N

N

On the low- and mid-frequency forced response of elastic
structures using wave finite elements with
one-dimensional propagation
Jean-Mathieu Mencik

» To cite this version:

Jean-Mathieu Mencik. On the low- and mid-frequency forced response of elastic structures using wave
finite elements with one-dimensional propagation. Computers & Structures, 2010, 88, pp.674-689.
10.1016/j.compstruc.2010.02.006 . hal-00755757

HAL Id: hal-00755757
https://hal.science/hal-00755757

Submitted on 21 Nov 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00755757
https://hal.archives-ouvertes.fr

On the low- and mid-frequency forced response of elastic
structures using wave finite elements with one-dimensional
propagation

J.-M. Mencik

ENI Val de Loire, Université Frangois Rabelais de Tours|R, Rue de la Chocolaterie, BP 3410,
F-41034 Blois Cedex, France

Abstract

In this paper, the Wave Finite Element (WFE) method is ingaséd for comput-
ing the low- and mid-frequency forced response of straitfmtie structures. The
method uses wave modes as representation basis. Thesenagdaally calcu-
lated using the finite element model of a typical substractwith a small number
of degrees of freedom, and invoking Bloch’s theorem. Theltieg wave-based
boundary value problem is presented and adapted so as tesaddeumann-to-
Dirichlet problems involving single as well as coupled stunes. A regularization
strategy is also presented. It improves the convergendeedfM-E method when
multi-layered systems are specifically dealt with. It engglan alternative form
of the wave-based boundary value problem quite stable asylteasolve. The
relevance of both classic and regularized WFE formalismdssisussed and numer-
ically established compared with standard finite elemelotisns.
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1. Introduction

Slender straight elastic structures with uniform crosdisas are extensively
encountered in many engineering areas, such as those edvoivthe manufac-
turing of chassis frames or aircraft fuselages. Such strestcan reveal complex
cross-sections as well as they can exhibit a relative contpleithin the spatial
distribution of their vibratory behavior, especially whre characteristic wave-
lengths reach the same order as the cross-section dimensidrs short wave-
length domain is referred to as the mid-frequency rangefrevtiee cross-section
reveals local resonances with a frequency distributiorctvhan exhibit large vari-
ations [1]. This study concerns the use of the Wave Finitenélg (WFE) method
for predicting the low- and mid-frequency (LF and MF) vilmgt behavior of such
structures. In this framework, these are supposed to béitded by a set of iden-
tical substructures connected along a main direction, guefigular to the cross-
section (see Figure 1). The WFE formalism uses numericabkwaodes as ex-
pansion bases for describing the kinematic variables dfettstructures, that is
the displacements and external/internal forces. The wasgesare numerically
computed using the finite element (FE) model of a typical subture [2, 3] (see
Figure 1), whose mass and stiffness matrices can be simpdynel via commer-
cial packages. The wave modes refer to as specific crogsisatiapes traveling
with specific velocities along the main direction of thesengler systems. Parity
among waves is well transcribed through the WFE modelinthersense that each
positive-going wave mode is associated with a negativaggaiave mode of the
same velocity. Note that in the present work, positive- aegative-going waves
will be denoted as incident and reflected modes (see Figur&he wave modes
involve the standard propagating and evanescent wave msetioi.e. longitudinal,

flexural, torsional and shearing — and additional MF sohsgiavith non-uniform



cross-section shapes. In the WFE framework, the mesh genat the substruc-
ture cross-section can be adapted so as to address a stffigimber of highly

oscillating wave shapes, depending on the frequency rangsidered. The two
main features of the WFE method are that it is not constraimetlF analytical

assumptions (e.g. the cross-section remains plane aftemuion) and that it
provides a large decrease of the CPU time for computing treeforesponses of
systems compared to the standard Finite Element Method [M$.is explained as
it involves relatively small numerical models whose dirmens reflect the cross-

section dynamics only.

The WFE method has been widely used in the last few years f&oriténg
the one-dimensional wave propagation into systems ofrdiftenatures (see for
instance ref. [5] for beam-like structures, refs. [6, 7] flwid-filled pipes, ref.
[8] for laminates and ref. [9] for tyres). Also, it has beerplgd for predicting
the forced response of elastic systems such as Euler-Bérheams [10], sim-
ply supported Kirchhoff-Love plates [11, 10] and tyres [9The WFE strategy
for computing the forced responses is not new (see for insteefs. [12, 13]) and
requires an expansion of the kinematic variables onto wand@erbases with appro-
priate dimensions. The numerical issues associated wathesulting wave-based
boundary value problem have been recently discussed ir[x&f.for predicting
the response of an elastic structure under local forceadianits. In this work, a
numerical strategy has been proposed by which ill-conuitibproblems, resulting
from the wave representation of the local excitations, cagilcumvented. It in-
vokes both right and left eigenvectors of the symplectiogfer matrix relating a
typical substructure, and uses the fact that they are ootiedg The same strategy
has been used in ref. [10]. It has been successfully emplfyregredicting the

response of a clamped Euler-Bernoulli beam under transwexaitation as well as
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the response of a simply supported Kirchhoff-Love plateeurmlinctual force.

Apart from these works, a question arises whether the netevaf the WFE
formalism holds when arbitrary Neumann-to-Dirichlet deshs are addressed.
The underlying numerical issue is that the resulting mdinims are prone to large
dissimilarities among their components as both wave digpieent and wave force
terms are invoked. This means that ill-conditioning is Ik occur. Another
guestion arises whether the WFE method can be relevant doessing the vibra-
tory behavior of multi-layered systems involving both sofd stiff materials, since
the wave components can be largely disparate over the whads-section. These
problematics relate the motivation of the present work.

This study aims at applying the WFE method for describingltReand MF
vibratory behavior of arbitrary Neumann-to-Dirichlet pfems. These can involve
single and coupled beam-like structures with 2D compleXiapdynamics over
their cross-section, as well as multi-layered systemslhwg soft and stiff ma-
terials. Also, it aims at discussing on the relevance of tn@erical wave-based
formulation through comparisons with reference solutiprsvided by the stan-
dard FE method, when the global discretized structure igciead.

The framework of the WFE method for computing the wave modaget-
ing along straight elastic structures is presented in 8&@@i The computation
of forced responses based on wave mode expansion is didcus&ection 3.
Neumann-to-Dirichlet problems are addressed in Sectiolmh& resulting wave-
based matrix forms are presented for two classes of problesysa single waveg-
uide and two waveguides coupled through an elastic junctfostrategy for cir-
cumventing ill-conditioned problems is presented, by Whappropriate scalings
are employed. The underlying numerical issues of the WFEd&tism for ad-
dressing the forced response of multi-layered systemsiscessed in Section 5.

It is shown that the WFE method suffers from numerical initeds and pollution
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effects. A regularization strategy, by which the kinematciables are expanded
onto an alternative wave basis, is proposed to solve theseds Emphasis is on
the fact that this alternative wave-based formalism iseggéneral and can be ap-
plied, under appropriate assumptions, to other classesobfgms like plates. The
relevance of the regularization strategy is numericalghhighted compared with

FE solutions.

