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Abstract

In this paper, the Wave Finite Element (WFE) method is investigated for comput-

ing the low- and mid-frequency forced response of straight elastic structures. The

method uses wave modes as representation basis. These are numerically calcu-

lated using the finite element model of a typical substructure with a small number

of degrees of freedom, and invoking Bloch’s theorem. The resulting wave-based

boundary value problem is presented and adapted so as to address Neumann-to-

Dirichlet problems involving single as well as coupled structures. A regularization

strategy is also presented. It improves the convergence of the WFE method when

multi-layered systems are specifically dealt with. It employs an alternative form

of the wave-based boundary value problem quite stable and easy to solve. The

relevance of both classic and regularized WFE formalisms isdiscussed and numer-

ically established compared with standard finite element solutions.
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1. Introduction

Slender straight elastic structures with uniform cross-sections are extensively

encountered in many engineering areas, such as those involved in the manufac-

turing of chassis frames or aircraft fuselages. Such structures can reveal complex

cross-sections as well as they can exhibit a relative complexity within the spatial

distribution of their vibratory behavior, especially whenthe characteristic wave-

lengths reach the same order as the cross-section dimensions. This short wave-

length domain is referred to as the mid-frequency range, where the cross-section

reveals local resonances with a frequency distribution which can exhibit large vari-

ations [1]. This study concerns the use of the Wave Finite Element (WFE) method

for predicting the low- and mid-frequency (LF and MF) vibratory behavior of such

structures. In this framework, these are supposed to be constituted by a set of iden-

tical substructures connected along a main direction, perpendicular to the cross-

section (see Figure 1). The WFE formalism uses numerical wave modes as ex-

pansion bases for describing the kinematic variables of these structures, that is

the displacements and external/internal forces. The wave modes are numerically

computed using the finite element (FE) model of a typical substructure [2, 3] (see

Figure 1), whose mass and stiffness matrices can be simply obtained via commer-

cial packages. The wave modes refer to as specific cross-section shapes traveling

with specific velocities along the main direction of these slender systems. Parity

among waves is well transcribed through the WFE modeling, inthe sense that each

positive-going wave mode is associated with a negative-going wave mode of the

same velocity. Note that in the present work, positive- and negative-going waves

will be denoted as incident and reflected modes (see Figure 1). The wave modes

involve the standard propagating and evanescent wave motions — i.e. longitudinal,

flexural, torsional and shearing — and additional MF solutions with non-uniform
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cross-section shapes. In the WFE framework, the mesh density over the substruc-

ture cross-section can be adapted so as to address a sufficient number of highly

oscillating wave shapes, depending on the frequency range considered. The two

main features of the WFE method are that it is not constrainedby LF analytical

assumptions (e.g. the cross-section remains plane after deformation) and that it

provides a large decrease of the CPU time for computing the forced responses of

systems compared to the standard Finite Element Method [4].This is explained as

it involves relatively small numerical models whose dimensions reflect the cross-

section dynamics only.

The WFE method has been widely used in the last few years for describing

the one-dimensional wave propagation into systems of different natures (see for

instance ref. [5] for beam-like structures, refs. [6, 7] forfluid-filled pipes, ref.

[8] for laminates and ref. [9] for tyres). Also, it has been applied for predicting

the forced response of elastic systems such as Euler-Bernoulli beams [10], sim-

ply supported Kirchhoff-Love plates [11, 10] and tyres [9].The WFE strategy

for computing the forced responses is not new (see for instance refs. [12, 13]) and

requires an expansion of the kinematic variables onto wave mode bases with appro-

priate dimensions. The numerical issues associated with the resulting wave-based

boundary value problem have been recently discussed in ref.[11] for predicting

the response of an elastic structure under local force excitations. In this work, a

numerical strategy has been proposed by which ill-conditioned problems, resulting

from the wave representation of the local excitations, can be circumvented. It in-

vokes both right and left eigenvectors of the symplectic transfer matrix relating a

typical substructure, and uses the fact that they are orthogonal. The same strategy

has been used in ref. [10]. It has been successfully employedfor predicting the

response of a clamped Euler-Bernoulli beam under transverse excitation as well as
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the response of a simply supported Kirchhoff-Love plate under punctual force.

Apart from these works, a question arises whether the relevance of the WFE

formalism holds when arbitrary Neumann-to-Dirichlet problems are addressed.

The underlying numerical issue is that the resulting matrixforms are prone to large

dissimilarities among their components as both wave displacement and wave force

terms are invoked. This means that ill-conditioning is likely to occur. Another

question arises whether the WFE method can be relevant for addressing the vibra-

tory behavior of multi-layered systems involving both softand stiff materials, since

the wave components can be largely disparate over the whole cross-section. These

problematics relate the motivation of the present work.

This study aims at applying the WFE method for describing theLF and MF

vibratory behavior of arbitrary Neumann-to-Dirichlet problems. These can involve

single and coupled beam-like structures with 2D complex spatial dynamics over

their cross-section, as well as multi-layered systems involving soft and stiff ma-

terials. Also, it aims at discussing on the relevance of the numerical wave-based

formulation through comparisons with reference solutionsprovided by the stan-

dard FE method, when the global discretized structure is computed.

The framework of the WFE method for computing the wave modes travel-

ing along straight elastic structures is presented in Section 2. The computation

of forced responses based on wave mode expansion is discussed in Section 3.

Neumann-to-Dirichlet problems are addressed in Section 4.The resulting wave-

based matrix forms are presented for two classes of problems, say a single waveg-

uide and two waveguides coupled through an elastic junction. A strategy for cir-

cumventing ill-conditioned problems is presented, by which appropriate scalings

are employed. The underlying numerical issues of the WFE formalism for ad-

dressing the forced response of multi-layered systems are discussed in Section 5.

It is shown that the WFE method suffers from numerical instabilities and pollution
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effects. A regularization strategy, by which the kinematicvariables are expanded

onto an alternative wave basis, is proposed to solve these issues. Emphasis is on

the fact that this alternative wave-based formalism is quite general and can be ap-

plied, under appropriate assumptions, to other classes of problems like plates. The

relevance of the regularization strategy is numerically highlighted compared with

FE solutions.

