
HAL Id: hal-00755868
https://hal.science/hal-00755868

Submitted on 28 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Southern Hemisphere extra-tropical forcing: a new
paradigm for El Niño-Southern Oscillation

Pascal Terray

To cite this version:
Pascal Terray. Southern Hemisphere extra-tropical forcing: a new paradigm for El Niño-Southern
Oscillation. Climate Dynamics, 2011, 36 (11), pp.2171-2199. �10.1007/S00382-010-0825-Z�. �hal-
00755868�

https://hal.science/hal-00755868
https://hal.archives-ouvertes.fr


Southern Hemisphere extra-tropical forcing: 

A new paradigm for El Niño-Southern Oscillation 

 

 

 

Pascal Terray
1
 

 

LOCEAN/IPSL, CNRS/IRD/UPMC/MNHN, Paris, France 

 

 

 

 

 

 

submitted to Climate Dynamics 

 

Revised 19 March 2010

                                                 
1
 Corresponding author address : Pascal Terray, LOCEAN-IPSL, Université Pierre et Marie 

Curie, BP100 – 4 place Jussieu, 75252 Paris cedex 05, France. 

Tel : +33 1 44 27 70 78 

E-mail : terray@locean-ipsl.upmc.fr 

*Manuscript
Click here to download Manuscript: extratropical_forcing_terray_revised.doc Click here to view linked References

http://www.editorialmanager.com/clidy/download.aspx?id=45735&guid=6461c0d1-ff58-4521-969c-b26c3ceacab0&scheme=1
http://www.editorialmanager.com/clidy/viewRCResults.aspx?pdf=1&docID=1130&rev=1&fileID=45735&msid={4AE70F83-7DEA-4494-8C0B-80C498639C5A}


 2 

ABSTRACT 
 

The main goal of this paper is to shed additional light on the reciprocal dynamical linkages 

between mid-latitude Southern Hemisphere climate and the El Niño-Southern Oscillation 

(ENSO) signal. 

 

While our analysis confirms that ENSO is a dominant source of interannual variability in the 

Southern Hemisphere, it is also suggested here that subtropical dipole variability in both the 

southern Indian and Atlantic Oceans triggered by Southern Hemisphere mid-latitude 

variability may also provide a controlling influence on ENSO in the equatorial Pacific. This 

subtropical forcing operates through various coupled air-sea feedbacks involving the 

propagation of subtropical SST anomalies into the deep tropics of the Atlantic and Indian 

Oceans from boreal winter to boreal spring and a subsequent dynamical atmospheric response 

to these SST anomalies linking the three tropical basins at the beginning of the boreal spring. 

This atmospheric response is characterized by a significant weakening of the equatorial 

Atlantic and Indian Inter-Tropical Convergence Zone (ITCZ). This weakened ITCZ forces an 

equatorial “cold Kelvin wave” response in the middle to upper troposphere that extends 

eastward from the heat sink regions into the western Pacific. By modulating the vertical 

temperature gradient and the stability of the atmosphere over the equatorial western Pacific 

Ocean, this Kelvin wave response promotes persistent zonal wind and convective anomalies 

over the western equatorial Pacific, which may trigger El Niño onset at the end of the boreal 

winter. These different processes explain why South Atlantic and Indian subtropical dipole 

time series indices are highly significant precursors of the Niño34 SST index several months 

in advance before the El Niño onset in the equatorial Pacific. 

 

This study illustrates that the atmospheric internal variability in the mid-latitudes of the 

Southern Hemisphere may significantly influence ENSO variability. However, this surprising 

relationship is observed only during recent decades, after the so-called 1976/77 climate 

regime shift, suggesting a possible linkage with global warming or decadal fluctuations of the 

climate system. 

 

Keywords: ENSO; Southern Hemisphere; long-range predictability; ocean-atmosphere 

interactions. 
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1. Introduction 

 

El Niño-Southern Oscillation (ENSO) phenomenon originates in the tropical Pacific Ocean 

and oscillates between warm and cold episodes with a rough periodicity of three to seven 

years (Chang et al., 2006). ENSO events have significant impacts on global weather 

variability through changes in tropical Pacific convection patterns which excite atmospheric 

Rossby waves that propagate to higher latitudes (Trenberth et al., 1998; Alexander et al., 

2002). For these reasons, considerable effort has been devoted to predict Sea Surface 

Temperature (SST) in the tropical Pacific several seasons in advance (e.g. Clarke and Van 

Gorder, 2003; McPhaden et al., 2006; Sara et al., 2006; Jin et al. 2008). However, successful 

seasonal ENSO prediction remains particularly challenging with skills hampered by the 

inability of the current systems to correctly predict both the timing and amplitude of ENSO 

events through the so-called spring predictability barrier in the tropical Pacific. In other 

words, the evolution and strength of ENSO events are very difficult to predict before their 

onset. This is particularly true for El Niño onsets, which rely on some sort of external forcing 

(Kessler, 1992) and limit drastically the long-range predictability of ENSO (Chang et al., 

2006). 

 

Despite of the large consensus in the literature about the fact that interaction between the 

atmosphere and ocean within the tropical Pacific basin plays a fundamental role in 

determining the characteristics of ENSO, there are growing evidences of the possible role of 

other tropical or extra-tropical oceans in the evolution of ENSO. 

 

During the past decade there has been some effort devoted to identify a possible forcing of the 

North Pacific Ocean on ENSO (Vimont et al., 2001, 2003, 2009; Anderson, 2003; Chiang and 

Vimont, 2004; Chang et al., 2007). These studies highlight the possible influence of the North 

Pacific Oscillation (NPO), a dominant pattern of atmospheric variability in the North Pacific, 

on the tropical Pacific through the so-called Wind-Evaporation-SST (WES) feedback (e.g. 

Xie and Philander, 1994; Chang et al., 2006). Following these studies, the NPO-forced 

subtropical SST anomalies drive zonal wind anomalies over the equatorial Pacific that are 

responsible of exciting or altering subsequent ENSO events (Vimont et al., 2009). 
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The tropical Indian Ocean is also known to influence ENSO on intraseasonal to interannual 

time scales (Yu et al., 2002; Wu and Kirtman, 2004; Annamalai et al., 2005; Kug et al., 2005, 

2006; Kug and Kang, 2006; Luo et al., 2009 among many others). Wu and Kirtman (2004) 

and Kug et al. (2006) found that tropical Indian Ocean SSTs affect ENSO through the 

modulation of the Pacific and Indian Oceans Walker circulations in their coupled simulations. 

Furthermore, several studies have demonstrated that Indian Ocean SST anomalies enhance the 

anomalous anticyclone, which is established over the western North Pacific in the mature 

phase of El Niño (Watanabe and Jin, 2002; Annamalai et al., 2005; Kug and Kang, 2006). 

Through the excitation of this anticyclonic pattern that drives easterly wind stress anomalies 

in the western Pacific, the Indian Ocean SST warming leads to a faster transition to La Niña. 

More recently, Luo et al. (2009) and Izumo et al. (2010) have also suggested that tropical 

Indian Ocean Dipole (IOD) events may significantly contribute to the long-range 

predictability of ENSO. 

 

While numerous studies have been devoted to the influence of the tropical Indian Ocean on 

ENSO, the Atlantic Ocean has received little attention in this context. Exceptions are the 

pioneering work of Wright (1986) or the more recent studies of Penland and Matrasova 

(2006, 2008), Dommenget et al. (2006), Wang (2006), Jansen et al. (2009) and Rodriguez-

Fonseca et al. (2009). Using linear inverse modeling, Penland and Matrasova (2006, 2008) 

find that south tropical Atlantic SSTs precede the El Niño signal by 9 months. Wang (2006) 

suggests that the tropical Atlantic Ocean acts as a forcing for the equatorial Pacific via the 

inter-basin SST gradient variability associated with the Atlantic Walker circulation. Similar 

conclusions have been arrived by Rodriguez-Fonseca et al. (2009) who, however, advocate 

different physical mechanisms, while Jansen et al. (2009) find that the inclusion of the 

Atlantic tropical SSTs improves the ENSO forecast skill in their conceptual model. However, 

the dynamical mechanisms at work for explaining how summer Atlantic tropical SSTs may 

enhance ENSO events (essentially after the 70’s) are far from clear from these studies. 

 

Assuming the tropical Indian and Atlantic Oceans have an influence on ENSO, one may also 

wonder if the Southern Hemisphere ocean could also have an impact on ENSO. However, 

there exists not much discussion about the Southern Hemisphere influence on ENSO. On the 

contrary, numerous studies have documented the significant influence of ENSO on climate 

variability in the Southern Hemisphere (Karoly, 1989; Kidson and Renwick, 2002; Trenberth 

et al., 2002; Carleton, 2003). It has even been argued that modes of climate variability in the 
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higher southern latitudes, such as the Antarctic Circumpolar Wave (ACW) or the Southern 

Annular Mode (SAM), are remotely controlled or influenced by ENSO (Carril and Navarra, 

2001; Kwok and Comiso, 2002; Ribera and Mann, 2003; L’Heureux and Thompson, 2006; 

Hobbs and Raphael, 2007). Some indications of a Southern Hemisphere influence on ENSO 

were given, however, in Van Loon and Shea (1987) and a series of works by Peterson and 

White (1998), White et al. (2002) and White and Annis (2004) using heavily filtered data. 

Recently, Toniazzo (2009) has also identified a precursor to El Niño in the southeast Pacific 

using a coupled general circulation model. Moreover, a few recent studies have shown a 

remarkable change in the lead-lag relationships between Southern Indian Ocean SSTs and 

ENSO after the 1976/77 climate regime shift (Terray et al., 2005; Terray and Dominiak, 

2005). Accordingly, SST anomalies in the southeastern Indian Ocean during boreal winter are 

key-statistical predictors of ENSO after the climate regime shift (Dominiak and Terray, 

2005). 

 

As a complement to the above studies, the present paper explores the possible existence of a 

Southern Hemisphere extra-tropical forcing of ENSO during recent decades (e.g. after the 

1976/77 climate shift). The first goal is to identify the principal modes of variability of the 

SST and the overlying atmosphere in the mid-latitudes of the Southern Hemisphere at the 

interannual time scales. A secondary goal is to determine whether these modes of variability 

may have an impact on the tropical Pacific variability. 

 

This paper is organized as follows. Data and methods are briefly described in Section 2. In 

Section 3, we first identify the main patterns of uncoupled and coupled variability in the 

South Pacific, Atlantic and Indian Oceans during austral summer, the main active season for 

SST variability in the Southern Hemisphere mid-latitudes. We then turn to our main result, 

the relationships between these patterns of variability and ENSO in Section 4. The 

conclusions and some discussions are given in Section 5. 

 

2. Data and statistical techniques 

 

a. Data 

 

The principal sources of data used in this study include SST and Sea Level Pressure (SLP) 

from the Hadley Center analyses (Rayner et al., 2003; Allan and Ansell, 2006), Outgoing 

Longwave Radiation (OLR) (an indicator of atmospheric convective activity) from the 
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NOAA Climate Prediction Center (Liebmann and Smith, 1996), and surface heat fluxes 

derived from the third release of the products of the Objectively Analyzed air-sea Fluxes 

(OAFlux) project (Yu et al., 2008). While preprocessing of the historical SST and SLP 

datasets (see below) uses the full period available for each variable (1850-2006 and 1870-

2004, respectively), our statistical analyses cover only the recent decades, after the 1976/77 

climate regime shift, when satellite estimates are available. We also use wind (at various 

levels), SLP, and 200 hPa streamfunction and velocity potential data from the National Center 

for Environment Prediction-National Center for Atmospheric Prediction (NCEP-NCAR) 

reanalysis (Kalnay et al. 1996). Qualitatively similar results are obtained by use of the other 

historical reconstructions, the European Centre for Medium Range Weather Forecasts 

(ECMWF) reanalysis (Uppala et al. 2005) or the NCEP2 reanalysis (Kanamitsu et al., 2002), 

but we only show results from the NCEP-NCAR reanalysis in this paper. Bi-monthly time 

series are computed for all the fields prior to further processing. 

 

Finally, the Niño34 SST anomaly time series is used as an indicator of the ENSO variability 

in the tropical Pacific. As usual, the Niño34 index is defined as the SST anomalies averaged 

in the eastern equatorial Pacific over the domain 5°S-5°N and 170°-120°W. 

 

b. Methods 

 

The annual cycle, trends and very low-frequency variations were removed from the historical 

SST and SLP bi-monthly fields using the STL (Seasonal-Trend decomposition procedure 

based on Loess) additive scheme developed by Cleveland et al. (1990). The STL procedure is 

a powerful statistical technique for describing a discrete time series (Cleveland et al., 1990). 

