/2. (3.9)

It remains to estimate I(3.5)(k, l) for n < l ≤ 2n and m < k ≤ 2m [in particular l < k]. We have

I(3.5)(k, l)

≤ Q

(
ξl ∈ E

(n,λ)
l , ξk ∈ E

(m,µ)
k

)

= P

(
s ≤ Sl ≤ s+K,Si ≥ a

(n,λ)
i ,∀ i ≤ l, t ≤ Sk ≤ t+K,Sj ≥ a

(m,µ)
j ,∀ j ≤ k

)
. (3.10)

Let us denote by (3.10)k,l the probability term in (3.10). Using the Markov property at l, we get that

(3.10)k,l = E

[
1
(s≤Sl≤s+K,Si≥a(n,λ)

i ,∀ 0≤i≤l)PSl

(
t ≤ Sk−l ≤ t+K,Sj ≥ a

(m,µ)
j+l ,∀ 0 ≤ j ≤ k − l

)]

≤ c21
(k − l)3/2

E

[
1
(s≤Sl≤s+K,Si≥a(n,λ)

i ,∀ 0≤i≤l)(1 + Sl)
]

(by (2.13))

≤ c22(1 + s+K)(k − l)−3/2 l−3/2.

Based on the above estimate and (3.9), we deduce from (3.4) and (3.5) that

P

(
A(n, λ) ∩A(m,µ)

)

≤ c23 e
t+K

2m∑

k=m+1

2n∑

l=n+1

(
(1 + s+K)(k − l)−3/2 l−3/2 + es e−n

1/13
m−3/2 + esn−3/2 m−3/2

)

≤ c24e
−λ−µ + c24e

−µ log n√
n

,

proving the Lemma. �

Proof of the divergence part in Theorem 1.1. Let f be nondecreasing such that
∫∞ dt

tef(t)
= ∞. Without

any loss of generality we may assume that
√
log t ≤ ef(t) ≤ (log t)2 for all large t ≥ t0 (see e.g. [14] for a

similar justification). Let us prove that there exists some c25 > 0 such that for any x ∈ R and k ≥ 0,

P
(
Mn + x ≤ 1

2
log n− f(n+ k), i.o. n → ∞

)
≥ c25. (3.11)
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To this end, we take ni := 2i for i ≥ 1, λi := f(ni+k)+x+K and consider the event Ai := A(ni, λi)
in (3.3). By Lemma 3.2,

c12 e
−λi ≤ P(Ai) ≤

1

c12
e−λi .

Note that
∑

i e
−λi = ∞. By Lemma 3.3, we have for any j ≥ i+ 2,

P

(
Ai ∩Aj

)
≤ c14 e

−λi−λj + c14e
−λj

log ni√
ni

.

It follows that

lim sup
k→∞

∑
1≤i,j≤k P(Ai ∩Aj)
[∑k

i=1 P(Ai)
]2 ≤ c14

c212
,

which does not depend on (x, k). By Kochen and Stone [21]’s version of the Borel-Cantelli lemma,

P(Ai, i.o. i → ∞) ≥ c212/c14 =: c25, hence we get (3.11).

Denote by

Bx(k) :=
{
Mn + x ≤ 1

2
log n− f(n+ k), i.o.

}
, x ∈ R, k ≥ 0.

We have proved that for any x ∈ R and k ≥ 0, P(Bx(k)) ≥ c25. For any k ≥ 0, the events Bx(k) are

non-increasing on x. Let B∞(k) := ∩∞i=1Bi(k) [then B∞(k) is the event nothing but {lim infn→∞(Mn −
1
2 log n + f(n+ k)) = −∞}]. By the monotone convergence, P(B∞(k)) ≥ c25, for all k ≥ 0. Moreover,

for any x ∈ R, Px(B∞(k)) = P(B∞(k)) ≥ c25. On the other hand, if we denote by Zk :=
∑
|u|=k 1 the

number of particles in the k-th generation, then by the branching property,

P

(
B∞(0)

∣∣Fk

)
= 1(Zk>0)

(
1−

∏

|u|=k

(1− PV (u)(B∞(k)))
)
≥ 1(Zk>0)

(
1− (1− c25)

Zk

)
.

It is well-known (cf. [7], pp.8) that on {Zk > 0}, Zk → ∞ and 1(Zk>0) → 1S (in probability), hence

P-a.s.,

1B∞(0) = lim
k→∞

P

(
B∞(0)

∣∣Fk

)
≥ 1S .

