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Abstract

The power of the disconjugacy properties of second-order differential equations of
Schrödinger type to check the regularity of rationally-extended quantum potentials
connected with exceptional orthogonal polynomials is illustrated by re-examining the
extensions of the isotonic oscillator (or radial oscillator) potential derived in kth-order
supersymmetric quantum mechanics or multistep Darboux-Bäcklund transformation
method. The function arising in the potential denominator is proved to be a poly-
nomial with a nonvanishing constant term, whose value is calculated by induction
over k. The sign of this term being the same as that of the already known highest-
degree term, the potential denominator has the same sign at both extremities of the
definition interval, a property that is shared by the seed eigenfunction used in the po-
tential construction. By virtue of disconjugacy, such a property implies the nodeless
character of both the eigenfunction and the resulting potential.
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I INTRODUCTION

The introduction of the concept of exceptional orthogonal polynomials (EOP) [1, 2] and

the construction of the first X1 families of Laguerre- and Jacobi-type EOP in the context

of Sturm-Liouville theory [3, 4] have aroused a lot of interest both in mathematics and in

physics. On the one hand, the EOP families are novel systems of complete orthogonal poly-

nomials with respect to some positive-definite measure, generalizing the classical families

of Hermite, Laguerre, and Jacobi, but differing from these among others by the presence

of gaps in the degrees n of the polynomials appearing in the sequences (e.g., n = 0 for the

X1 families). On the other hand, they were shown [5] to provide a keystone for rationally

extending some well-known (translationally) shape-invariant quantum potentials [6, 7, 8]

in such a way that shape invariance is preserved. In this context, the usefulness of an

approach based on supersymmetric quantum mechanics (SUSYQM) or, equivalently, the

Darboux transformation was pointed out [9, 10].

An important step was the description of infinitely many shape-invariant potentials as-

sociated with Xm EOP families, where the number of gaps m, called codimension (and

corresponding here to n = 0, 1, . . . , m− 1), may be arbitrarily large [11, 12, 13, 14]. The

existence of two families of Xm-Laguerre and Xm-Jacobi EOP was also reported (thereby

extending an observation made form = 2 in Ref. [10]) and it was later on explained through

Darboux-Crum transformation [15, 16, 17]. In addition, these families were shown to be ob-

tainable through two alternative approaches, namely the Darboux-Bäcklund transformation

[18] and the prepotential method [19].

Counterparts of the classical family of Hermite polynomials have also been known in

physical applications since the early 90s [20, 21, 22, 23, 24, 25, 26, 27], but theseXm EOP are

of a slightly different nature in the sense that the m gaps in the degree sequence correspond

to n = 1, 2, . . . , m, instead of n = 0, 1, . . . , m − 1. Since then, similar Xm-Laguerre and

Xm-Jacobi EOP have been constructed and form the so-called third families [10, 18, 19].

A significant advance was then the introduction of multi-indexed Xm1,m2,...,mk
EOP

families and associated rationally-extended potentials through multistep Darboux algebraic

transformations [28]. The same concept was developed through several approaches, such as
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the Crum-Adler mechanism [29], higher-order SUSYQM [30, 31], and multistep Darboux-

Bäcklund transformations [32].

In such a context, there remain two open essential questions. The first one is to

know whether the multi-indexed EOP families exhaust all the possibilities of higher-

codimensional complete orthogonal polynomial systems or, in other words, whether all the

higher-codimensional complete orthogonal polynomial systems are generated by the appli-

cation of successive algebraic Darboux transformations (or one of the equivalent methods

quoted above). This was recently proved to be true for codimension two [33].

The second problem has to do with the existence of a well-behaved measure defining an

EOP system, which is directly connected with the regularity of the associated rationally-

extended quantum potentials. In the one-indexed Xm case, this problem is usually solved

by showing that the classical polynomial occurring in the denominator has no zero in the

domain of the variable, which is an easy task since the distribution of zeros of classical

polynomials is well known [34, 35]. In the multi-indexed Xm1,m2,...,mk
case, however, the

denominator contains a Wronskian of functions written in terms of classical polynomials,

so that the problem becomes much more difficult to solve. While still feasible for k = 2,

the study of zeros remains outside scope for most higher k cases, hence the construction of

multi-indexed EOP is still rather formal.

A notable progress towards the solution of the regularity question was recently made [32]

by making use of the disconjugacy properties of the Schrödinger equation for eigenvalues

below the ground state [36, 37, 38]. As a consequence of such properties, the nodeless

character of the function present in the denominator can be inferred from the signs it takes

on both ends of the domain. Nevertheless when applied to the rationally-extended isotonic

oscillator (or radial oscillator) potentials [32], except in the k = 2 case, the equality of signs

was obtained without exhibiting explicit formulas for the denominator in the asymptotic

regions.