Figure 1

2. The WFE method

2.1. Formulation of wave modes

The WFE method numerically provides the LF and MF wave propagation into

periodic elastic systems [2]. In this framework, a given structure is assumed to be

described numerically from a set of identical substructures. These are assumed

to be modeled using the same FE model and connected along a principal axis

— say axisx — referred to as the direction of propagation (see Figure 1).The

length of each substructure, along this direction, is denoted asd. Assuming mesh

compatibility at coupling interfaces between substructures provides the same nodal

distribution over their left and right boundaries: in otherwords, each boundary is

assumed to contain the same number of degrees of freedom (DOFs), sayn. The

WFE method is based on the dynamic equilibrium of one of thesesubstructures

(see Figure 1), which is classically formulated in the frequency domain as

Dq = F, (1)

whereq andF represent the displacements and forces, respectively;D represents

the dynamic stiffness operator of the substructure, expressed asD = −ω2M +

K(1+iη) whereM andK are the mass and stiffness matrices, respectively, while
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η is the loss factor andω is the angular frequency. Following the theory of Zhong

& Williams [3], the dynamic equilibrium equation (1) can be reformulated in terms

of state vectors as

uR = SuL, (2)

whereS is a(2n×2n) symplectic matrix, the subscriptsL andR refer to as the left

and right boundaries, whileuT
L = [(qL)

T (−FL)
T ] anduT

R = [(qR)
T (FR)

T ]. The

full derivation ofS is expressed as:

S =


 −(D∗

LR)
−1D∗

LL −(D∗
LR)

−1

D∗
RL − D∗

RR(D
∗
LR)

−1D∗
LL −D∗

RR(D
∗
LR)

−1


 , (3)

whereD∗ refers to as the dynamic stiffness matrix of the substructure condensed

onto its left and right boundaries. Using the coupling conditions between two

consecutive substructuresk andk − 1, say

u
(k)
L = u

(k−1)
R , (4)

in Eq. (2) leads to [5]:

u
(k)
L = Su

(k−1)
L . (5)

Invoking Bloch’s theorem [14], the solutions of Eq. (5) can be readily expressed

asu(k)
L = µu

(k−1)
L . These solutions are denoted as{(µj ,Φj)}j and refer to as the

wave modes traveling along the global structure. They are numerically computed

by means of the following eigenvalue problem:

SΦj = µjΦj , det(S− µj I) = 0. (6)

For a given modej, the scalar parameterµj characterizes the wavenumberkj as

µj = exp(−ikjd), while the vectorial parameterΦj represents the wave shape,
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which relates the spatial distribution of the displacements and internal forces over

the cross-section. It is worth emphasizing that each eigenvectorΦj can be split

into wave displacement and wave force components asΦT
j = [(Φq)

T
j (ΦF)

T
j ]. The

wave shapes are interpolated from the trace of the FE discretization onto the sub-

structure cross-section. This particularly means that themesh density must be fine

enough if MF behavior must be predicted, in the sense that a sufficient number

of highly oscillating wave shapes must be computed for accurately spanning the

cross-section dynamics.

Remark 1. As pointed out by Zhong & Williams [3], direct computation of

the eigenvalue problem (6) can be prone to large sensitivities with regard to pertur-

bation analysis. According to the Bauer-Fike theorem [15],the problem is that the

eigenvector matrix ofS, namelyΦ, can be ill-conditioned. This can be explained

as it is partitioned into displacement and force components(see above) whose val-

ues can be largely disparate. To solve this issue, Zhong & Williams have proposed

an homogeneous generalized eigenvalue problem of the following form:

Nwj = µjLwj , det(N − µjL) = 0, (7)

where the eigenvectors{wj}j relate the displacements of the substructure only.

This eigenvalue problem has been successfully used for addressing the wave prop-

agation into elastic, elasto-acoustic and multi-layered systems [5, 6, 16]. It will be

used in the framework of the paper so as to compute the wave modes{(µj ,Φj)}j .

It is worth noting that Zhong & Williams have proposed a “better conditioned”

form of the eigenvalue problem with double eigenvalues{λj }j , such thatλj =

µj +1/µj ∀j. These are associated to eigenvectors which come in pair as{(w1
j ,w

2
j )}j ;

these are used to determine the wave modes{wj}j of the original problem (7) as

wj = α1
jw

1
j + α2

jw
2
j ∀j [10]. Notice that it is not clear whether this alterna-
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tive form brings an optimal determination of the wave modes,given that singular

problems can be encountered for determining the amplitudes{(α1
j , α

2
j )}j (see ref.

[17]).

Remark 2. Throughout the remainder of the paper, it will be assumed that the

eigenvectors{Φj}j are linearly independent whenω 6= 0 [18]. This assumption

occults the possibility of merging two wave modes of quite similar natures in a

single one, which is coherent with the rule of wave mode conversion process in

the frequency domain and the fact that two similar wave shapes cannot exhibit two

different group velocities at the same frequency [19]. According to ref. [18], this

assumption can break down whenω → 0, as the classic LF wave modes (say lon-

gitudinal, torsional, flexural, shearing) tend to share thesame eigenvalueµ = 1

— this is explained as rigid body motions take place — which isgenerally defec-

tive. In this sense, the eigenvalue problem may be prone to large sensitivities [20],

e.g. with regard to slight discretization errors which can perturb the components of

matrixS.

2.2. Criteria for tracking the frequency evolution of wave modes

Tracking the frequency evolution of each wave mode is a crucial step of the

WFE method. This brings insight into the frequency evolution of the structural

behavior and leads to properly select among all the waves those which are the most

contributing for computing the forced responses within a given frequency band.

As opposed to the analytical formulations, the numerical approach provides wave

modes at discrete frequencies. Correspondence among two sets of modes defined

at two frequencies, close to each other, can be achieved nonetheless in the WFE

framework using the following criterion [5]:

Given two wave modesj and m defined at angular frequencyω, such that
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µm(ω) = 1/µj(ω), and for sufficiently small∆ω, wave modej defined at angular

frequencyω + ∆ω is such that:

∣∣∣∣
Φm(ω)T

‖Φm(ω)‖J
Φj(ω + ∆ω)

‖Φj(ω + ∆ω)‖

∣∣∣∣ = maxk

{∣∣∣∣
Φm(ω)T

‖Φm(ω)‖J
Φk(ω + ∆ω)

‖Φk(ω + ∆ω)‖

∣∣∣∣
}

, (8)

where‖v‖ denotes the hermitian norm of a vectorv, defined as‖v‖ =
√

vHv

whereH denotes the conjugate transpose. This criterion is based onthe symplectic

orthogonality property of the matrixS (cf. Eq. (2)), which states that

ΦT
j JΦl = 0 for µj 6= 1/µl where J =


 0 I

−I 0


 . (9)

Using the partitioningΦT
j = [(Φq)

T
j (ΦF)

T
j ], the symplectic orthogonality (9) can

be readily written as(ΦF)
T
l (Φq)j − (ΦF)

T
j (Φq)l = 0 (for µj 6= 1/µl). It has

been shown in ref. [21] that this constitutes a necessary requirement to satisfy the

Maxwell-Betti reciprocity theorem into an elastic waveguide, considering the wave

modesΦj andΦl as two states of excitations and induced displacements.