Figurel

2. TheWFE method

2.1. Formulation of wave modes

The WFE method numerically provides the LF and MF wave prapag into
periodic elastic systems [2]. In this framework, a givemicture is assumed to be
described numerically from a set of identical substructuréhese are assumed
to be modeled using the same FE model and connected along@ppti axis
— say axisz — referred to as the direction of propagation (see FigureThe
length of each substructure, along this direction, is deshaisd. Assuming mesh
compatibility at coupling interfaces between substruegiprovides the same nodal
distribution over their left and right boundaries: in othesrds, each boundary is
assumed to contain the same number of degrees of freedomsjD&dyn. The
WFE method is based on the dynamic equilibrium of one of trsedestructures

(see Figure 1), which is classically formulated in the freqey domain as
Dq =F, 1)

whereq andF represent the displacements and forces, respectilehgpresents
the dynamic stiffness operator of the substructure, espoegsD = —w?M +

K(1+in) whereM andK are the mass and stiffness matrices, respectively, while
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7 is the loss factor and is the angular frequency. Following the theory of Zhong
& Williams [3], the dynamic equilibrium equation (1) can lefermulated in terms

of state vectors as
ugp = SuL7 (2)

whereS is a(2n x 2n) symplectic matrix, the subscriptsandR refer to as the left
and right boundaries, white! = [(q.)” (~F.)?] andul = [(qz)? (Fg)T]. The

full derivation of S is expressed as:

~(D) Dy | (D)

S =
Dj; — Din(Din) ' Diy | ~Dia(Ds)

; 3

whereD* refers to as the dynamic stiffness matrix of the substrectandensed
onto its left and right boundaries. Using the coupling ctiods between two

consecutive substructurésandk — 1, say
w =ug, @)
in Eq. (2) leads to [5]:

u£k) = SuIEk_l). (5)

Invoking Bloch’s theorem [14], the solutions of Eq. (5) camteadily expressed
a5u£k) = Mu£k_1). These solutions are denoted{#g;, ®;)}; and refer to as the
wave modes traveling along the global structure. They ameemically computed

by means of the following eigenvalue problem:
S®; = u;®; . det(S—yyI)=0. (6)

For a given modg, the scalar parameter; characterizes the wavenumberas

pj = exp(—ik;d), while the vectorial parametep; represents the wave shape,
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which relates the spatial distribution of the displacemanrtd internal forces over
the cross-section. It is worth emphasizing that each egmov®; can be split
into wave displacement and wave force componentd’as- [(®,)] (®r)] . The
wave shapes are interpolated from the trace of the FE dizatien onto the sub-
structure cross-section. This particularly means thatrtesh density must be fine
enough if MF behavior must be predicted, in the sense thaff@isat number
of highly oscillating wave shapes must be computed for ately spanning the

cross-section dynamics.

Remark 1. As pointed out by Zhong & Williams [3], direct computation of
the eigenvalue problem (6) can be prone to large sengtwitith regard to pertur-
bation analysis. According to the Bauer-Fike theorem [fiig,problem is that the
eigenvector matrix o8, namely®, can be ill-conditioned. This can be explained
as it is partitioned into displacement and force compongs@s above) whose val-
ues can be largely disparate. To solve this issue, Zhong &ais have proposed

an homogeneous generalized eigenvalue problem of thevialjpform:
Nw; = p;Lw; ) det(N — /J’]L) =0, (7)

where the eigenvectorfw; }; relate the displacements of the substructure only.
This eigenvalue problem has been successfully used foessidg the wave prop-
agation into elastic, elasto-acoustic and multi-layeseddesns [5, 6, 16]. It will be
used in the framework of the paper so as to compute the wavesfod;, ®;)};.

It is worth noting that Zhong & Williams have proposed a “eettonditioned”
form of the eigenvalue problem with double eigenvaldes};, such that\; =
pi+1/p; Vj. These are associated to eigenvectors which come in paingsw?)} ;;
these are used to determine the wave mdaes}; of the original problem (7) as

w; = ajw; + asw’ Vj [10]. Notice that it is not clear whether this alterna-
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tive form brings an optimal determination of the wave modggen that singular
problems can be encountered for determining the amplitittes o)} ; (see ref.

[17]).

Remark 2. Throughout the remainder of the paper, it will be assumetithiea
eigenvectorg®;}; are linearly independent when # 0 [18]. This assumption
occults the possibility of merging two wave modes of quitaikr natures in a
single one, which is coherent with the rule of wave mode cmiwa process in
the frequency domain and the fact that two similar wave shapanot exhibit two
different group velocities at the same frequency [19]. Adow to ref. [18], this
assumption can break down when— 0, as the classic LF wave modes (say lon-
gitudinal, torsional, flexural, shearing) tend to share game eigenvalug = 1
— this is explained as rigid body motions take place — whichdrerally defec-
tive. In this sense, the eigenvalue problem may be pronede kensitivities [20],
e.g. with regard to slight discretization errors which cartyrb the components of

matrix S.

2.2. Criteria for tracking the frequency evolution of wavedas

Tracking the frequency evolution of each wave mode is a ahstep of the
WFE method. This brings insight into the frequency evolutaf the structural
behavior and leads to properly select among all the wavegtivbich are the most
contributing for computing the forced responses within\gegifrequency band.
As opposed to the analytical formulations, the numericakag@ch provides wave
modes at discrete frequencies. Correspondence among tsvofsaodes defined
at two frequencies, close to each other, can be achievedhaess in the WFE
framework using the following criterion [5]:

Given two wave modeg andm defined at angular frequency, such that



pm(w) = 1/p;(w), and for sufficiently small\,, wave modej defined at angular

frequencyw + A, is such that:

T _ T
P, (w) ®i(w+A) ‘ ~ max, {‘ w) 3 Pp(w+ Ay) ‘} ®)
[@m (W)l |2j(w + Ayl [ @ ()] [[@r(w + A)l

where||v|| denotes the hermitian norm of a vector defined ag|v| = vVviv

whereH denotes the conjugate transpose. This criterion is bast#te@ymplectic

orthogonality property of the matri® (cf. Eqg. (2)), which states that

®TI®, =0 forp;#1/;w;  where J= { 01 } . (9)
-1 0
Using the partitioningd] = [(®4)7 (®r)] ], the symplectic orthogonality (9) can
be readily written ag®r){ (®4); — (Pr)] (®q); = 0 (for u; # 1/w). It has
been shown in ref. [21] that this constitutes a necessawnyir@gent to satisfy the
Maxwell-Betti reciprocity theorem into an elastic wavedgii considering the wave
modes®; and®,; as two states of excitations and induced displacements.

The criterion (8) breaks down unfortunately for very lowduencies given
that eigenvalueg;:}; can be extremely close to each other. This means that or-
thogonality properties among modes are not necessaritffecenumerically. The
following criterion based on the hermitian scalar prodwt be used instead [16]:

Given wave modg defined at angular frequencyand for sufficiently small
A, wave modej defined at angular frequency+ A, is such that:

Qi (w)fT ®j(w+A,) ':max {‘ W) ®p(w+ AL) ‘} (10)
1@ ()] [|@5(w + Au) “ U2 @) @x(w + AL

This criterion is well known as Modal Assurance CriterionA®) and is used for
estimating the correlation among wave shapes. This @itésiexpected to be less
accurate compared to Eqg. (8) since orthogonality projseatie not invoked, unless

frequency step),, is chosen small enough. However, it appears more general in
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the sense that it can be applied for tracking the eigensoisitof a matrix which is

not necessarily symplectic (see ref. [16]).

2.3. Relationships between incident and reflected modes

It is well established that there exists the same numbef incidentandre-
flectedmodes! traveling along a straight structure [3] (see Figure 1), ishe
represents the number of DOFs contained onto the left ot ighndary of the
considered substructure. In this sense, the wave §dsi$; can be expressed in

matrix form as

inc ref
‘I,Cl (I,q

P = (11)

‘I,il?nc (I,i?ef
whereirgm, b, @gef and®3ef are squarén x n) matrices; the superscriptac
andref refer to as incident and reflected waves while the subsatgipisdF' refer
to as displacement and force components. Accounting fosynemetry of the
wave propagation problem with respect to any transversaiegly, ) (cf. Figure
1), itis readily established that reflected and incident esaate linked through the
following rules [22, 8]:

Mref _ (MinC)—17 (12)
and
P =REFC , PFT = —RIFC. (13)

In Eq. (12),u"¢ and u*¢f represent the diagonal eigenvalue matrices of the inci-

dent and reflected modes, respectively. Eq. (12) is commusdd in the literature

1In the framework of this paper, they refer to as (by convemtthe waves traveling in the positive

and negative directions.
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(see for instance [10, 9]) and means that dual incident aftetted modes reveal
eigenvalues which are inverse, one compared to the othéhoWiloss of gener-
ality, as the elastic system is dissipative, incident afidcted eigenvalues can be
classified a5 }j=1,..n = {45 * ] < 1}; and{uf* oy n = {15 ¢ |ns| >
1}; orvice versg5]. On the other hand, in Eq. (13R is the diagonal symmetry
transformation matrix; the minus sign on the right hand sifine second term of
Eq. (13) results from the state vector representation wikigluite different for the
symmetric problem as left and right boundaries appear fedeEq. (13) enforces
the coherence between incident and reflected modes, inrtke #&at the equalities
[1(@E<);1| = [(@);]] and||(@§);]| = ||(@F7); ]| are verifiedvj, while it is
not sure whether these relations can be perfectly trareztthrough the eigenvalue
problem (6) only, since the latter can be prone to numeritsgdegtsion. This can
cause drastic problems for predicting the forced respohsleeoglobal structure

(see Section 4.3.1).