Clearly Sc ⊂ B∞(0)c by the convention on the definition of Mn on Sc. Hence P-a.s. on S = B∞(0). This

proves the divergence part of Theorem 1.1. �

4 Proof of Proposition 1.3

The main technical part was already done in Aı̈dékon and Shi [5]:

Lemma 4.1 ([5]) Under (1.1) and (1.8). For any fixed α ≥ 0, there exist some δ = δ(ε0) > 0 and

c26 = c26(α, δ) > 0 such that for all n ≥ 2,

VarQ(α)

(√
nW

(α)
n

D
(α)
n

)
≤ c26

(
n−δ + sup

k
1/3
n ≤x≤kn

∣∣∣hx+α(n− kn)

hα(n)
− 1
∣∣∣
)
, (4.1)

where kn := ⌊n1/3⌋ and hx(j) :=
√
j Px(Sj≥0)

R(x) for j ≥ 1, x ≥ 0.
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Proof of Lemma 4.1. The Lemma was implicitly contained in the proof of Proposition 4.1 in [5]. In fact,

in their proof of the convergence that VarQ(α)

(√
nW

(α)
n

D
(α)
n

)
→ 0, we choose kn := ⌊n1/3⌋ in their definition

of En := En,1 ∩ En,2 ∩ En,3 (see the equation (4.6) in [5], Section 4). We claim that for some constant

δ1 = δ1(ε0) > 0, there is some c27 = c27(δ1, α) > 0 such that for all n ≥ 1,

Q(α)
(
Ec

n

)
≤ c27 n

−δ1 , (4.2)

sup
k
1/3
n ≤x≤kn

Q(α)
(
Ec

n

∣∣V (ξkn) = x
)

≤ c27n
−δ1 . (4.3)

In fact, according to the definition of En,1 in [5],

Q(α)
(
Ec

n,1

)
≤ Q(α)

(
{V (ξkn) > kn} ∪ {V (ξkn) < k1/3n }

)
+ sup

k
1/3
n ≤x≤kn

Q(α)
x

(
∪n−kn
i=0 {V (ξi) < k1/6n }

)
.

By (2.8),

Q(α)
(
V (ξkn) < k1/3n

)
=

1

Rα(0)
E

(
1
(Skn

≥−α,Skn<k
1/3
n )

Rα(Skn)
)
≤ Rα(k

1/3
n )

Rα(0)
P(Skn ≥ −α) ≤ c28k

−1/6
n ,

and

Q(α)
(
V (ξkn) > kn

)
≤ E

[
1(Skn>kn)Rα(Skn)

]
≤
√

P

(
Skn > kn

)√
E[Rα(Skn)

2] ≤ c29kn

√
P

(
Skn > kn

)
,

since Rα(x) ∼ cR(1 + x+ α) as x → ∞. The condition (1.8) ensures that E(|S1|2+ε0) < ∞ which in turn

implies that E(|Sk|2+ε0) ≤ c30k
1+ε0/2 for any k ≥ 1 (see Petrov [26], pp.60). Hence

Q(α)
(
V (ξkn) > kn

)
≤ c31k

−ε0/4
n .

Now for k
1/3
n ≤ x ≤ kn, let τ = inf{i ≥ 0 : Si < k

1/6
n }, then the absolu continuity (2.8) at τ reads as

Q(α)
x

(
∪n−kn
i=0 {V (ξi) < k1/6n }

)
=

1

Rα(x)
Ex

[
1(τ≤n−kn)Rα(Sτ )1(Sτ≥−α)

]

≤ Rα(k
1/6
n )

Rα(x)
≤ Rα(k

1/6
n )

Rα(k
1/3
n )

≤ c32 k
−1/6
n ,

since x ≥ k
1/3
n . Assembling the above estimates yields that

Q(α)
(
Ec

n,1

)
≤ c33k

−ε0/4
n ,

[we may assume ε0 ≤ 2/3]. Let us follow the proof of Lemma 4.7 in [5], we remark that on En,1, V (ξi) ≥
k
1/6
n for all kn ≤ i ≤ n, and it was shown in [5] that

Q(α)
x

(
En,1 ∩ Ec

n,2

)
≤

n−1∑

i=kn

Ex

[
1(η+η̃>eSi/2)

[
η +

η̃

Si + α+ 1

]
1
(Si≥k1/6n )

]
.
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By the integrability assumption (1.8), since η̃ =
∫∞
0 xe−xL(dx) ≤

√
η
∫∞
0 x2e−xL(dx), it is easy to

see that E(η̃p) < ∞ for some p > 1. It follows that Q
(α)
x

(
En,1 ∩ Ec

n,2

)
≤ nE

(
1
(η+η̃>ek

1/6
n /2)

[
η + η̃

])
≤

c34n
−10 . Finally by (4.9) in [5], Q(α)(En,1 ∩ En,2 ∩ Ec

n,3) ≤ c35n
−10, hence we get (4.2).

