
HAL Id: hal-00755800
https://hal.science/hal-00755800

Submitted on 22 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Estimator selection with respect to Hellinger-type risks.
Yannick Baraud

To cite this version:
Yannick Baraud. Estimator selection with respect to Hellinger-type risks.. Probability Theory and
Related Fields, 2011, 151 (1-2), pp.353-401. �hal-00755800�

https://hal.science/hal-00755800
https://hal.archives-ouvertes.fr


ESTIMATOR SELECTION WITH RESPECT TO

HELLINGER-TYPE RISKS

YANNICK BARAUD

Abstract. We observe a random measure N and aim at estimating its inten-
sity s. This statistical framework allows to deal simultaneously with the problems
of estimating a density, the marginals of a multivariate distribution, the mean of
a random vector with nonnegative components and the intensity of a Poisson pro-
cess. Our estimation strategy is based on estimator selection. Given a family of
estimators of s based on the observation of N , we propose a selection rule, based
on N as well, in view of selecting among these. Little assumption is made on
the collection of estimators and their dependency with respect to the observation
N need not be known. The procedure offers the possibility to deal with various
problems among which model selection, convex aggregation and construction of
T -estimators as studied recently in Birgé (2006). For illustration, we shall con-
sider the problems of estimation, complete variable selection and selection among
linear estimators in possibly non-Gaussian regression settings.

1. Introduction

1.1. The statistical setting. Let N1, . . . , Nk be k independent random measures.
Each Ni is defined on an abstract probability space (Ω, T ,P) and takes its values in
the class of positive measures on a measured space (Xi,Ai, µi). Besides, we assume
that

(1) E[Ni(A)] =

∫

A
sidµi < +∞, for all A ∈ Ai

for some nonnegative and measurable function si on Xi. We shall call si the intensity
of Ni. Equality (1) implies that Ni is finite a.s. and that for all measurable and
nonnegative functions fi on Xi,

(2) E

[∫

Xi

fidNi

]
=

∫

Xi

fisidµi.

Our aim is to estimate s = (s1, . . . , sk) from the observation of N = (N1, . . . , Nk).

Throughout, we shall set X = (X1, . . . ,Xk), A = (A1, . . . ,Ak), µ = (µ1, . . . , µk)
and denote by L the cone of nonnegative and measurable functions t of the form
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(t1, . . . , tk) where the ti are nonnegative and integrable functions on (Xi,Ai, µi).
Moreover, for f = (f1, . . . , fk) ∈ L we shall use the notations

∫

X
fdN =

k∑

i=1

∫

Xi

fidNi and

∫

X
fdµ =

k∑

i=1

∫

Xi

fidµi.

Finally, L0 will denote a known subset of L containing the target function s.

This statistical framework allows to deal simultaneously with the more classical ones
given below:

Example 1 (Density Estimation). Consider the problem of estimating a density
s on (X ,A, µ) from the observation of an n-sample X1, . . . , Xn with distribution
Ps = s · µ. To handle this problem, we shall take k = 1, N = n−1

∑n
i=1 δXi

and L0

the set of densities on (X ,A) with respect to µ.

Example 2 (Estimation of marginals). Let X1, . . . , Xn be independent random vari-
ables with values in the measured spaces (X1,A1, µ1), . . . , (Xn,An, µn) respectively.
We assume that for all i, Xi admits a density si with respect to µi and our aim is
to estimate s = (s1, . . . , sn) from the observation of X = (X1, . . . , Xn). We shall
deal with this problem by taking k = n and Ni = δXi

for i = 1, . . . , n. Note that this
setting includes as a particular case that of the regression framework

(3) Xi = fi + εi, i = 1, . . . , n

where the fi are unknown real numbers and the εi = Xi − fi are i.i.d. random
variables with known distribution q. In this case si(x) = q(x−fi) for all i = 1, . . . , n
and the problem of estimating the densities of the Xi amounts to estimating the shift
parameter f = (f1, . . . , fn).

Example 3. Let X1, . . . , Xn be n independent, nonnegative and integrable random
variables. Our aim is to estimate the function s given by s(i) = E(Xi) < +∞
for i ∈ X = {1, . . . , n} on the basis of the observation X = (X1, . . . , Xn). This
statistical setting is a particular case of our general one by taking k = 1, A = P(X ),
µ the counting measure on (X ,A), L0 = L and N the measure defined for A ⊂ X
by N(A) =

∑
i∈AXi.

Among the marginal distributions of X we have in mind, we mention the Binomial
or Gamma among others.

Example 4 (Estimating the intensity of a Poisson process). Consider the problem
of estimating the intensity s of a possibly inhomogeneous Poisson process N on a
measurable space (X ,A). We shall assume that s is integrable. This statistical
setting is a particular case of our general one by taking k = 1 and L0 = L.

Hereafter, we shall deal with estimators with values in L0 and to measure their risks,
endow L0 with the distance H defined for t, t′ in L0 by

H2(t, t′) =
1

2

∫

X

(√
t−

√
t′
)2
dµ =

1

2

k∑

i=1

∫

Xi

(√
ti −

√
t′i

)2

dµi.
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When k = 1 and t, t′ are densities with respect to µ, H is merely the Hellinger
distance h between the corresponding probabilities. Given an estimator ŝ of s, i.e.
a measurable function of N with ŝ ∈ L0, we define its risk by E

[
H2(s, ŝ)

]
.

1.2. An account of the results. We start with an arbitrary collection E = {ŝλ, λ ∈ Λ}
of estimators based on N together with a family S of subsets of L0. The family E
need not be countable even though we shall assume so in order to avoid measura-
bility problems. In fact, the reader can check that the cardinality of E will play no
role in our results. In contrast, the family S should be countable (we shall use the
word countable for finite or countable) and its complexity is measured by means of
a mapping ∆ from S into [1,+∞) satisfying

(4) Σ =
∑

S∈S

e−∆(S) < +∞.

When Σ = 1, e−∆ corresponds to a prior distribution on the family S and gives thus
a Bayesian flavor to our statistical procedure. The fact that ∆ is assumed to be not
smaller than 1 (although one usually assumes ∆ ≥ 0) is only here to simplify the
presentation of the results. Hereafter, the elements S of S will be called models and
assumed to have finite metric dimensions D(S) (in an appropriate sense).

In the present paper, the problem we consider is that of estimator selection. More
precisely, our aim is to select some estimator ŝλ̂ among the collection E from the same
observation N in view of achieving the smallest risk bound over E . For appropriate
choices of E and S, our approach allows us to deal simultaneously with the problems
of model selection, (convex) aggregation and construction of T -estimators. As we
shall see, very little assumptions on the estimators ŝλ will be required and in fact
the way they depend on N need not even be known. Nevertheless, there should be
some connections between the families E and S. Typically, each ŝλ should belong
(or at least should be close enough) to

⋃
S∈S S. More precisely, we associate to each

estimator ŝλ a (possibly random) subfamily Sλ ⊂ S of approximation models and
introduce the accuracy index of ŝλ with respect to Sλ as the (random) quantity

(5) A(ŝλ, Sλ) = inf
S∈Sλ

inf
t∈S

[
H2(ŝλ, t) + penλ(t)

]
,

where penλ is a penalty function from
⋃

S∈Sλ
S into R+. Typically, penλ is of the

form

(6) penλ (t) = c0τ inf
S∈Sλ(t)

(D(S) + ∆(S)) ,

where c0 is a universal constant in (0, 1 − 1/
√
2), Sλ(t) = {S ∈ Sλ, t ∈ S} and τ

is a scaling parameter depending on the statistical setting (τ is of order 1/n for
Example 1 and of order a universal constant for Examples 2, 3 and 4). The quantity
A(ŝλ, Sλ) measures in some sense the complexity of the estimator ŝλ with respect
to the collection Sλ. For a choice of the penalty given by (6), the model Sλ which
minimizes (5) over Sλ achieves the best trade-off between the approximation term
inft∈S H

2(ŝλ, t) and the complexity term τ(D(S) ∨∆(S)). The selection procedure
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we propose leads to an estimator s̃ = ŝλ̂ which satisfies the following inequality for
some constant C ∈ (0, 1) which neither depends on τ nor s

(7) CE
[
H2(s, s̃)

]
≤ inf

λ∈Λ

{
E
[
H2 (s, ŝλ)

]
+ E [A(ŝλ, Sλ)]

}
.

Inequality (7) leads to an oracle inequality as soon as the quantity

E [A(ŝλ, Sλ)] = E

[
inf
S∈Sλ

inf
t∈S

(
H2(ŝλ, t) + penλ(t)

)]

is not larger that E
[
H2 (s, ŝλ)

]
up to a universal constant whatever s. Such a

property depends on the choice of the subfamilies Sλ. From a theoretical point of
view, the choices Sλ = S for all λ ∈ Λ lead to the smallest values of A(ŝλ, Sλ).
Nevertheless, for computational reasons it may be sometimes convenient to reduce
the family Sλ to a smaller number of models.

Selecting among estimators is an old problem in statistics. In density or regres-
sion, most of the statisticians use resampling techniques (cross-validation, V -fold,...).
They seem to give satisfactory results in practice but little is known on the theoretical
performances of the resulting choice. In the opposite, we provide a non-asymptotic
risk bound for the estimator we select but more needs to be done to make our
procedure practical. We shall point out the difficulties to be overcome in view of
computing the final estimator s̃ and also describe some situations for which these
computations are indeed feasible.

1.3. Connections with Birgé’s T -estimators. The starting point of this paper
originates from a series of papers by Lucien Birgé (2006; 2007; 2008) providing a
new perspective on estimation theory. His approach relies on ideas borrowed from
old papers by Le Cam (1973; 1975) and Birgé (1983; 1984b; 1984a), showing how to
derive good estimators from families of robust tests between simple hypotheses, and
also from more recent ones about complexity and model selection such as Barron
and Cover (1991) and Barron, Birgé and Massart (1999). More precisely, given
a model S with a finite metric dimension, the construction of Birgé’s estimators
(called T -estimators) is based on a good discretization of S and on the use of a
robust test in view of selecting among the discretization points. T -estimators are
naturally robust under misspecification and, from this point of view, may outperform
the well-known maximum likelihood estimators which are not. If one considers
discretization points as candidate estimators, T -estimators result from an estimator
selection procedure which crucially relies on the ability of finding a robust test
with respect to a given distance d and, to our knowledge, no general recipe for
this is available. Our approach provides a general machinery to build such robust
tests for Hellinger-type distances and allows us to build T -estimators in various
statistical settings, recovering Birgé’s results in the contexts of Examples 1 and 4
and establishing new ones in the cases of Examples 2 and 3. Unlike Birgé’s approach
which allows to select among deterministic points only, ours can deal with arbitrary
collection of estimators.
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1.4. Connections with model selection. Consider a collection of models S =
{Sm, m ∈ M} (say linear spaces) together with a mapping ∆ from S into [1,+∞)
satisfying (4) and associate to each m ∈ M an estimator ŝm with values in Sm such
that, for some distance d on L0 and some positive constant C,

CE
[
d2(s, ŝm)

]
≤ inf

t∈Sm

d2(s, t) + τD(Sm).

In view of estimating s at best, an ideal choice of m is given by the index m∗,
usually called the oracle, for which ŝm∗ achieves the best possible risk bound among
the collection of estimators {ŝm, m ∈ M}. In practice, this oracle is inaccessible
since it depends on the unknown parameter s and the art of model selection is to
design a rule solely based on the data in order to mimic ŝm∗ . From this point of view,
the model selection problem is a particular case of that of estimator selection. The
following oracle-type inequality is typical of what is usually proved in the literature:
for all s ∈ L0

(8) C ′E
[
d2(s, ŝm̂)

]
≤ inf

m∈M

{
E
[
d2(s, ŝm)

]
+ τ (D(Sm) ∨∆(Sm))

}
.

There exist many different ways of designing a selection rule. Some are based on the
minimization of a penalized criterion. For example, let us mention Castellan (2000a;
2000b) and Massart (2007) (Chapter 7) for the problem of estimating a density,
Reynaud-Bouret (2003) for that of estimating the intensity of a Poisson process and
in the regression setting Baraud (2000), Birgé and Massart (2001) and Yang (1999)
among other references. Another way, usually called Lepski’s method, appears in a
series of papers by Lepski (1990; 1991; 1992a; 1992b) and was originally designed to
perform model selection among collections of nested models. In a more abstract way,
Birgé (2006) proposed a way of selecting among T -estimators and closer to ours, Ba-
raud and Birgé (2009) suggested to compare pair by pair histogram-type estimators
in the statistical frameworks described in Examples 1 and 4 (among others). Finally,
we mention that other procedures based on resampling have interestingly emerged
from the work of Arlot (2007; 2009) and Célisse (2008).

Our approach to estimator selection provides an alternative to solve the problem of
model selection. By choosing d = H, Λ = M, Sm = {Sm} and penm given by (6)
for all m ∈ M, we have

A(ŝm, Sm) ≤ 2c0τ (D(Sm) ∨∆(Sm)) , ∀m ∈ M
and it is then straightforward to deduce from (7) an oracle-type inequality such as (8)
for the estimator we select. Compared to the model selection procedures mentioned
above, we shall see that ours possesses the advantage to apply in many statistical
settings simultaneously and to require very few assumptions on the collection of
models.

1.5. Organization of the paper. The paper is organized as follows. The basic
ideas underlying our approach are described in Section 2. The main assumptions
on the measure N and the family S are presented and discussed in Section 3 on the
basis of Examples 1 to 4. The selection procedure and the main result can be found
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in Section 4. In Section 5 we consider models S which consist of piecewise constant
functions on partitions of X . For the problem of estimating a density, we give a prac-
tical way of choosing the number of cells of a regular histogram (regular in the sense
that each cell contains the same number of data, with a possible exception for the
right-most). In Section 6, we deal with models with bounded metric dimensions and,
as an application, handle the problems of (convex) aggregation and construction of
T -estimators. The problem of estimating the means of nonnegative random vari-
ables as presented in Example 3 is tackled in Section 7. We establish there uniform
rates of estimation over various classes of means and provide a lower bound on the
minimax estimation rate over classes for which

√
s = (

√
s(1), . . . ,

√
s(n)) belong to

a given linear space. In Section 8, we consider the regression framework presented in
Example 3 and deal with the problems of model selection, complete variable selection
and that of selecting among linear estimators under weak integrability properties of
the errors. Finally, Section 9 is devoted to the proofs.