In the STL procedure, the analyzed Xt bi-monthly time series is decomposed into three terms: 

 

Xt = Tt + At + Rt 

 

The Tt term is used to quantify the trend and low-frequency variations in the time series. The 

At term describes the annual cycle and its modulation through time. Finally, the Rt term 

contains the interannual signal and the noise present in the data. All the terms are estimated 

through a sequence of applications of locally weighted regression (or loess) to data windows 

whose length is chosen by the user (Cleveland et al., 1990). The STL procedure is an iterative 

process, which may be interpreted as a frequency filter directly applicable to non-stationary 
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time series including harmonic components (Cleveland et al., 1990). Other important features 

of STL is the specification of the amounts of seasonal and trend smoothing, the ability to 

produce robust estimates of the trend and seasonal components that are not distorted by 

aberrant or extreme behavior in the data and the stationarity of the Rt time series. Thus, the 

STL procedure is particularly useful for extracting the interannual signal from non-stationary 

and noisy climate observations, as illustrated by Cleveland et al. (1990). The interannual SST 

and SLP bi-monthly anomalies analyzed here were obtained as the departures from the 

extracted seasonal cycle, At, and trend, Tt,, components estimated by the STL procedure for 

each grid-point time series in both the SST and SLP datasets from 1979 to 2006 (2004 for 

SLP fields). In order to illustrate the effectiveness of the STL procedure to remove both the 

annual cycle and the very low frequency variability in a time series, Figure 1 shows the power 

spectra of the raw Niño34 SST bi-monthly time series from 1870 to 2006 and of the average 

of STL residual components, Rt, of bi-monthly SST time series in the Niño34 region during 

the same period. 

 

All calculations described below were performed with and without the removal of low-

frequency variability by the STL procedure and the main results were similar to the findings 

described in the next sections. In deed, the STL filtering hardly changes the main patterns of 

variability of the SST and SLP fields in the Southern Hemisphere during the 1979-2006 

period, but increases slightly the fraction of variance these interannual modes explain (not 

shown). 

 

Empirical Orthogonal Function (EOF) and Singular Value Decomposition (SVD) analyses are 

used to describe the independent and coupled variability of SST and SLP interannual 

variability in the Southern Hemisphere. Detailed discussions on EOF and SVD analyses can 

be found in Bretherton et al. (1992). In all EOF and SVD analyses presented here, the 

computations are based on temporal covariance matrices weighted by cosine of the latitude so 

that equal areas carry equal weights. These statistical techniques result in spatial patterns 

(EOFs and SVDs) and time series. These time series are obtained by projecting the original 

bi-monthly interannual anomalies onto the EOF or SVD patterns and are called Principal 

Components (PCs) and Singular Variables (SVs), respectively. The spatial patterns and their 

associated expansion coefficient time series can be scaled arbitrarily as long as their product 

remains the same. We adopt here the common scaling such that the time series (PCs or SVs) 
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have unit variance, so that the associated spatial patterns represent a typical anomaly pattern 

associated with one standard deviation of the expansion coefficient time series. 

 

Finally, standard regression and correlation analyses have been used to describe the life cycle 

of coupled patterns of variability in the Southern Hemisphere. Note that none of the fields 

used in these regression exercises were filtered by the STL procedure in order to give an exact 

overview of the ENSO long-range predictability associated with interannual variability in the 

Southern Hemisphere. To account for the effects of autocorrelation, the statistical significance 

levels for these correlation and regression coefficients have been estimated using the method 

proposed by Ebisuzaki (1997) with 999 samples. 

 

c. Description of SST interannual variability 

 

Figure 2 displays the interannual SST signal over the globe in order to identify seasons/areas 

where SST fluctuations are strong with a particular focus on the Southern Ocean. 

 

As expected, the strong ENSO signal emerges as a SST standard-deviation maximum that 

extends from the coast of South America far into the west along the equator. Another 

important property of ENSO, well illustrated by Fig. 2, is the phase-locking of the SST 

variability to the annual cycle which manifests itself as a standard-deviation maximum 

(minimum) in December/January (April/May). This is related to the fact that many El Niño 

events start in boreal spring and peak in the eastern equatorial Pacific several months later in 

December-January. Variability of the SST fields is significantly weaker in the tropical Indian 

and Atlantic Oceans. 

 

In the extra-tropical Northern Hemisphere, the SST interannual variability tends to be slightly 

larger during summer (around 0.8°-1.2°C). However, the patterns of variability are broadly 

similar in summer and winter. Numerous studies have shown that Northern Hemisphere SST 

variability in the cold season are generated primarily through the latent and sensible heat 

fluxes at the air-sea interface in association with large-scale atmospheric circulation 

anomalies linked to the North Pacific or North Atlantic (NAO) Oscillations (Cayan, 1992). 

The resulting SST patterns are still discernable during summer despite of the shallow mixed 

layer and may feedback onto the atmosphere in the next seasons through “the reemergence 

mechanism” (Zhang et al., 1998; Deser et al., 2003). 
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Another striking feature in Fig. 2 is the existence of relatively strong SST anomalies (around 

0.4°-0.6°C) in the open Southern Ocean during austral summer (e.g. December-January and 

February-March) while Southern Hemisphere SST variability is rather weak during other 

seasons. This mid-latitude signal exists in the center of the three ocean basins and is distinct 

from the SST variability maxima observed in the tropical oceans. 

 

Extra-tropical SST fluctuations in the Southern Hemisphere during austral summer are 

weaker than their northern counterparts during boreal summer. However, their origins are 

probably different since the northern SST signal is observed year-round and emerges from the 

western boundaries of the North Pacific and Atlantic Oceans. This suggests a strong 

contribution from Kuroshio and Gulf Stream fluctuations, respectively. On the other hand, the 

southern SST signal is strong only in (austral) summer and is obviously unrelated to 

upwelling processes or fluctuations of the western boundary currents (Huang and Shukla, 

2006). 

 

Venegas et al. (1997) have argued that the SST variability in the Southern Hemisphere is 

strongest during summer because of possible links with major tropical and Northern 

Hemisphere oscillations, which are strongest during boreal winter (ENSO, NAO, NPO, etc). 

However, the seasonal variations of SLP standard-deviations are not large in the Southern 

Hemisphere and the patterns are more or less the same for all seasons, excepted for a 

meridional translation due to the solar forcing (not shown).  Interestingly, the depth of the 

surface mixed layer in the Southern Ocean mid-latitudes is the shallowest during austral 

summer, as a consequence of the weaker surface winds and the reduced vertical mixing at that 

time. Its climatological value is around 30-50 m in the three Southern Ocean basins during the 

December-March season (de Boyer Montegut et al., 2004). Since a simple anomaly of 10 

W/m
2
 in heat loss could lead to a local SST change of 0.5°C for a typical mixed layer depth of 

50 m, this leads to the alternative hypothesis that SST variability maxima in the Southern 

mid-latitudes occur during austral summer, simply because wind-driven latent heat flux or 

shortwave radiation anomalies have more influence on SSTs at this time of the year due to the 

shallower summertime mixed layer (Suzuki et al., 2004). These two alternative hypotheses 

will be further verified in the next sections. 

 

This originality of the Southern SST signal deserves further studies and the rest of this paper 

is devoted to a better understanding of the formation of these SST anomalies during austral 
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summer on one hand and to shed light on the reciprocal interactions between this southern 

SST signal and ENSO on the other hand. 

 

3. SST variability in the Southern Hemisphere during austral summer 

 

a. Uncoupled modes 

 

As a first step for understanding dominant modes of SST variability in the Southern 

Hemisphere during the active austral summer season, bi-monthly SST anomalies during the 

1979-2006 period have been decomposed using EOF analysis for the South Pacific, Atlantic 

and Indian Oceans, separately. The spatial domains of the EOF computations were chosen 

specifically to cover the areas of large standard deviations in the three southern oceans as 

illustrated in Fig. 2. More precisely, we define the South Pacific to be the area between 150°-

290°E and 10°-50°S; the South Indian Ocean is the area between 25°-150°E and 10°-50°S; 

and finally the South Atlantic Ocean is between 50°W-25°E and 10°-50°S. The choice of 

10°S as the northern boundary is somewhat arbitrary, however, translating this boundary to 

the South yields leading spatial patterns of SST variability that are similar and did not change 

the main results presented in the paper. The EOF analyses were also performed without 

combining the December-January (DJ) and February-March (FM) seasons in order to detect 

possible sub-seasonal differences in the space-time structure of the anomalous SST fields (Jin 

and Kirtman, 2009).  

 

The leading EOF modes in each basin/season are well separated from the lower EOF modes 

in terms of explained variance, suggesting that these EOFs are robust and stable with respect 

to sampling errors (Table 1). Thus, only a discussion of the leading EOF modes of SST 

variability in the three southern ocean basins is given here. 

 

The leading EOFs of DJ and FM SST anomalies in the South Pacific account for roughly 

comparable amounts of variance, 38% and 32% of the total area-weighted variance for their 

respective season, and are shown in Figures 3a and 3b. Moreover, these two EOFs are very 

similar and can be associated with the well-established ENSO-pattern: the positive SST 

anomaly in the eastern equatorial Pacific corresponds to an El Niño event and the surrounding 

cold and coherent anomaly on the southern side is a part of the well-known SST Pacific 

« horseshoe » pattern observed during the developing and mature phases of El Niño. There is 
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also a well-developed warm anomaly near 50°S, 120°W in both EOFs, which may be familiar 

to people working on the South Pacific (e.g. Kidson and Renwick, 2002; Kwok and Comiso, 

2002). Apart from this similar spatial structure, the corresponding DJ and FM PC time series 

exhibit remarkably similar patterns of interannual variability (correlation of 0.92). All these 

features highlight the strong persistence of large-scale SST patterns in the South Pacific 

during austral summer. 

 

Figures 3c and 3d show the leading SST EOF modes for the South Indian Ocean for the DJ 

and FM seasons. These modes describe 25% and 34% of the area-weighted variance for DJ 

and FM, respectively. During both seasons, a tilted subtropical dipole pattern oriented in the 

northeast-southwest direction emerges as the first mode of variability consistent with previous 

studies on South Indian Ocean variability (Behera and Yamagata, 2001; Fauchereau et al., 

2003; Hermes and Reason, 2005; Huang and Shukla, 2007; Chiodi and Harrison, 2007). 

However, the observed SST dipole pattern is displaced poleward and the elongated negative 

region is more prominent and tilted during the FM season (Fig. 3d). Interestingly, the 

corresponding DJ and FM PC time series are also only moderately correlated together (0.55), 

suggesting only a modest temporal persistence despite of the similarity in spatial structure. 

 

The first EOF modes in the South Atlantic for DJ and FM seasons explain about 30% of the 

total variance (Figs. 3e and 3f). EOF1 for the DJ season displays an out-of phase relationship 

between SST anomalies north and south of 25°-30°S and is very similar to spatial patterns 

derived by previous statistical studies in the South Atlantic region when all seasons are 

included in the EOF computations (e.g. Venegas et al., 1997; Sterl and Hazeleger, 2003; 

Huang and Shukla, 2006). At first sight, EOF1 of the Atlantic SSTs during FM looks very 

similar, but it can be seen that the SST dipole pattern is again shifted to the south and that the 

negative node is more prominent and shows a clear southeastward tilt across the basin during 

FM (Fig. 3f). Moreover, a strong cold anomaly is also observed along the western coast of 

Africa, confined to the coastal zone of Angola and Namibia in EOF1 during FM. This 

anomaly, reminiscent of the Benguela Niños/Niñas episodes in the southeast Atlantic Ocean 

(Florenchie et al., 2004), is absent in EOF1 during the DJ season. Finally, the DJ and FM PC 

time series are only weakly correlated (0.43) suggesting no persistence of SST anomalies 

from DJ to FM in the South Atlantic domain. 

 

To look for possible links between SST anomalies in the South Indian, Atlantic and Pacific 
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Oceans, the correlation coefficients between the time series of the six discussed SST modes 

are calculated and displayed in Table 2. In DJ, the strong and significant correlations between 

the first PCs, derived independently for each ocean basin, suggest that the associated EOF 

modes can be regarded as the regional expression of a global-scale Southern Hemisphere 

mode of variability. This is confirmed by performing EOF analysis of DJ SST anomalies over 

the whole circumpolar ocean (Fig. 4a). The first EOF mode of SSTs on this larger domain 

reveals the same spatial structures as found above for the South Pacific, Indian and Atlantic 

Oceans separately. 

 

Surprisingly, the connections between SST anomaly patterns in the South Pacific and the two 

other oceanic basins weaken considerably during the FM season (Table 2); in particular, the 

South Atlantic variability is largely independent of the variability in the South Pacific during 

FM (e.g. the correlation between the first PCs in each basin is -0.29). It is, however, worth 

pointing out that the leading modes of variability in the South Atlantic and Indian Oceans 

remain highly inter-related during FM (see Table 2). The high correlations between the 

leading EOFs in the South Atlantic and Indian Oceans, particularly during FM, suggest that, 

rather than thinking of these leading EOFs as different modes of SST variability, it may be 

more appropriate to think of them as a single mode of variability (Fauchereau et al., 2003; 

Hermes and Reason, 2005). This idea is again confirmed by performing EOF analysis on a 

combined South Atlantic and Indian domain during FM (Fig. 4b). As expected, the first EOF 

on this larger domain shows a quadrupole structure displaced poleward, exactly consistent 

with the previous EOF analyses restricted to each basin during FM. The robustness of this 

quadrupole structure was further tested by computing correlations between each center of the 

quadrupole and the global Southern Hemisphere SST anomalies during FM: each correlation 

map exhibits again the shifted subtropical dipole patterns in both the South Indian and 

Atlantic Oceans, and highly significant correlations with the other nodes of the quadrupole 

SST pattern (not shown). 