Propostion 1. Each of the families{(®3*);}j=1,...n, {(®P5)j}j=1,..ns

{(®3);}j=1,...n and{(®}F),};=1...n represents linearly independent vectors.

Proof. According to ref. [10], the eigenvalugg:;*°}; and {u5°* @ 5t =
1/u]i-n°}j are solutions of a quadratic eigenvalue problem of dimensjovhich is
formulated by means of the wave displacement compor{gr§™); }; only. For

(<I>}1n°),C given, this yields the following two equations [10]:

[y + (D, + Dig)ui™ + Dig (i) (@E°)x = 0, (14)
and
(®27°)f [Die + (DiL + D)3 + Dig (1)) = 07, (15)
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where it has been taken into account thef, = (D;;)” andD;; +Djy = (Di, +
D;)T. This enableg:i*® anduz** to represent the solutions of a single quadratic

equation:
(‘I)énc)fkr[D;L + (D1 + Dep)p + DfRMQ](‘bénc)k =0. (16)
Finally note that wave force and wave displacement comgsrae linked as [10]:
(®r); = [Dir + Diaps](®q); Vi 17

To prove that{(@jlnc)j}j are linearly independent, let us consider for simplicity
one hypothetical vecto®}*); wherel # k and such that®™); = a(®*)x

(o # 0). Itis readily verified that the pair of eigenvalués;™°, ;7°*) satisfies
Eqg. (16). This necessarily yieldsi®® = pir¢ andufef = pref 2, taking into
account that both;*¢ andp;*f are the two solutions of Eq. (16). This also yields
(®3°); = a(®P°);, considering Eq. (17). This generalizes the linear depen-
dency agpb;™c = a®;™ for two incident eigenvectorsandk of matrix S, which

is contradictory to the statement tHab, } ; are linearly independent (see Remark
2). Thus, the vector§(®*°),}; are linearly independent. A similar statement can
be readily deduced fof(®3"°);};, using Eq. (17). The proof thd(®5°*);};, as
well as{(®z°*),},, are linearly independent can be easily deduced from the pre

ceding derivation. [

Proposition 2. Let us consider two sets of eigenvectc{ri]i-nc}j:l,__,m and
{®%e7},_; .m extracted from the full familie§®irc};_; _, and{®},_; ..,
wherem < n, and whose respective wave displacement and wave forceccomp

nents admit the followingn x m) matrix forms®irc, ®ref, $inc and®iet. Then,

2The casgui™ = pi*f anduf*® = pi*® can not occur if the following convention is retained [5]:

{15} = {w = g] < 135 and{p5*}; = {p; = [u| > 1}; or vice versa
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the pseudo-inversA + of each of these matrices (each of them being termeti)as

can be computed as [15]:
AT = [ATA]IAT, (18)

Proof. The proof follows directly from Proposition 1, taking intocunt that
each of the matrice®@i®, ®5°f, ®i and $%* is full column rank (rankA) =

m). This yields the expected form of the pseudo-inverse [15]]

3. Wave mode expansion

The problem of predicting the harmonic response of a straatomposed of
N identical substructures is addressed (see Figure 1). Wi framework, the
state vectors;@ and u}(f) — namely, the kinematic variables of a typical sub-
structurek — are expanded onto a reduced wave b@§i§}j = {i%“ bi=1,m U

{®%},_1 ..m, Wwherem < n. This results in

u£k) _ &,inc@inc(k) + ;Iv,reféref(k) k=1,...,N, (19)
uf({k) _ &,inc@inc(k—i—l) + (’Iv,reféref(k-‘rl) k=1,...,N, (20)

where®ir¢ and®*f are the(2n x m) matrix forms of the incident and reflected
wave mode shapes, whi@* and Q** are the(m x 1) vector forms of the re-

sulting modal amplitudes.

Remark 3. The reduced basig®; }, is supposed to include the modes which
mostly contribute to the forced response of the structuesspde no rigorous crite-
rion for selecting these modes, a simple strategy consistenstructing the wave

basis from the standard LF propagating modes and the modek either become
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or are close to becoming propagating behind a certain hgitiequency [10].

Proposition 3. The spatial distribution of the modal amplitudes is goveras:
Qinelh) — ph-1Qinc(1) k=1,...,N+1, (21)
Qreth) — = (=D Qres(1) k=1,...,N+1, (22)

wherep represents thén x m) diagonal eigenvalue matrix of the incident modes,

which is such thafi = ™ = (u***)~! (cf. Eq. (12)).

Proof. Inserting Egs. (19) and (20) intol(f_l) = SF~lu] — provided by
the recurrence equation (5) and the coupling conditions—<4and given that

SQk—1ginc (i;incﬁk—l andSk—1gpret — &;refﬁ—(k—l) leads to
(AI;ianinc(k)_F:I;reeref(k) _ &;incljk—léinc(l)+&,refﬁ—(k’—1)éref(1). (23)

Left multiplying Eq. (23) either by ®*°f)7J or by (®»<)7J, and accounting for
the symplectic orthogonality property (9) — which statet th=ef)7 Jd=ef = 0
and (@) Jdinc — 0 3 —finally leads to Egs. (21) and (22). O

The wave-based boundary value problem is constituted flmngbverning
equations (21), (22) and the boundary conditions. Thesebeadiormulated in a

general way as [23, 5]:
Q™ iim = CQ™ i + F, (24)

whereC refers to as the diffusion matrix and provides the reflectind transmis-

sion coefficients of the wave modes across a given boundédnije ¥he vectorF

*Note that(®*°)” J@** and(®**)” J@*** are diagonal matrices.
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reflects the excitation sources. It has been establishesf.ii23] that Eq. (24) is

well suited for describing the Neumann and Dirichlet bougdanditions. These

write as
[0|T] u = £F,, (Neumann condition) (25)
[I]0] u = q, (Dirichlet condition) (26)

and can be expanded onto the wave b@§i§}j (see above) to give

PireQine 4 IfQTet = +F,, (Neumann condition) (27)

PireQirc 4 Q™ = qp. (Dirichlet condition) (28)

It is worth emphasizing that the sign aheBg in Eq. (27) is negative if the left
boundary is concerned (this is explained as the state vespoesentation writes
ul = [(qu)” (—F1)T]) whilst it is positive if the right boundary is studied (inish
case, the state vector representation wiites= [(qg)” (Fg)”]). Left multiplying
Egs. (27) and (28) by the left pseudo-invers@§*?)* and(®%%)* (see Proposi-
tion 2), respectively, leads to the form of Eq. (24), as eigubc

Remark 4. As pointed out in Remark 2, the wave mode expansion provided
by Egs. (19) and (20) may be inaccurate when- 0, that is for very low fre-
guencies. Here, a part of the wave modes — namely the claBsieddes — tend
to be linearly dependent, meaning that the numerical wagedh boundary value

problem reveals poor conditioning.