Throughout, we use the following notations. The quantity |E| denotes the cardi-
nality of a finite set E. For x ∈ R+, ⌊x⌋ = sup {n ∈ N, n ≤ x}. The Euclidean
norm of Rn is denoted ‖ ‖. We set N∗ = N \ {0}, R∗

+ = R+ \ {0} and for t ∈ R∗n
+ ,

we denote by
√
t the vector

(√
t1, . . . ,

√
tn
)
. Given a closed convex subset A of an

Hilbert space, ΠA denotes the projection operator onto A. For t ∈ L0 and F ⊂ L0,
we set H(t,F) = inff∈F H(t, f) and for y > 0, B(t, y) = {t′ ∈ L0, H(t, t′) ≤ y}.
Throughout C,C ′, C ′′, ... denote constants that may vary from line to line.

2. Basic formulas and basic ideas

The aim of this section is to present the basic formulas and ideas underlying our
approach. For the sake of simplicity, we assume that k = 1 until further notice. For
t ∈ L0, we define ρ(s, t) =

∫
X

√
st dµ. This quantity corresponds to the Hellinger

affinity whenever s and t are densities. The squared distance H2(s, t) is related to
ρ(s, t) by the formula 2H2(s, t) =

∫
X sdµ+

∫
X tdµ−2ρ(s, t). Throughout, t, t′ denote

two elements of L0 one should think of as estimators of s. One would prefer t′ to t
if H2(s, t′) is smaller than H2(s, t) or equivalently if

[
ρ(s, t′)− 1

2

∫

X
t′dµ

]
−
[
ρ(s, t)− 1

2

∫

X
tdµ

]
≥ 0.

Since
∫
X tdµ and

∫
X t

′dµ are both known, deciding whether t′ is preferable to t
amounts to estimating ρ(s, t) and ρ(s, t′) in a suitable way. In the following sections,
we present the material that enables us to estimate these quantities on the basis of
the observation N .

2.1. An approximation of ρ(., .). For a measure ν on (X ,A) and t, r ∈ L0, we set

(9) ρr(ν, t) =
1

2

[
ρ(t, r) +

∫

X

√
t

r
dν

]
≤ +∞
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(using the conventions 0/0 = 0 and a/0 = +∞ for all a > 0). We start with the
following result showing that ρr(s · µ, t) over-approximates ρ(s, t).

Proposition 1. Let s, t, r ∈ L0. We have,

ρr (s · µ, t)− ρ(s, t) =
1

2

∫

X

√
t

r

(√
s−

√
r
)2
dµ ≥ 0.

Besides, if r = (t+ t′)/2 with t′ ∈ L0 then

(10) 0 ≤ ρr (s · µ, t)− ρ(s, t) ≤ 1√
2

[
H2(s, t) +H2(s, t′)

]
.

Proof. It follows from the definition of ρr that

2 [ρr(s · µ, t)− ρ(s, t)] =

∫

X

√
tr dµ+

∫

X

√
t

r
sdµ− 2

∫

X

√
st dµ

=

∫

X

√
t

r

(√
s−

√
r
)2
dµ.

For the second part, note that (t/r)(x) ≤ 2 for all x ∈ X and therefore ρr(s ·
µ, t) − ρ(s, t) ≤

√
2 H2(s, r). It remains to bound H2(s, r) from above. The

concavity of the map t 7→
√
t implies that ρ(s, r) ≥ [ρ(s, t) + ρ(s, t′)] /2 and therefore

2H2(s, r) ≤ H2(s, t) +H2(s, t′), which leads to the result. �

The important point about Proposition 1 (more precisely inequality (10)) lies in the
fact that the constant 1/

√
2 is smaller than 1. This makes it possible to use the

(sign of the) difference

T (s · µ, t, t′) =
[
ρr(s · µ, t′)−

1

2

∫

X
t′dµ

]
−
[
ρr(s · µ, t)−

1

2

∫

X
tdµ

]

with r = (t + t′)/2 as an alternative benchmark to find which between t and t′ is
the closest element to s (up to a multiplicative constant). More precisely, we can
deduce from Proposition 1 the following corollary.

Corollary 1. If T (s · µ, t, t′) ≥ 0, then

H2(s, t′) ≤
√
2 + 1√
2− 1

H2(s, t).

Proof. Using inequality (10) and the assumption, we have

H2
(
s, t′
)
−H2 (s, t) =

[
ρ(s, t)− 1

2

∫

X
tdµ

]
−
[
ρ(s, t′)− 1

2

∫

X
t′dµ

]

=

[
ρr(s · µ, t)−

1

2

∫

X
tdµ

]
−
[
ρr(s · µ, t′)−

1

2

∫

X
t′dµ

]

+ ρ (s, t)− ρr (s · µ, t) + ρr
(
s · µ, t′

)
− ρ

(
s, t′
)

≤ 1√
2

[
H2 (s, t) +H2

(
s, t′
)]
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which leads to the result. �

2.2. An estimator of ρr(., .). Throughout, given t, t′ ∈ L0, we set

r =
t+ t′

2
∈ L0.

The superiority of the quantity ρr (s · µ, t) over ρ (s, t) lies in the fact that the former
can easily be estimated by its empirical counterpart, namely

(11) ρr (N, t) =
1

2

[
ρ(t, r) +

∫ √
t

r
dN

]
.

Note that ρr (N, t) is an unbiased estimator of ρr (s · µ, t) because of (2). Conse-
quently, a natural way of deciding which between t and t′ is the closest to s is to
consider the test statistic

T (N, t, t′) =

[
ρr(N, t

′)− 1

2

∫

X
t′dµ

]
−
[
ρr(N, t)−

1

2

∫

X
tdµ

]
.

Replacing the “ideal” test statistic T (s ·µ, t, t′) by its empirical counterpart leads to
an estimation error given by the process Z(N, ., .) defined on L2

0 by

Z(N, t, t′) = T (N, t, t′)− T (s · µ, t, t′)
=

[
ρr
(
N, t′

)
− ρr

(
s · µ, t′

)]
− [ρr (N, t)− ρr (s · µ, t)]

=

∫

X
ψ(t, t′, x)dN −

∫

X
ψ(t, t′, x)sdµ

where ψ(t, t′, x) is the function on L2
0 ×X with values in [−1/

√
2, 1/

√
2] given by

(12) ψ(t, t′, x) =
1√
2

[ √
1

1 + t(x)/t′(x)
−
√

1

1 + t′(x)/t(x)

]
.

The study of the empirical process Z(N, ., .) over the product space S × S′ is at the
core of our techniques.

2.3. The multidimensional case k > 1. In the multidimensional case, the same
results can be obtained by reasoning component by component. More precisely, the
formulas of the above sections extend by using the convention that for all k-uplets
ν = (ν1, . . . , νk) of measures on (X1,A1), . . . , (Xk,Ak) respectively,

∫

X
φ(s, t, t′, r)dν =

k∑

i=1

∫

Xi

φ(si, ti, t
′
i, ri)dνi,

whatever the functions s, t, t′, r ∈ L0 and mappings φ from R4
+ into R.
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3. Assumptions on N and S

Let τ, γ be positive numbers. For (t, t′) ∈ L2
0 and y > 0, let us set

w2(t, t′, y) =
[
H2 (s, t) +H2

(
s, t′
)]

∨ y2.

We assume that the family S and the measure N satisfy the following.

Assumption 1. Let τ and γ be fixed positive numbers and c0 ∈ (0, 1− 1/
√
2). For

all pairs (S, S′) ∈ S2, there exist positive numbers D(S), D(S′) such that for all ξ > 0
and y2 ≥ τ (D(S) ∨D(S′) + ξ),

P

[
sup

(t,t′)∈S×S′

Z(N, t, t′)

w2(t, t′, y)
> c0

]
≤ γe−ξ.

This assumption means that for ξ large enough the random process Z(N, t, t′) is
uniformly controlled by w2(t, t′, y) over S × S′ with probability close to 1. As we
shall see on examples, such a property can be derived from concentration inequali-
ties. Under suitable assumptions, the quantities D(S) measure (in some sense) the
massiveness of the parameter sets S. Assumption 1 is met in the following typical
examples.

3.1. Discrete models. When the collection S consists of discrete models S, As-
sumption 1 holds under mild conditions on N . The proof of the following proposition
is postponed to Section 9.1.

Proposition 2. Let a, b, c and M be nonnegative numbers and c0 ∈ (0, 1 − 1/
√
2).

Assume that N satisfies for all y, ξ > 0

(13) sup
t,t′∈B(s,y)

P
[
Z(N, t, t′) > ξ

]
≤ b exp

[
− aξ2

y2 + cξ

]
.

Besides, assume that for all S ∈ S there exists η(S) ≥ 1/2 such that for all R ≥ 2η(S)

(14)
∣∣S ∩ B(s,R

√
τ)
∣∣ ≤M exp

(
R2

2

)
with τ =

4(2 + cc0)

ac20
.

Then, Assumption 1 holds with γ = bM2 and D(S) = 4η2(S) for all S ∈ S.

Inequality (14) imposes that the number of points of S within balls of radiiR ≥ 2η(S)
be not larger that M exp

(
R2/2

)
. One needs to choose the parameter η(S) large

enough if the set S is too massive, that is, if it contains a large number of points
within small balls. As to inequality (13), it typically derives from Bernstein’s and is
met in all the examples mentioned in the introduction.

Proposition 3. Inequality (13) holds with a = n2/12, b = 1 and c = n
√
2/6 for

Example 1, with a = 1/12, b = 1 and c =
√
2/6 for Example 2 and with a = 1/12,
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b = 1 and c =
√
2/36 for Example 4. As to Example 3, if there exist nonnegative

numbers σ and β such that for all i ∈ {1, . . . , n}, Xi satisfies

(15) E

[
eu(Xi−s(i))

]
≤ exp

[
u2σs(i)

2(1− |u|β)

]
∀u ∈ (−1/β, 1/β),

then (13) holds with a = 1/(12σ), b = 1 and c = β
√
2/(12σ).

The value of τ given in Proposition 2 is of order 1/n in the density case and is of
order a constant in the other cases. The proof of Proposition 3 is postponed to
Section 9.2.

3.2. Piecewise constant parameter sets. Assume that k = 1 and define for any
finite partition m of X the set Sm gathering the elements of L0 which are piecewise
constant on each element of the partition m, that is

Sm =

{∑

I∈m

aI1lI
∣∣ (aI)I∈m ∈ R|m|

}⋂
L0.

LetM be a countable set consisting of such partitions. The family S = {Sm, m ∈ M}
and the measure N satisfy Assumption 1 provided that the following holds.

Proposition 4. Let a and δ be positive numbers. For any finite partition m of X ,
set

X 2(m) =
∑

I∈m

(√
N(I)−

√
E(N(I))

)2

and assume that N satisfies for all ξ > 0

(16) P
[
X 2(m) ≥ a (|m|+ ξ)

]
≤ e−ξ.

Besides, assume that for all m,m′ ∈ M,

(17)
∣∣m ∨m′

∣∣ ≤ δ
(
|m| ∨

∣∣m′
∣∣)

where m ∨m′ = {I ∩ I ′, (I, I ′) ∈ m×m′}. Then Assumption 1 holds with γ = 1,
τ = 20ac−2

0 and D(Sm) = δ|m| for all m ∈ M.

In this case, the parameterD(Sm) is proportional to the dimension of the linear space
generated by Sm. The assumptions given by (16) and (17) also appeared in Baraud
and Birgé (2009) as Assumptions H and H’ in their Theorem 6. Inequality (16) can
be obtained from concentration inequalities of suprema of empirical processes (based
on N) over classes of uniformly bounded functions. In particular, the following result
is proved in Baraud and Birgé (2009).

Proposition 5. Inequality (16) holds with a = 200/n in the case of Example 1,
with a = 6 in the case of Example 4 and, in the case of Example 3, with

a = 3κ

(
1/
√
2 +

√(
β

κ
− 1

2

)

+

)
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provided that for some β ≥ 0 and κ > 0, the Xi satisfy for i = 1, . . . , n

E

[
eu(Xi−s(i))

]
≤ exp

[
κ

u2s(i)

2(1− uβ)

]
for all u ∈

[
0,

1

β

[
,

with the (convention 1/β = +∞ if β = 0), and

E

[
e−u(Xi−s(i))

]
≤ exp

[
κ
u2s(i)

2

]
for all u ≥ 0.

One can check that the value of τ given in Proposition 4 is then of order 1/n in the
density case and otherwise is of order a constant.

4. The selection procedure and the main result

Let {ŝλ, λ ∈ Λ} be a collection of estimators of s with values in L0 based on the
observation N and let S be a countable family of subsets S of L0. We recall that
together with S, we consider a nonnegative map ∆ on S satisfying (4) and in order
to simplify the presentation of our results, we assume that ∆(S) ≥ 1 for all S ∈ S.
Throughout, c0 is an arbitrary number in (0, 1− 1/

√
2).

4.1. The estimation procedure. We associate to each λ ∈ Λ, both a family of
(possibly random) subsets Sλ of S and a penalty function penλ from

⋃
S∈Sλ

S into
R+. The procedure includes three steps.

Step 1: Construction of intermediate estimators.
Let τ > 0. For each λ, define s̃λ as any element of

⋃
S∈Sλ

S such that

(18) H2(ŝλ, s̃λ) + penλ(s̃λ) ≤ A(ŝλ, Sλ) + c0τ

where A(ŝλ, Sλ) is given by (5). When Sλ reduces to a single model Sλ containing
ŝλ with probability one and when penλ is constant over Sλ, one may choose s̃λ = ŝλ,
what we shall do for simplicity throughout this paper.

