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A systematic procedure for the elasto-dynamic modeling
and identification of robot manipulators

Mathieu Rognant, Eric Courteille, and Patrick Maurine

Abstract—This paper presents a systematic procedure for the elasto-
dynamic modeling of industrial robots, applicable either o serial or
parallel manipulators. This procedure is based on a 3D spacgeneraliza-
tion of the Equivalent Rigid Link System (ERLS) description, the Finite
Element Method (FEM) and the Lagrange principle. It considersflexible
links and joints, and leads to generic equations of motion gxessed
according to the angles of the actuated joints and the indepelent elastic
degrees of freedom. An efficient identification process thnagh modal

1) Floating reference framein this method, the body motion,
assuming small deformations, is considered to be the superposition
of a non-linear rigid body displacement and a linear elastic displace-
ment. As a result two sets of coordinates are used to describe the
configuration of the deformable bodies; one set describes the location
and orientation of a selected body coordinate system while the second
set describes the elastic displacement of the body with respect to its
coordinate system. The first set of coordinate systems is obtained
using the classic rigid method of description as in Newton-Euler [10],
[11] or (4 x 4) transformation matrices [1], [12], [13]. In particular,
Chang and Hamilton in [12] put forward a kinematic description of
flexible-link manipulators using the ERLS Model. Elastic behavior

analysis is detailed, and the description of damping and jait behavior
according to the model application is discussed. The methoi applied
to a 3D Delta-like parallel structure and successfully valiated through
an experimental impact testing-based modal analysis.

is implemented by using the Assumed Modes Method (AMM) [1],
[4], [13], [14], or FEM [5], [15]-[18] in order to obtain a finite-
dimensional model.

2) Lumped parameter modelk.umped parameter models describe
manipulators as a set of rigid bodies which are connected by springs
and/or dampers. These springs and/or dampers are used to describe
the viscoelastic behavior of the joints and links. This method has the

. INTRODUCTION advantage that rigid body methodologies can be used [19]. However,

In recent decades, much research has focussed on dynamic mhd-accuracy and consistency of the model obtained depend on the
eling of robot manipulators through the definition of accurate mathumber, size and location of the rigid segments used.
ematical models, which are used to predict their dynamic behavior.3) Convected coordinate system and large rotation vectdise
However, the assumption of rigid body is no longer sufficient if highonvected coordinate system is employed using the incremental
speed, high load and high accuracy applications are considered: laagproach, which is used to solve large rotation problems in nonlinear
cutting or machining, for instance. Therefore, flexibilities induced bfinite element analysis. In this approach, the kinematic equations are
the different elements of the manipulator structure, such as linkst defined in the element coordinate system. It is assumed that
joints, base and tools, have to be considered carefully in the modeligge rotation of the element between two successive configurations is
In that research, significant accomplishments have been madesifall enough that the use of the nodal coordinates to describe the
the kinematic description of flexible multibody systems and havetation can be justified. However, Shabana demonstrates in [20] that
been applied to manipulators. The first dynamic modeling studigge incremental finite element formulation does not lead to an exact
have concerned serial manipulators [1]-[4] and more recentljiBlaramodeling of rigid-body dynamics for large-rotation motion of the
Kinematic Machines (PKMs) [5], [6]. These models are useful fastructures. In order to avoid this problem, Simo introduces in [21],
the optimization of robot design [7], [8] and to implement activg22] the large rotation vector formulation but this formulation can
vibration control for real-time applications [9]. lead to singularity problems [23].

In order to implement these models in an industrial context, 4) Absolute nodal coordinateAbsolute Nodal Coordinate Formu-
we propose extending existing system modeling and identificatigition (ANCF) is a recently developed non-incremental finite element
techniques to form a general tool for characterizing the elastgpproach that has been specially designed for large-deformation,
dynamic behavior of 3D serial and parallel manipulators. multibody applications [24], [25]. Nodal coordinates are the position

The paper is organized as follows. In the first section, the varioygctor of the nodal points with respect to the global coordinate system
previously published modeling principles are reviewed and analyzeghd the vector of the displacement gradients, also defined in the
Following that, the proposed elasto-dynamic modeling procedugtobal coordinate system. The ANCF is equivalent to the floating
and its systematic formulation are presented. Thereafter, its impleference frame formulation but leads to a different structure for
mentation and identification according to the applications concerngg dynamic equations of motion. In the ANCF the mass matrix
are discussed. The procedure is then applied to a 3D, Delta-likgconstant, Centrifugal and Coriolis inertia forces are equal to zero
parallel structure in order to verify its efficiency through experimentaind the stiffness matrix is non linear even in the case of linear elastic
correlation. The valid domain of the model is limited to smallepehavior [26]. Many simulations based on this formulation have been
deflections. Indeed, modal identification was conducted using gstently presented [27], [28].
instrumented impact hammer. This technique essentially results inn recent research, one can see that the floating reference frame
a linear interpretation of the system in a particular configuration, byéscription and FEM are applied to planar PKMs [5], [17]. The
the methodology establishes a solid basis for future research on laggguracy of this approach is experimentally demonstrated in [17]
nonlinear deflections of these structures or for the development£{d its relevance for real-time applications is shown in [5] by Wang
control algorithms. and Mills. The comparison of the AMM and FEM approaches,
realized in [29] by Theodore and Ghosal, shows that FEM is rec-
ommended for flexible multilink manipulators and it is ideally suited
A. Modeling principle for dynamic, model-based, real-time controller implementation. In