The criterion (8) breaks down unfortunately for very low frequencies given

that eigenvalues{µ}j can be extremely close to each other. This means that or-

thogonality properties among modes are not necessarily verified numerically. The

following criterion based on the hermitian scalar product can be used instead [16]:

Given wave modej defined at angular frequencyω and for sufficiently small

∆ω, wave modej defined at angular frequencyω + ∆ω is such that:

∣∣∣∣
Φj(ω)H

‖Φj(ω)‖
Φj(ω + ∆ω)

‖Φj(ω + ∆ω)‖

∣∣∣∣ = maxk

{∣∣∣∣
Φj(ω)H

‖Φj(ω)‖
Φk(ω + ∆ω)

‖Φk(ω + ∆ω)‖

∣∣∣∣
}

. (10)

This criterion is well known as Modal Assurance Criterion (MAC) and is used for

estimating the correlation among wave shapes. This criterion is expected to be less

accurate compared to Eq. (8) since orthogonality properties are not invoked, unless

frequency step∆ω is chosen small enough. However, it appears more general in
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the sense that it can be applied for tracking the eigensolutions of a matrix which is

not necessarily symplectic (see ref. [16]).

2.3. Relationships between incident and reflected modes

It is well established that there exists the same numbern of incident and re-

flectedmodes1 traveling along a straight structure [3] (see Figure 1), where n

represents the number of DOFs contained onto the left or right boundary of the

considered substructure. In this sense, the wave basis{Φj}j can be expressed in

matrix form as

Φ =


 Φinc

q Φref
q

Φinc
F Φref

F


 , (11)

whereΦinc
q , Φinc

F , Φref
q andΦref

F are square(n×n) matrices; the superscriptsinc

andref refer to as incident and reflected waves while the subscriptsq andF refer

to as displacement and force components. Accounting for thesymmetry of the

wave propagation problem with respect to any transversal plane(y, z) (cf. Figure

1), it is readily established that reflected and incident modes are linked through the

following rules [22, 8]:

µ
ref = (µinc)−1, (12)

and

Φref
q = RΦinc

q , Φref
F = −RΦinc

F . (13)

In Eq. (12),µinc andµ
ref represent the diagonal eigenvalue matrices of the inci-

dent and reflected modes, respectively. Eq. (12) is commonlyused in the literature

1In the framework of this paper, they refer to as (by convention) the waves traveling in the positive

and negative directions.
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(see for instance [10, 9]) and means that dual incident and reflected modes reveal

eigenvalues which are inverse, one compared to the other. Without loss of gener-

ality, as the elastic system is dissipative, incident and reflected eigenvalues can be

classified as{µinc
j }j=1,...,n = {µj : |µj| < 1}j and{µref

j }j=1,...,n = {µj : |µj| >

1}j or vice versa[5]. On the other hand, in Eq. (13),R is the diagonal symmetry

transformation matrix; the minus sign on the right hand sideof the second term of

Eq. (13) results from the state vector representation whichis quite different for the

symmetric problem as left and right boundaries appear inverted. Eq. (13) enforces

the coherence between incident and reflected modes, in the sense that the equalities

||(Φinc
q )j || = ||(Φref

q )j|| and||(Φinc
F )j || = ||(Φref

F )j || are verified∀j, while it is

not sure whether these relations can be perfectly transcribed through the eigenvalue

problem (6) only, since the latter can be prone to numerical dispersion. This can

cause drastic problems for predicting the forced response of the global structure

(see Section 4.3.1).

Proposition 1. Each of the families{(Φinc
q )j}j=1,...,n, {(Φref

q )j}j=1,...,n,

{(Φinc
F )j}j=1,...,n and{(Φref

F )j}j=1,...,n represents linearly independent vectors.

Proof. According to ref. [10], the eigenvalues{µinc
j }j and{µref

j : µref
j =

1/µinc
j }j are solutions of a quadratic eigenvalue problem of dimension n, which is

formulated by means of the wave displacement components{(Φinc
q )j }j only. For

(Φinc
q )k given, this yields the following two equations [10]:

[D∗
RL + (D∗

LL + D∗
RR)µ

inc
k + D∗

LR(µ
inc
k )2](Φinc

q )k = 0, (14)

and

(Φinc
q )Tk [D∗

RL + (D∗
LL + D∗

RR)µ
ref
k + D∗

LR(µ
ref
k )2] = 0T , (15)
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where it has been taken into account thatD∗
LR = (D∗

RL)
T andD∗

LL+D∗
RR = (D∗

LL+

D∗
RR)

T . This enablesµinc
k andµref

k to represent the solutions of a single quadratic

equation:

(Φinc
q )Tk [D∗

RL + (D∗
LL + D∗

RR)µ + D∗
LRµ

2](Φinc
q )k = 0. (16)

Finally note that wave force and wave displacement components are linked as [10]:

(ΦF)j = [D∗
LL + D∗

LRµj ](Φq)j ∀ j. (17)

To prove that{(Φinc
q )j}j are linearly independent, let us consider for simplicity

one hypothetical vector(Φinc
q )l wherel 6= k and such that(Φinc

q )l = α(Φinc
q )k

(α 6= 0). It is readily verified that the pair of eigenvalues(µinc
l , µref

l ) satisfies

Eq. (16). This necessarily yieldsµinc
l = µinc

k andµref
l = µref

k
2, taking into

account that bothµinc
k andµref

k are the two solutions of Eq. (16). This also yields

(Φinc
F )l = α(Φinc

F )k, considering Eq. (17). This generalizes the linear depen-

dency asΦinc
l = αΦinc

k for two incident eigenvectorsl andk of matrix S, which

is contradictory to the statement that{Φj}j are linearly independent (see Remark

2). Thus, the vectors{(Φinc
q )j}j are linearly independent. A similar statement can

be readily deduced for{(Φinc
F )j }j , using Eq. (17). The proof that{(Φref

q )j}j , as

well as{(Φref
F )j }j , are linearly independent can be easily deduced from the pre-

ceding derivation. �

Proposition 2. Let us consider two sets of eigenvectors{Φ̃inc
j }j=1,...,m and

{Φ̃ref
j }j=1,...,m extracted from the full families{Φinc

j }j=1,...,n and{Φref
j }j=1,...,n,

wherem ≤ n, and whose respective wave displacement and wave force compo-

nents admit the following(n×m) matrix formsΦ̃inc
q , Φ̃ref

q , Φ̃inc
F andΦ̃ref

F . Then,

2The caseµinc
l = µ

ref
k andµ

ref
l = µ

inc
k can not occur if the following convention is retained [5]:

{µinc
j }j = {µj : |µj | < 1}j and{µref

j }j = {µj : |µj | > 1}j or vice versa.
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the pseudo-inverseA+ of each of these matrices (each of them being termed asA)

can be computed as [15]:

A+ = [AHA]−1AH . (18)

Proof. The proof follows directly from Proposition 1, taking into account that

each of the matrices̃Φinc
q , Φ̃ref

q , Φ̃inc
F andΦ̃ref

F is full column rank (rank(A) =

m). This yields the expected form of the pseudo-inverse [15].�

3. Wave mode expansion

The problem of predicting the harmonic response of a structure composed of

N identical substructures is addressed (see Figure 1). In theWFE framework, the

state vectorsu(k)
L andu

(k)
R — namely, the kinematic variables of a typical sub-

structurek — are expanded onto a reduced wave basis{Φ̃j}j = {Φ̃inc
j }j=1,...,m ∪

{Φ̃ref
j }j=1,...,m, wherem ≤ n. This results in

u
(k)
L = Φ̃incQ̃inc(k) + Φ̃refQ̃ref(k) k = 1, . . . , N, (19)

u
(k)
R = Φ̃incQ̃inc(k+1) + Φ̃refQ̃ref(k+1) k = 1, . . . , N, (20)

whereΦ̃inc andΦ̃ref are the(2n × m) matrix forms of the incident and reflected

wave mode shapes, whilẽQinc andQ̃ref are the(m × 1) vector forms of the re-

sulting modal amplitudes.