Step 2: Pairwise comparison of the estimators s̃λ.
Given a pair (s̃λ, s̃λ′) such that s̃λ 6= s̃λ′ , we consider the test statistic

T(N, s̃λ, s̃λ′) =

[
ρr(N, s̃λ′)− 1

2

∫

X
s̃λ′dµ− penλ′(s̃λ′)

]
(19)

−
[
ρr(N, s̃λ)−

1

2

∫

X
s̃λdµ− penλ(s̃λ)

]

where r = (s̃λ + s̃λ′)/2 and ρr(N, .) is given by (11). We set

E(s̃λ) = {s̃λ′ , T(N, s̃λ, s̃λ′) ≥ 0}
and note that either s̃λ ∈ E(s̃λ′) or s̃λ′ ∈ E(s̃λ) since T(N, s̃λ, s̃λ′) = −T(N, s̃λ′ , s̃λ).
Then, we define

D(s̃λ) = sup
{
H2 (s̃λ, s̃λ′)

∣∣ s̃λ′ ∈ E(s̃λ)
}

if E(s̃λ) 6= ∅

and D(s̃λ) = 0 otherwise.



12 YANNICK BARAUD

Step 3: The final selection.
Select λ̃ among Λ as any element satisfying

D(s̃λ̃) ≤ D(s̃λ) + c0τ, ∀λ ∈ Λ

and λ̂ as any element of Λ such that

H2(ŝλ̂, s̃λ̃) ≤ inf
λ∈Λ

H2(ŝλ, s̃λ̃) + c0τ.

Our final estimator is s̃ = ŝλ̂.

4.2. Discussion about the procedure. The choice of the value c0 is arbitrary in
(0, 1 − 1/

√
2) and can be fixed to (

√
2 − 1)/(2

√
2). It seemed interesting to show

how the constants we get in the risk bounds were depending upon the choice of
c0, at least in the proofs. Even though an optimization with respect to c0 looks
theoretically untractable, the computations show that choices of c0 too close to 0 or
to 1− 1/

√
2 lead to large constants and should therefore be avoided.

Let us now discuss the implementation issues. The computation of the estimator
s̃ requires the comparison pair by pair of the estimators s̃λ defined in Step 1. The
whole procedure may therefore be performed in about |Λ|2 steps once the s̃λ are
available. When the cardinality of Λ is not too large, the main difficulty lies in the
computations of the s̃λ. In the most favorable situations, one may take Sλ as a
(possibly random) singleton Sλ for each λ ∈ Λ and the penalty function penλ to be
constant over Sλ. In this case, s̃λ may be chosen as the best approximation of ŝλ in
Sλ. Whenever the model Sλ is simple enough, this step can therefore be performed
in a reasonable amount of time. Nevertheless, we sometimes use models S which
result from an abstract discretization of manifolds and, in this least favorable case,
the s̃λ are abstract as well.

4.3. The main result. We recall that for all t ∈ L0 and λ ∈ Λ,

Sλ(t) = {S ∈ Sλ, t ∈ S} .
We obtain the following result the proof of which postponed to Section 9.4.

Theorem 1. Let c0 ∈ (0, 1 − 1/
√
2). Assume that N and S satisfy Assumption 1

for some positive constants τ and γ and let ∆ be some mapping from S into [1,+∞)
satisfying (4). By applying the selection procedure of Section 4.1 with penalties penλ
satisfying for all λ ∈ Λ and t ∈

⋃
S∈Sλ

S,

(20) penλ(t) ≥ c0τ inf {D(S) + ∆(S), S ∈ Sλ (t)} ,
the estimator s̃ = ŝλ̂ satisfies for all ξ > 0,

P

[
CH2 (s, s̃) ≥ inf

λ∈Λ

[
H2 (s, ŝλ) +A(ŝλ, Sλ)

]
+ τξ

]
≤
(
γΣ2e−ξ

)
∧ 1,

where C is a positive constant depending on c0 only and

A(ŝλ, Sλ) = inf
S∈Sλ

inf
t∈S

[
H2(ŝλ, t) + penλ(t)

]
, ∀λ ∈ Λ.
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In particular, by integration with respect to ξ, for some C ′ depending on c0, γ and
Σ only

C ′E
[
H2 (s, s̃)

]
≤ E

[
inf
λ∈Λ

{
H2 (s, ŝλ) +A(ŝλ, Sλ)

}]

≤ inf
λ∈Λ

{
E
[
H2 (s, ŝλ)

]
+ E [A(ŝλ, Sλ)]

}
.(21)

We deduce from Theorem 1 the following corollary.

Corollary 2. Under the assumptions of Theorem 1, if for all λ ∈ Λ, ŝλ ∈
⋃

S∈Sλ
S

with probability 1 and if equality holds in (20), then

C ′E
[
H2 (s, s̃)

]
≤ inf

λ∈Λ

{
E
[
H2 (s, ŝλ)

]
+ 2c0E

[
v2(ŝλ)

]}
(22)

where C ′ depends on c0, γ and Σ only and

(23) v2(ŝλ) = τ

[
inf

S∈Sλ(ŝλ)
D(S) ∨∆(S)

]
for all λ ∈ Λ.

Inequality (22) compares the risk of the resulting estimator s̃ to those of the ŝλ plus
an additional term E

[
v2(ŝλ)

]
. If for some deterministic S ∈ Sλ, the estimator ŝλ

belongs to S with probability 1, we obtain that

(24) v2(ŝλ) ≤ τ [D(S) ∨∆(S)]

and hence E
[
v2(ŝλ)

]
is small compared to the risk of ŝλ as soon as for some universal

constant C ′′ > 0,

C ′′E
[
H2 (s, ŝλ)

]
≥ τD(S) for all s ∈ L0.

We emphasize that (24) does not depend on the cardinality of the collection of
estimators {ŝλ, λ ∈ Λ}. In particular, if with probability one all the estimators
ŝλ belong to a same deterministic model S ∈

⋂
λ∈Λ Sλ, by setting ∆(S) = 1, the

resulting estimator s̃ satisfies

C ′′′E
[
H2(s, s̃)

]
≤ inf

λ∈Λ
E
[
H2 (s, ŝλ)

]
+ τ (D(S) ∨ 1)

no matter how large this collection is. For a choice of {ŝλ, λ ∈ Λ} which is countable
and dense in S, we therefore get

sup
s∈S

E
[
H2(s, s̃)

]
≤ C ′τ (D(S) ∨ 1) ,

showing thus that the quantity τ (D(S) ∨ 1) is an upper bound for the minimax rate
over S.

5. Selecting among histogram-type estimators

Throughout this section, k = 1 and we consider a countable family M of finite parti-
tions of X satisfying (17). We associate toM the family of models S = {Sm,m ∈ M}
described in Section 3.2. We assume that the measure N satisfies (16) and set
τ = 20ac−2

0 . As already seen in Proposition 4, inequalities (17) together with (16)
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imply that Assumption 1 holds and we may therefore apply our main theorem (The-
orem 1). The statistical settings we have in mind include Examples 1, 3 and 4 for
which we already know from Proposition 5 that (16) holds true for a suitable value
of a. We restrict ourselves to families of estimators ŝλ with values in

⋃
m∈M Sm

which allows us to associate to each λ some (possibly random) partition m̂(λ) ∈ M
such that ŝλ ∈ Sm̂(λ) with probability 1. For all λ ∈ Λ, we choose Sλ =

{
Sm̂(λ)

}
and

penλ constant over Sm̂(λ) for the sake of simplicity. We may therefore take s̃λ = ŝλ
for all λ ∈ Λ in our selection procedure which only depends now on the choice of
penλ(ŝλ). We deduce from Theorem 1 the following result.

Theorem 2. Assume that N and S satisfy (16) and (17) respectively. Let {ŝλ, λ ∈ Λ}
be a collection of estimators of s with values in

⋃
m∈M Sm. If for all λ ∈ Λ,

(25) penλ(ŝλ) ≥ c0τ
[
δ|m̂(λ)|+∆(Sm̂(λ))

]
,

the estimator s̃ satisfies for some positive constant C depending on c0 and Σ only,

CE
[
H2 (s, s̃)

]
≤ E

[
inf
λ∈Λ

[
H2 (s, ŝλ) + penλ (ŝλ)

]]

≤ inf
λ∈Λ

{
E
[
H2 (s, ŝλ)

]
+ E [penλ (ŝλ)]

}
.

In particular, if equality holds in (25)

C ′E
[
H2 (s, s̃)

]
≤ inf

λ∈Λ

{
E
[
H2 (s, ŝλ)

]
+ τE

[
|m̂(λ)| ∨∆(Sm̂(λ))

]}
,

for some C ′ depending on c0,Σ and δ only.

Let us now turn to examples.

5.1. Model selection. Theorem 2 holds for any choices of estimators {ŝλ, λ ∈ Λ}
with values in

⋃
m∈M Sm. However, the estimators ŝm defined by

(26) ŝm =
∑

I∈m

N(I)

µ(I)
1lI for m ∈ M

are of special interest. Note that when µ(I) = 0, E(N(I)) =
∫
I sdµ = 0 and

N(I) = 0 a.s., the estimator ŝm is well-defined with the convention 0/0 = 0 and
c/∞ = 0 for c > 0. Besides, in the context of Example 1, ŝm belongs to L0 (that
is, ŝm is a density on X ) as soon as µ is finite on X . For these estimators, one can
prove (we refer to Baraud and Birgé (2009)) that for all m ∈ M,

E
[
H2(s, ŝm)

]
≤ 4

(
H2(s, Sm) + τ |m|

)
.

By applying Theorem 2 with Λ = M and for all m ∈ M, Sm = {Sm} and

penm(t) = c0τ (δ|m|+∆(Sm)) , ∀t ∈ Sm

we obtain the following result.
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Corollary 3. Assume N and S satisfy (16) and (17) respectively. The estimator s̃
satisfies for some constant C depending on c0, δ and Σ only

CE
[
H2 (s, s̃)

]
≤ inf

m∈M

{
E
[
H2(s, ŝm)

]
+ τ (|m| ∨∆m)

}

≤ inf
m∈M

[
H2 (s, Sm) + τ(|m| ∨∆m)

]
.

This corollary recovers the results of Theorem 6 in Baraud and Birgé (2009) even
though the selection procedure is different. The choice of a suitable family M of
partitions is of course a crucial point in view of deducing nice statistical properties
for s̃. This point has been discussed in Baraud and Birgé (2009) (see their Section 3).
However, the familiesM proposed there have large cardinalities and the computation
of s̃ becomes unfortunately NP-hard.

5.2. Selecting among histograms based on random partitions. In this sec-
tion, we focus on the problem of estimating a density or the intensity of a Poisson
process by an histogram(-type) estimator. More precisely, we consider the frame-
works described in Examples 1 and 4 with X = [0, 1) and µ the Lebesgue measure.
As already mentioned, the model selection approach developed in the previous sec-
tion has the advantage to design an estimator possessing nice theoretical properties
for suitable choices of families M but also has the drawback to be practically in-
tractable for such choices. In view of designing a practical procedure for the problem
of estimating a density, one may prefer families containing fewer but possibly data-
dependent partitions. For illustration, we consider a family of random partitions the
elements of which contain a same number of data (with a possible exception for the
rightmost). Our selection procedure gives a practical way of choosing the number of
data that should be put in each bin of an histogram and provides thus an alternative
to the cross-validation techniques which are quite popular in density for selecting
such tuning parameters. This family of partitions can also be used for the problem
of estimating the intensity of a Poisson process, the only difference being that the
number n = N([0, 1)) of observations becomes now randomly drawn from a Poisson

distribution with parameter n̄ =
∫ 1
0 s(x)dx (that we assume to be positive).

The procedure. For n ≥ 1, let M̂ be the random variable defined as the smallest
integer for which each interval [(i− 1)/M, i/M [ with i = 1, . . . ,M contains at most
one datum. For λ ∈ {1, . . . , n}, define m̂(λ) as any partition of [0, 1) based on the

grid {i/M̂, i = 1, . . . , M̂} for which |I ∩ {X1, . . . , Xn}| = λ for all intervals I in m̂(λ)
(with a possible exception for the rightmost). Note that |m̂(λ)| ≤ nλ−1 + 1. Let us
now define our collection of estimators. It would be natural to take Λ = {1, . . . , n}
in order to index the family of estimators ŝm̂(λ) defined by (26). However, this choice
of Λ has the drawback to be random in the Poisson case and we rather take Λ = N∗

and define ŝλ as ŝm̂(λ) when λ ≤ n and as n1l[0,1[ when λ > n. Note that both

collections {ŝλ, λ ∈ Λ} and
{
ŝm̂(λ), λ ∈ {1, . . . , n}

}
coincide on the event {n ≥ 1}.

As to the family M, we introduce for each positive integerM the family of partitions
MM consisting of intervals with end points belonging to {i/M, i = 0, . . . ,M} and
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set M =
⋃

M≥1MM . Finally, we define ∆ as follows. First, for M = 1 M1 reduces

to {[0, 1)} and we set ∆(S{[0,1)}) = 1. Then we define recursively for M ≥ 2 and

m ∈ MM \
⋃M−1

k=1 Mk, ∆(Sm) = (|m|+2) log(M). Our choice of ∆ satisfies (4) since

∑

m∈M

e−∆(Sm) ≤
∑

M≥1

M∑

D=1

∑

m∈MM ,|m|=D

e−(D+2) log(M)

≤
∑

M≥1

M−2
(
1 +M−1

)M ≤ eπ2

6
< +∞.

The computation of s̃ requires n(n−1)/2 steps to compare the estimators ŝλ pair by
pair plus n additional steps to minimize λ 7→ D(ŝλ) for λ ∈ {1, . . . , n}. The whole
selection procedure can therefore by implemented in about n2 steps.

In view of facilitating the comparison of the risk bounds between the density and
Poisson frameworks, we shall use the notation h for the Hellinger distance in the
density case and the normalized Hellinger-type distance H/

√
n in the Poisson case.

Corollary 4. Assume that ‖s‖Lq
=
(∫ 1

0 s
q
)1/q

< +∞ for some q > 1. If for all

λ ∈ Λ,

penλ(ŝλ) = 2c0τ
[
(nλ−1 + 1) log(e+ M̂)1lλ≤n + 1lλ>n

]
,

the estimator s̃ = ŝλ̂ satisfies for some C depending on q only

CE
[
h2(s, s̃)

]
≤ inf

1≤λ≤n


E
[
h2 (s, ŝλ)

]
+

log
(
e+ n2 ‖s‖Lq

)

λ




in the density case, and in the Poisson case

CE

[
H2(s, s̃)

n

]
≤ inf

λ≥1


E
[
H2 (s, ŝλ)

n

]
+

log
(
e+ n̄2 ‖s/n‖Lq

)

λ ∧ n̄


 .