The purpose of the present paper is to give such explicit expressions in the general multi-

indexed case. We then extend some results previously obtained in [30, 31], confirming in

particular a conjecture about the structure of the polynomial factor in the denominator.

This allows a more direct proof of the regular character of the considered extensions.
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The paper is organized as follows. After recalling in Sec. II the disconjugacy properties

of the Schrödinger equation, we apply it to the construction of rationally-extended radial

oscillator potentials and corresponding Xm-Laguerre EOP in first-order SUSYQM. Section

III summarizes the corresponding multistep construction in kth-order SUSYQM, where

each step may be associated with any one of the first two families of Xm-Laguerre EOP.

An improved proof of the regularity of these extensions is then given in Sec. IV. Finally,

Section V contains the conclusion.

II RATIONAL EXTENSIONS OF THE ISOTONIC

POTENTIAL AND Xm-LAGUERRE EOP

A Disconjugacy

Let us briefly recall some essential elements about the disconjugacy properties of second-

order differential equations of Schrödinger type,

ψ′′(x) +
(

E − V (x)
)

ψ(x) = 0. (2.1)

To any solution ψ(x) of Eq. (2.1) we can associate the corresponding Ricatti-Schrödinger

function w(x) = −ψ′(x)/ψ(x), which is a solution of

−w′(x) + w2(x) = V (x)− E. (2.2)

Equation (2.1) is said to be disconjugated on I ⊂ R (V (x) being supposed continuous on

I) if every solution of this equation has at most one (necessarily simple) zero on I [36, 37].

For a closed or open interval I, the disconjugacy of Eq. (2.1) is equivalent to the existence

of solutions that are everywhere non zero on I [36, 37]. In the following we will consider

I =]0,+∞[.

Let us also quote the following result:

Theorem [36, 37] If there exists a continuously differentiable solution on I of the Riccati

inequality

−w′(x) + w2(x) ≤ V (x)− E, (2.3)

then Eq. (2.1) is disconjugated on I.
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In the case we consider, the Hamiltonian corresponding to Eq. (2.1) and associated

to Dirichlet boundary conditions on I has an infinite bound-state spectrum {Eν , ψν}ν∈N.

Consequently, since ψ0 is nodeless on I, w0(x) is a continuously differentiable solution of

(2.2) on this domain and condition (2.3) is fulfilled for every value of E not greater than E0.

The domain of values ]−∞, E0] of the spectral parameter E will be called the disconjugacy

sector of Eq. (2.1). In this sector, except for E = E0, ψ(x) does not satisfy the required

Dirichlet boundary conditions to be a bound-state wavefunction and diverges at one or

both extremities of I. To ensure that this eigenfunction is nodeless, it is sufficient to verify

that it has the same sign at both extremities of the definition interval.

B Isotonic oscillator and Xm-Laguerre EOP

The isotonic oscillator potential is defined on the positive half-line x > 0 as

Vl(x) =
1

4
ω2x2 +

l(l + 1)

x2
. (2.4)

The spectrum of the associated Schrödinger equation has an infinite number of bound

states, whose (unnormalized) wavefunctions are given by

ψ(l)
ν (x) ∝ ηl(z)L

(α)
ν (z), ν ∈ N, (2.5)

where z = ωx2/2, α = l + 1/2, and

ηl(z) = z(α+1/2)/2e−z/2, (2.6)

L
(α)
ν (z) being a generalized Laguerre polynomial [34]. The associated energies are

E(l)
ν = ω(2ν + α + 1). (2.7)

In first-order SUSYQM, the superpartner Hamiltonians are defined as [7]






H(+) = A†A = − d2

dx2
+ V (+)(x)− E,

H(−) = AA† = − d2

dx2
+ V (−)(x)− E,

(2.8)

with






A† = − d
dx

+W (x),

A = d
dx

+W (x),
(2.9)
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where the superpotential W (x) satisfies the Riccati equations

∓W ′(x) +W 2(x) = V (±)(x)− E. (2.10)

W (x) is obtained from a solution φ(x) of the initial Schrödinger equation

H(+)φ(x) = 0, (2.11)

via

W (x) = −φ′(x)/φ(x). (2.12)

The new potential V (−)(x) = V (+)(x)+2W ′(x) is regular as soon as the “seed” solution

φ(x) is nodeless on ]0,+∞[. This can be achieved if we choose the factorization energy in

the disconjugacy sector of H(+), that is, when E is not greater than the ground-state energy

E
(+)
0 of V (+)(x). This is true in particular if we choose as seed solution the ground-state

wavefunction ψ
(l)
0 (x) = ηl(z) itself. For E < E

(+)
0 , as discussed above, the analysis of the

sign of φ(x) at 0+ and +∞ is then sufficient to control the regularity of W (x).