 

On the other hand, performing an EOF analysis of FM SST anomalies on the whole 

circumpolar ocean gives a leading SST mode that is dominated by the variability in the South 

Pacific and with a spatial pattern exactly similar to the one observed during the DJ season, but 

with very low amplitude spatial loadings over the Indian and Atlantic basins (not shown). 

Hermes and Reason (2005) and, more recently, Morioka et al. (2009) have also highlighted 

the existence of significant differences in the position of the positive and negative poles 
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during subtropical dipole events in both the South Indian and Atlantic Oceans. However, the 

tight phase locking of these differences to the annual cycle was not observed before to our 

knowledge. Just why this particular quadrupole SST pattern exhibits only a weak persistence 

from DJ to FM, in addition to a poleward shift, is also a question of particular interest. 

 

The origin of the circumpolar mode of SST variability during DJ and of the shifted 

quadrupole SST pattern over the South Atlantic and Indian Oceans during FM are further 

investigated in the next section. 

 

b. Coupled modes 

 

In this section, organized patterns of coupled ocean-atmosphere variability are identified 

using SVD analyses between SST and SLP fields (Figs. 5, 6 and 7). Considering the 

apparently significant phase locking of the SST anomalies to the annual cycle in the Southern 

Hemisphere, these SVD analyses are also conducted on a season-by-season basis as for the 

EOF analyses. The chosen SLP domain for the various SVD analyses have been extended to 

the South in order to take into account the possible influence of higher latitudes modes of 

atmospheric variability on the mid-latitudes SST fluctuations of the Southern Hemisphere 

(Hall and Visbeck, 2002). However, the SVD results are not sensitive to the particular 

domains used, both for the SLP and SST fields. 

 

Table 3 presents summary statistics for the different SVD analyses, including the Squared 

Covariance Fraction (SCF) and the Normalized root-mean-square Covariance (NC) for the 

leading modes in the various SVD expansions, and the correlation coefficient (r) between the 

leading SV time series of the SLP and SST fields in each case. These statistics will be used 

here to investigate and compare the strength of the ocean-atmosphere coupling in each basin 

and season. Furthermore, the leading SVD modes explain by far the most SCF of the 

corresponding covariance matrices in each basin/season (Table 3). This explains our decision 

to include only these leading SVD modes in each basin/season in the following discussion. 

 

The three leading SVD modes of the coupled SST and SLP variations in the South Pacific, 

Indian and Atlantic Oceans account, respectively, for 78%, 43% and 59% of the total square 

covariance for the DJ season and 61%, 45% and 53% for the FM season. The NC statistic and 

correlation coefficient r between the expansion coefficients of the SST and SLP SVD modes 
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are particularly strong for the Pacific Ocean during DJ, but they decreased during FM. On the 

other hand, these statistics are generally higher during FM than those observed during the 

preceding DJ season for the Indian and Atlantic Oceans. In other words, these statistics 

suggest a stronger ocean-atmosphere coupling during DJ for the Pacific Ocean, but during FM 

for the South Atlantic and Indian Oceans. 

 

The leading SST patterns derived from these SVD analyses are not shown because they all 

closely resemble the respective SST EOF patterns illustrated in Fig. 3: their spatial structures 

are exactly similar and their expansion coefficient time series are correlated with the 

corresponding PCs at levels in excess of 0.77 and 0.97, for the DJ and FM seasons 

respectively. These correlations coefficients are particularly high for the South Pacific during 

the whole austral summer (e.g. greater than 0.99) and for the South Indian and Atlantic 

Oceans during FM (e.g. 0.99 and 0.97, respectively). This exact correspondence between the 

respective first SST EOF patterns on one side and the first SST SVD patterns on the other 

side may be taken as additional evidence of the physical meaning and robustness of the SST 

EOFs and of the relevance of the ocean-atmosphere coupling for explaining the observed SST 

patterns in the Southern Hemisphere during austral summer. 

 

During the DJ season, all the leading SLP SVD modes in the three ocean basins of the 

Southern Hemisphere show a strong zonal symmetry with a phase reversal between high and 

mid-latitudes (Figs. 5ace). This pattern with a phase reversal between SLP anomalies in the 

Southern Hemisphere high and mid-latitudes is reminiscent of the SAM (e.g. Thomson and 

Wallace, 2000). In both the South Pacific and Indian Oceans, the signature of the Southern 

Oscillation with SLP anomalies of opposite polarity between Australia and the central and 

eastern tropical Pacific is also clearly discernible. On the other hand, the leading SLP SVD 

mode in the South Atlantic nearly vanishes in the tropical areas and the SLP signal is confined 

in the high and mid-latitudes of the South Atlantic (Fig. 5e). 

 

Consistent with the high persistence of the leading SST anomalies pattern in the South Pacific 

from DJ and FM (Figs. 3ab) and the strong ocean-atmosphere coupling in that area during the 

whole austral summer illustrated in Table 3, the leading SLP SVD mode during FM closely 

resembles the leading SLP SVD mode during DJ in the South Pacific (compare Figs. 5a and 

5b). 
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On the other hand, the leading SLP SVD modes in both the South Atlantic and Indian Oceans 

during FM are radically dissimilar to those observed during the previous DJ season (Figs. 

5df). During FM, the leading modes of coupled SLP variability consist of a dipole zonally 

oriented in the South Indian Ocean and tilted in the northwest-southeast direction in the South 

Atlantic Ocean, with a very strong positive center of action around 45°S in both basins. As it 

is well-known, the SLP and wind fields over the South Atlantic and Indian Oceans are 

dominated by the subtropical anticyclones whose centers are located near 30°S, 5°W and 

30°S, 90°E, respectively, during austral summer (Venegas et al., 1997; Behera and Yamagata, 

2001). The positive centers of action in the leading SLP SVD patterns in the South Indian and 

Atlantic Oceans during FM, are located slightly southwestward of the center of the 

subtropical anticyclones in each basin. Hence these modes describe both a change in the 

location and the strength of these subtropical anticyclones. Furthermore, the spatial loadings 

over the tropical areas nearly vanish in the SLP SVD patterns of both the South Atlantic and 

Indian Oceans during FM season. This suggests that the modulation of the strength of the 

subtropical highs depicted by the leading SLP patterns in both the South Atlantic and Indian 

Oceans is relatively free from tropical influences to a first order. 

 

Figures 6 and 7 show the time coefficients of the leading SST and SLP SVD modes in each 

basin and the Niño34 SST index for the DJ and FM seasons, respectively. The correlation 

coefficients at zero lag between the Niño34 SST index and the coefficient expansions time 

series of the SST and SLP SVD modes are also displayed in Figs. 6 and 7. 

 

During the DJ season, all the SST and SLP SV time series are found to be highly and 

significantly correlated with the Niño34 SST index (Fig. 6). This suggests that ENSO has a 

highly discernible signal in the whole Southern mid-latitudes in addition to SAM during DJ 

season. This assertion is fully verified by performing a SVD analysis of DJ SST and SLP 

anomalies on the whole circumpolar ocean (Figs. 8ab). The SLP anomaly pattern obtained 

through this SVD analysis shows higher than normal SLP anomalies over the polar cap and 

below normal at mid-latitudes. The overall pattern is suggestive again of the SAM. This 

coupled SVD mode is also linked to the Southern Oscillation in the Tropics (Fig. 8b). Spatial 

distributions of SST and SLP anomalies in the Southern Hemisphere during ENSO and SAM 

episodes have also been obtained by computing correlation/regression maps between Niño34 

SST index, or a SAM index, and the grid point SST and SLP anomalies (not shown). During 

the DJ season, the main centers of action displayed by these maps are analogous to those of 
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the leading SST EOF and SLP SVD modes depicted in Figs. 3, 5 and 8. Hence, the strong 

connection between the South Pacific, Atlantic and Indian Oceans described in the previous 

sections is likely a by-product of the fact that ENSO and SAM are the common denominator 

of the coupled patterns in each sector during DJ. 

 

These ENSO and SAM forcings do not seem to persist during the FM season as far as the 

South Indian and Atlantic Oceans are concerned (Figs. 5df and 7): the SST and SLP SV time 

series for the Indian domain exhibit only a modest linear relationship with the Niño34 SST 

index at zero lag during FM (-0.39 and -0.34 for the SST and SLP SV1, respectively) while 

the corresponding time series in the South Atlantic seem to evolve in a completely 

independent fashion with respect to the Niño34 SST index (0.01 and 0.17, respectively). 

However, the possibility of a relationship between the South Atlantic and Indian leading 

modes of variability during FM (suggested by the high correlation between the FM PCs of the 

South Atlantic and Indian Oceans SSTs in Table 3 and Fig. 4b) is further supported by an 

SVD analysis of the SST and SLP fields during FM over a combined South Indian and 

Atlantic domain. The SST and SLP spatial patterns of the first SVD mode for this extended 

domain are displayed in Figs. 8c and 8d, respectively. These spatial patterns closely resemble 

those obtained from the SVD analyses in each basin separately. There is also a perfect 

similarity between the leading SST SVD and EOF patterns over the combined domain 

(compare Figs. 4b and 8c). This lends support to the existence of a connection between 

coupled variability in the South Atlantic and Indian Oceans during the late austral summer. 

 

The processes involved in the air-sea interactions depicted by these coupled modes of 

variability of the Southern Hemisphere and the nature of the statistical links between these 

Southern Hemisphere fluctuations and ENSO is the focus of the next section. 

 

 

4. Relationships with ENSO 

 

a. Lead-lag relationships 

 

To better assess the relationships between coupled variations in the Southern Hemisphere and 

ENSO, we begin this section by discussing the results of lead-lag correlation analyses 
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between the expansion coefficient time series of the leading EOF and SVD SST patterns 

described in the previous section and the Niño34 SST time series (Fig. 9). 

 

Not surprisingly, the first leading SST SVD and EOF modes in each basin during the DJ 

season are highly correlated with the Niño34 SSTs over the period of study. SST PC1 and 

SV1 in the South Pacific, Indian and Atlantic Oceans have a contemporaneous correlation 

with the Niño34 index of 0.8/0.9, -0.6 and -0.7, respectively (Figs. 9ab). Overall, the highest 

correlations with ENSO are found when the PC or SV time series lag the Niño34 index by 0 

to 6 months. Moreover, nearly no significant correlations are observed when the expansion 

coefficient time series lead the Niño34 time series by more than 4 months. One exception is 

the South Atlantic since the leading SST EOF mode for this basin during DJ exhibits modest, 

but significant, correlations with the Niño34 index at 10-18 months lead times (Fig. 9a). 

Hence, Figs. 9ab suggest that coupled patterns in the South Atlantic, Indian and Pacific 

regions during DJ are probably not very useful for extending the long-range predictability of 

ENSO. 

 

Lagged correlations between the South Pacific leading SST EOF and SVD modes and Niño34 

SSTs during FM suggest again a strong dependence with ENSO in the previous boreal fall 

and winter (Figs. 9cd). On the other hand, the highest correlations with the SST SVD and 

EOF modes over the South Atlantic and Indian Oceans during FM are found when the SV and 

PC time series lead the Niño34 SST index by 4-14 months. Although we might expect some 

quasi-cyclic behavior, the correlations for Niño34 SST index preceding SST SV1 and PC1 in 

both the South Atlantic and Indian Oceans (or the combined South Atlantic-Indian domain) 

were modest and generally not significant excepted for the South Indian Ocean. This implies 

that the expansion coefficient time series in both the South Atlantic and Indian Oceans are not 

residual patterns from a previous ENSO event with the opposite polarity during the preceding 

boreal winter. Interestingly, if we move 10° to the South the northern boundary of the Indian 

Ocean domain, the leading EOF is again reminiscent of the subtropical SST dipole pattern, 

but the relationship between this SST mode and ENSO during the preceding boreal fall and 

winter weakened considerably while this SST mode is again a highly significant precursor of 

ENSO at 4 to 14 months lead-times. Paraphrasing, the key regions for ENSO long-range 

predictability are in the extra-tropics of the Southern Hemisphere, not in the Tropics. 
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A difference should be made, however, between the correlations obtained with the Indian and 

Atlantic modes, respectively: the linear relationships with the South Atlantic Ocean are 

particularly strong at 2-4 months lead time (e.g. during boreal spring) and stay roughly 

constant afterward, while the correlations with the South Indian Ocean increase steadily and 

gain progressively high statistical significance from 4 to 14 months lead times. Hence, the 

potential “forcing” from the South Indian and Atlantic Oceans seems to act with different 

timings, in boreal spring and early summer for the Atlantic Ocean on one hand, and later, in 

summer and fall, for the Indian Ocean on the other hand.  