Even though the estimators ŝλ are widely used in practice, at least for the purpose
of estimating a density, little is known about their risks. In density estimation,
the only result we are aware of is due to Lugosi and Nobel (1996) showing that if
λ = λ(n) satisfies both λ(n) → +∞ and λ(n)/n → 0 as n tends to infinity, the
L1-norm between s and ŝλ(n) tends to 0 a.s. (and therefore so does the Hellinger
distance). The assumption that for some q > 1, sq is integrable is technical and

ensures that the cardinality M̂ of the random grid {i/M̂, i = 1, . . . , M̂} keeps to a
reasonable size as n increases.

6. Collections of models with bounded metric dimensions

Throughout this section, we consider a family S of subsets of L0 with metric di-
mensions bounded by D(., .) (in the sense of Definition 6 in Birgé (2006)). More
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precisely, we assume that for some universal constant M > 0, all S ∈ S and η > 0
there exist a number D(S, η) ∈ [1/2,+∞) and a discrete subset S[η] ⊂ L0 such that

(27) H(t, S[η]) ≤ η
√
τ , for all t ∈ S

and for all s ∈ L0 and R ≥ 2η,

(28)
∣∣S[η] ∩ B(s,R

√
τ)
∣∣ ≤M exp

[
D(S, η)

(
R

η

)2
]
.

Furthermore, it is assumed that the mapping η 7→ D(S, η) is right-continuous
and, with no loss of generality, that is also non-increasing on (0,+∞). It follows
from (27) and (28) that sets S with bounded metric dimensions may be approx-
imated at any scale by discrete sets with controlled massiveness. Any compact
set S has a bounded metric dimension: by definition for all η > 0 one can find
a finite subset S[η] of S satisfying (27) and hence (28) holds with M = 1 and
D(S, η) = 4−1max

{
log
∣∣S[η]

∣∣ , 2
}
≥ 1/2.

As to the measureN , we assume that it satisfies (13) and we take τ = 4(2 + cc0)/(ac
2
0)

all along. As shown by Proposition 3, this assumption on N is met in all the ex-
amples of Section 1.1 and τ is then of order a constant (except in the density case
where it is of order 1/n). To our knowledge, the results of this section are new for
the problems presented in Examples 2 and 3 and we believe that they can also be
solved by using the robust tests described in Birgé (1984b) and Birgé (2007) in the
contexts of Examples 1 and 4 respectively.

6.1. The selection procedure and the main result. We start with a collection
of estimators {ŝλ, λ ∈ Λ}, a family S of models S with bounded metric dimensions
and a mapping ∆ on S with values in [1,+∞) satisfying (4). We associate to each
model S ∈ S its discrete version

(29) S = S[η] with η = η(S) = inf
{
η > 0, η2 ≥ 2D(S, η)

}
≥ 1

and consider the family S of those S when S runs among S. Since the mappings
D(S, .) are right-continuous and non-increasing, the sets

{
η > 0, η2 ≥ 2D(S, η)

}

are non-void and contain their smallest elements η(S) for all S ∈ S. In order to
select among the family {ŝλ, λ ∈ Λ}, we use the selection procedure described in
Section 4.1 with the choices Sλ = S for all λ ∈ Λ, ∆(S) = ∆(S) for all S ∈ S and

penλ(t) = pen(t) = c0τ inf
S∈S(t)

[
4η2(S) + ∆(S)

]

for all t ∈
⋃

S∈S S and λ ∈ Λ.

For the choice of η(S) given by (29), inequality (14) holds for all S ∈ S and therefore
by Proposition 2, N and S satisfy Assumption 1 with D(S) = 4η2(S) and γ = bM2.
In particular, pen satisfies (20). Finally, note that under (27) for all λ ∈ Λ and
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S ∈ S,

A (ŝλ, S) ≤ inf
t∈S

[
H2 (ŝλ, t) + pen(t)

]

≤ 2H2
(
ŝλ, S

)
+ 2τη2

(
S
)
+ c0τ

[
4η2(S) + ∆(S)

]

≤ 2H2
(
ŝλ, S

)
+ τ

(
6η2(S) + ∆(S)

)
.

By applying Theorem 1 we therefore deduce the following result.

Theorem 3. Let {ŝλ, λ ∈ Λ} be a family of estimators based on a measure N
satisfying (13). Let us assume that the family S consists of subsets S of L0 with
bounded metric dimensions D(S, η) and that ∆ is a mapping from S into [1,+∞)
satisfying (4). By applying the selection procedure described above, the resulting
estimator s̃ satisfies

CE
[
H2 (s, s̃)

]

≤ inf
λ∈Λ

{
E
[
H2 (s, ŝλ)

]
+ E

[
inf
S∈S

[
H2(ŝλ, S) + τ

(
η2
(
S
)
∨∆

(
S
))]]}

where η(S) is given by (29) and C is a positive number depending on c0, b,M and
Σ only. In particular, if for all λ ∈ Λ there exists some (possibly random) model
Sλ ∈ S such that ŝλ ∈ Sλ with probability 1,

(30) CE
[
H2 (s, s̃)

]
≤ inf

λ∈Λ

{
E
[
H2 (s, ŝλ)

]
+ τE

[
η2
(
Sλ

)
∨∆

(
Sλ

)]}
.

Let us now turn to examples.

6.2. Aggregation of arbitrary points. We assume here that the estimators ŝλ
are deterministic and to emphasize the fact that they do not depend on N , denote
them sλ hereafter. Typically, one should think of the sλ as estimators of s based on
an independent copy N ′ of N in which case the result below should be understood as
conditional on N ′. In view of selecting among these points, we consider the family
of models S given by S = {{sλ} , λ ∈ Λ}. Since each element S of S reduces to a
single point, its metric dimension can be chosen as D(S, η) = 1/2 for all η > 0 and
hence η(S) = 1. We deduce from Theorem 3 the following result.

Corollary 5. Let N be some random measure satisfying (13), {sλ, λ ∈ Λ} a count-
able collection of points in L0 and ∆ a mapping from S into [1,+∞) satisfying (4).
By applying the selection procedure described in Section 6.1 the estimator s̃ satisfies

CE
[
H2 (s, s̃)

]
≤ inf

λ∈Λ

{
H2 (s, sλ) + τ∆(sλ)

}

for some positive number C depending on c0, b and Σ only. In particular, if Λ is
finite, by choosing ∆(sλ) = 1 + log |Λ| we obtain

E
[
H2 (s, s̃)

]
≤ C inf

λ∈Λ

[
H2 (s, sλ) + τ log |Λ|

]
.
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6.3. Construction of T -estimators. Let us start with a family of models S with
finite metric dimensions and consider the family of estimators (in fact points) ob-
tained by gathering the elements of the sets S defined in Section 6.1 as they run
among S. That is {ŝλ, λ ∈ Λ} =

⋃
S∈S S. Because of (27), this collection of es-

timators satisfies infλ∈ΛH (s, ŝλ) ≤ H(s, S) + η(S)
√
τ for all s ∈ L0 and S ∈ S.

By applying the selection procedure of Section 6.1 the resulting estimator s̃ turns
to be a T -estimator (according to Definition 2 in Birgé (2006)). We deduce from
Theorem 3 the following result for s̃.

Corollary 6. Let N be some measure satisfying (13), S a countable collection of
subsets S of L0 with bounded metric dimensions D(S, η) and ∆ a mapping on S

satisfying (4). By applying the selection procedure described in Section 6.1 to the
family of points

⋃
S∈S S with S defined by (29), the resulting estimator s̃ is a T -

estimator which satisfies

E
[
H2 (s, s̃)

]
≤ C inf

S∈S

[
H2(s, S) + τ

(
η2(S) ∨∆(S)

)]

for some C depending on c0, b,M and Σ only.

This result recovers Corollary 4 in Birgé (2006) in the density case and Theorem 3
in Birgé (2007) in the Poisson case. Example 2 was also considered in Birgé (2006)
(Proposition 6) but for a different loss function. The case of Example 3 is to our
knowledge new.

6.4. Estimators with values in a simplex and convex aggregation. In this
section, we assume that L0 is a convex subset of L and consider a family {t1, . . . , tM}
of M ≥ 2 distinct points of L0. We denote by M the class of nonempty subsets m
of {1, . . . ,M} and define Sm as the convex hull of the ti for i ∈ m, namely

Sm =

{∑

i∈m

qiti
∣∣ (qi)i∈m ∈ R

|m|
+ ,

∑

i∈m

qi = 1

}
⊂ L0.

Along the section, we assume that the estimators ŝλ take their values in the convex
hull of {t1, . . . , tM}, that is, in

(31) C =
⋃

m∈M

Sm =

{
M∑

i=1

qiti
∣∣ q1, . . . , qM ∈ R+,

M∑

i=1

qi = 1

}
⊂ L0.

As usual, our aim is to select some estimator s̃ among the collection {ŝλ, λ ∈ Λ} at
best.

6.4.1. The example of convex aggregation. When the set {t1, . . . , tM} corresponds
to M preliminary estimators of s (say obtained from an independent copy N ′ of N),
the problem of looking for some best convex combination of these is usually called
convex aggregation. Given some integer D ∈ {1, . . . ,M}, we tackle this problem by
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considering the (countable) collection of estimators (in fact points) given by

(32)

{
sλ =

M∑

i=1

λiti, λ ∈ Λ

}

with

Λ = ΛD,M =

{
λ ∈ QM

+ ,

M∑

i=1

λi = 1, |{i, λi 6= 0}| ≤ D

}
.

The choices D = 1 and D = M correspond to the problems of estimator selection
and convex aggregation respectively. These problems are particular cases of that
of aggregation which aims at designing a suitable combination of given estimators
in order to outperform each of these separately (and even the best combination
of these) up to a remaining term. Aggregation techniques can be found in Ju-
ditsky and Nemirovski (2000), Nemirovski (2000), Yang (2000a), (2000b), (2001),
Tsybakov (2003), Wegkamp (2003), Birgé (2006), Rigollet and Tsybakov (2007),
Bunea, Tsybakov and Wegkamp (2007), Goldenshluger (2009) for Lp-losses, and
Catoni (2004) (we refer to his course of Saint Flour which takes back some mixing
techniques he introduced earlier). Most of the aggregation procedures are based on a
sample splitting and therefore usually requires that the data be i.i.d.. In a non-i.i.d.
case, some nice results of aggregation can be found in Leung and Barron (2006)
for the problem of mixing least-squares estimators of a mean of a Gaussian vector
Y . In their paper, they assume that the components of Y are independent with a
known common variance. Giraud (2008) extended their results to the case where it
is unknown.

6.4.2. The selection procedure. In order to select among the estimators {ŝλ, λ ∈ Λ},
we apply the selection procedure described in Section 6.1 with the family of models
S =

{
Sm,m ∈ M

}
. To do so, we need to find a mapping ∆ on S with values in

[1,+∞) satisfying (4) and build an η
√
τ -net Sm[η] of Sm for all η > 0 and m ∈ M.

Concerning ∆, we choose ∆
(
Sm

)
= |m|(1 + log(eM/|m|)) for all m ∈ M. It

satisfies (4) since for all D ∈ {1, . . . ,M},
(
M
D

)
≤ log(eM/D) and hence

∑

m∈M

e−∆(Sm) ≤
M∑

D=1

(
M

D

)
e−D(1+log(eM/D)) ≤

∑

D≥1

e−D < 1.

Let us now fix some η > 0 and m ∈ M and discretize Sm. If for some i ∈ {1, . . . ,M}
m = {i}, we can merely take S{i}[η] = Si. If |m| ≥ 2, write m as

{
i1, . . . , i|m|

}
with

1 ≤ i1 < . . . < i|m| ≤M and for

(33) ε = min

{
η2τ

(|m| − 1) ‖t‖1
; 1

}
with ‖t‖1 = max

i=1,...,M

∫

X
tidµ
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define Sm[η] ⊂ Sm as the set gathering the elements of the form

|m|−1∑

j=1

qij tij +


1−

|m|−1∑

j=1

qij


 ti|m|

where the qij vary among
{
ℓε, ℓ = 0, . . . ,

⌊
ε−1
⌋}

and satisfy
∑|m|−1

j=1 qij ≤ 1. The
following result holds.

Proposition 6. For all η > 0 and all non-void subsets m of {1, . . . ,M}, the subset
Sm[η] defined above is an η

√
τ -net for Sm which satisfies

log |Sm[η]| ≤ |m| log(1 +
⌊
ε−1
⌋
)

where ε is given by (33) with the convention ε−1 = 0 if |m| = 1. In particular, the
metric dimension D(Sm, η) of Sm may be chosen as

D(Sm, η) = |m| log
(
1 +

(|m| − 1) ‖t‖1
η2τ

∨ 1

)
≥ 1

2
.

Some simple calculations show that for all m ∈ M, the quantity η(Sm) given by (29)
satisfies

η2(Sm) ≤ 2|m| log
(
1 +

(|m| − 1) ‖t‖1
|m|τ ∨ 1

)
for all m ∈ M.

6.4.3. The Main result. Hereafter, m̂(λ) denotes any (possibly random) element of
M for which ŝλ ∈ Sm̂(λ). We deduce from Theorem 3 the following result.

Corollary 7. Let N be some measure satisfying (13) and {ŝλ, λ ∈ Λ} a collection
of arbitrary estimators with values in the simplex C given by (31). Let L be the
mapping defined on N∗ by

L(k) =

{
log(M) if k = 1

1 +max
{
log
(
Mk−1

)
; log

(
‖t‖1 τ−1

)}
otherwise.

By applying the selection procedure described above, the resulting estimator s̃ satisfies

CE
[
H2(s, s̃)

]

≤ inf
λ∈Λ

{
E
[
H2(s, ŝλ)

]
+ E

[
inf

m∈M

[
H2(ŝλ, Sm) + τ |m|L(|m|)

]]}

≤ inf
λ∈Λ

{
E
[
H2(s, ŝλ)

]
+ τE [|m̂(λ)|L(|m̂(λ)|)]

}

where C depends on c0 and b only.