Suppose that we are in this case. Then we have three possibilities (up to a global change

of sign), namely










I : φ(0+) = 0+, φ(+∞) = +∞,

II : φ(0+) = +∞, φ(+∞) = 0+,

III : φ(0+) = +∞, φ(+∞) = +∞.

(2.13)

In the first two cases, 1/φ(x) diverges at one extremity of the positive half-line and,

although we have

H(−)

(

1

φ(x)

)

= 0, (2.14)

it is not a bound-state wavefunction ofH(−). Then H(+) andH(−) turn out to be isospectral.

If we are looking for seed functions which are polynomials (up to some gauge factor), we

obtain them from the eigenstates by applying the following discrete symmetries acting on

the parameters of the initial potential (2.4) [18]











ΓI : (ω, α) → (−ω, α),

ΓII : (ω, α) → (ω,−α),

ΓIII : (ω, α) → (−ω,−α).

(2.15)
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By applying the symmetry Γi, i = I, II, III, to ψ
(l)
ν , we obtain a seed eigenfunction φν ,

which satisfies boundary conditions of type i (see (2.13)). In particular, for i = I or II, we

obtain
{

ΓI : ψ
(l)
m (x) → φI

lm(x) = χI
l(z)L

(α)
m (−z),

ΓII : ψ
(l)
m (x) → φII

lm(x) = χII
l (z)L

(−α)
m (z),

(2.16)

where
{

χI
l(z) = z(α+1/2)/2ez/2,

χII
l (z) = z−(α−1/2)/2e−z/2,

(2.17)

for the corresponding energies
{

EI
lm = −ω(α+ 2m+ 1),

EII
lm = −ω(α− 2m− 1).

(2.18)

If φI
lm is always in the disconjugacy sector, for φII

lm to reach it we need to assume the

condition α > m. Starting from the isotonic potential V (+)(x) = Vl′(x), the SUSYQM

partnership based on seed eigenfunctions φI
l′m or φII

l′m with respectively l′ = l − 1 and

l′ = l + 1 gives then rational extensions of the form [31]

V (−)(x) = Vl(x) + Vl,rat(x) + C, (2.19)

where

Vl,rat(x) = −2ω







ġ
(α)
m

g
(α)
m

+ 2z





g̈
(α)
m

g
(α)
m

−

(

ġ
α)
m

g
(α)
m

)2










(2.20)

(the dot denoting a derivative with respect to z), with in the first case

g(α)m (z) = L(α−1)
m (−z), C = −ω (2.21)

and in the second case

g(α)m (z) = L(−α−1)
m (z), C = ω. (2.22)

Due to disconjugacy properties, the regularity of these extensions on the positive half-

line is ensured for every m = 1, 2, . . . (and α large enough for type II).

The bound-state wavefunctions of the superpartner potential V (−)(x) are obtained by

applying the operator A (with W (x) = −φi′
l′m(x)/φ

i
l′m(x), i = I, II) on those of V (+)(x)

(ψ
(+)
ν (x) ∝ ηl′(z)L

(α′)
ν (z) with α′ = l′ + 1/2). We can write

ψ(−)
ν (x) ∝

ηl(z)

g
(α)
m (z)

y
(α)
m+ν(z), ν = 0, 1, 2, . . . , (2.23)
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where y
(α)
m+ν(z) is a polynomial of degree n = m+ ν,

y(α)n (z) =

{

LI
α,m,n(z) if i = I,

LII
α,m,n(z) if i = II,

(2.24)

satisfying the second-order differential equation

[

z
d2

dz2
+

(

α + 1− z − 2z
ġ
(α)
m

g
(α)
m

)

d

dz
+ (z − α)

ġ
(α)
m

g
(α)
m

+ z
g̈
(α)
m

g
(α)
m

]

y
(α)
m+ν(z) = −νy

(α)
m+ν(z). (2.25)

The set of polynomials y
(α)
m+ν(z) (ν = 0, 1, 2, . . . ), defined on the positive half-line, is

orthogonal and complete with respect to the positive-definite measure of density

zαe−z/
(

g(α)m (z)
)2
. (2.26)

III LAGUERRE EOP AND REDUCIBLE k-TH OR-

DER SUSYQM

In kth-order SUSYQM, the first-order differential operators A and A† are replaced by kth-

order ones A and A† [22, 23, 39, 40, 41]. The correspondence between the initial and final

Hamiltonians H(1) and H(2) is determined by the intertwining relations

AH(1) = H(2)A, A†H(2) = H(1)A†. (3.27)