In the literature, elasto-dynamic models are commonly based ugdifler to simplify the application of elasto-dynamic modeling in
the following techniques. the industrial context, we suggest synthesizing these works in a

systematic procedure based on FEM, a 3D space generalization of

Mathieu F;Ogna“tr, Eric dcouge”'ev a”dIN';aAtrt:éCg'aU””eEA"’“@;ng the ERLS description and the Lagrange principle.
tzhoe: ;Jvrgxif' degugﬁf’ensnede %oe;iiineésmg RENNES Cedex . Franchhe main advantages of our work resides in the following points.
(e-mail: mathieu.rognant@onera.fr; eric.courteille@irmanes.fr;  Firstly, the elasto-dynamic model can be derived automatically.
patrick.maurine@insa-rennes.fr). This is done using a simple description of the structure through

Index Terms—Elasto-dynamic Modeling, Calibration and Identifica-
tion, Mechanism Design, Experimental Modal Analysis.
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the establishment of two tables giving respectively the values mdference framez, and that belongs t®; ; is considered as the sum
the geometrical and elastic parameters related to all bodies of tifea rigid component; ;, the coordinate vector of the point which
structure. Secondly, the configuration of the manipulator is describledlongs to the ERLS, and an elastic component, which is the
using the independent elastic DOF expressed in the global frame aerdtor of the elastic displacement of this point (Figure 1):

the values of the actuated joints. These values can be easily measured, X X .

which simplifies the identification process. This method allows the Pij = Tijt+ €. @)
description of the behavior of the joints using an appropriately located L . . .
stiffness parametrization. Finally, as the elastic potential energy of Elastic displacementsA reference framet; ; is associated with

the joints is modeled, the constraint equations which link the elasﬁéICh beams;,; and is defined as its axis (O, x;,;) is along the

DOF are simplified. Thus, generic expressions of stiffness and mdsgn axis of the biam and its origin is the ”g'd posmon of the first
éie of the beamr}’5; ;. The vector of elastic displacements;

matrices as a function of the independent coordinates are obtairgéjan ointo. - which belonas to the bear. - can be expressed
which leads to a simple modal analysis computation. by y pontpi.; 9 “I P

B. Kinematic description “e; =Ni; [ Y oimny g

®3)

_j Is the geometrical interpolation matrix angl ; the elastic
d’splacements of a nodeof the bodyC;. It is described by the vector
= [ dP;;" d®i;" ]T where:

T ]T
1) ERLS descriptionin order to achieve a systematic procedurewhereN_
Khalil and Kleinfinger's notation [30] is used to perform the ERL ’

description. This method is derived from the well-known Denavit and
Hartenberg’s notation and can be used to describe with a minimuri’

set of parameters_ _the open- ar_ld_ t_:losed-lo_op rqbots. This notation is dP,; = [ dP,, dP,  dP., ]T @)
based on a specific frame definition, detailed in [30] and [31]. On ' ’ T
each bodyC;, a frameR; is assigned for whichg; axis is aligned d®i; = [ d®.,; dPy,; dP.,; | ®)

with the axis of joint i andx; is along the common normal ta;.
Therefore, the transformation froi; with respect to the previous
frame R; is defined by thg4 x 4) matrix /'T;:

represent the translational and angular displacements respectively.
These notations are illustrated in Figure 1.

IT; = rot (z;,v:) trans (z;, b;) rot (x;, ;)
trans (x;, d;) rot (z;, 0;) trans (z;, ;)

@)

where~;, «; and6; are angles and;, d; andr; are distances. The
description is extended by three parameters. The binary varigble
is equal to one if the joint is prismatic and zero if it is rotoid. The
binary variableu;, is equal to one if the joint is motorized and zero

if not. The variablea(7) specifies the number of the body preceding
the bodyC;. The geometry of each kinematic chain of the device
can thus be easily defined by table I.