For the problem of convex aggregation, that is, by considering the collection of points
{sλ, λ ∈ Λ} defined by (32) with D =M , the estimator s̃ satisfies

(34) CE
[
H2(s, s̃)

]
≤ inf

m∈M

[
H2(s, Sm) + τ |m|L(|m|)

]
.
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Let us comment on this result in the density framework. In this case, ‖t‖1 = 1 and
τ is of order 1/n. If one considers the collection of points {sλ, λ ∈ Λ} given by (32)
with D =M , the right-hand side of (34) is of the form

inf
m∈M

{
H2(s, Sm) +

|m|L(|m|)
n

}
= inf

D=1,...,M

[
inf

λ∈ΛD,M

H2(s, sλ) +
DL(D)

n

]

where L(1) = log(M) and L(D) is of order max {log(eM/D); log(n)} otherwise. In
the density case, the problem of aggregatingM densities has also been considered in
Birgé (2006) and Rigollet and Tsybakov (2007). In this latter paper, it is shown that
the optimal rate of aggregation associated to the simplex ΛM,M is of order M/n for
the L2-norm and leads thus to risk bounds which are similar to ours (up to constants
and log(n) factors). The result we get is similar to Birgé (2006) for the L1-norm (up
to the logarithmic factor). We do not know whether this extra logarithmic factor is
due to our discretization procedure or to the loss function we use.

7. Estimating the means of nonnegative random variables

In this section, we consider the statistical setting described in Example 3 and assume
that (15) holds. We recall that it is satisfied for a large class of distributions including
any random variables with values in [0, β] (then σ = β), the Binomial distribution
(then σ = 1 = β), the Poisson distribution (for the same choice of parameters), or the
Gamma distribution γ(p, q) (with mean p/q and β = 1/q = σ). By expanding (15)
in a vicinity of 0, it is easy to see that (15) implies that Var(Xi) ≤ σE(Xi) for all
i = 1, . . . , n. Throughout, we identify with the same notation the functions t on
X = {1, . . . , n} with the vectors (t1, . . . , tn) = (t(1), . . . , t(n)). The distance

√
2H

between two elements t, t′ ∈ L0 corresponds to the Euclidean distance between
the vectors

√
t and

√
t′ and it seems natural to approximate the parameter

√
s

with respect to the Euclidean norm ‖ ‖. For this purpose, we introduce a family
V of linear subspaces V of Rn with respective (linear) dimensions denoted D(V ).
Together with this family, we associate, as usual, a mapping ∆ on V satisfying (4).
The aim of this section is to design an estimator s̃ satisfying the following risk bound

(35) C ′E
[
H2 (s, s̃)

]
≤ inf

V ∈V

[
inf
v∈V

∥∥√s− v
∥∥2 +D(V ) ∨∆(V )

]
for all s ∈ Rn

+.

To do so, we associate to each linear space V , some discrete set V ⊂ Rn
+ obtained

by the discretization device described in Birgé (2006). More precisely, the following
result holds.

Proposition 7. Let τ > 0 and C be some closed convex subset of Rn and V ⊂ Rn

a linear subspace with dimension D(V ). For all η > 0, there exists a discrete subset
V (η) ⊂ C such that whatever f ∈ C,

(36) inf
v∈V (η)

‖f − v‖ ≤ 4

[
inf
v∈V

‖f − v‖+ η
√
τ

]
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and for all R ≥ 2η,

(37)
∣∣{v ∈ V (η), ‖f − v‖ ≤ R

√
τ
}∣∣ ≤ exp

[
5D(V )

(
R

η

)2
]
.

We apply the proposition with C = Rn
+ and for V ∈ V, denote by V = V (η) the

discrete set resulting from the choice η = η(V ) =
√

20D(V ) and set

S(V ) =
{
(v21, . . . , v

2
n), v ∈ V

}
for all V ∈ V.

We shall now apply the selection procedure described in Section 4.1 with the collec-
tion of the estimators (in fact points) ŝλ = λ with λ ∈ Λ =

⋃
V ∈V S(V ) together with

the choices ∆(S(V )) = ∆(V ) and Sλ = S for all V ∈ V and λ ∈ Λ. We know from
Proposition 3 that N satisfies (13) with a = (12σ)−1, b = 1 and c = β

√
2/(12σ) and

since the mapping t 7→
√
t from (Rn

+,
√
2H) into (Rn

+, ‖ ‖) is an isometry, it follows

from (37) and our choice of η(V ) that all the models S(V ) of S satisfy (14) with
M = 1 and τ depending on σ and β only. By Proposition 2, N and S satisfy thus
Assumption 1 with D(S(V )) = 80D(V ) and τ given by (14). Finally, since (36)
implies 4−1

√
2H(s, S(V )) ≤ infv∈V ‖√s− v‖ + η

√
τ for all V ∈ V, we deduce from

Theorem 1 that the selected estimator s̃ satisfies the following:

Theorem 4. Let V be a countable family of linear spaces V with respective dimen-
sions D(V ) and ∆ a mapping from V into [1,+∞[ satisfying (4). By applying the
estimation procedure described above, one designs an estimator s̃ satisfying (35) for
some constant C ′ depending on c0, σ, β and Σ only.

7.1. Uniform convergence rates. In this section, we assume that
√
s is of the

form √
s =

√
sF = (F (x1), . . . , F (xn))

for some unknown nonnegative function F on [0, 1] and deterministic points 0 ≤
x1 < . . . < xn ≤ 1. For a suitable choice of V, our aim is to deduce from Theorem 4
uniform rates of convergence over classes of means Sα

p,∞(R) of the form Sα
p,∞(R) ={

sF , F ∈ Bα
p,∞(R)

}
⊂ Rn

+ where Bα
p,∞(R) is a Besov ball with radius R > 0 and

parameters α > 0 and p ∈ [1,+∞]. For a precise definition of Besov spaces, we refer
to DeVore and Lorentz (1993). The following result derives from Theorem 1 and
Proposition 1 in Birgé and Massart (2000).

Proposition 8. For all r ∈ N∗ and J ∈ N, there exist positive numbers C(r), C ′(r),
C ′′(r) and a family Vr,J of finite dimensional linear subspaces V of real-valued func-

tions on [0, 1] with the following properties: dim(V) ≤ C(r)2J for all V ∈ Vr,J ,

log |Vr,J | ≤ C ′(r)2J and for all α ∈ (1/p, r) and all F ∈ Bα
p,∞(R) there exists

G ∈ ⋃V∈Vr,J
V such that

sup
x∈[0,1]

|F (x)−G(x)| ≤ C ′′(r)R2−Jα.
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For V ∈ Vr,J , we define V = V (V) = {(G(x1), . . . , G(xn)), G ∈ V} ⊂ Rn and Vr,J

as the collection of those linear subspaces V as V runs among Vr,J . By applying

Theorem 4 with V =
⋃

r≥1,J≥0Vr,J and ∆(V ) = (C ′(r) + 1)2J + r for all V ∈ Vr,J ,
r ≥ 1 and J ≥ 0 we deduce the following result.

Corollary 8. By using the family of linear spaces V defined above, the estimator s̃
satisfies for all p ∈ [1,+∞], α > 1/p and R > 1/

√
n,

sup
s∈Sα

p,∞(R)
n−1H2 (s, s̃) ≤ CR2/(1+2α)n−2α/(1+2α),

where C depends on c0, τ and r.

To our knowledge, Example 3 has received little attention in the literature, especially
from a non-asymptotic point of view. The only exceptions we are aware of are An-
toniadis, Besbeas and Sapatinas (2001) (see also Antoniadis and Sapatinas (2001))
and Kolaczyk and Nowak (2004). In Antoniadis, Besbeas and Sapatinas (2001), the
authors estimate F 2 by a wavelet shrinkage procedure and show that the resulting
estimator achieves the usual estimation rate of convergence over Sobolev classes with
smoothness larger than 1/2. Kolaczyk and Nowak (2004) study the risk properties
of some thresholding and partitioning estimators. Their approach assumes that s
is bounded from above and below by positive numbers on X = {1, . . . , n}. Finally,
Baraud and Birgé (2009) tackled this problem but they restricted themselves to
histogram-type estimators and smoothness α ≤ 1 only.

7.2. Lower bounds. Let V be a linear subspace of Rn such that V ∩ Rn
+ 6= {0}.

By applying Theorem 4 with ∆(V ) = 1, we have

sup
s∈S

E
[
H2(s, s̃)

]
≤ C(τ)D

(
V
)

where S =
{
s,

√
s ∈ V

}
.

The aim of this section is bound the minimax risk over S from below. We assume
the following.

Assumption 2. The distribution of the random vector X = (X1, . . . , Xn) belongs
to an exponential family of the form

(38) dPθ(x1, . . . , xn) = exp

[
n∑

i=1

(θiT (xi)−A(θi))

]
n⊗

i=1

dν(xi) with θ ∈ Θn

where ν denotes some measure on R+, T is a map from R+ to R, θi are parameters
belonging to an open interval Θ such that

Θ ⊂
{
a ∈ R,

∫
exp [aT (x)] dν(x) < +∞

}

and A denotes a smooth function from Θ into R satisfying A′′(a) 6= 0 for all a ∈ Θ.

Assumption 2 holds for the Poisson, Binomial and Gamma distributions (among
others). For θ ∈ Θn, Pθ and Eθ will denote the probability and the expectation over
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Pθ. It is well-known that the function A is infinitely differentiable on Θ and that
for all i = 1, . . . , n

s(i) = Eθ [Xi] = A′(θi) and Varθ(Xi) = A′′(θi),

these quantities being all positive because we assume Xi ≥ 0 for i ∈ {1, . . . , n}.
We set

S =
{
s ∈ A′(Θ)n,

√
s ∈ V

}
.

Let us fix some compact interval I ⊂ Θ and set K = A′(I). Since A′ and A′′ are
continuous and positive on I, there exists κ > 0 such that for all θ ∈ In

(39) 0 < Eθ(Xi) ≤ κVarθ (Xi) ∀i = 1, . . . , n.

The following result holds.

Theorem 5. Let R ∈ (0, (2
√
κ)−1) with κ given by (39). Assume that Assumption 2

holds and that the linear space V is such that for some u0 ∈ V

(40)
{
(u21, . . . , u

2
n)
∣∣ u ∈ V , ‖u− u0‖ ≤ R

}
⊂ Kn.

Then, whatever the estimator ŝ based on X1, . . . , Xn,

sup
s∈S

E
[
H2(s, ŝ)

]
≥ R2

30
D(V ).

8. Estimation and variable selection in non-Gaussian regression

In this section, we use the notations of Example 2 and consider the regression setting

(41) Xi = fi + εi, i = 1, . . . , n

where f = (f1, . . . , fn) is an unknown vector belonging to the cube C = [−R,R]n (for
some R > 0) and the εi are i.i.d. random variables with density q on R. Both q and
R are assumed to be known. Our aim is to estimate f from the observation of X =
(X1, . . . , Xn) and to do so, we introduce a collection {f̂λ, λ ∈ Λ} of estimators of f
based on X and a family V of linear subspaces V ⊂ Rn with respective dimensions
D(V ). As usual we consider a mapping ∆ from V into [1,+∞) satisfying (4).

8.1. The main assumption. For all d ≥ 1 and t ∈ Rd, we set

qt(x) = (qt1(x1), . . . , qtd(xd)) = (q(x1 − t1), . . . , q(xd − td)) ∀x ∈ Rd

and omit to specify the dependency of qt with respect to the dimension of t. We
assume that the density q satisfies the following.

Assumption 3. For all real numbers t, t′ ∈ [−R,R],
(42) R

∣∣t− t′
∣∣ ≤ h (qt, qt′) ≤ R

∣∣t− t′
∣∣

where h is the Hellinger distance between the densities qt and qt′.

Assumption 3 holds whenever
√
q is regular enough (see Theorem 3A page 183 in

Borovkov (1998)) and is therefore satisfied for the Cauchy distribution. Note that
such a distribution admits no finite moments.
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8.2. The procedure and the results. For each λ ∈ Λ, let Vλ be a subset of
V (possibly random depending on X). Associate to each linear space V ∈ V

the discrete subset V of C obtained by applying Proposition 7 with η = η(V ) =

R−1
(
10D(V )

)1/2
. Then, set S(V ) = {qt, t ∈ V } and define S (respectively Sλ) as

the collection of those S(V ) as V runs among V (respectively Vλ). Take ∆(S(V )) =
∆(V ) for all V ∈ V and select the estimator s̃ = ŝλ̂ among the family

{
ŝλ = qf̃λ , λ ∈ Λ

}
with f̃λ = ΠC f̂λ

by applying the selection procedure described in Section 4.1 with τ given by (14),
a = 1/12, c =

√
2/6 (hence τ only depends on c0) and for all λ ∈ Λ,

penλ(s
′) = c0τ inf

{
40D(V ) + ∆(V )

∣∣ V ∈ Vλ

}
.

Our final estimator f̃ = f̂λ̂ satisfies the following.

Theorem 6. Consider the regression setting given by (41) where the mean f is
known to belong to the cube C = [−R,R]n for some R > 0 and assume that the
density q of the εi is known and satisfies Assumption 3. Let V be a family of
linear subspaces V of Rn with dimension D(V ), ∆ a mapping from V into [1,+∞)

satisfying (4) and {f̂λ, λ ∈ Λ} a collection of estimators of f based on X. By

applying the selection procedure described above, the estimator f̃ satisfies

CE

[∥∥∥f −ΠC f̃
∥∥∥
2
]

≤ inf
λ∈Λ

{
E

[∥∥∥f − f̂λ

∥∥∥
2
]
+ E

[
inf

V ∈Vλ

(∥∥∥f̂λ −ΠV f̂λ

∥∥∥
2
+D(V ) ∨∆(V )

)]}

where C depends on c0, R,R and Σ only. In particular if for all λ ∈ Λ f̂λ belongs to
some V λ ∈ Sλ with probability 1,

CE

[∥∥∥f −ΠC f̃
∥∥∥
2
]
≤ inf

λ∈Λ

{
E

[∥∥∥f − f̂λ

∥∥∥
2
]
+ E

[
D(V λ) ∨∆(V λ)

]}
.

8.3. Model Selection. In this section, we consider the problem of model selection
among a collection V of linear spaces V . Among the examples we have in mind is
that of variable selection.