 

Interestingly, from 4 to 14 months lead times, the best results are always obtained with the 

expansions coefficients of the leading modes of the combined South Atlantic-Indian domain, 

suggesting that both oceans may contribute to the long-range predictability of ENSO. Figure 

10 displays the DJ Niño34 SST anomalies and the expansion coefficients of the first EOF and 

SVD modes of the SST and SLP fields over the South Indian-Atlantic domain during FM, ten 

months before. Overall, they track each other closely corroborating what we inferred from 

Fig. 9. With a few exceptions (e.g. the 2000-2004 sub-period), each positive (negative) peak 

of the Niño34 SST index is preceded by a positive (negative) peak in the expansion 

coefficient time series of the leading SST and SLP modes for the South Atlantic-Indian 

domain ten months before (e.g. before El Niño/La Niña onset). The significance of this 

relationship can also be illustrated by noting that all the major recent El Niño events have 

been preceded by blocking events in the South Indian and/or Atlantic Oceans during the late 

austral summer preceding the onset of these events (see also Figs. 7bc). Furthermore, the 

amplitude of the expansion coefficients of the EOF and SVD modes gives an amazingly exact 

prediction of the Niño34 interannual SST anomalies during the peak phase of the El Niño/La 

Niña events (Fig. 10). This is particularly true for the two strongest El Niño events ever 

recorded in the last century (e.g. 1982-83 and 1997-98) when the signals in both the South 

Atlantic and Indian Oceans were strong and in phase during FM of 1982 and 1997 before the 

onset of El Niño (see Figs. 7 and 10). 

 

In view of these lead-lag correlations, there is scope for further investigations of the 

persistence of the subtropical SST dipole patterns over the South Indian and Atlantic Oceans. 

Of particular interest are the questions of whether these dominant patterns of SST anomalies 

persist from austral summer to boreal summer and whether they undergo a systematic 

evolution from season to season with a propagation of SST anomalies into the deep tropics 
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after the peak phase of the subtropical dipole events. It would seem that it is a necessary 

condition for accepting the hypothesis that mid-latitudes coupled variability in the South 

Atlantic and Indian Oceans may substantially influence the coupling over the equatorial 

Pacific in the following seasons, i.e. during the onset and development phases of ENSO 

events. 

 

b. Life cycle of subtropical dipole events in the Southern Hemisphere 

 

To address these questions, we have computed global SST regression maps upon the time 

series of the respective normalized expansion coefficients of the leading FM SST EOFs in 

both the South Atlantic and Indian Oceans (Fig. 11). 

 

The regression maps show that the SST dipole patterns that are observed in the South Atlantic 

and Indian Oceans during FM are largely driven by SST changes that occur one to two 

seasons before in each oceanic basin. These SST changes are characterized by abrupt 

warming and cooling, which together cover nearly all the Atlantic and Indian basins South of 

the equator. Moreover, the cooling and warming trends tend to happen simultaneously in a 

specific basin and SST dipole-like variability in the South Atlantic and Indian Oceans are 

significantly correlated to each other. The observation of these abrupt summertime SST 

tendencies roughly collocated with the warm and cold poles of the dipole patterns in FM is 

consistent with the hypothesis that these anomalies form in austral summer because the ocean 

mixed layer depth is shallow then, making SST highly sensitive to surface heat flux anomalies 

(Suzuki et al., 2004). 

 

The regression maps also support the hypothesis of a strong persistence of SST anomalies in 

both the Indian and Atlantic Oceans after the peak phase of the subtropical dipole events. The 

persistence is particularly high for the northeast (Indian) and north (Atlantic) poles of the 

subtropical SST dipole patterns. Furthermore, there is a clear northward propagation of the 

negative SST anomalies in the Atlantic Ocean from DJ to the boreal summer while such 

propagation is less obvious in the Indian Ocean. 

 

Interestingly, there are also important differences over the tropical Pacific between the two 

regressed SST patterns: first the subtropical dipole events in the Indian Ocean are partly 

associated with a La Niña state in the equatorial Pacific during the previous boreal winter 
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(however, note that with an Indian domain restricted to the South of 20°S, the relationship 

weakens considerably) while this association does not hold for the South Atlantic Ocean; 

second, the subtropical dipole events in the South Atlantic lead to warm SST anomalies over 

nearly the whole equatorial Pacific from the date line to the east coast of Peru just after the 

peak phase of the event (e.g. April-May) and these anomalies are further amplified during the 

following months. By contrast, the subtropical dipole events in the Indian Ocean lead to warm 

anomalies over the equatorial eastern Pacific two months later, but they have a closer 

association with the concurrent cold SST anomalies over the western Pacific. They lead 

significantly the development of the southern branch of the traditional SST horseshoe pattern 

in the South Pacific. Consistent with Terray and Dominiak (2005), there is also a clear 

suggestion of a propagation of the cold SST anomalies from the Indian Ocean into the South 

Pacific during boreal spring. 

 

In order to unravel processes leading to these SST changes, the temporal evolution of 850-hPa 

wind, SLP and OLR bi-monthly anomalies is shown in Figs. 12 and 13 from DJ to August-

September (AS) seasons. Moreover, to check whether surface fluxes drive the SST anomalies 

of interest here, surface wind, latent heat flux and net shortwave radiation regression maps 

from DJ to April-May (AM) are also calculated and displayed in Figures 14 and 15. The 

evolution of anomalies associated with the strong anticyclone episodes in the South Atlantic 

and Indian Oceans displays distinct stages as described below. 

 

1) Late boreal winter to spring 

 

From DJ to FM, the 850-hPa wind and SLP anomalies show that the strengthening and 

displacement toward the southwest of the subtropical anticyclones are accompanied by 

stronger-than-normal southeasterly trade winds and weaker-than-normal westerlies in a band 

between 30°-40°S in the western part of both the Atlantic and Indian Oceans. The relationship 

between the wind and SST anomalies is direct and local: the northeasterlies to the west, and 

the southeasterlies to the northeast of the anomalous SLP center in each basin are collocated 

with warm and cold SST anomalies, respectively. Both the South Atlantic and Indian 

regression maps provide additional evidence that strong anticyclone episodes tend to happen 

simultaneously in both basins in some years. However, a closer inspection of the SLP and 

wind regression patterns reveals that the anticyclone pulses in the South Atlantic lead the 
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corresponding events in the South Indian Ocean by one or two months, a finding consistent 

with the results of Hermes and Reason (2005). 

 

Consistent also with previous studies (Venegas et al., 1997; Behera and Yamagata, 2001; 

Sterl and Hazeleger, 2003; Hermes and Reason, 2005), the latent heat flux regression maps, 

shown in Fig. 14, suggest that the SST anomalies are partly driven by the surface latent heat 

fluxes. Wind speed and specific humidity regression maps computed from the OAFLUX 

products (not shown) demonstrate that this latent heat flux variability is linked to both wind 

speed variability (e.g. Suzuki et al., 2004) and near surface humidity variability associated 

with meridional advection of water vapor (e.g. Chiodi and Harrison, 2007). 

 

While the primacy has been made for latent heat flux as the main contributor to the growth 

and decay of dipole events in the two basins (Sterl and Hazeleger, 2003; Suzuki et al., 2004; 

Hermes and Reason, 2005; Chiodi and Harrison, 2007), net shortwave radiation and mixed 

layer depth regression maps suggest that the summertime subtropical dipole variability in both 

the South Atlantic and Indian Oceans are in fact driven by a variety of geographical 

dependent processes, including cloudiness variations and wind-induced vertical mixing. The 

mixed layer deepens significantly in the eastern Indian and Atlantic Oceans during the strong 

anticyclone episodes, probably through wind-induced ocean mixing, and may also contribute 

to the creation of the SST dipole patterns in both oceans (not shown). In agreement with the 

results of Hermes and Reason (2005), negative net shortwave radiation anomalies occur also 

in association with below normal SST in the eastern South Atlantic Ocean during DJ and the 

eastern Indian Ocean during FM (Fig. 15). As described above, these negative net shortwave 

radiation anomalies occur in conjunction with southeasterly winds and enhanced cold 

advection (Fig. 12). In the southwestern Atlantic and Indian Oceans, the relationship between 

the net shortwave radiation and surface wind anomalies during austral summer is less clear, 

but suggests also that northerly wind anomalies and tropical warm advection during the 

blocking events are associated with increased shortwave radiation anomalies over the 

southwestern Indian or Atlantic Oceans. 

 

Moreover, a positive feedback between SST and marine cloudiness is possible over the 

eastern subtropics of both the Indian and Atlantic Oceans: lower SST induced by the stronger-

than normal southeasterly trade winds favors enhanced marine stratiform cloudiness in the 

southeastern part of each ocean by modifying the structure of the atmospheric boundary layer 
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and enhanced cloudiness cools further the ocean mixed layer. Such a positive feedback could 

substantially lengthen the persistence time of the northern node of the Atlantic and Indian 

subtropical SST dipole patterns as illustrated in Fig. 11. 

 

Finally, the atmospheric teleconnections associated with the development of the strong 

anticyclone episodes in the South Atlantic and Indian Oceans are significantly different. The 

DJ SLP and 850-hPa wind regression maps for the leading SST EOF mode over the South 

Atlantic emphasized a NAO link (Venegas et al., 1997). On the other hand, the corresponding 

maps for the South Indian Ocean feature a significant Southern Oscillation pattern in the 

Indo-Pacific region. Specifically, the anomalous cyclonic wind anomalies over the equatorial 

and tropical South Indian Ocean may be interpreted as a Rossby-type response to enhanced 

condensational heating over the maritime continent and the western equatorial Pacific (Lau 

and Nath, 2000, 2003). In turn, these circulation anomalies enhance the seasonal flows over 

the equatorial and South subtropical Indian Ocean and may be responsible for the appearance 

of the initial cold SST anomalies over the eastern Indian Ocean due to the enhanced upward 

surface latent heat flux in relation to increased surface wind speed in both areas and reduced 

incoming shortwave radiation associated with enhanced convection in the eastern part of the 

Indian basin (Fig. 13a). These differences in teleconnection patterns may reflect that strong 

anticyclone episodes in the South Atlantic and Indian Oceans have a different physical origin 

despite the strong statistical links between SST dipole patterns in the two basins. 

 

2) Boreal spring to summer 

 

During FM to AM in the Atlantic Ocean and AM in the Indian Ocean, the SLP and 850-hPa 

wind regression maps are suggestive of an immediate adjustment of the atmosphere to the 

anomalous SST gradients induced by the strong anticyclone episodes: a northward 

displacement of the positive SLP anomalies is clearly seen in each basin (Fig. 12). In both the 

Indian and Atlantic sectors, these SLP anomalies are lying now over the cold SST anomalies 

induced by the trade winds and cloudiness fluctuations observed in DJ and FM. Moreover, an 

anomalous cyclonic circulation coincides with the warm SST anomalies over the southwest 

Indian Ocean, just west of Madagascar during AM. All these evidences support the existence 

of an ocean-to-atmosphere forcing in both the Atlantic and Indian Oceans during boreal 

spring. 
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Further support for this hypothesis comes from the OLR, latent heat flux and surface wind 

regression maps (Figs. 13 and 14). Over the Indian Ocean, the OLR anomalies display an 

obvious north-south contrast, just south of the equator, which suggests that the northward 

migration of the Inter-Tropical Convergence Zone (ITCZ) is considerably delayed or 

significantly weakened during AM. In deed, the observed wind, SLP and OLR anomalies are 

of the right polarity to be interpreted as a linear response to heating resulting from the 

anomalous SST gradient in the South Indian Ocean (Lindzen and Nigam, 1987). 

 

This significant south-north anomalous SLP gradient over the South Indian Ocean during AM 

produces a weakening of the climatological easterly wind around 15-20°S, but a strengthening 

of both the easterly wind to the north and the seasonal southeasterly wind between Java-

Sumatra and Australia (Fig. 14a). The weaker-than-normal wind in the south tropical Indian 

Ocean results in reduced upward latent heat fluxes while the stronger-than-normal winds to 

the north and off the Java-Sumatra coast produce the opposite effect due to increases in 

surface wind speed (Fig. 14a). On the other hand, the large reduction of convection between 

the equator and 20°S in the central and eastern Indian Ocean implies less cloudiness over the 

South tropical Indian Ocean during AM as suggested by the positive and significant net 

shortwave radiation anomalies between 5° and 20°S over the south Indian Ocean (Fig. 15a). 

These features may explain why the subtropical dipole induced SST anomalies are destroyed 

in the western Indian Ocean, and why the cold SST anomalies tend to persist over the eastern 

Indian Ocean from FM to June-July (JJ) (see Fig. 11a). Furthermore, the stronger-than-normal 

trade-winds off the Java-Sumatra coast from AM to JJ (Fig. 14a) may also trigger other 

oceanic dynamic processes (e.g. upwelling and wind-thermocline-SST feedback) which may 

further sustain the cold anomalies over the eastern Indian Ocean through the boreal spring, 

summer and fall, as demonstrated by the coupled model study of Terray et al. (2007). 

 

From FM to AM, the strong negative SST anomalies associated with the leading SST EOF 

mode in the South Atlantic Ocean persist just south of the equator, while SST anomalies are 

weakly positive and insignificant over the North Atlantic Ocean (Fig. 11b). As such, a cross-

equatorial SST gradient develops over the tropical Atlantic Ocean from FM to AM. During 

FM, surface wind anomalies display an obvious north-south contrast consistent with this 

cross-equatorial SST gradient, with southeasterly wind anomalies over the South and 

equatorial Atlantic Ocean and southwesterly wind over the North Atlantic Ocean (Fig. 14b). 