Table |
GEOMETRICAL PARAMETERS rigi1 Li,j r; j rio;
Joint ] ; ; ; b; i d; 0; i . . . .
| L a@® [ Lo [ [ b [oi [di [0 ]mi] Figure 1. Notation associated with each be&y);.
1 a(l) T pr Jor [ v [ b1 Joa [di [ O1 [ 71
n am) | pn | on | Yn | On | an | dn | On | ™ Assuming gg;all elastic displacements, the following simplification
can be mader;—-% ~ d®,, ; and——-L ~ d®., ;. Consequently,

2) Elastic description:Clearly, Khalil and Kleinfinger’s notation the Hermite po|3’/]nomia|s [16] are used N, ; to interpolate the
associates a rigid reference frami& with each bodyC:. In these elastic displacements due to the bending phenomenon around their
frames the elastic behavior of the system is described using FEMaxis y; ; and z; ;. The elastic displacements due to the traction-

Segmentation:In order to model the deformations, the mostompression phenomenon are deduced by a linear interpolation. As
common finite element codes typically used are either linear EulerresultN; ; is defined withinR; ; by
Bernoulli, or Timoshenko beams if shear deformations are consid-
ered. Our study focussed principally on manipulators with slender Nij = [ Nap,,; , Nas,,, ; Nap,,; Naz,,; | (6)
bodies. Consequently shearing action can be neglected and the Euler- . . .
Bernoulli type beams can be used assuming small deformatioWZTere (in the following expressiorisstands forl; ; and¢ is equal
Thus, one can use the same segmentation as implemented in sf‘éftﬁ/li,j):

cases presented in [32]-[34]. A body; is segmented inta; beam S 0 0
elementsB; ; and2n; node elements. Nap,,, , = o BEE e 1 353 +2¢% |0
. . . 1,247 — -
The properties of the beams are summarized in the table Il. The L o 0 0
[ o 0 0
Table Il N _ 0 0 1¢ — 212 + 13
d®; o5 — 2 3
BEAM PROPERTIES ©2j-1 g 1€ + 2zos — g 0 )
. B 0 0
Length and Cross-sectional l;,5 and S; j N _ E 362 — 263 0
Density and Quadratic Moments p; ;j and I, ; Iy, ;. 1z, dPi2j = 0 0 3¢2 - 263 |
Young's and Coulomb’s Modulug E; ; andG; 4 o 0 0
2 3
. . L. Nd<I>v i - 0 2 0 3 Tl e .
(4 x 1) vector of coordinates of any poim; ; expressed within a 2 PO 5




In the same way, the rotation of the each beam section around itsAssuming small displacements, the nodal displacement vegtpr
own axisx;,; generated by the phenomenon of torsion is deducedn be rewritten inR; in the following way:

from nodal displacements by the interpolation: i
. iu_j:|: R:; 03 ]”u]

iyJ 3.9 T i.q T “ 0 ZRi ; *

"y =Ni [ g gi-1 i, } ) ’ N
This leads to the expression pf ; within the reference framé;:
whereN? ; is the (1 x 12) geometrical interpolation matrix: .

ipiyx =R i .i’jl‘iyx +R i NL’R i [ iui . T iui T ] .

N, =[015 1—¢ 015 & 012 ]. ®) S 7 ls)

Elastic deformations and stresseFhe elastic displacements ~ EXpression in the global reference frani®: Using the ERLS
observed are caused by the elastic deformations of the beam HRgcription,p; ; can be easily expressed within the global reference
generate internal stresses. These deformations and stresses hali@ms Fo:

be expressed in order to evaluate the elastic potential energy of the Opi,j = OTiipi,j' (16)

beam' As_sumln_g ?ma" deformations, the generalized strain Vecg)anilarly, assuming small displacements, ; is expressed withitRy
€;,; is defined withinR; ; by as:

P i . . T (U — O pAui__

“eij =Bi; [ Mgy e ] 9) Ui = AT (@)
where® A is a (6 x 6) rotation matrix defined by concatenation of

whereB; ; is the kinematic interpolation matrix. It is obtained bythe orientation part of'T;

derivation of the geometrical interpolation matrices (in the following The concatenation of the relations obtained for each beam element

Xpression n n in fore; ; andl; ;): . . . ) . .

expressions: and! stand again fow;,; andl; ;) leads to simple vectorial expressions to describe the kinematics of
B, = [ Bup, ,;_, Bd®,,;_, Bdap,,; Bda, ., ] (10) the structure studied. Th i n; x 1 )vectors of the positiong; ;

s i=1 i
where: within the global reference framR, is expressed by

p=Tr+ TNAu (18)

1
|
~
o
o

Bap, o0 = -1 | wherer is a (4 > i x 1>vector of the ERLS component expressed

i=1
within each body reference frame amdis a (12 3° n; x 1 )vector

0
6a ;F , of the nodal coordinates expressed withiﬁo:.1 N, A and
0

© oo o o o

Buis, ,; =

i,2j—1

T are respectively<4 S x 1230 n) (12 S x 1230 ni)and
i=1 i=1 i=1 i=1

~

Bap,,; = : i=1 i=1
2j Tt catenating the geometric interpolation matridys ; expressed in

R; using Ry, ; and Ry, ; (15), the transfer matrice§T; and
it ) the rotation matrice§ A¥. Similarly, the (f n; X 1)vector of the
=1

0 n n . N .