From (4.2), it suffices to follow line-by-line the proof of Proposition 4.1 in [5]: In Lemma 4.4 of [5],

we can get n−1−δ1/4 instead of o( 1n ) [by replacing in its proof ε by n−δ1/4]. In their proof of Lemma 4.5,

taking η1 =
1
n and we arrive at

EQ(α)

[(√
n
W

(α)
n

D
(α)
n

)]2
≤ c36n

−δ1/4 + (1 +O(
1

n
))EQ(α)

[√
n
W

(α)
n

D
(α)
n

]
sup

k
1/3
n ≤x≤kn

√
nP(Sn−kn ≥ −α− x)

Rα(x)
.

The Lemma follows because EQ(α)

[√
nW

(α)
n

D
(α)
n

]
= hα(n), and hα(n) → θ when n → ∞, as shown in [5]. �

Proof of Proposition 1.3. It is enough to prove that for any α ≥ 0,

lim inf
n→∞

√
n
W

(α)
n

D
(α)
n

= θ, Q(α)-a.s., (4.4)

where θ is defined in (2.12). In fact, under (1.1), (1.2) and (1.3), D
(α)
n converges in mean to D

(α)
∞ (see [27],

Chapter 5, also see [9], Theorem 10.2 (i) with an extra log log log-term). Then on {D(α)
∞ > 0}, P and Q(α)

are equivalent. Moreover, as shown in [5], P-almost surely on {inf |u|≥0 V (u) ≥ −α}, W
(α)
n = Wn and

D
(α)
n ∼ cR D∞, therefore Proposition 1.3 follows easily from (4.4).

Now to prove (4.4), since
√
nW

(α)
n

D
(α)
n

→ θ in probability under Q(α) ([5]), it suffices to prove that

lim inf
n→∞

√
n
W

(α)
n

D
(α)
n

≥ θ, Q(α)-a.s. (4.5)

To this end, using Lemmas 4.1 and 2.2 we get some constant δ2 > 0 such that for all n ≥ n0,

VarQ(α)

(√
n
W

(α)
n

D
(α)
n

)
≤ n−δ2 . (4.6)

Let nj := j−3/δ2 for j ≥ j0 and choose an arbitrary small ε > 0. We are going to show that

∑

j≥j0
Q(α)

(
inf

nj≤n≤nj+1

√
n
W

(α)
n

D
(α)
n

< (1− ε)θ
)
< ∞, (4.7)

from which the Borel-Cantelli lemma yields (4.5).

To prove (4.7), let F̂n := Fn ∨Gn, where Gn, defined in Section 2, denotes the σ-fields generated by the

spine up to generation n. Then

EQ(α)

[
1

Rα(V (ξnj+1))

∣∣∣ F̂n

]
= E

Q
(α)
Sn

[ 1

Rα(V (ξnj+1−n))

]

=
1

Rα(V (ξn))
P

(
Snj+1−n ≥ −α

)
(by (2.8))

≤ 1

Rα(V (ξn))
.

15



It follows that for all n ≤ nj+1,

EQ(α)

[
1

Rα(V (ξnj+1))

∣∣∣Fn

]
≤ EQ(α)

[
1

Rα(V (ξn))

∣∣∣Fn

]
=

W
(α)
n

D
(α)
n

,

where the last equality comes from Lemma 4.2 in [5]. Consequently for all nj ≤ n ≤ nj+1,

√
n
W

(α)
n

D
(α)
n

≥ Yn :=
√
nj EQ(α)

[
1

Rα(V (ξnj+1))

∣∣∣Fn

]
.

Remark that (Yn, nj ≤ nj+1) is a martingale with mean EQ(α)(Ynj ) =
√
nj EQ(α)( 1

Rα(Snj )
) ≥ (1−ε)θ.

The Doob L2-inequality implies that

Q(α)
(

max
nj≤n≤nj+1

∣∣Yn − EQ(α)(Ynj)
∣∣ ≥ εθ/2

)
≤ 4

ε2θ2
VarQ(α)(Ynj+1)

≤ c36 n
−δ2
j = c36j

−3,

by (4.6) and the fact that Ynj+1 =
√

nj

nj+1

W
(α)
nj+1

D
(α)
nj+1

. Finally for all large j,

Q(α)
(

inf
nj≤n≤nj+1

√
n
W

(α)
n

D
(α)
n

< (1− ε)θ
)
≤ Q(α)

(
max

nj≤n≤nj+1

∣∣Yn − EQ(α)(Ynj )
∣∣ ≥ εθ/2

)
≤ c36 j

−3,

proving (4.7) and then completing the proof of Proposition 1.3. �
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