Summarizing, the wave-based boundary value problem isuiatied from Egs.
(21), (22), and the boundary conditions, which can be foatedl in a general way
by Eq. (24) or more specifically by Egs. (27) and (28). Soling wave-based

boundary value problem consists in finding, for instance, rtfodal amplitudes
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Qirc(M) and Qr=f() for the left cross-section of the global structure. Thus, th
spatial distribution of the modal amplitudes, along thectire, are provided by
means of Egs. (21) and (22), while the spatial distributibthe kinematic vari-
ables (say, displacements and internal forces) are prgleneans of Eqs. (19)
and (20). The wave-based solutions are expected to be imdzcme with the re-
sults provided by the standard FE method, which requiresahgputation of the
full discretized structure withV connected substructures. Compared to the FE
method, the WFE method yields a large decrease of the CP\4 fonealculating
the LF and MF forced responses, as it involves numerical tsafesmall dimen-
sion (i.e. twice the number of retained wave modes). Andéegure of the method
is its large flexibility for addressing several classes olyems involving single as
well as coupled straight systems with arbitrary conditjomien the wave modes

for one or few substructures have been computed once and.for a

4. The Neumann-to-Dirichlet problem

4.1. Single waveguide

The problem of a single waveguide — say for instance a bekensliructure
—, whose left and right ends are respectively submitted ¢sgibed forces and
displacements, is addressed (cf. Figure 2 for instancehidrcase, the boundary

conditions write (cf. Egs. (27) and (28)):

&,%nc@inc(l) + &,;ef@ref(l) = —F,, (29)

;Iv,(ilncéinc(N-‘rl) + (’Iv,geféref(N-‘rl) = qo. (30)

16



where N is the number of FE substructures considered to discretieeglobal

system. Accounting for the governing equations (21) andl y2ds

&,%nc@inc(l) + &,;eféref(l) = —F,, (31)

(’Iv)(ilnCﬁNQinc(l) + ;Isgefﬁ—NQref(l) = qo, (32)
which, in matrix form, results in

&“,%nc (f,llgef Qinc(l) _ ~F, | -
(i;(:';ncﬁN (i;éefﬁ—N Qref(l) Q
Direct inversion of the matrix in Eq. (33) can suffer from ngaingular problems.
This is explained as the ratios between the diagonal cormpeiné matricegs
and 2, as well as the ratios between the component®paind &, can reveal
extremely large values. This issue can be circumvented)apropriate scalings

[15] as:

I (@)@ w10 QineV)
~ref |, ~inc _ ~_ ~
CONDAE T I o pY |\ Q=
_ (fi)inc +F
[ Em @)
(‘I’q )+q0

The system provided by (34) can be solved without difficuibcs the first matrix
on the left hand side appears well conditioned (it is worttingothat the eigenvalue
matrix of the incident modeg is such that| | |nax < 1) while the second matrix is
diagonal. In the present form, the diagonal maﬁi@v( is multiplied either with the
matrix (&, ")t @, or with the matrix(®, )*®,", which results in a filtering
effect for high order modes whose highly fluctuating crasstisn dynamics can
be sources of numerical instabilities. In other words, theticbution of high order

ref

modes in the computation ¢fb;™")*&;" and (®." )*+®," are lowered given

17



that they are scaled down using close to zero te[rnj%}jzp (this is explained as

lnj| < 1VjandN can be large). Solving Eq. (34) finally gives

(inc(1)
(‘3 ) (@)
Qref(l)
~inc, , ~re -1 ~inc
I (8" &; fﬁN] ((@F )+F0)

~ref ~inc _ ~ref
(®q )P®, AV I (®q )0

Remark 5. The strategy used for solving the Neumann-to-Dirichletpgm
can be adapted without difficulty so as to address the Neumeotslem or the
Dirichlet problem, say for instance a beam-like structutmse left and right ends
are either respectively submitted to prescribed forceore®, andF, or respec-
tively submitted to prescribed displacement vectgssand q;,. This requires in
Eq. (35) the subscripf to be switched witlF or vice versaand the appropriate

boundary conditions to be included. This results in:

e For the Neumann problem:

O inc(1)
(&) e
Qref(l)

~in ~ref _ -1 ~in
I 0 I <¢>F°>+c1>;fuN] ((@F°>+F0

o o

~ref ~inc _p

(‘I’F )+(I)F M I

e For the Dirichlet problem:

O inc(1)
(&) o
Qref(l)




4.2. Two coupled waveguides

The problem of two waveguides — namely waveguldend waveguid® —
coupled through @on excitedelastic junction is addressed. The junction can be
arbitrary and can reveal a complex behaveopriori. In previous works [5, 24], it
has been established that the amplitudes of the modes egflegt— and incident

to — the coupling element can be linked as:

Oref s ™ ()inc

w1 || Cu Co vgl (38)
~ - ~ ~ ~ )

ref inc

g2 Cor Cy wg2

wherewg1 andwg?2 refer to as waveguide and waveguide, respectively;{@j i
represent the square block components of the diffusionixn@trwhose expres-
sion can be found in ref. [5]. On their uncoupled limits, thavaguidesl and?2
are assumed to be submitted to prescribed forces and dispdants, respectively.

Summarizing, the boundary conditions are expressed as:

e For waveguidel:

(B1) gt Qs + (BE ) Qlos ) = —Fo, (39)
Q:];E(N1+1) @IIQ;E: (N1+1) + (C QQ:,EZ N2+1)‘ (40)

e For waveguide2:

Q:]?;(Nz-l—l (C22Q:]g; (N2+1) + (C21Q:,§(1: N1+1)’ (41)
& inc ~inc re ref(1)
(B ) g2 Qung ! + (BE7)ug2Qiss " = a0, (42)

where Ny and N, represent the numbers of substructures constituting tlvegva

uides1 and2, respectively. Accounting for the governing equations) @id (22),
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these boundary conditions can be expressed in matrix form as

(B )ugr  (BFF)ugr | O 0 Qigr" —Fy
~ . ~ ~ref(l
~Ciifindy  Jigg' 0 —Cophy || QY| | o
~Cotigg 0 flogy’  —Coaafill Qf,;(l) 0
Hr Hi oinc(l
[0 0 | (@) (BE)up | \ Qua” a0
(43)

As was emphasized in the previous subsection, direct ilmrers the matrix term
in Eq. (43) may be prone to nearly singular problems. Thixdaned because,
for each waveguidé, the diagonal components of matricag,)" and 1)), as
well as the components ¢8.;), and (.4 )r, can be strongly disparate. Again,

appropriate scalings can be carried out for treating thestglgms. This gives:

I (DERC) g (BEE ) iy 0 0
—@nﬁf,iﬁ I 0 _@12%]1?2
—Co gy 0 I —Coofing,
0 0 (B22) o (P )ugoflgs I
(T o | 0o o[ QXY —(®), Fy
L |0 w'| 0 0 Qi = 0 . (44)
0 0 |fg o] Qi 0
o o | o 1)\aqmo (200

Solving Eq. (44) provides the modal amplitudeg,as ", Qior "} and{Quns ™, Qoos ™M1,
at the ends of waveguidésand2 where forces and displacements are respectively
prescribed. The spatial distribution of the modal ampbktadbng each waveguide

is obtained by means of Eqgs. (21) and (22). The spatial bligian of the kine-

matic variables (say displacements and forces) are finadlyigled by means of

Egs. (19) and (20).
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4.3. Numerical results