-8 412z 0 43 ni x4y n> matrices. They are respectively obtained by con-
0
0

Bus,,, =

12

~~ o oo o o o= |

0 0
0 —
2482 0
0 0

L beam section rotations, the ( 4 2 n; x 1 |vectors of the structure

In linear elasticity, the stress field depends on deformation agéneralized straia and structuré:éeneralized stressesare defined
mechanical properties. By defining thé x 4) matrix of mechanical by y = N'Au, e = BAu ando = EBAu.

propertiesE; ; of the beamB; ;, the generalized stress vecter ; Then, by derivation, one can deduce the translation velocities
can be written as vectorp and the angular velocities vectgr

Yo;;=Eij e = BBy [ W 0_n” wig,” | p=Tr+TNAu+ TNAu+ TNAu, (19)

(11) 4 = N'Au+ N'Au. (20)
where
E”(')Si’j 5 ‘01 8 8 C. Dynamic equilibrium expression
o 1,5 424,5
Ei; = 0 o Ei Iy, ; 0 (12) Dynamic equilibrium is expressed using the Lagrange principle

0 0 0 Gijle; ; equations. The vector of the device DOk is defined as the

3) Global expression: concatenation of the rigid and elastic DO& énd u):

Expression in the body reference frafRe: Roll, pitch and yaw w = [ qf Wt ]T (21)
angles¢; ;, 6; 5, andt; ; are used to define the orientation of each
beamB; ; within the reference frame&;. The (3 x 3) rotation matrix Whereq = q1 -+ qn }T is the vector of the joint values. Then,
between frames; and R, ;, ‘R.,;, is defined by the well-known Lagrange principle is written as follows:
"Ri,; = rot (2, ¢i;) rot (ys, 0 ;) rot (xi,9:5) . (13) 9 (a—L) - (B—L) =F (22)
ot \ Ow ow

Then, by concatenation, thé€l2 x 12) rotation matrix Ry, ; is
obtained and one can deduce the expressioRgf , the (4 x 4)
transformation matrix between framés and R; ;:

whereL = E.—E, is the difference between the kinetic and potential
energies and is the sum of non-conservative external forces. To
apply this principle, we express the total energy of the kinematic
R { ‘R, ‘ i ] (14) chains. The resulting relations are then differentiated with respect to
Pig 013 $2-1 w, w and time. For this purpose, different operators are introduced.



1) Kinetic energy:The total kinetic energy of the structufe. is and elastic DOF: the component of the mass masd, describes
the sum of the kinetic energy stemming from the translational atide effect of elastic DOF on the joint DOF mass expression and the
rotational movements of the beam sections. Then, using kinematariolis and centrifugal forc&'. are the sum of three components
expressions ((19),(20)) the kinetic energy is derived by F., F, andF; which are respectively functions ¢&), (¢, u) and
1 L& (g, u). The gravity and external forces applied on the structure are
E. = 5/(IE)Tp +"yTII"y> dm + 52@(11‘,]@, (23) expressed by, andF. The generic expressions of these terms are
o k=1 detailed in appendix. Assuming deformations and displacements to
" N be small, the second order terms related to the elastic variables are
where I, is a >omex 3 ng diagonal matrix gathering the neglected.
quadratic momentslf_,;,li,j. I, is equal to the sum of inertia of the
beams which are aligned with the joint axis angdis the complement cgnstraint equations

of the binary parameters defined in table I. The d . . 27 ‘ lated i f f
2) Potential energy:The potential energy of the system is the e dynamic equations (27) are formulated in terms of a set o

sum of the joint and body elastic potential energies and potent[;agordinates that are not totally independent. The kinematic relations
gravity energy. As presented in [32], the strain energy of the join tween the internal nodes can be expressed independently within

is introduced by replacing the kinematic relations which connect t @Ch body refgrence franig. This leads to Iinea_lr equations using the,
?oolean matrix as demonstrated by Shabana in [35]. Concerning joint

elastic DOF with a joint stiffness matrix. The ERLS is modeled usin : x X . . .
Khalil and Kleinfinger's notation. Consequently, is the axis of the Qnstralnts: t.he klnematlc relathns must I|n!< nodes. which belon.g to
joint i which links the bodyCj to the bodyC; wherek — a(i) dlffere'nt. bodies leading to non-linear gquatlons which are functions
(Table 1). Thus, the joint stiffness matriK;, expressed in its local of the Jo_'m parameters [35]. However, in our case the _st!ffness vall_Jes
coordinate systenR; between the2n;, nodes of the body?, and of the joints are rt_apresentgd_ln (24); consequently the joint gonstralnts
the first node of the bodg; is given by: are aIready _con5|dered within the formulation of the potgntlal energy
) , (25). A similar approach, called the penalty method, is presented
K, = ‘K| —'Kp (24) in [36]. Hence, the constraint equations which link the independent
‘ 'K | Ki elastic variablesu; to the dependent ones,; can be written as
Cy,uq + Cy,u; = 0 whereC,, and C,, are Boolean matrices.
Then the elastic coordinates can be expressed by

where ‘K = diag [ K», K, Ka Krr, Ker, Kar, |.
K., Ka;, K., and K., stand respectively for the radial, the
axial, the radial rotational and the axial rotational stiffness of the I . I .