Remark 3. The reduced basis{Φ̃j}j is supposed to include the modes which

mostly contribute to the forced response of the structure. Despite no rigorous crite-

rion for selecting these modes, a simple strategy consists in constructing the wave

basis from the standard LF propagating modes and the modes which either become

13



or are close to becoming propagating behind a certain limiting frequency [10].

Proposition 3. The spatial distribution of the modal amplitudes is governed as:

Q̃inc(k) = µ̃
k−1

Q̃inc(1) k = 1, . . . , N + 1, (21)

Q̃ref(k) = µ̃
−(k−1)

Q̃ref(1) k = 1, . . . , N + 1, (22)

whereµ̃ represents the(m×m) diagonal eigenvalue matrix of the incident modes,

which is such that̃µ = µ̃
inc = (µ̃ref)−1 (cf. Eq. (12)).

Proof. Inserting Eqs. (19) and (20) intou(k−1)
R = Sk−1u1

L — provided by

the recurrence equation (5) and the coupling conditions (4)— and given that

Sk−1Φ̃inc = Φ̃inc
µ̃

k−1 andSk−1Φ̃ref = Φ̃ref
µ̃
−(k−1) leads to

Φ̃incQ̃inc(k)+Φ̃refQ̃ref(k) = Φ̃inc
µ̃

k−1
Q̃inc(1) +Φ̃ref

µ̃
−(k−1)

Q̃ref(1). (23)

Left multiplying Eq. (23) either by(Φ̃ref)TJ or by (Φ̃inc)T J, and accounting for

the symplectic orthogonality property (9) — which state that (Φ̃ref)T JΦ̃ref = 0

and(Φ̃inc)T JΦ̃inc = 0 3 — finally leads to Eqs. (21) and (22). �

The wave-based boundary value problem is constituted from the governing

equations (21), (22) and the boundary conditions. These canbe formulated in a

general way as [23, 5]:

Q̃ref|lim = C̃Q̃inc|lim + F̃ , (24)

whereC̃ refers to as the diffusion matrix and provides the reflectionand transmis-

sion coefficients of the wave modes across a given boundary, while the vectorF̃

3Note that(Φ̃ref)T
JΦ̃

inc and(Φ̃inc)T
JΦ̃

ref are diagonal matrices.
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reflects the excitation sources. It has been established in ref. [23] that Eq. (24) is

well suited for describing the Neumann and Dirichlet boundary conditions. These

write as

[0|I]u = ±F0, (Neumann condition) (25)

[I|0]u = q0, (Dirichlet condition) (26)

and can be expanded onto the wave basis{Φ̃j}j (see above) to give

Φ̃inc
F Q̃inc + Φ̃ref

F Q̃ref = ±F0, (Neumann condition) (27)

Φ̃inc
q Q̃inc + Φ̃ref

q Q̃ref = q0. (Dirichlet condition) (28)

It is worth emphasizing that the sign aheadF0 in Eq. (27) is negative if the left

boundary is concerned (this is explained as the state vectorrepresentation writes

uT
L = [(qL)

T (−FL)
T ]) whilst it is positive if the right boundary is studied (in this

case, the state vector representation writesuT
R = [(qR)

T (FR)
T ]). Left multiplying

Eqs. (27) and (28) by the left pseudo-inverses(Φ̃ref
F )+ and(Φ̃ref

q )+ (see Proposi-

tion 2), respectively, leads to the form of Eq. (24), as expected.

Remark 4. As pointed out in Remark 2, the wave mode expansion provided

by Eqs. (19) and (20) may be inaccurate whenω → 0, that is for very low fre-

quencies. Here, a part of the wave modes — namely the classic LF modes — tend

to be linearly dependent, meaning that the numerical wave-based boundary value

problem reveals poor conditioning.

Summarizing, the wave-based boundary value problem is formulated from Eqs.

(21), (22), and the boundary conditions, which can be formulated in a general way

by Eq. (24) or more specifically by Eqs. (27) and (28). Solvingthe wave-based

boundary value problem consists in finding, for instance, the modal amplitudes
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Q̃inc(1) and Q̃ref(1) for the left cross-section of the global structure. Thus, the

spatial distribution of the modal amplitudes, along the structure, are provided by

means of Eqs. (21) and (22), while the spatial distribution of the kinematic vari-

ables (say, displacements and internal forces) are provided by means of Eqs. (19)

and (20). The wave-based solutions are expected to be in accordance with the re-

sults provided by the standard FE method, which requires thecomputation of the

full discretized structure withN connected substructures. Compared to the FE

method, the WFE method yields a large decrease of the CPU times for calculating

the LF and MF forced responses, as it involves numerical models of small dimen-

sion (i.e. twice the number of retained wave modes). Anotherfeature of the method

is its large flexibility for addressing several classes of problems involving single as

well as coupled straight systems with arbitrary conditions, when the wave modes

for one or few substructures have been computed once and for all.

4. The Neumann-to-Dirichlet problem

4.1. Single waveguide

The problem of a single waveguide — say for instance a beam-like structure

—, whose left and right ends are respectively submitted to prescribed forces and

displacements, is addressed (cf. Figure 2 for instance). Inthis case, the boundary

conditions write (cf. Eqs. (27) and (28)):

Φ̃inc
F Q̃inc(1) + Φ̃ref

F Q̃ref(1) = −F0, (29)

Φ̃inc
q Q̃inc(N+1) + Φ̃ref

q Q̃ref(N+1) = q0. (30)
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whereN is the number of FE substructures considered to discretize the global

system. Accounting for the governing equations (21) and (22) yields

Φ̃inc
F Q̃inc(1) + Φ̃ref

F Q̃ref(1) = −F0, (31)

Φ̃inc
q µ̃

N
Q̃inc(1) + Φ̃ref

q µ̃
−N

Q̃ref(1) = q0, (32)

which, in matrix form, results in

 Φ̃inc

F Φ̃ref
F

Φ̃inc
q µ̃

N
Φ̃ref

q µ̃
−N





 Q̃inc(1)

Q̃ref(1)


 =


 −F0

q0


 . (33)

Direct inversion of the matrix in Eq. (33) can suffer from nearly singular problems.