4.3.1. Beam-like structure

We address the forced response of a straight clamped bkarstiucture, with
rectangular cross-section, whose free end is submitteithter exxial or transverse
loads. Here, the force field is assumed to be uniformly spoedtie surface bound-
ary. The material and geometric characteristics of thesira are: Young’s modu-
lus E = 2x 10" Pa, densityp = 7800kg.m 3, Poisson’s ratie = 0.3, loss factor
n = 0.01, lengthL = 2m and cross-section arég x h, = 0.2m x 0.3m. The
FE model of the global elastic system is depicted in Figuré 2ontains21, 000
DOFs and is composed &f = 200 identical substructures along the length, say
the x—direction. Each substructure is meshed using6 linear rectangular brick
elements and exhibits a length= 0.01m (see Figure 2) . This mesh is supposed to
be fine enough to correctly capture the short wavelengthsedignificantly con-
tributing wave modes traveling along the-direction [6], as well as the resulting
wave shapes over the cross-section. The left and right lzoigsdof the substruc-
ture containg: = 105 DOFs providing that 05 incident andl05 reflected modes
are obtained through the WFE eigenvalue problem (6). The=tbresponses of the
global structure under either axial or transverse load ksgere 2) are addressed
on a frequency ban; = [10Hz , 10*Hz]. Eq. (35) is computed for providing,
by means of Egs. (19) and (20), the WFE displacement solufldre wave ba-
sis{t?[;j}j is supposed to include the modes which mostly contributedgddrced
response of the structure. These relate particular “cseston” shapes with both
displacement and force components that can exhibit lardislyarate spatial dy-
namics. The displacements components of several conftigoutave shapes are

depicted in Figure 3 af500H z. These refer to as the classic LF longitudinal,
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flexural and shearing modes with a non-uniform spatial biendyand MF higher
order modes with an oscillating spatial dynamics for captuthe cross-section

resonances.
Figure2
Figure3

The forced response of the global structure under axial imadmputed first,
whenm = 10 andm = 60 wave modes are alternatively retained{i@; };. The
longitudinal displacement of one corner of the excited s®esction is shown in
Figure 4. Comparisons with a reference solution providethkey-E model of the
global structure are also presented. The dimension of tke-lwvased matrix prob-
lem is 2m, say20 or 120, while the dimension of the full FE model &, 000:
as expected, the involved CPU times appear largely dispasay several seconds
for the wave approach against more than one hour for the atdritE approach.
Regarding Figure 4, the WFE solutions with modes correlate the first global
vibrational modes of the structure while it poorly estinsatige resonance levels at
higher frequencies, especially the one occurringh@0 H z (depicted by an arrow).
This is explained as the wave basis is not rich enough forataflgthe non-uniform
spatial dynamics occurring within the cross-section ahduequencies. Using a
wave basis with an extended dimension — say= 60 —, which contains addi-

tional high order modes, clearly solves this lack of congar belows000H =.

Figure4

41t is worth emphasizing that the rigid body assumption fer¢hoss-section breaks down at high

frequencies.
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Above8000H z, the wave approach still suffers from a lack of convergeioce f
predicting the resonance frequencies, whatever the sitieeofvave basis. This
problem is solved when the theoretical correspondences@rmeident and re-
flected modes, provided by means of Eg. (13), are accounteth fine WFE
formulation. Recall that these relationships have beemditated to circumvent
numerical dispersion effects generated by the eigenvahagm (6); they enforce
the coherence between incident and reflected modes, inrtbe #&at the equalities
1(@2e);]| = [[(@%£),]| and||(@§<);]| = ||(@5*),|| are perfectly transcribed
Vj (see Section 2.3). The relevance of the resulting wavedhaisdblem is clearly

established in Figure 5, compared to the FE solution.
Figure5

The same strategy — involving the relationships (13) — isdusecompute
the forced response of the structure under transverse d¢oeaithe same frequency
bandB;. The transverse displacement provided by Eq. (35) is catiedlusing
wave mode bases with different dimensions= 10 andm = 40 (see Figure 6).
It appears that the wave approach perfectly correlatesetieeeince solution when
m = 40. This clearly emphasizes the feature of the WFE method ersémse that
the forced response of straight structures can be corradtyessed using wave-

based models of extremely small size (8ay = 80 in this case).
Figure 6

4.3.2. Reissner-Mindlin plate

We address the forced response of a square Reissner-Midtia with one
edge clamped into a support driven by a prescribed trareswisplacement. The
FE model of the problem is depicted in Figure 7, whegeeflects the displacement

of the support. The material and geometric characteristicthe structure are:
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Young’s modulusE = 2 x 10! Pa, densityp = 7800kg.m~3, Poisson’s ratio

v = 0.3, loss factory = 0.01, shear correction factot = 5/6, areal, x L, =

1m x 1m, thicknessh = 0.002m. The global system is composed &f = 40
identical substructures along thre-direction. Each substructure has a lengts
0.025m and is meshed using triangular Reissner-Mindlin elemeritis Gvnodes
(see Figure 7). It contains the same number of DOFs;nsay 83, onto its left
and right edges, while it containsy = 161 internal DOFs. The formulation of
the symplectic matriXS (see Eqg. (3)), involved in the WFE eigenvalue problem,
requires the dynamic stiffness operator of a typical sub#tre to be condensed

onto its left and right boundaries [5]. This yields:
D* = Dgg — Dg:(D11) ' Dis, (45)

where the subscrif# denotes the DOFs contained onto the left and right bound-

aries, while the subscriftdenotes the internal DOFs.
Figure7

The forced response of the global structure is computed oagaéncy band
By = [10Hz, 2000Hz]. Eq. (35) is computed for providing, by means of Egs.
(19) and (20), the WFE displacement solution. The coheremeeng incident
and reflected modes is enforced through Eq. (13). The tresesvtisplacement
at the mid-side of the free edge, opposite to the supportrasm in Figure 8.
Comparisons with a reference solution provided by the FEahotithe global
structure are presented. The WFE solution is calculatetyusduced wave bases
of different dimensions, say. = 10, m = 40, m = 60 andm = 80. It is shown
that the WFE formulation offers good convergence providied it almost involves
the full wave mode basi§é®;};. This particularly means that the global structure

reveals a complex behavior — particularly in the vicinitytioé clamped edge and
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corners where kinematic fields with local sharp gradientsioe— which need to
be spanned by highly oscillating cross-section wave shepase of these shapes
— these relate the transverse displacement componente ofiddes ai500H z

— are drawn in Figure 9.
Figure8
Figure9

4.3.3. Two coupled beam-like structures

We address the forced response of two beam-like structuraamely waveg-
uide 1 and waveguide — with rectangular cross-sections, coupled through an
elastic junction over one of their cross-section limits. réjehe elastic junction
represents a quarter of torus. The finite element model afdbpled system is de-
picted in Figure 10. The other cross-section limits, for eguide2 and waveguide
1, are respectively clamped and submitted to a uniform tenssvforce field (in
the z—direction) that reflects the vectdl,. The main axes of the two waveguides,
say axest; andzs, are perpendicular so that coupling among wave modes of dif-
ferent natures (say for instance, longitudinal, flexur@isibnal) is likely to occur.
The two waveguides, as well as the coupling junction, exhii® same material
characteristics: Young's modulus = 2 x 10! Pa, densityp = 7800kg.m =3,
Poisson’s ratiar = 0.3, loss factom = 0.01. The two waveguides have the same
cross-section arel, x h, = 0.2m x 0.15m, while their respective lengths are
L1 = 2m and L, = 1.5m. The junction represents a quarter of torus with an
internal radius of curvatur&. = 0.05m and a cross-section similar to those of the
connected waveguides. These are discretized with similastauctures of length
d = 0.01m (see Figure 10), so that waveguitleontains/N; = 200 substructures

and waveguid@ containsN, = 150 substructures.
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Figure 10

Each substructure is meshed usihg 3 linear rectangular brick elements,
while 4 x 3 x 10 linear brick elements are used for the discretization oflastic
junction. The mesh tying problem is illustrated in Figureal@ reflects two sub-
structures, used for wave mode description, coupled wehuhction [5]. Here,
the mesh compatibility across the coupling interfaces —algii; (between the
substructurel and the junction) and's (between the substructupeand the junc-

tion) — is assumed, so that the coupling conditions are sirappressed as:

qwg1|1"1 = qc|1"1 and qwg2|1"2 = qc|1"2> (46)
ng1|1"1 = _Fc|1"1 and ng2|F2 = _Fc|1"2> (47)

where subscript refers to as the coupling junction. In this case, the diffosi
matrix C (cf. Eq. (38)) is simply expressed as [5, 24]:

C= - [K o5+ U] ' (KT 4 B (48)
whereK* stands for the dynamic stiffness matrix of the junction @rskd onto
I’y andls.