it" joint. Assuming small displacements, the joint stiffness matrix u= [ 7C;;Cui ]u“ u= { —C;dlCui } Wi (28)
can be written in the global fram&, as°K;, = OAQ”'K“OA?T '
and by concatenation of the matricesOKli, one can define the
matrix K;. The deformation energy of flexible body is expressed
the integral of the product of the generalized strain veetand the
generalized stress vectoar Thus, the potential energy of the syste
is derived by

As regards joint coordinates, kinematic constraints have to be
considered for mechanisms with closed kinematic chains and PKMs.
R this case, the loop closure conditions are defined by nonlinear
holonomic constraint equations. Much research is available on this
n%ubject and several formulations are proposed in [36]-[39]. ¢eror
to obtain the dynamic equations expressed in independent joint

n ong Yid coordinates, embedding techniques can be used. In this method, the
E, = WK+ N / (ETU)d-Ti,j +/ (ng) dm  coordinates are partitioned in independent and dependent sets. From
2 ) the kinematic constraint vecto€ (q,t) = 0, the application of
(25) Alembert’s principle leads to

whereg represents the gravity fie!d. o Ca,0q; + Cq,0q4 = 0 (29)

3) Operators: The implementation of the Lagrange principle re-
quires the derivation of energies expressed previously. In ordervibere q; and qq are respectively the independent and dependent
simplify the expressions, we define the following matrix operatoggint vectors.Cq, and Cq, are defined as the jacobian matrices of
(26). These operators can be calculated by simple multiplicationsCe(q, t) relative toq; andqq [40]. Then, by successive derivations

i=1 j=1 o

detailed example can be found in [12]. according to time, the joint acceleration vector can be written in terms
OT _ 1y, A _ A, Uk _ e _ of independent accelerations as
da, — —F  Bq, — Pk Tag T VRI Tag T Mk i I 0
f vt (e vea)a s $ v a[3]-] ole Ja+] ] @
kz=:1 Raw k§1 (z; k,lQl) O+ kzzjl kG qd _qu Cq; _qu F,
A= Avin A= (D Qk,zdz> gr + > Arde whereF; = — (‘?(;flq q) { represents the constraint forces generated
k=1 k=1 \l=1 =1

(26) by the looping of the kinematic chains. As result, assuming that
4) Dynamic equation:From the operators (26) and by differenti-the _j(_)int_ and elastit_:_ coordinates are rearranged acccT>rding to the
ating the expressions (23) and (25), the terms describing the dyna@@titioning of equalities (28) and (30§, = [ &7 ! | the set

equilibrium of the kinematic chain are obtained: of independent coordinates is obtained by
qu Mqu q + 0 0 q w = BdLW1 + Fu, (31)
M!, M., || @ 0 Kuu | [ u (27) T r 17
—(F-F.-F,). where By, = [ I (-Cgq,Cq) I (-Cy,Cu) ] and

T
M,,, M., andK,,,, describe respectively the distribution of mas¥:; = LO (—C;;FZ)T 0 0 l . Then, the dynamic equilib-
on the joint DOF, the distribution of mass on the elastic DOF aribm (27) can be expressed in the base of independent parameters
the distribution of the intrinsic stiffness of the bodies and joints. lhy
this expression, one can note the strong coupling between the joint M;w; + Kiw; = F; (32)



whereM;, K; andF; are, respectively, the mass, stiffness matrice&. System description

and the force vector, defined by: The mechanical system studied here is the Surgiscope Delta-like

F;, = BY (F—F.—F,) — Bl MFy;, parallgl man.ipulator, developed py thg I$.I®.mpany. This structure
! ¢ combined with a decoupled serial wrist is involved in neurosurgery
to accurately move and place a microscope, a laser guiding system
K; = BgKBag,. as well as some surgical tools (Figure 2(a)). In the following, only
the positioning mechanism is considered. The mechanism described
in Figure 2(b) is composed of a moving platform connected to the
fixed base by three identical kinematic chains. Each kinematic chain
E. Identification and correlation methods consists of a single link-based forearm connected to a planar, four-ba
rallelogram. Concerning the structure available in our laboratory,
numerical values of the main geometrical parametersd gre