In the reducible case, the operators A and A† can be factorized into products of first-

order differential operators as

A = A(k)A(k−1) · · ·A(1), (3.28)

where

A(i) =
d

dx
+W (i)(x), W (i)(x) = −

(

log φ(i)(x)
)′
, (3.29)

the seed eigenfunctions being given by Crum’s formula [42]

φ(i)(x) = φ
(i)
1,2,...,i(x) =

W(φ1, φ2, . . . , φi | x)

W(φ1, φ2, . . . , φi−1 | x)
, (3.30)
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with W(φ1, φ2, . . . , φi|x) denoting the Wronskian of φ1(x), φ2(x), . . . , φi(x). Here we have

introduced lower indices 1, 2, . . . , i to specify which seed functions have been used. The

partner potentials are then linked by the second Crum’s formula

V (2)(x) = V (1)(x)− 2
d2

dx2
logW(φ1, φ2, . . . , φk|x). (3.31)

As in Sec. II, we start from the isotonic potential V (1)(x) = Vl′(x) to get an extended

potential of the form

V (2)(x) = Vl(x) + Vl,rat(x) + C. (3.32)

The final potential is of type IqIIk−q if the chosen set of seed eigenfunctions includes

q ≤ k seed functions of type I and k − q seed functions of type II. The order of the seed

functions being irrelevant, we can assume that

φi(x) =

{

φI
l′mi

(x) = χI
l′(z)L

(α′)
mi (−z), i = 1, . . . , q,

φII
l′mi

(x) = χII
l′ (z)L

(−α′)
mi (z), i = q + 1, . . . , k,

(3.33)

with l′ = l+k−2q (hence α′ = α+k−2q), 0 < m1 < · · · < mq, and 0 < mq+1 < · · · < mk,

these functions being nodeless for α′ > sup
i=q+1,...,k

(mi). In [31], it has been shown that the

Wronskian appearing in Crum’s formula (3.31) can be written as

W(φ1, φ2, . . . , φk | x) = (ωx)k(k−1)/2z−q(k−q)
(

χI
l′

)q(
χII
l′

)k−q
g(α)µ (z), (3.34)

where

g(α)µ (z) = z−(k−q)(k−q−1) det Γ̃(α)
µ , (3.35)

with

(

Γ̃(α)
µ

)

ij
=







































L
(α′+i−1)
mj−i+1 (−z), 1 ≤ i ≤ q + 1, 1 ≤ j ≤ q,

(mj + 1)i−1z
k−iL

(−α′−i+1)
mj+i−1 (z), 1 ≤ i ≤ q + 1, q + 1 ≤ j ≤ k,

L
(α′+i−1)
mj−q (−z), q + 2 ≤ i ≤ k, 1 ≤ j ≤ q,

(mj + 1)q(mj − α′ − i+ q + 2)i−q−1

× zk−iL
(−α′−i+1)
mj+q (z), q + 2 ≤ i ≤ k, q + 1 ≤ j ≤ k,

(3.36)

and (a)n = a(a+ 1) · · · (a+ n− 1) denoting the usual Pochhammer symbol [34].
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Observe that on taking (3.31) and (3.34) into account, we can express Vl,rat(x) and C

of Eq. (3.32) as

Vl,rat(x) = −2ω







ġ
(α)
µ

g
(α)
µ

+ 2z





g̈
(α)
µ

g
(α)
µ

−

(

ġ
α)
µ

g
(α)
µ

)2










, C = (k − 2q)ω. (3.37)

In [31], it has been proved that

g(α)µ (z) = C(α)
µ zµ + lower-order terms, (3.38)

with














µ =
∑k

i=1mi − q(q − 1)/2− (k − q)(k − q − 1)/2 + q(k − q),

C
(α)
µ = (−1)σ∆(m1, . . . , mq)∆(mq+1, . . . , mk)/(m1! . . .mk!),

σ =
∑k

i=q+1mi + q(k − q),

(3.39)

∆(n1, . . . , nl) being a Vandermonde determinant of order l,

∆(n1, . . . , nl) =
∏

1≤i<j≤l

(nj − ni). (3.40)

As shown in [32], the Wronskian (3.34) has no node on the positive half-line, which

ensures the regularity of the rationally-extended potential V (2)(x) on this domain. The

bound-state wavefunctions of the latter are then given by [31]

ψ(2)
ν (x) =

ηl(z)

g
(α)
µ (z)

y
(α)
µ+ν(z), ν = 0, 1, 2, . . . , (3.41)

where y
(α)
µ+ν(z) is a polynomial of degree n = µ + ν satisfying the second-order differential

equation

[

z
d2

dz2
+

(

α + 1− z − 2z
ġ
(α)
µ

g
(α)
µ

)

d

dz
+ (z − α)