This is explained as the ratios between the diagonal components of matrices̃µ−N

andµ̃
N , as well as the ratios between the components ofΦ̃q andΦ̃F, can reveal

extremely large values. This issue can be circumvented using appropriate scalings

[15] as:

 I (Φ̃

inc

F )+Φ̃
ref

F µ̃
N

(Φ̃
ref

q )+Φ̃
inc

q µ̃
N

I





 I 0

0 µ̃
−N





 Q̃inc(1)

Q̃ref(1)




=


 −(Φ̃

inc

F )+F0

(Φ̃
ref

q )+q0


 . (34)

The system provided by (34) can be solved without difficulty since the first matrix

on the left hand side appears well conditioned (it is worth noting that the eigenvalue

matrix of the incident modes̃µ is such that||µ̃||max < 1) while the second matrix is

diagonal. In the present form, the diagonal matrixµ̃
N is multiplied either with the

matrix (Φ̃
inc

F )+Φ̃
ref

F or with the matrix(Φ̃
ref

q )+Φ̃
inc

q , which results in a filtering

effect for high order modes whose highly fluctuating cross-section dynamics can

be sources of numerical instabilities. In other words, the contribution of high order

modes in the computation of(Φ̃
inc

F )+Φ̃
ref

F and(Φ̃
ref

q )+Φ̃
inc

q are lowered given
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that they are scaled down using close to zero terms{µN
j }j≥p (this is explained as

|µj | < 1 ∀j andN can be large). Solving Eq. (34) finally gives

 Q̃inc(1)

Q̃ref(1)


 (35)

=


 I 0

0 µ̃
N





 I (Φ̃

inc

F )+Φ̃
ref

F µ̃
N

(Φ̃
ref

q )+Φ̃
inc

q µ̃
N I



−1 

 −(Φ̃
inc

F )+F0

(Φ̃
ref

q )+q0




Remark 5. The strategy used for solving the Neumann-to-Dirichlet problem

can be adapted without difficulty so as to address the Neumannproblem or the

Dirichlet problem, say for instance a beam-like structure whose left and right ends

are either respectively submitted to prescribed force vectorsF0 andF′
0 or respec-

tively submitted to prescribed displacement vectorsq0 andq′
0. This requires in

Eq. (35) the subscriptq to be switched withF or vice versa, and the appropriate

boundary conditions to be included. This results in:

• For the Neumann problem:

 Q̃inc(1)

Q̃ref(1)


 (36)

=


 I 0

0 µ̃
N





 I (Φ̃

inc

F )+Φ̃
ref

F µ̃
N

(Φ̃
ref

F )+Φ̃
inc

F µ̃
N I



−1 

 −(Φ̃
inc

F )+F0

(Φ̃
ref

F )+F′
0




• For the Dirichlet problem:

 Q̃inc(1)

Q̃ref(1)


 (37)

=


 I 0

0 µ̃
N





 I (Φ̃

inc

q )+Φ̃
ref

q µ̃
N

(Φ̃
ref

q )+Φ̃
inc

q µ̃
N

I



−1 

 (Φ̃
inc

q )+q0

(Φ̃
ref

q )+q′
0



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4.2. Two coupled waveguides

The problem of two waveguides — namely waveguide1 and waveguide2 —

coupled through anon excitedelastic junction is addressed. The junction can be

arbitrary and can reveal a complex behavior,a priori. In previous works [5, 24], it

has been established that the amplitudes of the modes reflected by – and incident

to – the coupling element can be linked as:


 Q̃ref

wg1

Q̃ref
wg2


 =


 C̃11 C̃12

C̃21 C̃22





 Q̃inc

wg1

Q̃inc
wg2


 , (38)

wherewg1 andwg2 refer to as waveguide1 and waveguide2, respectively;{C̃ij}ij

represent the square block components of the diffusion matrix C̃, whose expres-

sion can be found in ref. [5]. On their uncoupled limits, the waveguides1 and2

are assumed to be submitted to prescribed forces and displacements, respectively.

Summarizing, the boundary conditions are expressed as:

• For waveguide1:

(Φ̃inc
F )wg1Q̃

inc(1)
wg1 + (Φ̃ref

F )wg1Q̃
ref(1)
wg1 = −F0, (39)

Q̃
ref(N1+1)
wg1 = C̃11Q̃

inc(N1+1)
wg1 + C̃12Q̃

inc(N2+1)
wg2 . (40)

• For waveguide2:

Q̃
ref(N2+1)
wg2 = C̃22Q̃

inc(N2+1)
wg2 + C̃21Q̃

inc(N1+1)
wg1 , (41)

(Φ̃inc
q )wg2Q̃

inc(1)
wg2 + (Φ̃ref

q )wg2Q̃
ref(1)
wg2 = q0, (42)

whereN1 andN2 represent the numbers of substructures constituting the waveg-

uides1 and2, respectively. Accounting for the governing equations (21) and (22),
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these boundary conditions can be expressed in matrix form as:




(Φ̃inc
F )wg1 (Φ̃ref

F )wg1 0 0

−C̃11µ̃
N1

wg1 µ̃
−N1

wg1 0 −C̃12µ̃
N2

wg2

−C̃21µ̃
N1

wg1 0 µ̃
−N2

wg2 −C̃22µ̃
N2

wg2

0 0 (Φ̃ref
q )wg2 (Φ̃inc

q )wg2







Q̃
inc(1)
wg1

Q̃
ref(1)
wg1

Q̃
ref(1)
wg2

Q̃
inc(1)
wg2




=




−F0

0

0

q0




.

(43)

As was emphasized in the previous subsection, direct inversion of the matrix term

in Eq. (43) may be prone to nearly singular problems. This is explained because,

for each waveguidei, the diagonal components of matricesµ̃
−Ni

wgi and µ̃
Ni

wgi, as

well as the components of(Φ̃wgi)q and(Φ̃wgi)F, can be strongly disparate. Again,

appropriate scalings can be carried out for treating these problems. This gives:



I (Φ̃inc
F )+wg1(Φ̃

ref
F )wg1µ̃

N1

wg1 0 0

−C̃11µ̃
N1

wg1 I 0 −C̃12µ̃
N2

wg2

−C̃21µ̃
N1

wg1 0 I −C̃22µ̃
N2

wg2

0 0 (Φ̃inc
q )+wg2(Φ̃

ref
q )wg2µ̃

N2

wg2 I




×




I 0 0 0

0 µ̃
−N1

wg1 0 0

0 0 µ̃
−N2

wg2 0

0 0 0 I







Q̃
inc(1)
wg1

Q̃
ref(1)
wg1

Q̃
ref(1)
wg2

Q̃
inc(1)
wg2




=




−(Φ̃inc
F )+wg1F0

0

0

(Φ̃inc
q )+wg2q0




. (44)