M; BJ MBy,,

The previous procedure allows dynamic model to be Workn{)ﬁa
out from input parameters describing the mass, the damping 8(51(3

: . - . 0.75 m for the length of the arms add. = 0.125 m;L, = 0.95
the stiffness properties. However, the joint stiffnesses and dampin .
. : . for the width and the length of the parallelograms. The platform
phenomenon have complex behaviors which are functions of the

o . - . M., is 6.64 kg.
excitation amplitude, the frequency and the joint coordinates. T RassMn 1S g

common damping models are based on parameterized rheologic
laws (structural [41], the Rayleigh coefficient [17], modal dampin
fractionary derivative). The non-linear behavior of joint stiffneas c B

Vo A | BASE

~ [k [E [E

be described through non-parametric models (linear interpolatis’ [R] [R] [R]

parameters into several configurations [41]) and parametric mod

(stiffness value expressed as a function of the local effort support LRI (=)= ][r][R]

by the joint [42]). [RIRI[R][RI[R][R]
Many description models can be used. The selection criteria [R] [R] [R]

choice are ease of use and similarity with the experimental behav
in the workspace, for the amplitude and frequency domain of the
application considered. In the pre-design stage, quantitative values
are set based on the properties of the material and the designgideire 2. Surgiscope kinematics.
experience. For model correlations on a real structure and for con-

trol purposes, these values have to be accurately estimated. Then,

according to research, various methods are presented involving the

identification process in time [17], [43] or frequency domains [9]B. Input parameters

MOVING PLATEFORM

(a) Surgiscope (b) Kinematics

[41], [44], [45]. The kinematic description presented in section Il is implemented
In the time domain, identification is based on the comparison of thg each kinematic chain as indicated in Figure 3 and the associated
trajectories and the efforts measured and calculated at different poigdsameter setting is summarized in Table lli(a) and Table 1li(b).
of the structure. As the dynamic model does not include control anfie values of these parameters are deduced from the geometrical
its perturbations, the actuator wrenches have to be directly measuggfibration and the elastic modeling of this structure which are
[17]. The quality of the obtained results on trajectories used. respectively detailed in [48] and [32]. As the structure is in a quasi-
In the frequency domain, modal analysis is performed usingatic configuration and the amplitude of the dynamic excitation is
specific algorithms [46] to estimate the natural frequencies and magg, the effects of non-linearities are first neglected in machining
shapes. In the case of a slightly damped system, the conservative ghglications. Then, the joint stiffness values (24) identified in [32] are
damped modes present few differences. As a result, the freqsengiged to perform the correlation on the first natural frequencies and
and shapes of the theoretical normal modes obtained by solving #AC values. As the structure is axisymmetric, the elastic behavior of
eigenvalues problem defined by the dynamic malvix 'K can be their joints can be described by 21 stiffness parameters. Their values
directly compared to the estimated modes. This method is interestiggre identified in [32] by minimizing the difference between the
because the stiffness and damping parameters are identified separaiebisured and modeled elastic displacement of the tool center point
using a progressive approach. The first step consists of identifyifi a force of—200 N acting along the z axis applied on the mobile
the stiffness properties by minimizing frequency deviations anglatform. The identification was carried out with 11 measurement
maximizing the Modal Assurance Criterion (MAC). This criteriompoints distributed on the line of equation y =x in the plane
evaluates the degree of linearity between the estimated and he_1478 mm and the identified values were experimentally checked
theoretical modal vectors [47]. In step two, damping is considerg@ing 11 other measurement points distributed on the line of equation
to minimize the deviations between the theoretical and measusgé x in the plane z =—1326 mm.
Frequency Response Functions (FRFs). Concerning the damping, the models mentioned in II-E differ
In conclusion, the level of description of the model used is fom each other by a variation of its frequence-dependent behavior
compromise between the accuracy required by the application and [#)g]. However, for a lightly damped system at low frequencies,
cost of the experiments required to achieve the identification procesfese models are equivalent. Consequently, we favor simplicity:
structural modeling is commonly used in the frequency domain, while
1. A PPLICATION TO A DELTA LIKE STRUCTURE equivalent viscous modeling is in the time domain. We use a similar
approach to the one proposed in [41] by Zhou et al. who assume

In order to illustrate the proposed procedure, the elasto-dynamigght the system has structural damping proportional to the system
modeling of a 3-DOF translational parallel manipulator is achieved

and the potential of this structure for use in machining applicationst|s|s: Intelligent Surgical Instrument & Systems http:/iwisig-
is investigated. robotics.com/



Table 111

stiffness matrix. Then the equation of motion for free vibration of PARAMETERS SETTING

the mechanism becomes:
(a) Geometrical Parameters of th&" kinematic chain of the Surgiscope