The forced response of the global structure is addressed the WFE method.
For this task, the modal amplitudé®’as'”, Qi1 "} and{Qirs”, Qo5 are
numerically calculated by means of Eq. (44). Again, the teical correspon-
dences among incident and reflected modes, for each waeegure numerically
imposed by means of Eq. (13). The WFE displacement solutiothé& two waveg-
uides is obtained using Egs. (19) and (20). The transvespdadement of one cor-
ner of the excited cross-section of waveguidis computed on a frequency band
By = [10Hz, 5000H z] (see Figure 11). Comparisons with a reference solution

provided by the FE model of the global structure are alsogmtesl. The wave-

based problem is alternatively formulated from reducegbasntainingn = 10
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andm = 40 wave modes for each waveguide. Again, the convergence ievach
when a sufficient number — say = 40 — of wave modes is accounted for. In
this case, the selected wave modes constitute a completly famspanning the
behavior of each waveguide as well as the trace of the dynbehevior of the

junction onto the interfacels; andI's [24].
Figure 11

4.3.4. Conclusions

The WFE formulation, based on the numerical problems (34)) @4), has
been successfully used for computing the forced resporfsadasge variety of
homogeneous systems, namely a clamped beam-like structdes axial or trans-
verse load, a square Reissner-Mindlin plate under prestiitansverse displace-
ment and a coupled system — say two waveguides coupled thrangelastic
junction — under transverse load. It has been shown that thE ¥élutions suc-
cessfully match the solutions provided by the standard FBodk that is when the
global structure is discretized, provided that they are mated using wave bases
of large enough size to capture the relative complexity efdioss-section spatial
dynamics. Summarizing, the wave-based strategy offerpdhsibility to investi-
gate the LF and MF behavior of structures using numericaleisodf small size.
The feature of the WFE method is that the resulting CPU tinpgear consider-

ably lowered compared to those involved by the standard REode

5. Regularization strategy

5.1. Motivation
The wave-based numerical problems (34) and (44) may beosieg when

multi-layered systems are addressed. Such structureseeal @ multi-scale be-
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havior over their cross-section in the sense that the layanseveal strongly dis-
parate wavelengths, e.g. for a sandwich beam constitutedsofit rubber core
surrounded by two stiff steel skins (see Figure 12). Hergglaatios between the
components oﬁ3q, as well as between the componentsf@f, are likely to occur.
Another issue is the fact that wave mode shaps}; can be extremely close
to each other, though their respective wavenumbers canrdpel\ladisparate (see
ref. [16, 25] for further explanations). As a consequenice,domputations of the
matrices(®; )T ®; and(®, )", in Egs. (34), as well as the computation
of the matriceg ®1°) L, (BEF )yg1 and (Din°) Lo (BLeF),q, in Eq. (44), can be
prone to severe rounding errors.

To highlight this issue, let us address the forced respoftbe sandwich beam
depicted in Figure 12. Here, the skins — namely layleasid3 — have the same
characteristics: heighit' = h3 = 2 x 10~3m, same widthb0 x 10~3m, Young’s
modulusE' = E3 = 2.1 x 10" Pa, densityp! = p3 = 7850kg/m?, Pois-
son’s ratiov! = v® = 0.3. The core — namely layer — exhibits the following
characteristics: height> = 20 x 10~3m, width 50 x 10~3m, Young’s modulus
E? = 1.5 x 10%Pa, densityp? = 950kg/m? and Poisson’s ratio? = 0.48.
The global structure has a length = 0.4m and is assumed to be dissipative,
in the sense that the three layers are assumed to have thelassfactor, say
n = 0.01. The FE discretization of the global structure involvés= 200 identical
multi-layered substructures connected alongatheaxis. A typical multi-layered
substructure is shown in Figure 12. It exhibits a length= 2 x 10~3m which
is supposed to be small enough with regard to the wavelengtie contributing
wave modes, within the frequency band of interest. The tlaigrs are meshed us-
ing linear rectangular brick elements: layérand3 (steel skins) are meshed with

four elements while laye2 (soft core) is meshed with sixteen elements. Within

the WFE framework, this relatively coarse mesh should begpiate to yield the
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classic LF modes of the global system as well as several MFes)ddr which the
core cross-section reveals local dynamics. The spati@itdifons of several wave
mode shapes obtained when computing the eigenvalue prgb)esne depicted in

Figure 13.
Figure 12
Figure 13

The forced response of the sandwich structure clamped aigiieend, over
the whole cross-section, and excited at the left end, owebtiitom skin cross-
section, is calculated on a frequency bafyd= [100H =z, 1500H z]. Longitudinal
and transverse loads, as depicted in Figure 12, are in@dilydstudied. These
loads numerically describe surface force fields which aroumly spread on the
bottom skin cross-section. The longitudinal and tran®sdisplacements of a cor-
ner of the excited bottom skin cross-section, provided leywthve-based problem
(34) when longitudinal and transverse loads are respéciymplied, are drawn in
Figures 14 and 15. Comparisons with a reference solutioviged by the full FE
model of the sandwich structure, wighi, 000 DOFs, are also presented. For each
type of excitation, the WFE solutions are calculated usiagenbases of different
dimensions, sayn = 10, m = 30, m = 50 andm = 70. With m = 10, the WFE
method clearly reveals a lack of convergence as the freguaneases, whatever
the type of excitations. This issue has been discussed ih depef. [16, 25] and
can be explained as the wave modes reveal changes of naithissy, providing
that the classic wave motions (longitudinal and flexural agnothers) are obliter-
ated in the WFE formulation. This can be solved using wavedbasth extended
dimensions — sayn = 30, m = 50 andm = 70 — so as to reflect these classic

motions during and after the wave mode conversion process.
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Figure 14
Figure 15

Another problem is that the WFE solutions may reveal locstaitinuities as
well as spurious resonances/oscillations within (cf. the WFE solutions com-
puted withm = 30 andm = 50). These numerical instabilities and pollution
effects introduce approximatively the same amount of erranenm = 30 and
m = 50, although their frequency descriptions can strongly diffie other words,
the wave-based problem (34) appears sensitive to the diomeokthe wave basis
while the way of increasing its size does not significantlpiove the convergence
of the formalism, contrary to what was observed for homogasesystems (see
Section 4.3). Numerical instabilities finally disappearantn = 70: in this case,
the WFE solution perfectly correlates, withiy, the reference FE solution when
longitudinal excitation is considered, while it still sefs from a lack of conver-
gence to address the local resonances abov@H > when transversal excitation
is concerned.

Summarizing, the wave-based problem reveals poor consisfer describing
the behavior of the sandwich structure, as it introduceseariaal instabilities and
pollution effects. Numerical instabilities can be remowday if wave bases of
extremely large dimensions are accounted for in the fosmaliwhile it appears
not clear whether increasing the size of the basis compl@tevides the local
resonances of the structure over the entire frequency Bandrhe drawback of
the formulation — say numerical instabilities and pollatieffects — results from

*)*$." in Eq. (34), as underlined

the computations of®; )+ &5 and (@,

above. A regularization strategy is proposed hereafteett these issues.

30



5.2. Wave mode expansion
The framework of the regularization strategy is to use agrmditive family of
wave mode shapes — name[@jnc}jzlvmvm U {Tjr-ef }j=1,...m — as representa-

tion basis. The resulting wave mode expansion is

u£k) _ &,inc@inc(k) + Tref@ref(k) k=1,...,N, (49)
u}({k) _ &)incéinc(k—i—l) + Treféref(k-‘rl) k=1,...,N, (50)

whereYTe refers to as the matrix form c{ff‘;ef }i=1....m and is defined such that

_ ;Iv‘ref ;Iv,inc
Tref — ~q — j . (51)
T;ef _(I)I:;nc

The matrix Y= is directly computed using the incident mode shai)é’éc. The
shapes{’f‘;ef }; play the role of reflected modes and appear strongly coecblat
the shapes of the incident modes|H@i°);|| = [|(T5F),|| and||(@§<),|| =
H(Y‘;ef)jﬂ V4. The choice of this alternative basis lies in the fact thatdbmpu-
tation of the matrice$®, ) &5 and(ifrflef)ﬂfrinc in Eq. (34) can be circum-
vented since the following substitutions operate:

(@) @ = (@) T = -1, (52)

~ref

((I,q

~ref)+~inc

+~inc .
)T, — (X, . =L (53)

It is worth noting that the definitions (51) are quite natusdlen incident and re-
flected wave shapes represent longitudinal wave matioffhe validity of this

alternative wave mode expansion is investigated hereafter

Proposition 4. Let us assume that the reduced basi™*}; U {X*f}; is

composed of wave modes which effectively contribute to thredd response of

5This is readily verified for LF analytic solutions [26].
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the structure, depending on the manner by which the exaitatburces are applied.
The governing equations (21) and (22) can be applied prdvicdat the following

conditions are verified:

. ~ref . . . . ~ref
() Each vector‘I‘;e is a linear combination of the wave mod{@ze Ye=1,...m»

~ref

e, Y = :I;refa, wherea is a(m x m) matrix;
(i) acisinvertible;

(i) m anda almost commute.