Problem 1 (Variable selection). We assume that f is of the form

f =

p∑

j=1

βjv
(j)

where β = (β1, . . . , βp) is an unknown vector of Rp and v(1), . . . , v(p) are p ≥ 2
known vectors in Rn that we call predictors. Since, the number p of those may be
large and possibly larger than the number n of data, we assume that the vector β is
sparse which means that |{j, βj 6= 0}| ≤ pmax for some integer pmax ≤ n. Our aim
is to estimate f and the set {j, βj 6= 0}. To do so, we consider the index set M
consisting of all the subsets of {1, . . . , p} with cardinality not larger than pmax and
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V the family gathering the linear spaces V m spanned by the v(j) for j ∈ m when m
varies among M. By convention, V∅ = {0}.

One way to address the problem of model selection is to associate to each V ∈ V

a family of points Λ(V ) which is countable and dense in V and then to apply the
procedure described in Section 8.2 to the family of estimators (in fact points) given

by f̂λ = λ for λ ∈
⋃

V ∈V Λ(V ) = Λ. By applying Theorem 6 with Vλ = V for all
λ ∈ Λ, we deduce the following result without assuming any finite moments on the
distribution of the εi.

Corollary 9. Under the assumptions of Theorem 6, one can build an estimator f̂
based on X such that

(43) CE

[∥∥∥f − f̂
∥∥∥
2
]
≤ inf

V ∈V

{∥∥f −ΠV f
∥∥2 +D(V ) ∨∆(V )

}
.

To our knowledge, such a result without any assumption on the integrability of the
εi is new. In the context of variable selection with non-Gaussian errors, Theorems 5
and 6 by Dalalyan and Tsybakov (2008) are probably the closest even though the
risk bounds they get is slightly different and depend on the ℓ1-norm of the βj . These
bound are derived from sharp PAC-Bayesian ones and are difficult to compare to
ours. Let us just say that Dalalyan and Tsybakov achieve better constants and
do not assume that the distribution of the errors is known but require stronger
assumptions both on the integrability of the errors and on the predictors v(j) to
control the ℓ1-norm of the βj .

If the εi are centered and admit a finite variance σ2, the family of candidate esti-
mators used in Corollary 9 can be reduced to that of the least-squares {f̂λ, λ ∈ Λ}
defined with the choice Λ = V by f̂V = ΠVX for all V ∈ V. Since the risk of f̂V
satisfies

(44) E

[∥∥∥f − f̂V

∥∥∥
2
]
=
∥∥f −ΠV f

∥∥2 +D(V )σ2,

by applying Theorem 6 with VV =
{
V
}
for all V ∈ V, we deduce the following.

Corollary 10. Assume that the assumptions of Theorem 6 hold and that the εi
are centered and admit a finite variance σ2. By applying the selection procedure of
Section 8.2 to the family of least-squares estimators

{
ΠVX, V ∈ V

}
, one can select

from the data X some linear space V̂ among V such that

(45) CE
[∥∥f −ΠCΠV̂

X
∥∥2
]
≤ inf

V ∈V

{∥∥f −ΠV f
∥∥2 +D(V ) ∨∆(V )

}

where C depends on c0, σ, R,R and Σ only.

Under the assumption that the εi are Gaussian, results of the same flavor (without
any boundedness assumption on the vector f and therefore for C = R) were pre-
viously obtained by Birgé and Massart (2001) when the variance is known and in
Baraud, Giraud and Huet (2009) when it is not. Nevertheless, these approaches as
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well as ours suffer from the same drawback: in the context of variable selection with
pmax large enough, the collection {f̂V , V ∈ V}, though finite, is very large and the
selection procedure becomes NP-hard and hence practically useless. In the recent
years, many efforts have been done to design (practical) selection rules for the pur-
pose of performing variable selection. Among the most popular ones, we mention
the Lasso and the Dantzig selectors described respectively in Tibshirani (1996) and
Candès and Tao (2007). A theoretical analysis of these two procedures (separately
and comparatively) has been done in Bickel, Ritov and Tsybakov (2009). Others
based on random forest (see Genuer, Poggi and Tuleau-Malot (2010)) or PLS re-
gression (see Agnar Höskuldsson (2001)) are also used in practice even though less
is known on their theoretical performances. In any case, it seems that none of such
procedures outperforms the others and it may therefore be reasonable to consider
them all and let the data decide which is the most appropriate to estimate the truth.

In what follows we consider an arbitrary collection Λ of model selection procedures
among V, denote V λ the model selected by the procedure λ ∈ Λ and f̂λ the least-
squares estimator on V λ. By applying the selection procedure of Section 8.2 with
Vλ =

{
V λ

}
for all λ ∈ Λ, we deduce the following result.

Corollary 11. Under the assumptions of Theorem 6, the estimator ΠC f̃ satisfies

CE

[∥∥∥f −ΠC f̃
∥∥∥
2
]
≤ inf

λ∈Λ

{
E

[∥∥∥f − f̂λ

∥∥∥
2
]
+ E

[
D
(
V λ

)
∨∆

(
V λ

)]}

for some C depending on c0, R,R and Σ only.

The selection procedure we propose is unfortunately not practical in the general
context of model selection. Not because the computations are NP-hard, at least
as long as the family Λ of candidate procedures keeps to a reasonable size, but
rather because our selection rule relies on a discretization device that is not practical
yet. However, we mention that in the specific context of variable selection the
procedure can be made feasible indeed by using the alternative family of models
V =

{
V m ∩ C,m ∈ M

}
. By assumption, the unknown parameter s belongs to one

of these models and as subsets of linear spaces, their discretization can be easily done.
Furthermore, only the models V λ ∩ C with λ ∈ Λ actually need to be discretized.

8.4. Selecting among linear estimators. In this section, we assume that the
collection {f̂λ, λ ∈ Λ} consists of linear estimators of f . More precisely, we shall
assume that Λ is an arbitrary collection of (deterministic) symmetric matrices and

that f̂λ = λX for all λ ∈ Λ. Among the examples we have in mind is the following
one.

Example 5 (Kernel estimation). Assume that f is of the form

f = (F (1/n), . . . , F (n/n))

for some real-valued function F on [0, 1]. Given a symmetric kernel K, that is, a
function from R2 into R, such that the matrix (K(i/n, j/n))1≤i,j≤n is symmetric,
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we can associate the kernel estimator of f defined by

f̂λ(K) = λ(K)X with λi,j(K) =
K(i/n, j/n)

n
for all i, j = 1, . . . , n.

This estimator corresponds to the Priestley and Chao (1972) estimator evaluated at
points k/n for k = 1, . . . , n.

Other examples of linear estimators with symmetric matrices λ can be found in Arlot
and Bach (2009) (kernel ridge regression, spline smoothing, multiple kernel learn-
ing...). As also mentioned there, the classical Nadaraya-Watson kernel estimator is
beyond the scope of this study because it corresponds to a non-symmetric matrix λ.

In view of selecting among the family {f̂λ, λ ∈ Λ}, we consider the family of mod-
els V =

{
V λ, λ ∈ Λ

}
defined as follows. For λ ∈ Λ, let λ(1) ≥ . . . ≥ λ(n) be the

the eigenvalues of λ sorted by non-increasing order, v(1), . . . , v(n) the correspond-

ing eigenvectors and Dλ = max
{
k, λ(k) ≥ 1/2

}
with the convention Dλ = 0 if{

k, λ(k) ≥ 1/2
}
= ∅. The linear space V λ corresponds to the linear space generated

by the v(k) for k ≤ Dλ with the convention V λ = {0} if Dλ = 0. The threshold 1/2
involved in the definition of Dλ is not magical and has been chosen for convenience.
Any other choice of a constant in (0, 1) would lead to a result which is similar to the
one below (with a possibly different constant C).

Corollary 12. Assume that the assumptions of Theorem 6 hold and that the εi are
centered and admit a finite variance σ2. Consider a collection {f̂λ, λ ∈ Λ} of linear
estimators associated to symmetric matrices λ. By using the selection procedure
described in Section 8.2 with the family of linear spaces V defined above and any
mapping ∆ from V into [1,+∞) satisfying (4) the selected estimator satisfies

CE

[∥∥∥f −ΠC f̃
∥∥∥
2
]
≤ inf

λ∈Λ

{
E

[∥∥∥f − f̂λ

∥∥∥
2
]
∨∆(V λ)

}

for some constant C depending on c0, R,R, σ and Σ only.

The selection procedure allows to minimize the risk among the family of linear
estimators {λX, λ ∈ Λ}. In particular, it can be used to select a window or a kernel
among a collection of those. A result of the same flavour as that of Corollary 12 can
be found in Arlot and Bach (2009) but under more restrictive assumptions on the
matrices λ, the cardinality of Λ and the distribution of the εi. Nevertheless, their
point of view is more practical than ours and leads to a concrete algorithm. In the
Gaussian white noise model, Goldenshluger and Lepski (2009) addressed the problem
of structural adaptation by means of a suitable selection procedure among linear
estimators based on kernels. Their assumptions on the family of kernels are slightly
different from ours: they consider some convolution-type assumption between the
kernels of the collection while we assume that the kernels are symmetric.

The proof of Corollary 12 is postponed to Section 9.11.
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9. Proofs

9.1. Proof of Proposition 2. For S, S′ ∈ S and ξ > 0,

y2 ≥ τ
[
4
(
η2(S) ∨ η2(S′)

)
+ ξ
]
≥ 4τ

(
η2(S) ∨ η2(S′)

)
.

We set C0 = (S ∩ B(s, y))× (S′ ∩ B(s, y)) and for j ≥ 1,

Cj =
{
(t, t′) ∈ S × S′, 2j−1y2 < H2 (s, t) +H2

(
s, t′
)
≤ 2jy2

}
.

Note that for all j ≥ 0, Cj ⊂
(
S ∩ B(s, 2j/2y)

)
×
(
S′ ∩ B(s, 2j/2y)

)
and that for

(t, t′) ∈ Cj , w2(t, t′, y) =
(
H2(s, t) +H2(s, t′)

)
∨ y2 ≥ (2j−1 ∨ 1)y2. Using (13)

and (14), we have

P

[
sup

(t,t′)∈S×S′

Z(N, t, t′)

w2(t, t′, y)
> c0

]

≤
∑

(t,t′)∈C0

P
[
Z(N, t, t′) ≥ c0y

2
]
+
∑

j≥1

∑

(t,t′)∈Cj

P
[
Z(N, t, t′) ≥ c02

j−1y2
]

≤ b |S ∩ B(s, y)|
∣∣S′ ∩ B(s, y)

∣∣ exp
[
− ac20y

4

y2 + cc0y2

]

+b
∑

j≥1

|S ∩ B(s, 2j/2y)||S′ ∩ B(s, 2j/2y)| exp
[
− ac202

2(j−1)y4

2jy2 + cc02j−1y2

]

≤ bM2 exp

[(
1

τ
− ac20

1 + cc0

)
y2
]
+ bM2

∑

j≥1

exp

[(
1

τ
− ac20

2(2 + cc0)

)
2jy2

]

≤ bM2
∑

j≥0

exp

[
−2jy2

τ

]
,

recalling that τ = 4(2+cc0)/(ac
2
0). By using that τ−1y2 ≥ 4(η2(S)∨η2(S′))+ξ ≥ 1+ξ

and the inequality 2j ≥ j + 1 which holds for all j ≥ 0, we finally obtain

P

[
sup

(t,t′)∈S×S′

Z(N, t, t′)

w2(t, t′, y)
> c0

]
≤ bM2

∑

j≥0

exp [−(j + 1)(1 + ξ)] ≤ bM2e−ξ.

9.2. Proof of Proposition 3.

Cases of Examples 1 and 2. It suffices to prove the result in the case of Exam-
ple 2, the result for Example 1 being obtained similarly by changing Z(N, t, t′) into
Z(N, t, t′)/n. Note that for all t, t′ ∈ L0,

Z(N, t, t′) =

n∑

i=1

(
ψ(ti, t

′
i, Xi)− E

[
ψ(ti, t

′
i, Xi)

])

is a sum of independent and centered random variables bounded by
√
2. Besides,

by setting ri = (ti + t′i)/2 for i = 1, . . . , n and using that for all xi ∈ Xi, (t(xi) ∨
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t′i(xi))/ri(xi) ≤ 2 we have

4E
[
Z2(N, t, t′)

]
≤

n∑

i=1

∫

Xi

(√
ti −

√
t′i

)2 si
ri
dµi

=

n∑

i=1

∫

Xi

(√
ti −

√
t′i

)2(√si
ri

− 1 + 1

)2

dµi

≤ 2

n∑

i=1

∫

Xi

(√
ti −

√
t′i

)2(√si
ri

− 1

)2

dµi

+2
n∑

i=1

∫

Xi

(√
ti −

√
t′i

)2

dµi

= 2
n∑

i=1

∫

Xi

(√
ti −

√
t′i
)2

ri
(
√
si −

√
ri)

2 dµi + 4H2
(
t, t′
)

≤ 8
(
H2 (s, r) +H2 (s, t) +H2(s, t′)

)
.

Since the concavity of u 7→ √
u implies that 2H2 (s, r) ≤ H2 (s, t) + H2 (s, t′), we

obtain that for t, t′ ∈ B(s, y)

Var
(
Z(N, t, t′)

)
= E

[
Z2(N, t, t′)

]
≤ 3

[
H2 (s, t) +H2

(
s, t′
)]

≤ 6y2.

Applying Bernstein’s inequality, we obtain that (13) is fulfilled with b = 1, a = 1/12
and c =

√
2/6.

Case of Example 3. Under (15), for all u = (u1, . . . , un) ∈ Rn such that
∑n

i=1 u
2
i s(i) ≤

v2 and maxni=1 |ui| ≤ γ, and all λ ∈ (0, 1/(βγ)), we have

E

[
eλ

∑n
i=1

ui(Xi−s(i))
]

=
n∏

i=1

E

[
eλui(Xi−s(i))

]
≤

n∏

i=1

exp

[
λ2σu2i s(i)

2(1− λγβ)

]

≤ exp

[
λ2σv2

2(1− λγβ)

]
.(46)

Under (46), we derive from Bernstein’s inequality (see Massart (2007), Corollary
2.10),

(47) P

[
n∑

i=1

ui (Xi − s(i)) ≥ ξ

]
≤ exp

[
− ξ2

2(σv2 + γβξ)

]
.