ġ
(α)
µ

g
(α)
µ

+ z
g̈
(α)
µ

g
(α)
µ

]

y
(α)
µ+ν(z) = −νy

(α)
µ+ν(z). (3.42)

The y
(α)
µ+ν (ν = 0, 1, 2, . . . ) polynomials constitute a complete orthogonal family on the

positive half-line with respect to the positive-definite measure of density

zαe−z/
(

g(α)µ (z)
)2
. (3.43)
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IV POLYNOMIAL CHARACTER OF g(α)
µ AND BE-

HAVIOUR NEAR THE ORIGIN

In [31] it has been conjectured that g
(α)
µ (z) is a polynomial, which can be directly checked

in the k = 2 case, but is not obvious for higher k values whenever k−q ≥ 2 (see Eq. (3.35)).

In the following we will give a complete proof of this assertion. In [32] the regularity of the

extended potential, which is equivalent to the absence of node of g
(α)
µ , has been established

without giving the exact highest and lowest degrees coefficients of this polynomial. We

will also determine the value of the lowest-degree coefficient and then verify explicitly the

nodeless character of the Crum Wronskian.

First note that from Eq. (3.34) we can write for k − q ≥ 2

{

W(φ1, φ2, . . . , φk | x) = (ωx)k(k−1)/2z−q(k−q)(χI
l′)

q(χII
l′ )

k−qg
(α)
µ (z),

W(φ1, φ2, . . . , φk−1 | x) = (ωx)(k−1)(k−2)/2z−q(k−q−1)(χI
l′)

q(χII
l′ )

k−q−1g
(α+1)
µ′ (z),

(4.44)

where l′ = l + k − 2q (hence α′ = α + k − 2q) and















µ =
∑k

i=1mi − q(q − 1)/2− (k − q)(k − q − 1)/2 + q(k − q),

µ′ =
∑k−1

i=1 mi − q(q − 1)/2− (k − q − 1)(k − q − 2)/2 + q(k − q − 1)

= µ−mk + k − 2q − 1.

(4.45)

Inserting these expressions in Eq. (3.30), we arrive at

φ
(k)
1,2,...,k(x) = (ωx)k−1z−qχII

l′ (z)
g
(α)
µ (z)

g
(α+1)
µ′ (z)

= (2ω)(k−1)/2z−(2α′−2k+4q+1)/4e−z/2 g
(α)
µ (z)

g
(α+1)
µ′ (z)

. (4.46)

On the other hand, we can obtain a different expression for φ
(k)
1,2,...,k by using some properties

of Wronskians. Indeed, from Sylvester’s theorem [43], we can write

W(φ1, . . . , φk−1, φk | x) =
W
(

W(φ1, . . . , φk−2, φk−1 | x),W(φ1, . . . , φk−2, φk | x) | x
)

W(φ1, . . . , φk−2 | x)
(4.47)

and using

W(fφ1, . . . , fφk | x) = fkW(φ1, . . . , φk | x), (4.48)
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we have

W(φ1, . . . , φk−1, φk | x) = W(φ1, . . . , φk−2 | x)

×W

(

W(φ1, . . . , φk−2, φk−1 | x)

W(φ1, . . . , φk−2 | x)
,
W(φ1, . . . , φk−2, φk | x)

W(φ1, . . . , φk−2 | x)

∣

∣

∣

∣

x

)

, (4.49)

that is

φ
(k)
1,2,...,k(x) =

W
(

φ
(k−1)
1,...,k−2,k−1, φ

(k−1)
1,...,k−2,k

∣

∣

∣
x
)

φ
(k−1)
1,...,k−2,k−1(x)

. (4.50)

From the Wronskian theorem [44], it follows that the Wronskian in the numerator of

this expression satisfies the property
[

W
(

φ
(k−1)
1,...,k−2,k−1, φ

(k−1)
1,...,k−2,k

∣

∣

∣
ξ
)]+∞

x
= (Ek−1 −Ek)

∫ +∞

x

φ
(k−1)
1,...,k−2,k−1(ξ)φ

(k−1)
1,...,k−2,k(ξ)dξ,

(4.51)

because φ
(k−1)
1,...,k−2,k−1 and φ

(k−1)
1,...,k−2,k correspond to the energies

∑k−1
i=1 Ei and

∑k−2
i=1 Ei + Ek,

respectively.