Proof. Inserting Egs. (49) and (50) inﬁmék_ = SF~lu} — provided by the
recurrence equation (5) and the coupling conditions (4) -/d, accounting that

Sk—1ginc — pinc k=1 |eads to
FincQyinc(k) 4 ypret Qyret(k) _ Ginc ph—1qyinc(l) | gh—1qpret yret(l) (54)
According to (i), this results in
FiooQyine(k) 4 Hrof o Qref(k) — ineph-1Qinc(l) | gh- 17t Q=) (55)
Given thatSk—1&ref = ref ;= (k=1 Eq. (55) gives
i,incéinc(k)Jr;I;refaQref(k) _ ;Iv)inCﬁk—léinc(l)_’_(’Iv)refﬁ—(k—l)aéref(l).
(56)

Left multiplying Eq. (56) by(:I;ref)TJ and accounting for the symplectic orthogo-
nality property (9) clearly leads Qinc(h) = T 1Qinc() k. On the other hand,
left multiplying Eq. (56) by(ff’inc)TJ and accounting for Eq. (9) gives

((I,lnC)TJ(I,refaQref(k (@111C)TJ@ ~—(k’ 1) aQref(l (57)
which leads to
a@ref(k) _ ﬁ—(k—l)aéref(l)’ (58)

32



as the matri>(i>in°)TJi>ref is diagonal and supposed to be invertible. Using (ii),

Eq. (58) can be rewritten as
Qrefh) — o1~ (k- qQret), (59)

Accounting for (iii) — providing thatia: ~ ap 8, that is to sayﬁ‘(k‘l)a ~
ap~ "D vk —into Eq. (59) finally results izt = = (k=1 Qret() v,
O

Remark 6. Itis not straightforward whether matricesanda almost commute
sincec is not diagonal in general. This is explained as the consgtruof the wave
modes{T;ef}j and{i;;ef}j — provided by Egs. (51) and (13), respectively —
can be quite different with regard to the symmetry transtirom matrixR, when
the rotation of the cross-section induces non-negligilalleies within the compo-
nents of{ff);nc };. For a pure transverse excitation involving flexural waveions
as contributing modes, these values can be lowered protidedhe cross-section
reveals a sufficiently small height in the direction of thado For a pure longitu-
dinal excitation, there is no such limitation as the coritiigy modes{i‘ief}j and
{515;ef }; are longitudinal i.e. they are identically formulated byans of Egs. (51)
and (13).

Remark 7. It is clear that the governing equations (21) and (22) cartdted
even though the reduced bag®i™}; U {Y**f}; includes weakly contributing

modes’, in the sense that their influence is negligible.

A more rigorous definition is to say thélfia — afi|| < ¢ wheree is a second order of

min{||pex||, [|ap||} (see ref. [27] for further discussions).
"Recall that the selection of the reduced basis is ratherraapand based on the way they are

or become propagating behind a certain limiting frequentyatever the excitation source.
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5.3. Boundary value problem

Using Egs. (49), (50) and (51), the boundary conditions @¥ (28) of a
single waveguide, whose left and right boundaries are otispdy submitted to

prescribed forces and prescribed displacements, write:

&,%nc@inc(l) o &,%nc@ref(l) — _F()a (60)
;Iv,(ilncéinc(N-‘rl) + (’Iv,‘iinc@ref(N-‘rl) = qo. (61)

Also, using the governing equations (21) and (22) results in

&,%nc@inc(l) _ &,%nc@ref(l) = —Fy, (62)
('Iv)éncﬁNQinc(l) + ;]:;‘:i:incﬁ—NQref(l) = qu, (63)

which, in matrix form, gives

_ N (inc(1) i ~inc 4
N I R
A1 Lo @ |\ g @) ra

where appropriate scalings have been used (cf. Section Z1i¢ system (64)

involves matrices whose inverses can be computed withffidudiies. The draw-

~ref

backs of the classic WFE problem (34), caused by the compu‘.:amf(i;nc)ﬂI)F
ref

and (&, )+fIv>ciln°, are circumvented through the regularization strategy Egs.

(52) and (53)). Solving the system (64) finally gives

-1 .
()inc(1) _~N _gimey 4
M I e B B ) e
Qret) 0 & TR (@, )Tao

where{Q=<() Q==f(1)} represent the modal amplitudes for the left cross-section
limit of the waveguide, where forces are prescribed. Théapdistribution of the
modal amplitude is obtained by means of Eqgs. (21) and (228.spltial distribu-

tion of the kinematic variables (say displacements andefréinally result from
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Egs. (19) and (20).

Remark 8. The regularized wave-based boundary value problem cagrsuff
from a lack of convergence for predicting the antiresonantce. for frequencies
where two dual incident and reflected wave modes exhibit lagagnitudes and
opposite phases so that their contributions cancel eadr. offhis is explained
as the symmetry property of these modes (see Eqg. (13)) is elbttranscribed

through the regularized strategy (for flexural wave motiesigecially).

The regularization strategy based on Egs. (49) and (50) eamséd for ad-
dressing the forced response of coupled systems. Theingsploblem, for two

waveguides coupled through an elastic junction, is simpiyntilated as

~N;

I —aly | oo 0 I o | o of/[QqQxV
~ ~N ~ N ~_N ~ref(l
_(clllJ/wgll 1 0 _(CIQIJ/W;Q 0 l"’wgil 0 0 Qf';l( )
~ ~  ~ ~_ ~ 1
~Corfingy O I —Coplh 0 0 |fi5 O Qgg( :
0 0 | Ak I ||lo o 0 I Qi
— (@)1 Fo
0
_ , (66)
0
(®57)ug290
where the computations of the matrig@si® ), (®£°),,1 and(®Le) (B2 )5

(see the original problem (44)) are not required.

5.4. Numerical validation

5.4.1. Sandwich structure

We address the forced response of the sandwich structwmpsty depicted

in Section 5.1 (see Figure 12), using the regularizaticeteyy based on the wave

35



mode expansion (49) and (50). This strategy is used for lediog the displace-
ment solution at a corner of the left cross-section limitewlthe wave mode ampli-
tudes are computed by means of Eq. (65). The frequency resmjithe structure
under longitudinal and transverse loads are respectivelymlin Figures 16 and

17.
Figure 16
Figure 17

The resonances of the structures are quite well transchietie regularized
wave-based problem. The relevance of the formalism forucaggf the vibratory
levels of the transversally excited structure over thereffittquency band is clearly
established compared to the classic WFE method, despite dawbacks for pre-
dicting the antiresonances (cf. Remark 8). The accurachefeégularized for-
malism is reached when only a small number of wave modes tamed in the
representation basis. The drawbacks of the classic WFEulation — say, nu-
merical instabilities and pollution effects abo¥@0H = (see Figure 15) — have
been circumvented through the regularization strateggxpscted. Regarding the
frequency response of the longitudinally excited strustir can be emphasized
however that the formalism suffer from pollution effectslaw frequency (this
is particularly verified whenn = 70), as the dimension of the wave basis can
exceed the vibration scale of the global cross-section. [16]this sense, linear
dependency among modes are favored and badly conditiobteprs are likely
to occur. However, these are not restrictive for the formoeand can easily be
removed away provided that the frequency is not too closetto, zZvith regard to
the fundamental resonance of the skins.