Solving Eq. (44) provides the modal amplitudes{Q̃inc(1)
wg1 , Q̃

ref(1)
wg1 } and{Q̃inc(1)

wg2 , Q̃
ref(1)
wg2 },

at the ends of waveguides1 and2 where forces and displacements are respectively

prescribed. The spatial distribution of the modal amplitude along each waveguide

is obtained by means of Eqs. (21) and (22). The spatial distribution of the kine-

matic variables (say displacements and forces) are finally provided by means of

Eqs. (19) and (20).
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4.3. Numerical results

4.3.1. Beam-like structure

We address the forced response of a straight clamped beam-like structure, with

rectangular cross-section, whose free end is submitted to either axial or transverse

loads. Here, the force field is assumed to be uniformly spreadon the surface bound-

ary. The material and geometric characteristics of the structure are: Young’s modu-

lusE = 2×1011Pa, densityρ = 7800kg.m−3, Poisson’s ratioν = 0.3, loss factor

η = 0.01, lengthL = 2m and cross-section areahy × hz = 0.2m × 0.3m. The

FE model of the global elastic system is depicted in Figure 2.It contains21, 000

DOFs and is composed ofN = 200 identical substructures along the length, say

thex−direction. Each substructure is meshed using4 × 6 linear rectangular brick

elements and exhibits a lengthd = 0.01m (see Figure 2) . This mesh is supposed to

be fine enough to correctly capture the short wavelengths of thesignificantly con-

tributing wave modes traveling along thex−direction [6], as well as the resulting

wave shapes over the cross-section. The left and right boundaries of the substruc-

ture containsn = 105 DOFs providing that105 incident and105 reflected modes

are obtained through the WFE eigenvalue problem (6). The forced responses of the

global structure under either axial or transverse load (seeFigure 2) are addressed

on a frequency bandBf = [10Hz , 104Hz]. Eq. (35) is computed for providing,

by means of Eqs. (19) and (20), the WFE displacement solution. The wave ba-

sis{Φ̃j}j is supposed to include the modes which mostly contribute to the forced

response of the structure. These relate particular “cross-section” shapes with both

displacement and force components that can exhibit largelydisparate spatial dy-

namics. The displacements components of several contributing wave shapes are

depicted in Figure 3 at7500Hz. These refer to as the classic LF longitudinal,
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flexural and shearing modes with a non-uniform spatial behavior 4, and MF higher

order modes with an oscillating spatial dynamics for capturing the cross-section

resonances.

Figure 2

Figure 3

The forced response of the global structure under axial loadis computed first,

whenm = 10 andm = 60 wave modes are alternatively retained in{Φ̃j}j . The

longitudinal displacement of one corner of the excited cross-section is shown in

Figure 4. Comparisons with a reference solution provided bythe FE model of the

global structure are also presented. The dimension of the wave-based matrix prob-

lem is 2m, say20 or 120, while the dimension of the full FE model is21, 000:

as expected, the involved CPU times appear largely disparate, say several seconds

for the wave approach against more than one hour for the standard FE approach.

Regarding Figure 4, the WFE solutions with10 modes correlate the first global

vibrational modes of the structure while it poorly estimates the resonance levels at

higher frequencies, especially the one occurring at7500Hz (depicted by an arrow).

This is explained as the wave basis is not rich enough for reflecting the non-uniform

spatial dynamics occurring within the cross-section at such frequencies. Using a

wave basis with an extended dimension — saym = 60 —, which contains addi-

tional high order modes, clearly solves this lack of convergence below8000Hz.

Figure 4

4It is worth emphasizing that the rigid body assumption for the cross-section breaks down at high

frequencies.
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Above8000Hz, the wave approach still suffers from a lack of convergence for

predicting the resonance frequencies, whatever the size ofthe wave basis. This

problem is solved when the theoretical correspondences among incident and re-

flected modes, provided by means of Eq. (13), are accounted for in the WFE

formulation. Recall that these relationships have been formulated to circumvent

numerical dispersion effects generated by the eigenvalue problem (6); they enforce

the coherence between incident and reflected modes, in the sense that the equalities

||(Φ̃inc
q )j || = ||(Φ̃ref

q )j || and ||(Φ̃inc
F )j || = ||(Φ̃ref

F )j || are perfectly transcribed

∀j (see Section 2.3). The relevance of the resulting wave-based problem is clearly

established in Figure 5, compared to the FE solution.

Figure 5

The same strategy — involving the relationships (13) — is used to compute

the forced response of the structure under transverse load,on the same frequency

bandBf . The transverse displacement provided by Eq. (35) is calculated using

wave mode bases with different dimensionsm = 10 andm = 40 (see Figure 6).

It appears that the wave approach perfectly correlates the reference solution when

m = 40. This clearly emphasizes the feature of the WFE method, in the sense that

the forced response of straight structures can be correctlyaddressed using wave-

based models of extremely small size (say2m = 80 in this case).

Figure 6

4.3.2. Reissner-Mindlin plate

We address the forced response of a square Reissner-Mindlinplate with one

edge clamped into a support driven by a prescribed transverse displacement. The

FE model of the problem is depicted in Figure 7, whereq0 reflects the displacement

of the support. The material and geometric characteristicsof the structure are:
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Young’s modulusE = 2 × 1011Pa, densityρ = 7800kg.m−3, Poisson’s ratio

ν = 0.3, loss factorη = 0.01, shear correction factorκ = 5/6, areaLx × Ly =

1m × 1m, thicknessh = 0.002m. The global system is composed ofN = 40

identical substructures along thex−direction. Each substructure has a lengthd =

0.025m and is meshed using triangular Reissner-Mindlin elements with 6 nodes

(see Figure 7). It contains the same number of DOFs, sayn = 83, onto its left

and right edges, while it containsnI = 161 internal DOFs. The formulation of

the symplectic matrixS (see Eq. (3)), involved in the WFE eigenvalue problem,

requires the dynamic stiffness operator of a typical substructure to be condensed

onto its left and right boundaries [5]. This yields:

D∗ = DBB −DBI(DII)
−1DIB, (45)

where the subscriptB denotes the DOFs contained onto the left and right bound-

aries, while the subscriptI denotes the internal DOFs.

Figure 7

The forced response of the global structure is computed on a frequency band

Bf = [10Hz , 2000Hz]. Eq. (35) is computed for providing, by means of Eqs.

(19) and (20), the WFE displacement solution. The coherenceamong incident

and reflected modes is enforced through Eq. (13). The transverse displacement

at the mid-side of the free edge, opposite to the support, is drawn in Figure 8.

Comparisons with a reference solution provided by the FE model of the global

structure are presented. The WFE solution is calculated using reduced wave bases

of different dimensions, saym = 10, m = 40, m = 60 andm = 80. It is shown

that the WFE formulation offers good convergence provided that it almost involves

the full wave mode basis{Φj}j . This particularly means that the global structure

reveals a complex behavior — particularly in the vicinity ofthe clamped edge and
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corners where kinematic fields with local sharp gradients occur — which need to

be spanned by highly oscillating cross-section wave shapes. Some of these shapes

— these relate the transverse displacement components of the modes at1500Hz

— are drawn in Figure 9.