As a consequence of the exponential factor in Eq. (4.46), both φ
(k−1)
1,...,k−2,k−1(ξ) and

φ
(k−1)
1,...,k−2,k(ξ) vanish for ξ → ∞, which ensures the vanishing of their Wronskian in the

same limit. Hence Equation (4.51) reduces to

W
(

φ
(k−1)
1,...,k−2,k−1, φ

(k−1)
1,...,k−2,k

∣

∣

∣
x
)

= −(Ek−1 − Ek)

∫ +∞

x

φ
(k−1)
1,...,k−2,k−1(ξ)φ

(k−1)
1,...,k−2,k(ξ)dξ, (4.52)

or, on taking Eq. (4.46) into account and defining ζ = ωξ2/2,

W
(

φ
(k−1)
1,...,k−2,k−1, φ

(k−1)
1,...,k−2,k

∣

∣

∣
x
)

= −(2ω)k−5/2(Ek−1 − Ek)

×

∫ +∞

z

ζk−2q−α′−2e−ζ
g
(α+1)
µ′ (ζ)g

(α+1)
µ̄′ (ζ)

(

g
(α+2)
µ′′ (ζ)

)2 dζ, (4.53)

where
{

µ̄′ = µ−mk−1 + k − 2q − 1,

µ′′ = µ−mk−1 −mk + 2(k − 2q)− 3.
(4.54)

Inserting Eqs. (4.46) and (4.53) in the right-hand side of Eq. (4.50), we get the searched

for second expression of φ
(k)
1,2,...,k(x),

φ
(k)
1,2,...,k(x) = −(2ω)(k−3)/2(Ek−1 − Ek)

×

∫ +∞

z

ζk−2q−α′−2e−ζg
(α+1)
µ′ (ζ)g

(α+1)
µ̄′ (ζ)/

(

g
(α+2)
µ′′ (ζ)

)2
dζ

×
[

z(2k−4q−2α′−3)/4e−z/2g
(α+1)
µ′ (z)/g

(α+2)
µ′′ (z)

]−1

, (4.55)
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which can also be rewritten as a recursion relation for the g
(α)
µ (z) functions,

g(α)µ (z) =
Ek −Ek−1

2ω
z−(k−2q−α′−1)ezg

(α+2)
µ′′ (z)

×

∫ +∞

z

ζk−2q−α′−2e−ζg
(α+1)
µ′ (ζ)g

(α+1)
µ̄′ (ζ)/

(

g
(α+2)
µ′′ (ζ)

)2
dζ. (4.56)

On the right-hand side of this relation, g
(α+1)
µ′ and g

(α+1)
µ̄′ correspond to k′ = k − 1,

while for g
(α+2)
µ′′ , k′ = k − 2. The polynomial character of g

(α)
µ (z) can be easily obtained by

induction. This is already verified for k = 1 and k = 2. Assuming that for k′ < k, g
(α)
µ is

a polynomial with a non-zero constant term, it turns out that in the neighbourhood of the

origin, the right-hand side of Eq. (4.56) has a well-defined value given by

g(α)µ (z) ≃
mk −mk−1

α′ − k + 2q + 1
g
(α+1)
µ′ (0)g

(α+1)
µ̄′ (0)/g

(α+2)
µ′′ (0)(1 +O(z)), (4.57)

where we have used Ek = −ω(α′ − 2mk − 1).

From Eq. (4.57) we immediately deduce that g
(α)
µ (z) cannot have a pole at the origin

and is then a polynomial with non-zero constant term.

To completely describe the behaviour of g
(α)
µ (z) at the origin, we need to determine the

exact expression of this constant term. For such a purpose, we will proceed by induction

again. Consider first the pure case Ik (k = q), where α′ = α − k. From (3.35) and (3.36),

we have

g(α)µ (z) =

∣

∣

∣

∣

∣

∣

∣

L
(α′)
m1 (−z) . . . L

(α′)
mk (−z)

...
. . .

...

L
(α′+k−1)
m1−k+1 (−z) . . . L

(α′+k−1)
mk−k+1 (−z)

∣

∣

∣

∣

∣

∣

∣

. (4.58)

On using [34]

L(α)
m (0) =

(α + 1)m
m!

, (4.59)

we easily get

g(α)µ (0) =
(α′ + k)m1−k+1 · · · (α

′ + k)mk−k+1

m1! · · ·mk!

×

∣

∣

∣

∣

∣

∣

∣

∣

∣

(α′ + 1) · · · (α′ + k − 1) . . . (α′ + 1) · · · (α′ + k − 1)
(α′ + 2) · · · (α′ + k − 1)m1 . . . (α′ + 2) · · · (α′ + k − 1)mk

...
. . .