The relevance of the wave-based numerical problem (65) fedigting the

behavior of the transversally excited structure can bédfigdtin the present ex-
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ample as the heights of the skin cross-sections, in thetdireof the load, are
small enough so that the rotations of these cross-sectiensupposed to induce
negligible values within the displacement and force conepiom of{&r;m}j (see
Remark 6). Within these assumptions, the regularizati@ategy can be applied in
theory to a large class of problems. As an example, the probfedetermining the

vibratory behavior of a Reissner-Mindlin plate is inveatigd hereafter.

5.4.2. Reissner-Mindlin plate

We address the frequency response of the Reissner-Mintdlie previously
depicted in Section 4.3.2 (see Figure 7). The solutionsigeavby the regular-
ized wave-based problem are shown in Figure 18. The maimaeses of the
structure are correctly transcribed through the formaliasi expected. As was
previously observed for the case of the sandwich structlieeaccuracy of the reg-
ularized formalism is quickly raised for providing thessarances over the entire
frequency band, i.e. when the size of the wave basis consagmall number of
modes only (sayn = 40). This seems to constitute an interesting feature of the
regularized strategy compared to the classic WFE methaal Kgpure 8). This
might be explained given that the contribution of high orli#f modes does not
appear lowered in the calculation of the regularized sofuf65), contrary to what
is simulated within the WFE framework when computi@;nc)@;efﬁ]v and

(ézef)+&’;ncﬁ]v in Eq. (35) (see Section 4.1).
Figure 18

5.4.3. Conclusions
The regularization strategy provided by the wave mode esipar(49) or (50)
has been successfully used for describing the vibratostdexf a one-end-clamped

sandwich structure and a one-edge-clamped Reissner-Nlipidite. The strategy
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exhibits two main features compared to the classic WFE ftatizun:

e It enables to circumvent numerical instabilities and padhu effects when

multi-layered systems are addressed;

e The convergence of the resulting boundary value problenuiiskty raised

when the wave basis contains a small number of modes.

6. Concluding remarks

The low- and mid-frequency forced response of straightctires has been
addressed using the WFE method. In this framework, the katierfields are ex-
panded onto one-dimensional traveling wave modes, whas@uiation requires
the finite element model of a typical substructure. Dependin the degree of
complexity which is required for the spatial response, tlesimdensity of the sub-
structure can be modified so as to enrich the wave basis wgthiyhbscillating
cross-section shapes. The WFE formulation has been igagsti for addressing
the Neumann-to-Dirichlet problem. The resulting matrixniohas been adapted
using appropriate scalings to circumvent poor conditiopeablems, as the ratios
between the wave force and wave displacement component&aam extremely
large values. The formalism has been successfully vatidite addressing the
forced responses of a beam-like structure and a ReissnatliNliplate, as well
as the forced response of two waveguides transversallyedtiprough an elastic
junction. On the other hand, it has been emphasized that tRE T&rmulation
can suffer from numerical instabilities and pollution effe when multi-layered
systems are dealt with. The drawback of the method is thavdwe components
can be largely disparate over the global cross-sectiojging that the resulting

wave-based matrix problem can be ill-posed. A regularasitrategy has been
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proposed to solve this issue. It involves an alternativeenexpansion by which
reflected and incident modes are simply linked in a way sinwdlavhat is analyt-
ically stated for the plane longitudinal wave motion. Moengrally, it has been
emphasized that the formalism can be applied to any trasaslerexcited struc-
tures provided that the height of their cross-sectionshéndirection of the load,
is sufficiently small. The relevance of the regularizatitrategy has been estab-
lished for predicting the vibratory levels of a sandwich faeander longitudinal

and transverse loads, as well as a Reissner-Mindlin platertransverse loads.
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like structure depicted in Figure 2, @00H z: (a) longitudinal mode; (b) flexural mode;

(c) shearing mode; (d-i) MF modes.
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Figure 5: Frequency response of the clamped beam-like structurectéepin Figure 2,
under longitudinal load: (—) solutions provided by FE;-() solutions provided by WFE
— based on Eq. (13) — witih0 modes (a) and0 modes (b).
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Figure 7: FE model of a Reissner-Mindlin plate with on edge clamped asupport with

prescribed displacement (a); FE model of a typical substragb).
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Figure 9: Spatial representation of several “cross-section” wavelenshapes for the
Reissner-Mindlin plate depicted in Figure 7,1&00H z: symmetric flexural LF and MF

modes.
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Figure 10:FE model of two waveguides coupled through an elastic jondi); FE model

of the underlying wave-based model, based on two couplestsidiures (b).
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Figure 11:Frequency response of the coupled system depicted in Figure—) solutions
provided by FE; {- -) solutions provided by WFE with0 modes (a) and0 modes (b).

57



qu 0 fj Skins

Core

(b) ()

Figure 12:FE model of a sandwich beam under longitudinal (a) or trarsevéb) load; FE

model of a typical substructure (c).

58



@) (b)

—~
O
-~

(d)

~
D
~

AN |
A
AN

(©) (h) @

W
@
%

Figure 13:Spatial representation of several “cross-section” wavdershapes for the sand-
wich structure depicted in Figure 12,1800 H z: (a) longitudinal mode; (b) shearing mode;

(c) flexural mode; (d-i) MF modes.



= o -68

g -0 g ®)

5 5 70

IS IS

8 gl 3

g 78 & _: 8 72

o [=%

0 ; K]

© . j - ©

5 /ﬂ,/ 5 T4

© -80F . @

=] : =]

= 2 -76t

c c

()] (o))

IS I

2 -85 L L E -78 L L

0 500 1000 1500 0 500 1000 1500

Frequency (Hz) Frequency (Hz)

o = 68

m

S ) (d)

5 g 70

IS £

[ (]

Q Q

© & -72r

o [=%

i) ko)

o =]

© B T4

3] (3] [

=] ©

2 2 -76f

c c

(o] (o))

IS s

= _78 ! . = _78 . .

0 500 1000 1500 0 500 1000 1500

Frequency (Hz) Frequency (Hz)

Figure 14:Frequency response of the sandwich structure depictedyuré-iL2, under lon-
gitudinal load: (—) solutions provided by FE;-() solutions provided by WFE with0
modes (a)30 modes (b)50 modes (c) and0 modes (d).

60



Magnitude of displacement (dB)

Magnitude of displacement (dB)

-100t jp
150 500 1000 1500 -8 500 1000 1500
Frequency (Hz) Frequency (Hz)

Magnitude of displacement (dB)

Magnitude of displacement (dB)

0 500 1000 1500 0 500 1000 1500
Frequency (Hz) Frequency (Hz)

Figure 15:Frequency response of the sandwich structure depicteguréi1L2, under trans-
verse load: (—) solutions provided by FE; () solutions provided by WFE with0 modes
(a),30 modes (b)50 modes (c) and0 modes (d).

61



= o 69

g -0 g - (b)

o = ~70r

@ T

£ IS -71r

3] 3

g -75 : ] 8 -72

= oS

0 QL -73

B // 5 -74

80} / 2

E ERe

) : S ~76

5 ; IS

= -85 : : =77 : :

0 500 1000 1500 0 500 1000 1500

Frequency (Hz) Frequency (Hz)

Magnitude of displacement (dB)

Magnitude of displacement (dB)

0 500 1000 1500 70 500 1000 1500
Frequency (Hz) Frequency (Hz)

Figure 16:Frequency response of the sandwich structure depicteginéi2, under longi-
tudinal load: (—) solutions provided by FE; () solutions provided by regularized WFE
with 10 modes (a)30 modes (b)50 modes (c) and0 modes (d).

62



Magnitude of displacement (dB)

Magnitude of displacement (dB)

-100t i
150 500 1000 1500 -8 500 1000 1500
Frequency (Hz) Frequency (Hz)

Magnitude of displacement (dB)

Magnitude of displacement (dB)

0 500 1000 1500 0 500 1000 1500
Frequency (Hz) Frequency (Hz)
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