M.w; + (1 +J77) Kiwi =0 (33) [Joint][a(®) [ i [ oi [ vi [bi [ oai [ di [0: [ri |
where n is the damping factor. This factor is identified from the| 1 0 1 0 vk | O -z Rb 1,k | O
H PRI P, 2 1 0 0 0 0 0 Lb q2.k Le
measured FRFs (Figure 4(c)) by minimizing the criterion: 3 5 o o 0 o T o 10
theo mea 2 4 3 0 0 0 0 0 Lp 44,k 0
_ EE l |HESY (@) = H3S5 p(w)] 5 T [0 [0 [0 [0 [ -2 [0 | as| —2c
Jg = L _ (34) [© 2 0 0 0 oLl Z [0 g6 | O
Z Hmea (w ) 7 6 0 0 0 0 0 Lp q7.k 0
G5l D ! 8 1 0 2 T 0 0 “2Lc| -Z | 0
BIhE E 5 0 2 0 0 z “Rn| 0 0
where: H(}"SS p(wi) and H'SS g (wi) are_respectlvely the calcu_lated (b) Elastic Parameters of kinematic chain
_and measured FRFs for frequenicat pom_t(z,j_)_and for a vertical ["body [ beam |[ Li; | Sij| Iy I=] Pis| Gis| pis| %ii] 0ij | $is]
impact at the center of the platforfi. The identified damping factor 7 1 5T 5, | Tyn | T2p | Pai] Gail pai] 0 ) 0
n is 0.096, which is high compared to standard material valugsi 2 Lo sy | 1y | 12 | Ba| Gar] P[0 [0 [ O
(typically 0.013 for aluminium such as that used in this robot [49]) L 3 Bl sy [ty | 2| Bar] G| e O [0 [0
; ; ; ) 1 Le | Se | Iyo| Izg| Eac| Gac| pac| —5| 5 | 5
since it also includes the effects of unmodeled structural elemerps; 5 e T R —2 22
.. .. . c c Ye Ze ac ac| Pac 2 Pl Pl
(e.g. joint frictions, belts, etc) not captured by the model in (33). [3 1 L2 sp | tyy| Zop| Par| Cat] P | O [ O | O
3 2 Le{ s I I E G » 0 0 0
2 1, 3 D Yp Zp al al al
#o ‘i,“zllll 3 3 el s, Typ| Tzp | Far| Gat| Par| 0 0 0
@11 4 1 Le Se Iy, | Iz | Eac| Gac| pac| —%5| O 0
s 4 2 Le | Se Iy, | Iz | Eac| Gac| pac| —%| O 0
5 1 Rn | Sy | Iy.| Iz.| Br | Gr | pr ™ 0 0
21,2 Tp =
@12 6 1 | Sp | Iyp| Izp| Bat| Gat| Par| 0 0 0
_ s 6 2 Lol sy | 1yp| T2p| Bai| Gai| par] O 0 0
R 6 3 Lo sy | 1yp| T2p| Bat| Gai| par] O 0 0
Le Z1,3
\ P 6,1 zap |22
- 9 b 21 6.1 . ~ 22,1
é/\( Y2z M ey
b > L[ Y81 . . .
2 s . In order to evaluate the model quality, considering all FRFs, the
K- Y62 ’ .. .
-2 % 5 natural frequency deviations between test and modal analysis as well
|4 .
Cs o s S the MAC values of the corresponding mode shapes are used.
Y82 . .
%532 legs The values of natural frequencies and associated mode shapes are
XKe--Yo,3 . . -
e In % extracted from the experimental data using the MDOF (Multiple
) * Degree of Freedom) estimation algorithm available on NV Solutions
zl,é/\(;;: : SmartOfficé. This algorithm, called Polyreference Time Domain,
z8 g | i is based on finite difference and quadrature methods [50]. The
z2/z0 Z 2, ,, experimental and theoretical natural frequencies for the first five
4,2 . . .
7223 1y modes and corresponding MAC values are given in Tables IV(a) and
(a) Geometrical description (b) Beam reference frame IV(b). Similar mode shapes between theoretical and experimental

approaches are found at the lowest resonances. The initial modeling
provides consistent correlation for the relevant mode shapes in the
frequency range from 0 to 50 Hz. The modes obtained are due
to the link elasticity (phenomena of flexion of the lower arms in
Figure 5(a)) as well as the joint stiffness (structural modes on Figure
The application of experimental modal testing to the Surgiscopgh)). For higher frequencies, the variations increase. Indeed the
architecture is done through impact hammer excitation and d3anhavior of the structure is more complex and the discretization
post-processing, conducted using SmartOffice software. The pait is used by the model becomes insufficient. Concerning the
and direction of excitation are chosen in the middle of the movingamping phenomenon: the structural description whose identification
platform along the vertical axis. Piezoelectric triaxial accelerometggsdetailed in 111-B fits well on the range from 0 to 100 Hz as shown
are used to pick up the 3 acceleration responses at 40 measiegigure 4(c). The criteriuny,, defined in (34) is equal to 12.7 %.