From AM, the northward displacement of the high pressure anomalies is accompanied by a 
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relaxation of the stronger-than-normal trade winds in the subtropical areas, but stronger 

southeasterlies are still observed south of the equator, particularly in the west, as are the 

southerlies or southwesterlies just north of the equator (Fig. 14b). In association with these 

wind anomalies, latent heat flux anomalies show also a similar contrast with enhanced upward 

latent heat flux south of the equator and reduced upward latent heat flux north of the equator. 

In other words, it seems that subtropical dipole events in the South Atlantic Ocean are able to 

trigger the so-called WES feedback over the tropical Atlantic Ocean during boreal spring 

(Chang et al., 2006). 

 

From FM to JJ, OLR and net shortwave radiation anomalies over the tropical Atlantic Ocean 

are symmetric about the equator with large and positive anomalies over the equator and 

negative anomalies between 10-20°S in each hemisphere (Figs. 13b and 15b). The large south 

wind anomalies in the trades observed from DJ to AM over the equatorial Atlantic Ocean 

associated with the leading FM Atlantic SST EOF mode are consistent with a northward 

migration of the ITCZ during the boreal spring and early summer. At the same time, 

significant negative OLR and net shortwave radiation anomalies are observed over the 

latitudinal band centered around 20-30°S, just south of the cooling of the ocean induced by 

the strong anticyclone pulse one season before. In deed, all these local relationships suggest 

again that the formation of the OLR and surface wind anomalies over the tropical Atlantic 

Ocean are related to the cross-equatorial and south subtropical SST gradients. Moreover, the 

earlier appearance of the cold SST anomalies just south of the equator than the wind and OLR 

anomalies over the tropical Atlantic Ocean during spring is consistent with this hypothesis. 

From AM to JJ, negative SST anomalies extend to the north of the equator in the eastern part 

of the Atlantic basin. Accordingly, the wind, latent heat flux and OLR anomalies weaken 

(Figs. 13b and 14b). This suggests the end of the WES feedback over the tropical Atlantic 

Ocean. 

 

3) Relationships with Pacific variability 

 

The ITCZ is normally close to the equator over both the Indian and Atlantic Oceans in AM. 

Interestingly, the spatial patterns of OLR, SLP and wind anomalies over the tropical Indian 

and Atlantic Oceans induced by the strong subtropical anticyclone episodes during boreal 

spring oppose to these seasonal changes and contribute to the weakening of the ITCZ over 

both the equatorial Atlantic and Indian Oceans. This, in turn, seems to induce significant and 
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persistent negative OLR and surface westerly wind anomalies over the western and central 

equatorial Pacific from the boreal winter to the next summer (Figs. 13 and 14). Now, these 

wind anomalies may be important for ENSO variability because the anomalous westerlies 

over the western Pacific may generate oceanic-downwelling Kelvin waves which propagate 

eastward and may be responsible for the El Niño onset observed a few months after the 

occurrence of the positive dipole events in the South Atlantic and Indian Oceans, respectively 

(see Figs. 9 and 11). During JJ, the warm SST and westerly wind anomalies are observed over 

much the tropical Pacific in both the South Indian and Atlantic regression maps (Fig. 14), 

suggesting that the local Bjerknes feedback is already strong enough to support the rapid 

growth of El Niño in the two cases. In summary, the western Pacific wind anomaly is a key 

variable in the connection between ENSO and the subtropical dipole events in the South 

Atlantic and Indian Oceans. 

 

To examine in more details the atmospheric dynamics of interaction between the El Niño 

onset and the subtropical dipole events in the South Atlantic and Indian Oceans, 200-hPa 

velocity potential, streamfunction and upper-level (400 and 200-hPa) temperature correlation 

patterns and their related upper-level wind anomalies during AM are shown in Fig. 16. For 

simplicity, we just show the correlation/regression maps derived from the combined South 

Atlantic and Indian SST leading EOF since the associated expansion coefficient time series 

gives the best long-range ENSO prediction (see Figs. 9 and 10a). To further diagnose the 

temporal relationships between the western Pacific westerly wind and OLR anomalies and the 

subtropical Atlantic and Indian dipole modes, potential temperature longitude-height sections 

along the equator are also displayed in Fig. 17. 

 

In the velocity potential correlation map (Fig. 16c), the negative (positive) correlations 

correspond to the divergent (convergent) response associated with enhanced convection 

(subsidence). Thus, the large seesaw between the Pacific and the two other oceans in the 

velocity potential correlation map during AM lends weight to the idea that the significant 

westerly wind anomalies which occur over the western Pacific before the onset of many 

previous El Niño events were significantly controlled by large-scale ascendance and deep 

convection over the western equatorial Pacific remotely forced by strong large-scale 

descending motion over the two other tropical oceans. Observational studies have established 

that a high absolute SST is necessary for deep convection to occur (Graham and Barnett, 

1987). However, even when SSTs are high, as in the western Pacific warm pool, convection 
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may be suppressed (or enhanced) by other factors such as upper level subsidence 

(ascendance) generated by remote forcing (Lau et al., 1997). 

 

Following this way of reasoning, it is interesting to observe that the enhanced convection over 

the western Pacific is associated with significant cold anomalies at upper levels which can be 

traced back to variations in the tropical convection patterns other the Indian and Atlantic 

Oceans (Figs. 16ab). Both the 400 and 200-hPa temperature correlation maps show a 

significant cold temperature anomaly extending eastward along the equator from the Atlantic 

and Indian Oceans to the western equatorial Pacific. Moreover, over both the Atlantic and 

Indian Oceans, there are two cold poles away from and straddling the equator at 400-hPa. All 

these features are reminiscent of a Kelvin wave response (Gill, 1980). The 200-hPa wind 

regression pattern also shows the existence of strong westerly (easterly) anomalies over the 

eastern (western) equatorial Pacific suggesting a strong interaction between the three tropical 

basins during boreal spring. Because the tropical atmosphere cannot support large temperature 

gradients, the anomalous cooling over the Atlantic and Indian Oceans induced by the 

weakening of the equatorial ITCZ in these regions spread rapidly to the western Pacific 

through planetary waves in the upper atmosphere. In deed, the 400 and 200-hPa temperature 

correlation patterns suggest that the enhancement process for the local convection and 

westerly surface wind events over the western Pacific may be triggered by this huge 

temperature response in the upper atmosphere remotely forced by the large-scale subsidence 

over the Atlantic and Indian Oceans. The resulting negative temperature anomalies at upper 

levels may lead to a destabilization of the atmospheric column over the remote western 

Pacific, a hypothesis largely supported by the potential temperature equatorial vertical cross-

sections displayed in Fig. 17. 

 

The potential temperature equatorial vertical cross-sections show significant positive 

temperature anomalies over the western Pacific at low levels first in AM for the Atlantic 

mode and JJ for the Indian mode (Fig. 17). This warming of the lower levels of the 

atmosphere is certainly related to the enhanced convection over the western equatorial Pacific 

(Fig. 13). However, the most interesting feature here is that this significant warming of the 

low and mid-troposphere is collocated with significant cold temperature at upper levels in 

both regression maps. In other words, this suggests again that the cold temperature advection 

at upper levels sets the stage for deep convection by destabilizing the vertical structure of the 

atmosphere (e.g. due to the increased vertical temperature gradient) and by decreasing the 
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value of surface boundary layer moisture required for the convection to occur over the 

western equatorial Pacific (Fig. 13). After this first triggering stage, warming develops 

progressively over the central Pacific at both lower and upper levels of the troposphere due to 

the eastward shift of the convection center and the latent heat release at upper levels, 

respectively. 

 

The vertical cross-sections of potential temperature anomalies along the equator illustrate 

again that the Indian and Atlantic Oceans have a distinct signature over the western Pacific 

and play complementary roles in forcing ENSO. The Atlantic Ocean seems to play a 

dominant role during the El Niño onset (e g. FM to JJ) while the Indian Ocean contributes to a 

relatively fast transition from La Niña to El Niño and is the dominant player after the El Niño 

onset phase. 

 

Finally, significant circulation centers are found over the tropical Indian, Pacific and Atlantic 

Oceans in the 200-hPa streamfunction correlation pattern during AM (Fig. 16d). The 

correlation pattern has the expected anticyclone pairs straddling the equator in the equatorial 

western Pacific, near the area of enhanced convection and upper-level divergence at 200-hPa 

as indicated by the OLR and velocity potential patterns (e.g., Gill, 1980). However, 

significant cyclonic circulation centers are also found in both the western Indian and Atlantic 

Oceans lying to the west of regions of reduced convection and strong upper-level 

convergence at 200-hPa of almost equal intensity as those found in the Pacific. The negative 

OLR forcing over the equatorial western Pacific which corresponds to enhanced convection 

and positive divergence, seems to act as a Rossby wave source and a well-organized wave-

train structure prevails over the Southern Hemisphere mid-latitudes with alternate negative 

and positive streamfunction anomalies emanating from the western Pacific. Zonal upper level 

winds in the South Pacific near the date line are strengthened at 20°-30°S and also 

appreciably weakened just south of New Zealand (Fig. 16b), suggesting a northward 

displacement of the subtropical upper-level jet in the South Pacific (Terray and Dominiak, 

2005). Correspondingly, an elongated zone of negative SLP anomalies prevails over the 

subtropical South Pacific during AM (Fig. 12). In deed, quasi-stationary circulation anomalies 

resulting from the Rossby wave response to the western Pacific heat source are observed at 

both the surface and upper levels in the South Pacific, highlighting a barotropic structure 

(Figs. 12 and 16). The significant negative SLP anomalies prevailing over the southeast 

Pacific sector suggest that the South Pacific Subtropical High (SPSH) is slightly displaced 
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southward from its normal position (Fig. 12). In turn, this southward displacement of the 

SPSH will also weaken the southeasterlies at the northern edge of this high, resulting in a 

relaxation of the South Pacific trade-wind system which may also further amplify the 

development of ENSO (e.g. Van Loon, 1984; Toniazzo, 2009). 

 

5. Conclusions and discussions 

 

The present study suggests that extra-tropical atmospheric forcing of ENSO may be more 

important than previously thought. A recent study by Vimont et al. (2009) dealing with the 

NPO and its influence on the tropical Pacific supports also this hypothesis. More precisely, 

our analysis of observational estimates during recent decades shows a southern extra-tropical 

atmospheric influence on tropical processes and the development of persistent zonal wind 

anomalies over the western equatorial Pacific. 

 

Active SST fluctuations over the open ocean of the Southern Hemisphere are strongly phase-

locked to the austral summer season. Several studies have suggested that this seasonal phase-

locking of the SST anomalies in the Southern Hemisphere may be attributed to the shallowing 

of the mixed layer during summertime in such way that the latent heat flux and shortwave 

radiation anomalies influence the SST anomalies more efficiently during this season (Suzuki 

et al., 2004; Huang and Shukla, 2006, 2007; Morioka et al., 2009). Another possibility, not 

exclusive of the previous one, for explaining this intriguing result is the observation that the 

ocean/atmosphere coupling is stronger during summertime in the Southern Hemisphere 

because of possible links with major climatic oscillations observed in the Tropics (ENSO) or 

the Northern Hemisphere (NAO and NPO), which are strongest during boreal winter 

(Venegas et al., 1997). Our analysis suggests that this later factor plays an important role 

during the early austral summer (DJ) while the former factor is dominant during the late 

austral summer (FM). 

 

EOF and SVD analyses reveal significant differences in the space-time structure of SST and 

SLP variability in the mid-latitudes of the Southern Hemisphere during the early (DJ) and late 

(FM) austral summer as well as distinct lead-lag relationships with ENSO. For the early 

austral summer period, the leading SLP and SST EOF or SVD modes in the three ocean 

basins of the Southern Hemisphere are significantly related to each other and may be 

considered as the regional components of a global circumpolar mode of coupled ocean-
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atmosphere variability. Further statistical analyses show that this circumpolar mode of 

coupled variability is primarily driven by SAM and ENSO (Karoly, 1989; Mo, 2000). 

However, further work along the lines of L’Heureux and Thomson (2006) will be necessary 

to disentangle the respective influence of ENSO and the annular mode in the Southern 

Hemisphere mid-latitudes during DJ. Consistent with previous studies on the Southern 

Hemisphere interannual climate variability, our analysis show also that these large-scale 

extra-tropical SST variations observed during the first part of the austral summer in the 

Southern Hemisphere are unlikely to make a significant contribution to ENSO long-range 

predictability (e.g. Kidson and Renwick, 2002). 