For t, t′ ∈ B(s, y), let us now take u = (ψ(t, t′, 1), . . . , ψ(t, t′, n)) (where ψ is defined
by (12) on X = {1, . . . , n}) and note that

n∑

i=1

ψ(t, t′, i) (Xi − s(i)) = Z(N, t, t′)

max
i=1,...,n

∣∣ψ(t, t′, i)
∣∣ ≤ 1√

2
= γ.
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Besides, arguing as for the case of Example 2, we get

n∑

i=1

ψ2(t, t′, i)s(i) =
1

4

n∑

i=1

(√
t(i)−

√
t′(i)

)2
s(i)

(t(i) + t′(i))/2

≤ 3H2(s, t) + 3H2(s, t′) ≤ 6y2 = v2.

Consequently, we deduce from (47) that (13) is satisfied with a = 1/(12σ), b = 1
and c = β

√
2/(12σ) (then τ ≤ 96c−2

0 (σ + β)).

Case of Example 4. In this case,

Z(N, t, t′) =

∫

X
ψ
(
t, t′, x

)
(dN(x)− s(x)dµ)

where ψ is bounded with values in [−1/
√
2, 1/

√
2] and, arguing as for Example 2,

we see that it satisfies∫

X
ψ2
(
t, t′, x

)
s(x)dµ ≤ 3

(
H2(s, t) +H2(s, t′)

)
≤ 6y2

for all t, t′ ∈ B(s, y). By applying Proposition 7 in Reynaud-Bouret (2003) we obtain
that Z(N, t, t′) satisfies (13) with a = 1/12, b = 1 and c =

√
2/36.

9.3. Proof of Proposition 4. Let us fix m,m′ ∈ M, ξ > 0 and y such that

y2 ≥ τ (D(Sm) ∨D(Sm′) + ξ) .

All t ∈ Sm and t′ ∈ Sm′ are constant on the cells I ∈ m ∨ m′ with value tI , t
′
I

respectively and therefore so is ψ(t, t′, .). Namely, for all x ∈ I

ψ(t, t′, x) = ψ(tI , t
′
I) =

1√
2

[ √
1

1 + tI/t′I
−
√

1

1 + t′I/tI

]
.

Using that |ψ(tI , t′I)| ≤ 1/
√
2 and Cauchy-Schwarz inequality, we get

Z(N, t, t′) =
∑

I∈m∨m′

ψ(tI , t
′
I) (N(I)− E [N(I)])

=
∑

I∈m∨m′

ψ(tI , t
′
I)
(√

N(I)−
√

E [N(I)]
)(√

N(I) +
√

E [N(I)]
)

=
∑

I∈m∨m′

ψ(tI , t
′
I)
(√

N(I)−
√

E [N(I)]
)2

+2
∑

I∈m∨m′

ψ(tI , t
′
I)
√
E(N(I))

(√
N(I)−

√
E [N(I)]

)

≤ X 2(m ∨m′)√
2

+ 2

[ ∑

I∈m∨m′

ψ2(tI , t
′
I)E(N(I))

]1/2
X (m ∨m′)

=
X 2(m ∨m′)√

2
+ 2

[∫
ψ2(t, t′, x)sdµ

]1/2
X (m ∨m′).
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Besides, arguing as in Section 9.2 (Example 2), we have
∫

X
ψ2(t, t′, x)sdµ ≤ 3

(
H2(s, t) +H2(s, t′)

)

and thus, using that w2(t, t′, y) ≥ y2 and w2(t, t′, y) ≥
(
H2(s, t) +H2(s, t′)

)1/2
y, we

derive

sup
(t,t′)∈Sm×Sm′

Z(N, t, t′)

w2(t, t′, y)
≤ X 2(m ∨m′)√

2y2
+ 2

√
3
X (m ∨m′)

y

≤ 2
√
6 + 1√
2

(X 2(m ∨m′)

y2
∨ X (m ∨m′)

y

)
.

Since c0 ∈ (0, 1),
{

sup
(t,t′)∈Sm×Sm′

Z(N, t, t′)

w2(t, t′, y)
≥ c0

}
⊂

{
X 2(m ∨m′)

y2
∨ X (m ∨m′)

y
≥ c0

√
2

2
√
6 + 1

}

⊂
{
X 2(m ∨m′)

y2
≥ 2c20(

2
√
6 + 1

)2

}

and therefore

P

[
sup

(t,t′)∈Sm×Sm′

Z(N, t, t′)

w2(t, t′, y)
≥ c0

]
≤ P

[
X 2(m ∨m′) ≥ 2c20y

2

(
2
√
6 + 1

)2

]
.

We conclude by using (16) together with the fact that under (17),

y2 ≥ τ (D(Sm) ∨D(Sm′) + ξ) ≥
(
2
√
6 + 1

)2

2c20
× a

(
|m ∨m′|+ ξ

)
.

9.4. Proof of Theorem 1. Throughout we set κ = c0 + 1/
√
2 ∈ (1/

√
2, 1) and fix

some estimator ŝλ. We start with a preliminary result.

Preliminary result: For ξ > 0 and S, S′ ∈ S, let us set

y2(S, S′, ξ) = τ
(
D(S) ∨D(S′) + ∆(S) + ∆(S′) + ξ

)
,

and

Ωξ =
⋂

(S,S′)∈S2

{
sup

(t,t′)∈S×S′

Z(N, t, t′)

w2(t, t′, y(S, S′, ξ))
≤ c0

}
.

Note that under Assumption 1, P (Ωξ) ≥ 1 − γΣ2e−ξ. Let us prove that on the set
Ωξ,

(48) D(s̃λ) ≤
12

1− κ

(
H2(s, ŝλ) +A(ŝλ, Sλ) +

1

6
c0τξ

)
.
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Proof. Since D(s̃λ) = 0 whenever E(s̃λ) = ∅, we shall assume from now on that
E(s̃λ) 6= ∅. Hence, there exists s̃λ′ ∈ E(s̃λ) with s̃λ′ 6= s̃λ. Using Proposition 1 with
r = (s̃λ + s̃λ′)/2 and the fact that T(N, s̃λ, s̃λ′) ≥ 0, we get

H2(s, s̃λ′)−H2(s, s̃λ) =

[
ρ (s, s̃λ)−

1

2

∫

X
s̃λdµ

]
−
[
ρ (s, s̃λ′)− 1

2

∫

X
s̃λ′dµ

]

= −T(N, s̃λ, s̃λ′) + pen(s̃λ)− pen(s̃λ′)

+ [ρ (s, s̃λ)− ρr (s · µ, s̃λ)]− [ρ (s, s̃λ′)− ρr (s · µ, s̃λ′)]

+ [ρr (s · µ, s̃λ)− ρr (N, s̃λ)]− [ρr (s · µ, s̃λ′)− ρr (N, s̃λ′)]

≤ 1√
2

[
H2 (s, s̃λ) +H2 (s, s̃λ′)

]

+Z(N, s̃λ, s̃λ′) + pen(s̃λ)− pen(s̃λ′)

and therefore,
(
1− 1√

2

)
H2 (s, s̃λ′) ≤

(
1 +

1√
2

)
H2 (s, s̃λ) + Z(N, s̃λ, s̃λ′) + pen(s̃λ)− pen(s̃λ′).

On Ωξ,

Z(N, s̃λ, s̃λ′) ≤ c0H
2(s, s̃λ) + c0H

2(s, s̃λ′)

+c0 inf
{
y2(S, S′, ξ), (S, S′) ∈ Sλ(s̃λ)× Sλ′(s̃λ′)

}

≤ c0H
2(s, s̃λ) + c0H

2(s, s̃λ′)

+c0τ inf
(S,S′)∈Sλ(s̃λ)×Sλ′ (s̃λ′ )

(
D(S) +D(S′) + ∆(S) + ∆(S′) + ξ

)

and since for all λ ∈ Λ,

penλ(s̃λ) ≥ c0τ inf {D(S) + ∆(S), S ∈ Sλ(s̃λ)} ,
we have

(1− κ)H2 (s, s̃λ′) ≤ (1 + κ)H2 (s, s̃λ) + 2 penλ(s̃λ) + c0τξ.

Since s̃λ′ is arbitrary in E(s̃λ), we deduce that on Ωξ,

D(s̃λ) = sup
s̃λ′∈E(s̃λ)

H2 (s̃λ, s̃λ′)

≤ 2H2 (s, s̃λ) + 2 sup
sλ′∈E(s̃λ)

H2 (s, s̃λ′)

≤ 2

(
1 +

1 + κ

1− κ

)
H2 (s, s̃λ) +

4

1− κ
penλ(s̃λ) +

2

1− κ
c0τξ

≤ 4

1− κ

(
3H2(s, ŝλ) +

3

2
H2(ŝλ, s̃λ) + penλ(s̃λ) +

1

2
c0τξ

)

and we conclude by using that H2(ŝλ, s̃λ)+penλ(s̃λ) ≤ A(ŝλ, Sλ)+c0τ ≤ 2A(ŝλ, Sλ)
because ∆(.) ≥ 1 on S. �

End of the proof of Theorem 1. Using the triangular inequality and the fact that

H
(
s̃λ̃, s̃

)
≤ H

(
s̃λ̃, ŝλ

)
+
√
c0τ ≤ H

(
s̃λ̃, s̃λ

)
+H (s̃λ, ŝλ) +

√
c0τ ,
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we have

H (s, s̃) ≤ H(s, ŝλ) + 2H(ŝλ, s̃λ) + 2H(s̃λ, s̃λ̃) +
√
c0τ ,

which with c0τ ≤ A(ŝλ, Sλ) and H
2 (ŝλ, s̃λ) ≤ 2A(ŝλ, Sλ) gives

3−1H2 (s, s̃) ≤ H2(s, ŝλ) + (2
√
2 + 1)2A(ŝλ, Sλ) + 4H2(s̃λ, s̃λ̃).

On Ωξ, we deduce from (48)

H2
(
s̃λ, s̃λ̃

)
≤ D(s̃λ) ∨ D(s̃λ̃) ≤ D(s̃λ) + c0τ

≤ 12

1− κ

[
H2(s, ŝλ) +A(ŝλ, Sλ) +

1

6
c0τξ

]
+A(ŝλ, Sλ),

and get

3−1H2 (s, s̃) ≤
(
1 +

4× 12

1− κ

)
H2(s, ŝλ) +

8

1− κ
c0τξ

+

(
(2
√
2 + 1)2 + 4

13− κ

1− κ

)
A(ŝλ, Sλ).

Finally, we conclude the first part by using that P (Ωξ) ≥ 1 − γΣ2e−ξ and the fact
that ŝλ is arbitrary. For the second part, it suffices to integrate with respect to ξ
and to note that under the assumption that ∆ ≥ 1 on S,

A(ŝλ, Sλ) ≥ inf
S∈S

inf
t∈S

penλ(t) ≥ c0τ, ∀λ ∈ Λ.

�

9.5. Proof of Corollary 4. For Examples 1 and 4, we know from Proposition 5 that
inequality (16) hold with a = 200/n and a = 6 respectively. Besides, inequality (17)
holds with δ = 2 and since (25) is satisfied for all λ ≥ 1, we may apply Theorem 2.
To get the result, it remains to bound E [penλ(ŝλ)] from above. Let us first consider
the case of density estimation. Note that if n ≥ 2

M̂ = min

{
M, min

i 6=j
|Xi −Xj | ≥

1

M

}
≤ max

i 6=j

1

|Xi −Xj |
+ 1

hence, by Hölder inequality with q > 1, q = q/(q − 1) > 1 and for p = 2q̄ > 1

E

[
M̂1/p

]
≤ 1 + E

[
max
i 6=j

1

|Xi −Xj |1/p

]
≤ 1 +

n(n− 1)

2
E

[
1

|X1 −X2|1/p

]

≤ 1 +
n(n− 1)

2

∫

[0,1)

[∫

[0,1)

1

|x− y|1/p
s(y)dy

]
s(x)dx

≤ 1 + 2n(n− 1) ‖s‖Lq
.(49)
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Since for n = 1, M̂ = 1 a.s., this inequality remains true in this case. By using the
concavity of the logarithm and of the map t 7→ t1/p, for all λ ≥ 1,

E [penλ(ŝλ)] = 2c0τ(nλ
−1 + 1)E

[
log(e+ M̂)

]

≤ 2c0τ(nλ
−1 + 1)pE

[
log(e+ M̂1/p)

]

≤ 2c0τ(nλ
−1 + 1)p log

[
e+ E

(
M̂1/p)

)]

≤ 2c0τ(nλ
−1 + 1)p log

[
e+

(
1 + 2n(n− 1) ‖s‖Lq

)]

≤ 4τ
(
nλ−1 + 1

)
p log

(
e+ n(n− 1) ‖s‖Lq

)
,(50)

and we conclude by using that in the density case τ equals 1/n up to a universal
constant.

Let us now turn to the Poisson case. We decompose E [penλ(ŝλ)] as follows

E [penλ(ŝλ)] = E [penλ(ŝλ)1ln=0] + E [penλ(ŝλ)1ln≥1]

= E [penλ(ŝλ)1ln=0] + E [E [penλ(ŝλ)1ln≥1|n]] .
On the event {n = 0}, penλ(ŝλ) = 2c0τ for all λ ≥ 1 and therefore,

(51) E [penλ(ŝλ)1ln=0] ≤ 2c0τ.

Since n̄ > 0, P(n = k) > 0 for all k ≥ 1 and conditionally on the event {n = k},
X1, . . . , Xk are i.i.d. with density s/n̄. Hence, using (50), we deduce that

E [penλ(ŝλ)1ln≥1|n] ≤ 4τ
(
nλ−1 + 1

)
p log

(
e+

n(n− 1) ‖s‖Lq

n̄

)
1ln≥1.

We now use the following inequality E(U log V ) ≤ E1/2(U2) log(E(V )) which holds
for all random variables U, V such that U ≥ 0 and V ≥ e. This inequality derives
from Cauchy-Schwarz inequality together with the fact that the map v 7→ log2 v is
concave on [e,+∞). We obtain

E [penλ(ŝλ)1ln≥1] ≤ 4pτE1/2
[(
nλ−1 + 1

)2]
log

(
e+

E (n(n− 1)) ‖s‖Lq

n̄

)

and using the fact that n is distributed as a Poisson random variable, we get

(52) E [penλ(ŝλ)1ln≥1] ≤ 4pτ
(
n̄λ−1 + 1

)
log
(
e+ n̄ ‖s‖Lq

)
.