...
m1(m1 − 1) · · · (m1 − k + 2) . . . mk(mk − 1) · · · (mk − k + 2)

∣

∣

∣

∣

∣

∣

∣

∣

∣

,(4.60)
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that is (see Eq. (3.40))

g(α)µ (0) =
(α′ + 1)m1

· · · (α′ + k)mk−k+1

m1! · · ·mk!
∆(m1, . . . , mk)

=
(α− k + 1)m1

· · · (α)mk−k+1

m1! · · ·mk!
∆(m1, . . . , mk). (4.61)

Consider now the first mixed case Ik−1II (k = q + 1), where α′ = α − k + 2 [31]. We

then get

g(α)µ (z) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L
(α′)
m1 (−z) . . . L

(α′)
mk−1

(−z) zk−1L
(−α′)
mk

(z)
...

. . .
...

...

L
(α′+k−2)
m1−k+2 (−z) . . . L

(α′+k−2)
mk−1−k+2(−z) (mk + 1)k−2zL

(−α′−k+2)
mk+k−2 (z)

L
(α′+k−1)
m1−k+1 (−z) . . . L

(α′+k−1)
mk−1−k+1(−z) (mk + 1)k−1L

(−α′−k+1)
mk+k−1 (z)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (4.62)

which leads to

g(α)µ (0) = (mk + 1)k−1L
(−α′−k+1)
mk+k−1 (0)

∣

∣

∣

∣

∣

∣

∣

L
(α′)
m1 (0) . . . L

(α′)
mk−1

(0)
...

. . .
...

L
(α′+k−2)
m1−k+2 (0) . . . L

(α′+k−2)
mk−1−k+2(0)

∣

∣

∣

∣

∣

∣

∣

. (4.63)

The right-hand member determinant is exactly the constant term of the g polynomial

in the pure case Ik−1 and we deduce from the previous result that

g(α)µ (0) =
(α′ + 1)m1

· · · (α′ + k − 1)mk−1−k+2

m1! · · ·mk−1!
∆(m1, . . . , mk−1)

× (mk + 1)k−1(−1)mk+k−1 (α
′ −mk)mk+k−1

(mk + k − 1)!
, (4.64)

or

g(α)µ (0) = (−1)mk+k−1 (α
′ + 1)m1

· · · (α′ + k − 1)mk−1−k+2(α
′ −mk)mk+k−1

m1! · · ·mk!

×∆(m1, . . . , mk−1)

= (−1)mk+k−1 (α− k + 3)m1
· · · (α + 1)mk−1−k+2(α− k + 2−mk)mk+k−1

m1! · · ·mk!

×∆(m1, . . . , mk−1). (4.65)

For the general mixed case IqIIk−q, we now make the following hypothesis

g(α)µ (0) = (−1)σ
∆(m1, . . . , mq)∆(mq+1, . . . , mk)

m1! · · ·mk!

×
(

(α + k − 2q + 1)m1
· · · (α+ k − q)mq−q+1

)

×
(

(α + k − 2q −mq+1)mq+1+q · · · (α + k − 2q −mk)mk+2q−k+1

)

, (4.66)
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with σ defined in Eq. (3.39), and prove it by induction over k.

This conjecture is verified in the k = 1 and k = 2 cases. Since it is also valid for the two

previous examples (k− q = 0 or 1), it only remains to prove it whenever k− q ≥ 2. In such

cases, the last two seed functions φk−1 and φk, used in kth-order SUSYQM, are necessarily

of type II. Suppose that Eq. (4.66) is verified for k′ < k. We may therefore write

g
(α+2)
µ′′ (0) = (−1)σ

′′ ∆(m1, . . . , mq)∆(mq+1, . . . , mk−2)

m1! · · ·mk−2!

×
(

(α + k − 2q + 1)m1
· · · (α + k − q)mq−q+1

)

×
(

(α + k − 2q −mq+1)mq+1+q · · · (α + k − 2q −mk−2)mk−2+2q−k+3

)

, (4.67)

g
(α+1)
µ′ (0) = (−1)σ

′ ∆(m1, . . . , mq)∆(mq+1, . . . , mk−1)

m1! · · ·mk−1!

×
(

(α + k − 2q + 1)m1
· · · (α + k − q)mq−q+1

)

×
(

(α + k − 2q −mq+1)mq+1+q · · · (α + k − 2q −mk−1)mk−1+2q−k+2

)

, (4.68)

and

g
(α+1)
µ̄′ (0) = (−1)σ̄

′ ∆(m1, . . . , mq)∆(mq+1, . . . , mk−2, mk)

m1! · · ·mk−2!mk!