 

Surprisingly, these ENSO and SAM forcings do not seem to persist during the FM season as 

far as the South Indian and Atlantic Oceans are concerned. In a recent study, Jin and Kirtman 

(2009) show that the ENSO-related Rossby wave train in the Southern Hemisphere is 

strongest one season prior to the ENSO mature season (e.g. DJF) and that this Southern 

Hemisphere response to ENSO weakens abruptly in the peak phase of ENSO, during the late 

austral summer. Based on some numerical experiments, these authors argue that the ENSO 

response in the Southern Hemisphere significantly depends on seasonality. This hypothesis 

may explain why the South Atlantic and Indian Oceans variability is largely decoupled from 

the South Pacific and ENSO during FM. Our observational analysis confirm that the FM 

leading coupled SST and SLP modes in the South Indian and Atlantic Oceans which are 

characterized by a subtropical SST dipole pattern and a strengthening (or weakening) of the 

subtropical anticyclones seem less subject to interannual variability forced by the ENSO cycle 

in the Tropics or the SAM in the southern high latitudes. Hence, these coupled modes during 

the late austral summer better reflect the occurrence of blocking events and the intrinsic 

evolution of the coupled climate system in the southern mid-latitudes on interannual time 

scales. It has been suggested that this type of SST anomaly pattern may also be initiated by 

the oceanic response to mid-latitude atmospheric fluctuations over the Atlantic and Indian 

Oceans (Sterl and Hazeleger, 2003; Chiodi and Harrison, 2007). Moreover, our analysis 

confirms that, in some years but not all, these subtropical events tend to happen 

simultaneously in both the Atlantic and Indian Oceans (Fauchereau et al., 2003; Hermes and 

Reason, 2005). 

 

So far, recent interest in determining the cause of these subtropical SST anomalies is mainly 

due to the possible linkages between these modes and austral summer rainfall in South Africa, 
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Australia and America (England et al., 2006, Morioka et al., 2009). On the other hand, 

preliminary results presented here suggest that these Southern Hemisphere extra-tropical 

modes of variability may exert a significant influence on ENSO and the tropical climate after 

the 1976-77 climate shift. The significance of this relationship can be illustrated by noting 

that all the recent major El Niño events have been preceded by blocking episodes in the South 

Indian and/or Atlantic Oceans during the austral summer preceding the onset of these events. 

Moreover, our observational results suggest that the co-occurrence of the subtropical dipole 

events over the South Atlantic and Indian Oceans, as in the boreal winter of 1981-82 and 

1996-97, leads to a fast El Niño onset and tends to be accompanied by a very strong event in 

the next boreal winter. 

 

We found that westerly wind anomalies over the western equatorial Pacific involved in El 

Niño onsets may be induced by the large-scale motion arising from differential heating of the 

atmosphere between the Pacific warm pool and the tropical Indian and Atlantic Oceans during 

late boreal winter and spring and not only the local SST (Lau et al., 1997). More precisely, the 

strength of convection over the western Pacific is partly determined by the vertical instability 

of the atmospheric column resulting from cold air advection from the surrounding 

environment at upper levels. Furthermore, our results suggest that the enhancement process 

for the local convection over the western Pacific may be triggered by a “cold Kelvin” wave at 

middle and upper levels in the atmosphere remotely forced by the large-scale subsidence over 

the Atlantic and Indian Oceans. This local increase of deep convection may promote 

persistent wind anomalies, energetic but isolated wind bursts or even local enhancement of an 

active phase of the tropical intraseasonal oscillation over the western Pacific sector (Lau et 

Chan, 1998; Moore and Kleeman, 1999). These westerly zonal wind anomalies at a variety of 

time scales can induce eastward-propagating equatorial downwelling Kelvin waves along the 

thermocline in the Pacific which lead to a significant surface warming in the eastern and 

central equatorial Pacific, two to three months later (Chang et al., 2006). This initial warming 

may then trigger the Bjerknes feedback responsible for the El Niño growth. In turn, the large-

scale subsidence over both the tropical Indian and Atlantic Oceans are linked to cold local 

SST anomalies and anomalous subtropical SST gradients, mainly generated by subtropical 

dipole events one or two seasons before and sustained by a variety of coupled feedbacks in 

both the Indian and Atlantic Oceans. By this sequence of events supported by our regression 

analyses, we propose that subtropical dipole variability in both the Indian and Atlantic Oceans 

may serve as a trigger for ENSO during recent decades. 
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In contrast to the pessimism view on the long-range predictability of ENSO in relation with 

the role of stochastic forcing (Moore and Kleeman, 1999; Flugel et al., 2004; Chang et al., 

2006), the important point highlighted by our analysis is that the knowledge of the large-scale 

background atmospheric state controlling the evolution of the zonal wind anomalies after the 

specific triggering process seems to play a key-role for the developing El Niño. In other 

words, given the appropriate large-scale SST structure and background atmospheric state, the 

uncertainty regarding the precise date of occurrence and characteristics of the westerly wind 

anomalies may not matter significantly to the large-scale ENSO dynamics (Tziperman and 

Yu, 2007). 

 

A few studies have addressed the existence of persistent atmospheric circulation anomalies 

and the occurrence of blocking events in the Southern Hemisphere (Trenberth and Mo, 1985; 

Renwick, 2005). These studies have revealed an important blocking region over the southeast 

Pacific, which is strongly linked to ENSO. This blocking region is collocated with the main 

center of action in our leading SLP SVD mode over the South Pacific during austral 

summertime. In addition, blocking is sometimes observed to occur simultaneously in the New 

Zealand region, the South Atlantic, and the Southern Indian Ocean, in a global and zonal 

wavenumber-3 (ZW3) pattern. A notable feature of this ZW3 pattern is a marked upward 

trend in its activity in both the ECMWF and NCEP reanalyses (Renwick, 2005). The upward 

trend in ZW3 occurrence during recent decades may be partly an artifact due to the 

introduction into the reanalyses of satellite information in the late 1970s, but parts of this 

signal seems also robust (Gillet and Thomson, 2003). Interestingly, this ZW3 pattern bears a 

strong resemblance to our leading SLP SVD mode over the combined South Atlantic and 

Indian domain during FM. The relationships between the apparent upward trend in ZW3 

occurrence and the Southern Hemisphere forcing of ENSO described here merit clearly 

further investigations in the future. It is hoped that such studies will offer new insights into 

the decadal variability of long-range predictability of ENSO. 

 

Alternatively, it is conceivable that the sudden warming of both the Atlantic and Indian 

Oceans observed during recent decades have played an important role in the tropical-extra-

tropical interactions described here by changing the background SST state in the subtropics, 

as already suggested by Terray and Dominiak (2005). Understanding the detailed physical 

processes and identifying causality between the equatorial Pacific and off-equatorial modes of 
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variability in the South Indian and Atlantic Oceans is obviously required to confirm the role 

of subtropical Indian and Atlantic dipole-like variability in the onset and development of 

ENSO events in the context of the global warming due to the short record used here. Such 

studies may also probably give new insights on the future of ENSO and its long-range 

predictability. 

 

To this end, it will be of interest to determine whether coupled models are capable of 

simulating the Southern Hemisphere coupled interactions and their impact on ENSO 

described in this paper. 
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Figure captions: 

 

Figure 1: Power spectra of the raw bi-monthly Niño34 SST time series (black line) and of the 

average of STL residual components of bi-monthly SST time series (blue line) in the Niño34 

region during the 1870-2006 period. The bottom axis is the period (unit: year), the left axis is 

variance (unit: °C
2
) and both axes are in logarithm scale. The power spectrum is estimated 

using a FFT algorithm on overlapping segments (Welch, 1967). 

 

Figure 2: Bi-monthly standard deviations of interannual SST anomalies as computed from 

STL residuals for the period 1979-2006. ). Contour interval is 0.1°C. 

 

Figure 3: Spatial patterns of the first EOF of bi-monthly SST anomaly fields over the South 

Pacific Oceans during (a) December-January and (b) February-March, the South Indian 

Ocean during (c) December-January and (d) February-March and the South Atlantic Ocean 

during (e) December-January and (f) February-March. The number in parentheses in the 

heading of each panel shows the percentage of variance accounted for by the mode during the 

1979-2006 period. 

 

Figure 4: Same as in Figure 3, but for (a) a circumpolar domain between 10-50°S of latitude 

during December-January and (b) a combined South Atlantic-Indian domain (10-50°S, 50°W-

150°E) during February-March. 

 

Figure 5: Correlation SLP maps of the leading SVD modes for SLP paired with SST in 

December-February and February-March: (a) and (b) over the South Pacific Ocean, (c) and 

(d) over the South Indian Ocean and, (e) and (f) over the South Atlantic Ocean. The number 

in parentheses in the heading of each panel shows the Squared Covariance Fraction accounted 

for by the SVD mode during the 1979-2004 period. The black contours denote the correlation 

coefficients above the 90% confidence level according to a phase-scrambling statistical test 

(see Section 2). The convention for the color shading is indicated at the bottom of the panels. 

 

Figure 6: Time expansion coefficients of the leading SST (yellow dashed curve) and SLP 

(dotted curve) SVD modes during December-January of the 1979-2004 period for (a) the 

South Pacific Ocean, (b) the South Indian Ocean and (c) the South Atlantic Ocean. The 

normalized December-January Niño34 SST index (red solid curve) is also shown on each 

panel. The correlation coefficients between the Niño34 SST index and the time expansion 

coefficients of the SST and SLP modes are also shown on the bottom of each panel. 

 

Figure 7: As in Figure 6, but for the February-March season. 

 

Figure 8: Homogeneous maps of the leading SVD mode for (a) SST paired with (b) SLP in 

December-February over a circumpolar domain between 10-50°S of latitude for SSTs and 10-

70°S of latitude for SLPs during December-January; (c) and (d) same as (a) and (b), but for a 

combined South Atlantic-Indian domain during February-March. The number in parentheses 

in the heading of each panel shows the Squared Covariance Fraction accounted for by the 

SVD mode during the 1979-2004 period. 
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Figure 9: (a) Lead-lag correlations of bi-monthly Niño34 SST index with the leading SST 

EOF modes during December-January over the South Pacific, Indian, Atlantic, Pacific-

Atlantic-Indian and Atlantic-Indian domains during the 1979-2006 period. The lags are in 2-

months unit and lag 0 refers to the December-January season of the EOF modes. The closed 

circles indicate the correlation coefficients that are above the 95% confidence level as 

estimated by the phase-scrambling bootstrap test of Ebisuzaki (1997) with 999 samples. The 

correlations are computed beginning one year prior to the SST EOF modes and finishing two 

years after the SST EOF modes. (b) Same as (a) but for the leading SST SVD modes during 

December-January. (c) Same as (a) but for the leading SST EOF modes during February-

March. (d) Same as (a) but for the leading SST SVD modes during February-March. 

 

Figure 10: Time series of the normalized Niño34 SST index (red solid curve) during 

December-January and (a) the preceding February-March time expansion coefficients of the 

leading SST (yellow dashed curve) EOF mode over the combined South Atlantic-Indian 

domain ten months before. (b) Same as (a) but for the preceding February-March time 

expansion coefficients of the leading SST (yellow dashed curve) and SLP (dotted curve) SVD 

modes over the combined South Atlantic-Indian domain. 

 

Figure 11: Time sequence of bi-monthly mean anomalies of SST (shading, unit: °C) obtained 

from regression of the SST fields on the time coefficient of the leading EOF mode of 

February-March SST fields over (a) the South Indian Ocean and (b) the South Atlantic Ocean. 

The time sequences are from -1 (December-January) to +3 (August-September) bi-monthly 

seasons. The SST dataset is from the OAFLUX product. The values plotted on the maps are in 

dimensional units and represent typical amplitudes of the global SST patterns associated with 

the occurrence of the subtropical dipole events. The contoured areas are significant at the 90% 

confidence level or better according to a phase-scrambling statistical test (see Section 2). The 

convention for the color shading is indicated at the bottom of the panels. 

 

Figure 12: Time sequence of bi-monthly mean anomalies of SLP (shading, correlation) and 

850 hPa wind (vector, scale shown at the bottom of the panels) obtained from 

correlation/regression of the SLP and wind fields on the time coefficient of the leading EOF 

mode of February-March SST fields over (a) the South Indian Ocean and (b) the South 

Atlantic Ocean. The time sequences are from -1 (December-January) to +3 (August-

September) bi-monthly seasons. The SLP and 850 hPa wind fields are from the NCEP 

reanalysis. The maps only show regression/correlation coefficients that are above the 90% 

confidence level following a phase-scrambling procedure with 999 samples. The convention 

for the color shading is indicated at the bottom of the panels. 

 

Figure 13: Time sequence of bi-monthly mean anomalies of OLR (shading, unit: Wm
-2

) 

obtained from regression of the NOAA OLR fields on the time coefficient of the leading EOF 

mode of February-March SST fields over (a) the South Indian Ocean and (b) the South 

Atlantic Ocean. The time sequences are from -1 (December-January) to +3 (August-

September) bi-monthly seasons. The black contours denote that the corresponding correlation 

coefficients are above the 90% confidence level. The convention for the color shading is 

indicated at the bottom of the panels. 
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Figure 14: Time sequence of bi-monthly mean anomalies of downward surface latent heat 

flux (shading, unit: Wm
-2

) and surface (10m) wind obtained from regression of the fields on 

the time coefficient of the leading EOF mode of February-March SST fields over (a) the 

South Indian Ocean and (b) the South Atlantic Ocean. The time sequences are from -1 

(December-January) to +1 (April-May) bi-monthly seasons. The convention used for latent 

heat flux is positive into the ocean so that the latent heat flux has a positive contribution to 

SST changes when the latent heat flux and SST anomalies have the same polarity. The maps 

only show regression/correlation coefficients that are above the 90% confidence level 

following a phase-scrambling procedure with 999 samples. The convention for the color 

shading is indicated at the bottom of the panels. 