We conclude by putting (51) and (52) together and by using that τ is a universal
constant in the Poisson case.

9.6. Proof of Proposition 6. Clearly, the result is true for |m| = 1. Let us now

assume D = |m| ≥ 2. For t =
∑D

j=1 qij tij ∈ Sm, define

πmt =

D−1∑

j=1

qij tj +


1−

D−1∑

j=1

q̄ij


 tiD with q̄ij =

⌊
qijε

−1
⌋
ε
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Note that for all j ∈ {1, . . . , D}, q̄ij ≥ 0,
⌊
qijε

−1
⌋
∈
{
0, . . . ,

⌊
ε−1
⌋}

,
∑D−1

j=1 q̄ij ≤∑D−1
j=1 qij ≤ 1 and therefore πmt ∈ Sm[η]. Besides, for all j ∈ {1, . . . , D} |qj − q̄j | ≤ ε

and hence, by using that for all u, v ∈ L0, 2H
2(u, v) ≤

∫
X |u− v| dµ we get

2H2(t, Sm[η]) ≤ 2H2(t, πmt) ≤
∫

X

∣∣∣∣∣∣

D∑

j=1

(qj − q̄j)tj

∣∣∣∣∣∣
dµ

≤ ε

D−1∑

j=1

∫

X
tjdµ+

∣∣∣∣∣∣

D−1∑

j=1

(
qij − q̄ij

)
∣∣∣∣∣∣

∫

X
tiDdµ

≤ 2ε(D − 1) ‖t‖1 ≤ 2η2τ.

9.7. Proof of Proposition 7. We set D = D(V ) and consider an orthonormal
basis

{
uj , j = 1, . . . , D

}
of V . It follows from Proposition 9 of Birgé (2006) that

the set

T =




2η

√
τ√

D

d∑

j=1

kjuj , (kj)j=1,...,D ∈ ZD





is a η
√
τ -net for V and for all R ≥ 2η and h ∈ Rn

∣∣{t ∈ T , ‖h− t‖ ≤ R
√
τ
}∣∣ ≤ exp

[
0.458D

(
R

η

)2
]
.

The result follows by applying Proposition 12 of Birgé (2006) (with π = ΠC , (M
′, d) =

(Rn, ‖ ‖), M0 = C, T = T and λ = 1 = ε).

9.8. Proof of Corollary 8. Let us denote by ‖ ‖∞ the supremum norm on [0, 1].
First note that (4) holds since

∑

V ∈V

e−∆(V ) ≤
∑

r≥1

∑

J≥0

|Vr,J | e−(C′(r)+1)2J−r ≤
∑

r≥1

e−r
∑

J≥0

e−2J < +∞.

Let now p ∈ [1,+∞], α > 1/p and R > 0. There exists some r ∈ N∗ such that
α ∈ (1/p, r) and it follows from Proposition 8 that for all J ≥ 0 there exits V ∈ Vr,J

such that D(V ) ≤ C(r)2J and for all sF ∈ Sα
p,∞(R)

inf
v∈V

‖√sF − v‖ ≤ n inf
V∈Vr,J

inf
G∈V

‖F −G‖∞ ≤ C ′′(r)nR2−Jα.

Hence, we deduce from (35) that for some constant C (depending on c0, τ and r),

CE
[
n−1H2 (s, s̃)

]
≤ inf

J≥0

(
R22−2Jα +

2J

n

)

and the result follows by choosing 2J of order (nR2)1/(1+α) ≥ 1.
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9.9. Proof of Theorem 5. Hereafter, ρ(P,Q) and h(P,Q) denote the Hellinger
affinity and the Hellinger distance between the probabilities P,Q. For θ ∈ Θn, A′(θ)
corresponds to the vector t = (A′(θ1), . . . , A

′(θn)). Since the mapping from Θn into
Rn
+ defined by θ 7→ A′(θ) is one to one, for s ∈ S we denote (abusively) Ps and Es

the probability and expectation with respect to the probability Pθ where θ is the
unique element of Θn satisfying s = A′(θ). We start with the following lemma.

Lemma 1. Under Assumption 2, for all θ, θ′ ∈ In, t = A′(θ) and t′ = A′(θ′),

h2 (Pθ, Pθ′) ≤ −
n∑

i=1

log ρ
(
Pθi , Pθ′i

)
≤ 4κ

n∑

i=1

H2(ti, t
′
i) = 4κH2(t, t′)

Proof. Since

h2 (Pθ, Pθ′) = 1− ρ (Pθ, Pθ′) = 1− exp

[
n∑

i=1

log ρ
(
Pθi , Pθ′i

)]

≤ −
n∑

i=1

log ρ
(
Pθi , Pθ′i

)
,

it suffices to show that −
∑n

i=1 log ρ
(
Pθi , Pθ′i

)
≤ 4κ

∑n
i=1H

2(ti, t
′
i). Summing up

over i, it is enough to show the inequality for n = 1, what we shall do. Let θ, θ′ in I
such that t = A′(θ) and t′ = A′(θ′). With no loss of generality, we may assume that
θ′ < θ and set δ = (θ − θ′)/2. The Hellinger affinity between Pθ and Pθ′ is given by

ρ(Pθ, Pθ′) = exp

[
−
(
A(θ) +A(θ′)

2
−A

(
θ + θ′

2

))]

and therefore

− log ρ (Pθ, Pθ′) =
A(θ) +A(θ′)

2
−A

(
θ + θ′

2

)

=
1

2
[A(θ) +A(θ − 2δ)− 2A (θ − δ)]

=
1

2

∫ θ

θ−δ

(
A′(u)−A′(u− δ)

)
du

=
1

2

∫ θ

θ−δ

[∫ u

u−δ
A′′(v)dv

]
du.

Since t, t′ ∈ R+ \ {0} and since A′′ do not vanish on [θ′, θ] and A′ is nondecreasing,
for all u ∈ [θ − δ, θ] and v ∈ [u− δ, u]

A′′(v) =
A′′(v)

2
√
A′(v)

A′′(u)

2
√
A′(u)

4
√
A′(v)A′(u)

A′′(u)

≤ A′′(v)

2
√
A′(v)

A′′(u)

2
√
A′(u)

4A′(u)

A′′(u)
≤ 4κ

A′′(v)

2
√
A′(v)

A′′(u)

2
√
A′(u)

.



ESTIMATOR SELECTION 39

giving thus,

− log ρ (Pθ, Pθ′) ≤ 2κ

∫ θ

θ−δ

[∫ u

u−δ

A′′(v)

2
√
A′(v)

A′′(u)

2
√
A′(u)

dv

]
du

≤ 2κ

∫ θ

θ′

[∫ θ

θ′

A′′(v)

2
√
A′(v)

A′′(u)

2
√
A′(u)

dv

]
du

= 2κ

(∫ θ

θ′

A′′(v)

2
√
A′(v)

dv

)2

= 2κ
(√

A′(θ)−
√
A′(θ′)

)2

= 2κ
(√

t−
√
t′
)2

�

The proof of Theorem 5 is based on Assouad’s Lemma (see Assouad (1983)), more
precisely on the version given by Theorem 2.10 in Tsybakov (2004). Hereafter,{
u1, . . . , uD

}
denotes an orthonormal basis of V (we set D = D(V )) and d(ε, ε′)

the Hamming distance between two elements ε and ε′ of {0, 1}D, that is d(ε, ε′) =∑D
j=1 1lεj 6=ε′j

. Besides, we set

SK =
{
s ∈ Kn,

√
s ∈ V

}
⊂ S.

Let t0 ∈ S be such that u0 =
√
t0. Under (40), there exists β1, . . . , βD such that√

t0 =
∑D

j=1 βjuj and that for all ε ∈ {0, 1}D one can find tε ∈ SK such that
√
tε =

∑D
j=1 (βj +Rεj)uj . Note that the for all ε, ε′ ∈ {0, 1}D,

2H2(tε, tε
′
) =

∥∥∥
√
tε −

√
tε′
∥∥∥
2
= R2d(ε, ε′).

Besides, whatever the estimator ŝ and s ∈ S
sup
s∈S

Es

[
H2 (s, ŝ)

]
≥ sup

s∈SK

Es

[
H2 (s, ŝ)

]
≥ sup

ε∈{0,1}D
Etε
[
H2 (tε, ŝ)

]

≥ inf
ε̂

sup
ε∈{0,1}D

Etε

[
H2
(
tε, tε̂

)]
=
R2

2
inf
ε̂

sup
ε∈{0,1}D

Etε [d (ε, ε̂)] ,

where the two last infima run among all estimators ε̂ based on the observations

(X1, . . . , Xn) with values in {0, 1}D. Theorem 2.10 in Tsybakov (2004) asserts that

inf
ε̂

sup
ε∈{0,1}D

Etε [d (ε, ε̂)] ≥
D

2

(
1−

√
α(2− α)

)

provided that for all ε, ε′ such that d(ε, ε′) = 1, h2
(
Pθε , Pθε′

)
≤ α < 1 where the

parameters θε and θε
′
are such that tε = A′(θε) and tε

′
= A′(θε

′
). Taking α = 1/2

and using Lemma 1, we get for all ε, ε′ such that d(ε, ε′) = 1,

h2
(
Pθε , Pθε′

)
≤ 4κH2(tε, tε

′
) ≤ 2κR2 ≤ 1

2
= α,
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and hence,

inf
ŝ
sup
s∈S

Es

[
H2 (s, ŝ)

]
≥ 1−

√
3/2

4
DR2,

which concludes the proof.

9.10. Proof of Theorem 6. Let L0 =
{
qt, t ∈ C

}
. Under Assumption 3, the

mapping t 7→ qt is a quasi isometry between (C, ‖ ‖) and (L0, H). In particular, by
using Proposition 7, for all V ∈ V, qt ∈ L0 and number r ≥ 2(Rη(V )),
∣∣{qt′ ∈ S(V ), H(qt, qt′) ≤ r

√
τ
}∣∣

≤
∣∣{t′ ∈ V,

∥∥t− t′
∥∥ ≤ R−1r

√
τ
}∣∣ ≤ exp

[
5D(V )

(
R−1r

η(V )

)2
]
≤ exp

(
r2

2

)
.

Consequently, we deduce from Propositions 2 and 3 that S satisfies Assumption 1
with γ = 1 and D(S(V )) = 40D(V ) for all V ∈ V. We may therefore apply

Theorem 1 and get (recalling that f̃λ = ΠC f̂λ and ŝλ = qf̃λ)

CE
[
H2(qf , ŝλ̂)

]
≤ inf

λ∈Λ

{
E

[
H2(qf , qf̃λ)

]
+ E

[
A(qf̃λ , Sλ)

]}
,

and deduce that for some constant C ′ depending on c0, R, R and Σ only,

C ′E

[∥∥∥f −ΠC f̃
∥∥∥
2
]
≤ inf

λ∈Λ

{
E

[∥∥∥f −ΠC f̂λ

∥∥∥
2
+ E

[
A(qf̃λ , Sλ)

]]}
.

It remains to bound A(qf̃λ , Sλ) from above for all λ ∈ Λ. By using Proposition 7,

for all λ ∈ Λ and V ∈ Vλ,

A(ŝλ, Sλ) ≤ inf
t′∈V

[
H2(qf̃λ , qt

′) + pen(qt′)
]

≤ R
2
inf
t′∈V

∥∥∥ΠC f̂λ − t′
∥∥∥
2
+ c0τ

(
40D(V ) + ∆(V )

)

≤ 8R
2
[
inf
t′∈V

∥∥∥ΠC f̂λ − t′
∥∥∥
2
+ η2(V )τ

]
+ c0τ

(
40D(V ) + ∆(V )

)

≤ 8R
2
[
inf
t′∈V

∥∥∥ΠC f̂λ − f + f − f̂λ + f̂λ − t′
∥∥∥
2
+ η2(V )τ

]

+c0τ
(
40D(V ) + ∆(V )

)

≤ 24R
2
[∥∥∥f −ΠC f̂λ

∥∥∥
2
+
∥∥∥f − f̂λ

∥∥∥
2
+ inf

t′∈V

∥∥∥f̂λ − t′
∥∥∥
2
+ η2(V )τ

]

+c0τ
(
40D(V ) + ∆(V )

)

≤ C ′′

[∥∥∥f − f̂λ

∥∥∥
2
+
∥∥∥f̂λ −ΠV f̂λ

∥∥∥
2
+D(V ) + ∆(V )

]

for some C ′′ depending on R,R and c0 only which concludes the proof.
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9.11. Proof of Corollary 12. For each λ ∈ Λ, let λ be the linear map which
coincides with λ on V λ and takes the value 0 on its orthogonal. On the one hand,

E

[∥∥∥f − f̂λ

∥∥∥
2
]

= ‖f − λf‖2 + tr
(
λ2
)
σ2

=

n∑

k=1

(1− λ(k))
2〈f, v(k)〉2 + σ2

n∑

k=1

λ2(k).

On the other hand, the definition of D = Dλ entails that for all k > D, λ(k) ≤ 1/2
(with the convention λ(n+1) = 0) and therefore

E

[
inf
t∈V λ

∥∥∥f̂λ − t
∥∥∥
2
]

≤ E

[∥∥λX − λX
∥∥2
]
= E

[∥∥(λ− λ)f + (λ− λ)ε
∥∥2
]

=
∥∥(λ− λ)f

∥∥2 + tr
(
(λ− λ)2

)
σ2 =

n∑

k=1+D

λ2(k)〈f, v(k)〉
2 + σ2

n∑

k=1+D

λ2(k)

≤
n∑

k=1

(1− λ(k))
2〈f, v(k)〉2 + σ2

n∑

k=1

λ2(k) = E

[∥∥∥f − f̂λ

∥∥∥
2
]

and, since D/4 ≤
∑D

k=1 λ
2
(k) ≤ σ−2E

[∥∥∥f − f̂λ

∥∥∥
2
]
, we conclude the proof by using

Theorem 6.
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