×
(

(α + k − 2q + 1)m1
· · · (α + k − q)mq−q+1

)

×
(

(α + k − 2q −mq+1)mq+1+q · · · (α + k − 2q −mk−2)mk−2+2q−k+3

)

,

× (α + k − 2q −mk)mk+2q−k+2, (4.69)

with














σ′ =
∑k−1

l=q+1ml + q(k − q − 1),

σ′′ =
∑k−2

l=q+1ml + q(k − q − 2),

σ̄′ =
∑k−2

l=q+1ml +mk + q(k − q − 1).

(4.70)

From Eq. (4.57), we obtain the recurrence relation

g(α)µ (0) =
mk −mk−1

α + 1
g
(α+1)
µ′ (0)g

(α+1)
µ̄′ (0)/g

(α+2)
µ′′ (0), (4.71)
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which combined with the previous expressions yields

g(α)µ (0) =
(−1)σ

′+σ̄′−σ′′

(mk −mk−1)

(α + 1)m1! · · ·mk!

×
∆(m1, . . . , mq)∆(mq+1, . . . , mk−1)∆(mq+1, . . . , mk−2, mk)

∆(mq+1, . . . , mk−2)

×
(

(α + k − 2q + 1)m1
· · · (α + k − q)mq−q+1

)

×
(

(α + k − 2q −mq+1)mq+1+q · · · (α + k − 2q −mk−2)mk−2+2q−k+3

)

× (α + k − 2q −mk−1)mk−1+2q−k+2(α + k − 2q −mk)mk+2q−k+2. (4.72)

Here we note that

σ′ + σ̄′ − σ′′ =

k−2
∑

l=q+1

ml +mk−1 +mk + q(k − q) = σ, (4.73)

(α + k − 2q −mk)mk+2q−k+2

α + 1
= (α + k − 2q −mk)mk+2q−k+1, (4.74)

and

(mk −mk−1)
∆(mq+1, . . . , mk−1)∆(mq+1, . . . , mk−2, mk)

∆(mq+1, . . . , mk−2)

= (mk −mk−1)

(

k−2
∏

i=q+1

k−1
∏

j=i+1

(mj −mi)

)(

k−2
∏

i=q+1

(mk −mi)

)

=
k−1
∏

i=q+1

k
∏

j=i+1

(mj −mi) = ∆(mq+1, . . . , mk). (4.75)

The final result for g
(α)
µ (0) is therefore given by Eq. (4.66), showing that the conjecture is

still verified for k, which ends its proof.

Let us observe that in terms of α′, Equation (4.66) can be rewritten as

g(α)µ (0) = (−1)σ
∆(m1, . . . , mq)∆(mq+1, . . . , mk)

m1! · · ·mk!

×
(

(α′ + 1)m1
· · · (α′ + q)mq−q+1

)

×
(

(α′ −mq+1)mq+1+q · · · (α
′ −mk)mk+2q−k+1

)

. (4.76)

Since the angular momentum l′ in the starting potential V (1)(x) is necessarily nonnegative,

the inequality α′ > −1/2 is fulfilled. Furthermore, we have assumed 0 < m1 < · · · < mq

16



and 0 < mq+1 < · · · < mk < α′. As a consequence, the two Vandermonde determinants in

Eq. (4.76) are positive and

(α′ + 1)m1
· · · (α′ + q)mq−q+1(α

′ −mq+1)mq+1+q · · · (α
′ −mk)mk+2q−k+1 > 0. (4.77)

We conclude that the sign of g
(α)
µ (0) is given by (−1)σ, hence is identical with the one of C

(α)
µ

(see Eq. (3.39)). The combination of this result with the disconjugacy theorem of Sec. II

ensures the regularity of the extended potential V (2)(x).

V CONCLUSION

In the present work, we have established some further properties of the function g
(α)
µ (z)

appearing in the denominator of rationally-extended isotonic oscillator (or radial oscillator)

potentials constructed in kth-order SUSYQM [31] or using the multistep Darboux-Bäcklund

transformation method [32]. We have first confirmed that g
(α)
µ (z) cannot have any pole at

the origin and is a polynomial with non-zero constant term, a property that was conjectured

in Ref. [31]. We have then determined the value of this constant term by induction over

k and shown that it has the same sign as the coefficient of the previously determined

highest-degree term zµ [31].

These results have been combined with the disconjugacy theorem applied to Schrödinger

equation [32] to prove the absence of zeros of g
(α)
µ (z) on the positive half-line and, therefore,

the regularity of the corresponding rationally-extended potential. This has provided a

demonstration of the latter property, which is more explicit than that already given in

Ref. [32].

Our work has illustrated the power of the disconjugacy properties of second-order dif-

ferential equations of Schrödinger type to check the regularity of rational extensions of

well-known quantum potentials. Other examples of application might be found in cases

where no direct information on the denominator zeros is available. This will be the object

of further investigations.
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