 

Figure 15: Time sequence of bi-monthly mean anomalies of downward surface net shortwave 

radiation (shading, unit: Wm
-2

) obtained from regression of the fields on the time coefficient 

of the leading EOF mode of February-March SST fields over (a) the South Indian Ocean and 

(b) the South Atlantic Ocean. The time sequences are from -1 (December-January) to +1 

(April-May) bi-monthly seasons. The convention used for the net shortwave radiation is 

positive into the ocean so that the net shortwave radiation has a positive contribution to SST 

changes when the net shortwave radiation and SST anomalies have the same polarity. The 

black contours denote the corresponding correlation coefficients that are above the 90% 

confidence level. The convention for the color shading is indicated at the bottom of the 

panels. 

 

Figure 16: Distribution of the regression coefficients of April-May 400 (a) and 200 (b) hPa 

wind vectors (arrows, see scales below the panels) and of the correlation coefficients of 400 

(a) and 200 (b) hPa temperature, 200-hPa velocity potential (c) and 200-hPa streamfunction 

(color shading) versus the time coefficients of the leading EOF mode of February-March SST 

fields over the combined South Atlantic-Indian domain. The fields are from the NCEP 

reanalysis. The convention for the color shading is indicated at the bottom of the panels. In 

the 200-hPa streamfunction correlation map, negative centers are anticyclonic in the Southern 

Hemisphere and cyclonic in Northern Hemisphere and vice-versa for positive centers. The 

maps only show regression/correlation coefficients that are above the 90% confidence level 

following a phase-scrambling procedure with 999 samples. 

 

Figure 17: Longitude-height cross-sections along the Equator (4°S-4°N) of bi-monthly 

potential temperature anomalies obtained from regression of the fields on the time coefficient 

of the leading EOF mode of February-March SST fields over (a) the South Indian Ocean and 

(b) the South Atlantic Ocean. The time sequences are from 0 (February-March) to +5 

(December-January) bi-monthly seasons. Pressure levels range linearly from 1000 to 150 hPa. 

The black contours denote the corresponding correlation coefficients that are above the 90% 

confidence level. The convention for the color shading is indicated at the bottom of the 

panels. 
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Table captions: 

 

Table 1: Percentage eigenvalues of the first four modes of South Pacific, Indian and Atlantic 

SST EOF analyses during December-January and February-March seasons for the 1979-2006 

period. 

 

Table 2: Cross-correlations between the time coefficients of the leading EOF modes of South 

Pacific, Indian and Atlantic SSTs during December-January and February-March seasons for 

the 1979-2006 period. The coefficients exceeding the 1% and 1‰ probability levels 

according to the phase-scrambling bootstrap test of Ebisuzaki (1997) with 999 samples are 

followed by one star (*) and two stars (**), respectively. 

 

Table 3: Summary statistics for the leading mode of the SVD analyses between SST and SLP 

fields during the December-January and February-March seasons of the 1979-2004 period 

and for the South Pacific, Indian and Atlantic Oceans, respectively. Here SCF is squared 

covariance fraction, NC is normalized root-mean-square and r is correlation of expansion 

coefficient time series or scores, as defined in the text; SSTvar and SLPvar are, respectively, 

SST and SLP variances accounted for by the leading mode of each SVD analysis. 
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TABLES 

 

TABLE 1 

 
December-January season 

 

EOF mode/domain Pacific Indian Atlantic 

1 37.8 25.6 28.4 

2 13.6 18.5 19.7 

3 10.1 15.3 10.7 

4 6.7 8.6 8.4 

 

 

February-March season 

 

EOF mode/domain Pacific Indian Atlantic 

1 31.7 33.6 33 

2 15.1 15.7 19.5 

3 13.6 10.9 12.1 

4 8 8.8 7 

 

 
TABLE 2 

December-January season 

 

Correlation PAC SST EOF1 IO SST EOF1 AO SST EOF1 

PAC SST EOF1 1   

IO SST EOF1 -0.58* 1  

AO SST EOF1 -0.73** 0.63** 1 

 

February-March season 

 

Correlation PAC SST EOF1 IO SST EOF1 AO SST EOF1 

PAC SST EOF1 1   

IO SST EOF1 -0.53* 1  

AO SST EOF1 -0.29 0.60** 1 
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TABLE 3 

December-January season 

 

 SCF (%) NC (%) r SSTvar (%) SLPvar(%) 

Pacific SVD1 78.3 25.9 0.81 37.6 27.2 

Indian SVD1 42.5 15.5 0.70 20.7 23.4 

Atlantic SVD1 58.9 19.2 0.64 17.2 52.3 

 

February-March season 

 

 SCF (%) NC (%) r SSTvar (%) SLPvar(%) 

Pacific SVD1 60.9 20.4 0.69 29.3 29.4 

Indian SVD1 45.2 16.5 0.82 32.4 12.5 

Atlantic SVD1 52.8 16.8 0.69 31.4 19.1 
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Figure 5
SLP modes - SVD analysis (SST with SLP) - 1979-2004

December-January

0.100.10

0.10

0.10
0.10

0.10

160E 180 160W 140W 120W 100W 80W
70S

60S

50S

40S

30S

20S

10S

L
at

it
u

d
e

 Pacific Ocean - Correlation map - SVD Mode 1 (Squ.Cov.Fract. 78.3%)

0.10

0.10

0.10

0.1
0

0.10

40E 60E 80E 100E 120E 140E
70S

60S

50S

40S

30S

20S

10S

L
at

it
u

d
e

Indian Ocean - Correlation map - SVD Mode 1 (Squ.Cov.Fract. 42.6%)

0.10

0.10

0.10

0.
10

0.10

0.
10

60W 40W 20W 0E 20E
Longitude

70S

60S

50S

40S

30S

20S

10S

L
at

it
u

d
e

 Atlantic Ocean - Correlation map - SVD Mode 1 (Squ.Cov.Fract. 59.0%)

SLP modes - SVD analysis (SST with SLP) - 1979-2004
February-March

 Pacific Ocean - Correlation map - SVD Mode 1 (Squ.Cov.Fract. 61.0%)

0.10

0.10
0.10

0.10

0.10

0.
10

0.10

160E 180 160W 140W 120W 100W 80W
70S

60S

50S

40S

30S

20S

10S

L
at

it
u

d
e

0.10

0.10

0.10

40E 60E 80E 100E 120E 140E
70S

60S

50S

40S

30S

20S

10S

L
at

it
u

d
e

 Indian Ocean - Correlation map - SVD Mode 1 (Squ.Cov.Fract. 45.2%)

0.10

0.
10

0.
10

0.10

0.
10

0.10

60W 40W 20W 0E 20E
Longitude

70S

60S

50S

40S

30S

20S

10S

L
at

it
u

d
e

 Atlantic Ocean - Correlation map - SVD Mode 1 (Squ.Cov.Fract. 52.8%)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
CORRELATION

a) b)

c) d)

e) f )



-3

-2

-1

0

 

-3

-2

-1

0

1

2

3
 

 Standardized Singular Variables (SST SV1 dashed, SLP SV1 dotted) and Nino34 SST (12-1)

Jan
1980

Jan
1984

Jan
1988

Jan
1992

Jan
1996

Jan
2000

 

SVD analysis (SST with SLP) - 1979-2004 December-January

-3

-2

-1

0

1

2

3

am
pl

itu
de

-3

-2

-1

0

1

2

3

-3

-2

-1

0

1

2

-3

-2

-1

0

1

2

time(years)

3

am
pl

itu
de

am
pl

itu
de

Pacific Ocean cor( SLP SV1, NINO34 ) = 0.66 cor( SST SV1, NINO34 ) = 0.81

Indian Ocean cor( SLP SV1, NINO34 ) = -0.50 cor( SST SV1, NINO34 ) = -0.61

Atlantic Ocean cor( SLP SV1, NINO34 ) = -0.42 cor( SST SV1, NINO34 ) = -0.61

Figure 6

a)

b)

c)



                     

   

Jan
2004

      

 Standardized Singular Variables (SST SV1 dashed, SLP SV1 dotted) and Nino34 SST (2-3)

SVD analysis (SST with SLP) - 1979-2004 February-March

-3

-2

-1

0

-3

-2

-1

0

1

2

3

am
pl

itu
de

-3

-2

-1

0

-3

-2

-1

0

1

2

3

am
pl

itu
de

-3

-2

-1

0

-3

-2

-1

0

1

2

3

am
pl

itu
de

Jan
1980

Jan
1984

Jan
1988

Jan
1992

Jan
1996

Jan
2000

time(years)

Atlantic Ocean cor( SLP SV1, NINO34 ) = 0.17 cor( SST SV1, NINO34 ) = 0.01

Indian Ocean cor( SLP SV1, NINO34 ) = -0.34 cor( SST SV1, NINO34 ) = -0.39

Pacific Ocean cor( SLP SV1,  NINO34 ) = 0.81 cor( SST SV1, NINO34 ) = 0.87

Figure 7

a)

b)

c)



-0
.4

-0
.4

-0
.4

-0
.2

-0.2

-0
.2

0
.0 0
.0

0.0

0
.00

. 0

0.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0.2

0
.2

0.2

0.2

0.4

100E 160W 60W

50S

40S

30S

20S

10S

-0.8
-0
.8

-0.6

-0.6

-0.6
-0.4

-0.4
-
0
.
4

-0.4

-0.4

-0.2

-0.2

-
0
.2

-0.2

0.0

0.0

0.0

0.0

0.2

0.2

0.2

0.4

0.
4

0
.4

0.4

0.6

0.6

0
.6

0.8

0.8

0.8

100E 160W 60W

70S

60S

50S

40S

30S

20S

10S

SVD (cov.) analysis (SST with SLP) - 1979-2004 December-January
 Homogeneous Vector - SST SVD Mode 1 (Squ.Cov.Fract. 62.4%)

 Homogeneous Vector - SLP SVD Mode 1 (Squ.Cov.Fract. 62.4%)

Figure 8

SVD (cov.) analysis (SST with SLP) - 1979-2004 February-March

 Homogeneous Vector - SST SVD Mode 1 (Squ.Cov.Fract. 42.3%)

-0
.4

-0.4 -0.2

-
0
.2-0.2

-0
.2

0
.0

0.0

0
.0

0.0

0
.0

0.2

0.2

0.4

60W 10W 40E 90E 140E

50S

40S

30S

20S

10S

 Homogeneous Vector - SLP SVD Mode 1 (Squ.Cov.Fract. 42.3%)

-0.8

-0
.6

-0.6

-0
.4

-0.4

-
0
.4

-
0
.2 -0

.2

-0.2

0.0

0.
0

0
.0

0.
0

0
.0

0.2

0
.2

0
.2

0
.2

0.4

0
.4

0.4

0
.6

0.6

0
.8

0.8

60W 10W 40E 90E 140E

70S

60S

50S

40S

30S

20S

10S

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
COVARIANCE

a)

b)

c)

d)



Lead-lag correlations SST EOF1 December-January and Nino34 SST

-1.0

-0.5

0.0

0.5

1.0

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12
Lags (2 months)

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12

Lead-lag correlations SST EOF1 February-March and Nino34 SST

-1.0

-0.5

0.0

0.5

1.0

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11
Lags (2 months)

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11

Lead-lag correlations SST SV1 December-January and Nino34 SST

-1.0

-0.5

0.0

0.5

1.0

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12
Lags (2 months)

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12

Lead-lag correlations SST SV1 February-March and Nino34 SST

-1.0

-0.5

0.0

0.5

1.0

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11
Lags (2 months)

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11

C
o
rr

el
a
ti

o
n

C
o
rr

el
a
ti

o
n

C
o
rr

el
a
ti

o
n

C
o
rr

el
a
ti

o
n

YEAR -1  YEAR 0  YEAR +1

YEAR -1  YEAR 0  YEAR +1 YEAR -1  YEAR 0  YEAR +1

YEAR -1  YEAR 0  YEAR +1

Pacific Atlantic Indian Atlantic-IndianPacific-Atlantic-Indian

Figure 9

a)

b)

c)

d)



 NINO34 SST (12-1, solid) and SST PC1 Indian and Atlantic oceans (2-3, dashed)

Jan Jan Jan Jan Jan Jan
2004

-3

-2

-1

0

1

2

3

am
pli

tu
de

       

1980 1984 1988 1992 1996 2000
Jan

       

-3

-2

-1

0

1

2

3

am
pli

tud
e

       

  Nino34 SST (12-1, solid) and Singular Variables Indian and Atlantic oceans  (2-3, SST SV1 dashed, SLP SV1 dotted)

-3

-2

-1

0

1

2

3
              

Jan Jan Jan Jan Jan Jan
20041980 1984 1988 1992 1996 2000
Jan

Figure 10

a)

b)