Figure 8

Figure 9

4.3.3. Two coupled beam-like structures

We address the forced response of two beam-like structures —namely waveg-

uide 1 and waveguide2 — with rectangular cross-sections, coupled through an

elastic junction over one of their cross-section limits. Here, the elastic junction

represents a quarter of torus. The finite element model of thecoupled system is de-

picted in Figure 10. The other cross-section limits, for waveguide2 and waveguide

1, are respectively clamped and submitted to a uniform transverse force field (in

thez−direction) that reflects the vectorF0. The main axes of the two waveguides,

say axesx1 andx2, are perpendicular so that coupling among wave modes of dif-

ferent natures (say for instance, longitudinal, flexural, torsional) is likely to occur.

The two waveguides, as well as the coupling junction, exhibit the same material

characteristics: Young’s modulusE = 2 × 1011Pa, densityρ = 7800kg.m−3,

Poisson’s ratioν = 0.3, loss factorη = 0.01. The two waveguides have the same

cross-section areahy × hz = 0.2m × 0.15m, while their respective lengths are

L1 = 2m andL2 = 1.5m. The junction represents a quarter of torus with an

internal radius of curvatureRc = 0.05m and a cross-section similar to those of the

connected waveguides. These are discretized with similar substructures of length

d = 0.01m (see Figure 10), so that waveguide1 containsN1 = 200 substructures

and waveguide2 containsN2 = 150 substructures.
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Figure 10

Each substructure is meshed using4 × 3 linear rectangular brick elements,

while 4× 3× 10 linear brick elements are used for the discretization of theelastic

junction. The mesh tying problem is illustrated in Figure 10and reflects two sub-

structures, used for wave mode description, coupled with the junction [5]. Here,

the mesh compatibility across the coupling interfaces — namely Γ1 (between the

substructure1 and the junction) andΓ2 (between the substructure2 and the junc-

tion) — is assumed, so that the coupling conditions are simply expressed as:

qwg1|Γ1
= qc|Γ1

and qwg2|Γ2
= qc|Γ2

, (46)

Fwg1|Γ1
= −Fc|Γ1

and Fwg2|Γ2
= −Fc|Γ2

, (47)

where subscriptc refers to as the coupling junction. In this case, the diffusion

matrix C̃ (cf. Eq. (38)) is simply expressed as [5, 24]:

C̃ = −
[
K

∗Ψ̃ref
q + Ψ̃ref

F

]+ [
K

∗Ψ̃inc
q + Ψ̃inc

F

]
, (48)

whereK
∗ stands for the dynamic stiffness matrix of the junction condensed onto

Γ1 andΓ2.

The forced response of the global structure is addressed using the WFE method.

For this task, the modal amplitudes{Q̃inc(1)
wg1 , Q̃

ref(1)
wg1 } and{Q̃inc(1)

wg2 , Q̃
ref(1)
wg2 } are

numerically calculated by means of Eq. (44). Again, the theoretical correspon-

dences among incident and reflected modes, for each waveguide, are numerically

imposed by means of Eq. (13). The WFE displacement solution for the two waveg-

uides is obtained using Eqs. (19) and (20). The transverse displacement of one cor-

ner of the excited cross-section of waveguide1 is computed on a frequency band

Bf = [10Hz , 5000Hz] (see Figure 11). Comparisons with a reference solution

provided by the FE model of the global structure are also presented. The wave-

based problem is alternatively formulated from reduced bases containingm = 10
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andm = 40 wave modes for each waveguide. Again, the convergence is achieved

when a sufficient number — saym = 40 — of wave modes is accounted for. In

this case, the selected wave modes constitute a complete family for spanning the

behavior of each waveguide as well as the trace of the dynamicbehavior of the

junction onto the interfacesΓ1 andΓ2 [24].

Figure 11

4.3.4. Conclusions

The WFE formulation, based on the numerical problems (34) and (44), has

been successfully used for computing the forced responses of a large variety of

homogeneous systems, namely a clamped beam-like structureunder axial or trans-

verse load, a square Reissner-Mindlin plate under prescribed transverse displace-

ment and a coupled system — say two waveguides coupled through an elastic

junction — under transverse load. It has been shown that the WFE solutions suc-

cessfully match the solutions provided by the standard FE method, that is when the

global structure is discretized, provided that they are computed using wave bases

of large enough size to capture the relative complexity of the cross-section spatial

dynamics. Summarizing, the wave-based strategy offers thepossibility to investi-

gate the LF and MF behavior of structures using numerical models of small size.

The feature of the WFE method is that the resulting CPU times appear consider-

ably lowered compared to those involved by the standard FE method.

5. Regularization strategy

5.1. Motivation

The wave-based numerical problems (34) and (44) may be ill-posed when

multi-layered systems are addressed. Such structures can reveal a multi-scale be-
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havior over their cross-section in the sense that the layerscan reveal strongly dis-

parate wavelengths, e.g. for a sandwich beam constituted ofa soft rubber core

surrounded by two stiff steel skins (see Figure 12). Here, large ratios between the

components of̃Φq, as well as between the components ofΦ̃F, are likely to occur.

Another issue is the fact that wave mode shapes{Φ̃j}j can be extremely close

to each other, though their respective wavenumbers can be largely disparate (see

ref. [16, 25] for further explanations). As a consequence, the computations of the

matrices(Φ̃
inc

F )+Φ̃
ref

F and(Φ̃
ref

q )+Φ̃
inc

q in Eqs. (34), as well as the computation

of the matrices(Φ̃inc
F )+wg1(Φ̃

ref
F )wg1 and(Φ̃inc

q )+wg2(Φ̃
ref
q )wg2 in Eq. (44), can be

prone to severe rounding errors.

To highlight this issue, let us address the forced response of the sandwich beam

depicted in Figure 12. Here, the skins — namely layers1 and3 — have the same

characteristics: heighth1 = h3 = 2 × 10−3m, same width50 × 10−3m, Young’s

modulusE1 = E3 = 2.1 × 1011Pa, densityρ1 = ρ3 = 7850kg/m3 , Pois-

son’s ratioν1 = ν3 = 0.3. The core — namely layer2 — exhibits the following

characteristics: heighth2 = 20 × 10−3m, width 50 × 10−3m, Young’s modulus

E2 = 1.5 × 106Pa, densityρ2 = 950kg/m3 and Poisson’s ratioν2 = 0.48.