points as in the simulation. The acquisitions are performed for tweyr higher frequencies, this description is insufficient: on the range
structure configurations, one of which is symmetrical and the othgpm 0 to 250 Hz,J,, is equal to 33.6 %.

is not (First configurationty = yg = 0 mandzg = —1.1 m;

second configuratiorz = 0.19 m, yg = —0.33 m andzg = —0.9 ) .

m). In order to avoid controller perturbations, the brakes are lockdg: Discussion

Sampling parameters were specified in order to calculate the FRFThe proposed procedure implemented with static joint stiffnesses
from a 2.046 s time window discretized with 1024 samples. The FRBEA&d identified structural damping as input values, presents a good
are calculated for a frequency range of 0 to 250 Hz at a frequengyrrelation with the measurements obtained with the impact hammer
resolution of 0.49 Hz. A force window was applied to the signal froraxcitation. This kind of excitation is an effective method to estimate
the hammer’s force transducer and exponential windows were appligg dynamic characteristics. However it does not characterize the non-
to the signals from the accelerometers. Each measurement is |thearities of the structure. Thus, the obtained model is limited to
averaged result of three impacts. Figure 4(a), 4(b) and 4(c) shew atpplications with low amplitudes of excitation. To extend its validity
test setting in the first configuration, the time domain measurements,

and the associated FRFs, respectively. 2http://www.mpihome.com/english/modaltesting.htm

Figure 3. Kinematic chain description.

C. Measurements and correlation
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Figure 4. Experimental validation through impact hammer etioita measurements and data post-processing.

correlation. Current studies concern experimental investigations of
damping and joint stiffness non-linearities of serial and parallel
manipulators through the use of a multi-input shaker excitation.

Measure
— — — Model

(a) Fifth mode shape first configuration (b) First mode shape second configuration
APPENDIX

Figure 5. Mode shape corellation. MATHEMATICAL DEVELOPMENT

Table IV
CORRELATION

(a) First configuration correlation The mass and stiffness matiM.,,,, and K., are defined by

Measure (Hz)
Mode 1 | Mode 2 | Mode 3 | Mode 4 | Mode 5
Measured (Hz) 11.8 15.2 31.2 36.1 38.8
Model (Hz) 11.3 15.7 318 36.4 384 T TetTo ¢
MAC 0021 | 0064 | 0825 | 0673 | 0627 Muyu = (A N NA) dm + (A N LN A) dm,(35)
(b) Second configuration correlation m m
Measured (Hz) n g lid
Mode 1 | Mode 2 | Mode 3 | Mode 4 | Mode 5 _ TRT B
Measure (Hz)| 12.4 15.4 26.1 36.2 425 Kuu = ZZ/ (A B EBA) dzij | + K. (36)
Model (Hz) 125 16.0 25.8 37.3 40.9 i=1j=17%
MAC 0.956 0.904 0.833 0.635 0.641

M,, and the vectoiM,, ., are respectively:

domain for many source amplitudes, a shaker excitation is more
suitable. Although the duration of tests is longer, it should provide
better peak to RMS level especially for low frequencies, and a good
characterization of the nonlinear behavior of the structure. One of the TyT TyT
non-linear description models detailed in II-E can be implementggy irgggg 41_\11Uk U%qu}u

- . . wa = 7 Ug u+r U, TNAju |dm, (37)
and adjusted through the computational model updating method to +rTUTTNAu
consider the joint and damping non-linearities. However, this topic is (
J
m

|
3 —

TN T
not covered in this paper and is referred to future studies. f r"UITNA + u” Akl;I I;IAT dm
My, = ™ +A"N'U,;, TNA (38)
kU T
IV. CONCLUSION + (uTA{NtTIthA) dm.

In this paper, a systematic procedure for the elasto-dynamic
modeling of both serial and parallel three dimensional manipulators
has been developed. It can be used in an industrial context for . . . .

: . . . ... _The various coriolis, centrifugal and gravity forces are expressed
mechanical design as well as for realtime control. The |dent|f|cat|%n
. . - the vectors
of the input parameters according to the model application has beéen
investigated, and an efficient identification method based on modal
analysis has been detailed. The proposed procedure has been applied

on a Delta like, parallel structure and successfully validated by F,=[ Fry Frg, FuT 17, (39)
experimental modal testing with impact hammer excitation. In order Fu=[ Fug Fug, FuuT ]T’ (40)
to verify the quality of the model, the natural frequency deviations —

between test and analysis, the MAC values of the corresponding mode Fi = [ Fig Fig, Fau' ], (41)
shapes and the measured and computed FRFs show a consistent Fy =] Fyq Foqn Fou© ]T, (42)
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