0.10
0.100.10

0.
10

0.
10

0.100.10

100E 160W 60W

50S

0

50N

0.10

0
.1

0 0.10

0.10

0.100.10

0.10

0.10
0.10

0.10
0.10

0.10

0.10

0.10

100E 160W 60W

50S

0

50N

0.10

0.10 0.10

0.10

0.10

0.10

0.10

0.10

0.10

0
.1

0

0.10

100E 160W 60W

50S

0

50N

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.
10

100E 160W 60W

50S

0

50N

0.10

0.10

0.10

0.10

0.
10

0.10

0.10

0.10

0.10

0.10

100E 160W 60W

50S

0

50N

a) Regressions SST EOF1 (Indian) Sea Surface Temperature - 1979-2006

degree C by STD
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

December-January - year -1

February-March - year 0

April-May - year 0

June-July - year 0

August-September - year 0

b) Regressions SST EOF1 (Atlantic) Sea Surface Temperature - 1979-2006
December-January - year -1

0.10

0.10

0.10

0.10
0.10

0.
10

0.10 0.10

0
.1

0

0.10

100E 160W 60W

50S

0

50N

February-March - year 0

0.10
0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.
10

0.10

0.10

100E 160W 60W

50S

0

50N

April-May - year 0

0.10

0.10

0.10

0.10

0.10

0.10
0.10

0.10

0.10

100E 160W 60W

50S

0

50N

June-July - year 0

0.10

0.10

0.10

0.10

0.10

0.10

100E 160W 60W

50S

0

50N

August-September - year 0

0.10

0.10

0.10

0.100.10

0.
10

0.10

100E 160W 60W

50S

0

50N

Figure 11



0.10

0.10

0.10

0.10

0.
10

0.100.10

100E 160W 60W

50S

0

50N

0.10 0.10

0.10

0.10 0.10 0.100.10

0.10

0
.1

0

0.10
0.10

0.10 0.10

0.10

100E 160W 60W

50S

0

50N

0.
10

0.10
0.10

0.10

0.10 0.10 0.10

0.10

0.
10

0.10

0.10

0.10

0.10

0.10

100E 160W 60W

50S

0

50N

0.10
0.10

0.10

0.10

0
.1

0 0.10

0.10

0.10

100E 160W 60W

50S

0

50N

0.10

0.10

0.10

0.10

0
.1

0

0.
100.10

0.10

0.10

0.10

0.10

0.10

100E 160W 60W

50S

0

50N

a) Regressions/correlations  SST EOF1 (Indian) 850 hPa WIND/SLP

1 m/s by STD

-1.00 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00

CORRELATION

 December-January - year -1

February-March - year 0

April-May - year 0

June-July - year 0

August-September - year 0

b) Regressions/correlations  SST EOF1 (Atlantic) 850 hPa WIND/SLP

 December-January - year -1

0.10

0.10

0.10

0
.1

0

0.10

0.10

100E 160W 60W

50S

0

50N

February-March - year 0

0.10

0.10

0.10
0.10

0.10
0.10

0.10
0.10

100E 160W 60W

50S

0

April-May - year 0

0.10

0.
10

0.
10

0.10

0.10

0.100.10

0.10

0.10
0.10

0.10

0.10

100E 160W 60W

50S

0

June-July - year 0

0.
10

0.10

0.10 0.10

0.10

0.100.10

100E 160W 60W

50S

0

50N

August-September - year 0

0.10

0.10

0.10

0.
10

0.10

0.10

0.1
00.10

0.10

100E 160W 60W

50S

0

50N

Figure 12



0.10 0.10
0.10

0.10

0.10

0.10

0.10
0.10 0.10

0.100.10
0.10

0.10

0.100.10

0.10

100E 160W 60W

50S

0

50N

0.10

0.100.10

0.10

0.10

0.10

0.10

0.10

0.10 0.10
0.10

0.10

0.10

0.
10

0.10 0.
10

0.10

0.100.10

0.10 0.10

0.10

0.10

100E 160W 60W

50S

0

50N

0.10
0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10
0.10

0.
10

0.100.10

0.10

0.10

0.10
0.10

0.10

0.100.
10

0.
100.10

100E 160W 60W

50S

0

50N

0.10

0.10

0.10

0.10
0.10

0.10

0.10

0.10

0.10

0.10

0.100.10
0.10

0.10

0.10

0.10
0.100.100.10

0.10

0.10

100E 160W 60W

50S

0

50N

0.10

0.10 0.10
0.100.10

0.
10

0.10 0.10

0.10

0.10

0.10

0.10

0.10
0.10

0.10

0.10
0.10

0.10

0
.1

0

0.1
0

0
.1

0

0.10 0.1
0

0.10
0.10

100E 160W 60W

50S

0

50N

a) Regressions SST EOF1 (Indian) OLR - 1979-2006

W/m^2 by STD
-10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0 10.0

December-January - year -1

February-March - year 0

April-May - year 0

June-July - year 0

August-September - year 0

b) Regressions SST EOF1 (Atlantic) OLR - 1979-2006
December-January - year -1

0.10

0.10

0.10

0.10

0.100.10

0.10
0.10

0.10
0.10

0.10

0.10

0.10

0.10

100E 160W 60W

50S

0

50N

February-March - year 0

0.10

0.10

0.10

0.10

0.10

0.10

0.10 0.10

0.10

0.1
00.10

0.10

0.10

0.10

100E 160W 60W

50S

0

50N

April-May - year 0

0.10

0.1
0

0.10
0.10

0.10

0.10
0.100.10 0.10

0.10 0.
10

0.10
0.10

0.10

0.1
0

0.100.10

0.10

0.10

0.10
0.10

100E 160W 60W

50S

0

50N

June-July - year 0

0.10

0.10

0.10

0.100.10

0.10
0.10

0.10

0.10

0.10
0.
10

0.10

0
.1

0

0.10 0.10

0.10

0.10

100E 160W 60W

50S

0

50N

August-September - year 0

0.10

0.10

0.10

0.10

0.10

0.10

0.100.10

0.10

0.10
0.10

0.10

0.10

0.10

0
.1

0

0.10 0.10

0.10

0.10

100E 160W 60W

50S

0

50N

Figure 13



a) Regressions  SST EOF1 (Indian) 10m WIND/LATENT HEAT FLUX
Regressions - December-January - Year -1

0.100.10
0.100.10 0.

10

0.10

0.10

0.10

0.10

0.10
0.10

0.10

Regressions - December-JanuaryRegressions - December-January

 1 m/s by STD

100E 160W 60W

50S

0

50N

Regressions - February-March

0.10
0.10 0.10

0.10

0.10
0.10

0.10 0.10

0.10 0.10
0.10

0.10

0.100.10

0.10

0.10

Regressions - February-MarchRegressions - February-March - Year 0

100E 160W 60W

50S

0

50N

Regressions - April-May - Year 0

0.10

0.10
0.

10

0.10
0.10

0.10
0.10

0.10
0.10

0.10
0.1

0

0.10

0.100.10 0.10
0.10

0.10
0.10

0.10 0.10
0.10

Regressions - April-MayRegressions - April-May

100E 160W 60W

50S

0

50N

 1 m/s by STD

b) Regressions  SST EOF1 (Atlantic) 10m WIND/LATENT HEAT FLUX
Regressions - December-January

0.10

0.10

0.
10

0.10

0.100.10 0.10
0.10

0.10

0.10

0.10

0.10
0.10

0.100.10

0.10

0.10

Regressions - December-JanuaryRegressions - December-January - Year -1

100E 160W 60W

50S

0

50N

 1 m/s by STD  1 m/s by STD

-15 -13 -11 -9 -7 -5 -3 -1 1 3 5 7 9 11 13 15

W/m^2 by STD

Regressions - February-March
0.10

0.10

0.10

0.10
0.10

0.10

0.10
0.10

0.
10

0.10 0.10

0.10

Regressions - February-MarchRegressions - February-March - Year 0

100E 160W 60W

50S

0

50N

 1 m/s by STD

Regressions - April-May

0.10

0.10 0.10

0.10
0.10 0.10

0.10

0.10

0.10

0.10
0.10

0.10
0.10

0.
10

0.10
0.10

0.10
0.10

Regressions - April-MayRegressions - April-May - Year 0

100E 160W 60W

50S

0

50N

 1 m/s by STD

Figure 14



Regressions - December-January - Year -1

0.10

0.10

0.10

0.10

0.10

0.10
0.10

0.
10

Regressions - December-JanuaryRegressions - December-January

100E 160W 60W

50S

0

50N

b) Regressions SST EOF1 (Atlantic) Net Shortwave Radiation - 1983-2004

-15 -13 -11 -9 -7 -5 -3 -1 1 3 5 7 9 11 13 15

W/m^2 by STD

a) Regressions SST EOF1 (Indian) Net Shortwave Radiation - 1983-2004
Regressions - December-January - Year -1

0.10
0.100.10

0.10

0.10

0.10

0.10 0.10

0.10

0.10

Regressions - December-JanuaryRegressions - December-January

100E 160W 60W

50S

0

50N

Regressions - February-March

0.10 0.10

0.10

0.100.10

0.10

0.10

0.10

0.
10

0.10

0.10

Regressions - February-MarchRegressions - February-March - Year 0

100E 160W 60W

50S

0

50N

Regressions - April-May - Year 0

0.10

0.10

0.10
0.10

0.10

Regressions - April-MayRegressions - April-May

100E 160W 60W

50S

0

50N

Regressions - February-March - Year 0

0.10

0.10

0.
10

0.10

0.10
0.10

0.10

Regressions - February-MarchRegressions - February-March

100E 160W 60W

50S

0

50N

Regressions - April-May -Year 0

0.10

0.10

0.10

0.100.10

0.10

Regressions - April-MayRegressions - April-May

100E 160W 60W

50S

0

50N

Figure 15



Regressions  SST EOF1 (Indian-Atlantic) 400 hPa WIND/temperature - NCEP 1979-2006 -

0.10

0.10

0.10

0.10

0.10

0.
10

0.10

0.10

0.10
0.10

0.10

0.10
0.10

0.10

0.10
0.10

0.10

0.10

 4 m/s by STD

100E 160W 60W
Longitude

50S

0

50N

L
a

ti
tu

d
e

Regressions  SST EOF1 (Indian-Atlantic) 200 hPa WIND/temperature - NCEP 1979-2006 -

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.
10

0.10

0.10

0
.1

0

0.10

0.10

100E 160W 60W
Longitude

50S

0

50N

L
a

ti
tu

d
e

 4 m/s by STD

Correlations SST EOF1 (Indian-Atlantic) 200 hPa Velocity Potential - NCEP  1979-2006 -

0.10

0.10

0
.1

0

0.10

0.10 0
.1

0

0.10

100E 160W 60W
Longitude

50S

0

50N

-1.00 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00

Correlations SST EOF1 (Indian-Atlantic) 200 hPa Streamfunction - NCEP  1979-2006 -

0.10

0.100.10
0.10

0.10

0.10

0.10
0.10

0.10

0.10

0.10

100E 160W 60W
Longitude

50S

0

50N

CORRELATION

YEAR 0 - APRIL-MAYFigure 16

a)

b)

c)

d)



Regressions - February-March

0.100.10

0.10
Regressions - February-March

100E 160W 60W
1000

800

600

400

200

Regressions - April-May

0.10

0.10

0.10
0.1

0

0.10 0.10

Regressions - April-May

100E 160W 60W
1000

800

600

400

200

Regressions - June-July

0.10

Regressions - June-July

100E 160W 60W
1000

800

600

400

200

Regressions - August-September

0.10

0.100.10

0.10

Regressions - August-September

100E 160W 60W
1000

800

600

400

200

Regressions - October-November

0
.1

0

0.10

0.10

0.10

Regressions - October-November

100E 160W 60W
1000

800

600

400

200

Regressions - December-January
0.10

0.10

0.
10

0.10

0
.1

0

Regressions - December-January

100E 160W 60W
1000

800

600

400

200

Potential Temperature equatorial cross-section regressions - year 0 -

degK by STD
latitudes in [-4.0, 4.0] - (3 points)

-0.50 -0.40 -0.30 -0.20 -0.10 0.00 0.10 0.20 0.30 0.40 0.50

le
v

e
l 

(h
P

a
)

le
v

e
l 

(h
P

a
)

le
v

e
l 

(h
P

a
)

le
v

e
l 

(h
P

a
)

le
v

e
l 

(h
P

a
)

le
v

e
l 

(h
P

a
)

Regressions - February-MarchRegressions - February-March

100E 160W 60W
1000

800

600

400

200

Regressions - April-May

0.10

0.10

Regressions - April-May

100E 160W 60W
1000

800

600

400

200

Regressions - June-July

0.10
0.10

0.10

Regressions - June-July

100E 160W 60W
1000

800

600

400

200

Regressions - August-September

0.10 0.10

0.10

Regressions - August-September

100E 160W 60W
1000

800

600

400

200

Regressions - October-November

0.10

0.10
0.10

Regressions - October-November

100E 160W 60W
1000

800

600

400

200

Regressions - December-January

0.10

0
.1

0

0.10 0.10

0.10

0.10
Regressions - December-January

100E 160W 60W
1000

800

600

400

200

Figure 17
a) SST EOF1 Indian b) SST EOF1 Atlantic