The global structure has a lengthL = 0.4m and is assumed to be dissipative,

in the sense that the three layers are assumed to have the sameloss factor, say

η = 0.01. The FE discretization of the global structure involvesN = 200 identical

multi-layered substructures connected along thex− axis. A typical multi-layered

substructure is shown in Figure 12. It exhibits a lengthd = 2 × 10−3m which

is supposed to be small enough with regard to the wavelengthsof the contributing

wave modes, within the frequency band of interest. The threelayers are meshed us-

ing linear rectangular brick elements: layers1 and3 (steel skins) are meshed with

four elements while layer2 (soft core) is meshed with sixteen elements. Within

the WFE framework, this relatively coarse mesh should be appropriate to yield the
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classic LF modes of the global system as well as several MF modes, for which the

core cross-section reveals local dynamics. The spatial distributions of several wave

mode shapes obtained when computing the eigenvalue problem(6) are depicted in

Figure 13.

Figure 12

Figure 13

The forced response of the sandwich structure clamped at theright end, over

the whole cross-section, and excited at the left end, over the bottom skin cross-

section, is calculated on a frequency bandBf = [100Hz , 1500Hz]. Longitudinal

and transverse loads, as depicted in Figure 12, are individually studied. These

loads numerically describe surface force fields which are uniformly spread on the

bottom skin cross-section. The longitudinal and transverse displacements of a cor-

ner of the excited bottom skin cross-section, provided by the wave-based problem

(34) when longitudinal and transverse loads are respectively applied, are drawn in

Figures 14 and 15. Comparisons with a reference solution provided by the full FE

model of the sandwich structure, with21, 000 DOFs, are also presented. For each

type of excitation, the WFE solutions are calculated using wave bases of different

dimensions, saym = 10, m = 30, m = 50 andm = 70. With m = 10, the WFE

method clearly reveals a lack of convergence as the frequency increases, whatever

the type of excitations. This issue has been discussed in depth in ref. [16, 25] and

can be explained as the wave modes reveal changes of natures within Bf , providing

that the classic wave motions (longitudinal and flexural among others) are obliter-

ated in the WFE formulation. This can be solved using wave bases with extended

dimensions — saym = 30, m = 50 andm = 70 — so as to reflect these classic

motions during and after the wave mode conversion process.
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Figure 14

Figure 15

Another problem is that the WFE solutions may reveal local discontinuities as

well as spurious resonances/oscillations withinBf (cf. the WFE solutions com-

puted withm = 30 and m = 50). These numerical instabilities and pollution

effects introduce approximatively the same amount of errors whenm = 30 and

m = 50, although their frequency descriptions can strongly differ. In other words,

the wave-based problem (34) appears sensitive to the dimension of the wave basis

while the way of increasing its size does not significantly improve the convergence

of the formalism, contrary to what was observed for homogeneous systems (see

Section 4.3). Numerical instabilities finally disappear whenm = 70: in this case,

the WFE solution perfectly correlates, withinBf , the reference FE solution when

longitudinal excitation is considered, while it still suffers from a lack of conver-

gence to address the local resonances above1000Hz when transversal excitation

is concerned.

Summarizing, the wave-based problem reveals poor consistency for describing

the behavior of the sandwich structure, as it introduces numerical instabilities and

pollution effects. Numerical instabilities can be removedaway if wave bases of

extremely large dimensions are accounted for in the formalism, while it appears

not clear whether increasing the size of the basis completely provides the local

resonances of the structure over the entire frequency bandBf . The drawback of

the formulation — say numerical instabilities and pollution effects — results from

the computations of(Φ̃
inc

F )+Φ̃
ref

F and (Φ̃
ref

q )+Φ̃
inc

q in Eq. (34), as underlined

above. A regularization strategy is proposed hereafter to treat these issues.
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5.2. Wave mode expansion

The framework of the regularization strategy is to use an alternative family of

wave mode shapes — namely{Φ̃inc
j }j=1,...,m ∪ {Υ̃ref

j }j=1,...,m — as representa-

tion basis. The resulting wave mode expansion is

u
(k)
L = Φ̃incQ̃inc(k) + Υ̃refQ̃ref(k) k = 1, . . . , N, (49)

u
(k)
R = Φ̃incQ̃inc(k+1) + Υ̃refQ̃ref(k+1) k = 1, . . . , N, (50)

whereΥ̃ref refers to as the matrix form of{Υ̃ref
j }j=1,...,m and is defined such that

Υ̃ref =


 Υ̃ref

q

Υ̃ref
F


 =


 Φ̃inc

q

−Φ̃inc
F


 . (51)

The matrixΥ̃ref is directly computed using the incident mode shapesΦ̃inc. The

shapes{Υ̃ref
j }j play the role of reflected modes and appear strongly correlated to

the shapes of the incident modes as||(Φ̃inc
q )j || = ||(Υ̃ref

q )j || and ||(Φ̃inc
F )j || =

||(Υ̃ref
F )j || ∀j. The choice of this alternative basis lies in the fact that the compu-

tation of the matrices(Φ̃
inc

F )+Φ̃
ref

F and(Φ̃
ref

q )+Φ̃
inc

q in Eq. (34) can be circum-

vented since the following substitutions operate:

(Φ̃
inc

F )+Φ̃
ref

F → (Φ̃
inc

F )+Υ̃
ref

F = −I, (52)

(Φ̃
ref

q )+Φ̃
inc

q → (Υ̃
ref

q )+Φ̃
inc

q = I. (53)

It is worth noting that the definitions (51) are quite naturalwhen incident and re-

flected wave shapes represent longitudinal wave motion5. The validity of this

alternative wave mode expansion is investigated hereafter:

Proposition 4. Let us assume that the reduced basis{Φ̃inc
j }j ∪ {Υ̃ref

j }j is

composed of wave modes which effectively contribute to the forced response of

5This is readily verified for LF analytic solutions [26].
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the structure, depending on the manner by which the excitation sources are applied.

The governing equations (21) and (22) can be applied provided that the following

conditions are verified:

(i) Each vector̃Υ
ref

j is a linear combination of the wave modes{Φ̃ref

k }k=1,...,m,

i.e. Υ̃
ref

= Φ̃
ref

α, whereα is a(m × m) matrix;

(ii) α is invertible;

(iii) µ̃ andα almost commute.

Proof. Inserting Eqs. (49) and (50) intou(k−1)
R = Sk−1u1

L — provided by the

recurrence equation (5) and the coupling conditions (4) — , and accounting that

Sk−1Φ̃inc = Φ̃inc
µ̃

k−1, leads to

Φ̃incQ̃inc(k) + Υ̃refQ̃ref(k) = Φ̃inc
µ̃

k−1Q̃inc(1) +Sk−1Υ̃refQ̃ref(1). (54)

According to (i), this results in

Φ̃incQ̃inc(k)+Φ̃ref
αQ̃ref(k) = Φ̃inc

µ̃
k−1

Q̃inc(1)+Sk−1Φ̃
ref

αQ̃ref(1). (55)

Given thatSk−1Φ̃ref = Φ̃ref
µ̃
−(k−1), Eq. (55) gives

Φ̃incQ̃inc(k) + Φ̃ref
αQ̃ref(k) = Φ̃inc

µ̃
k−1

Q̃inc(1) + Φ̃
ref

µ̃
−(k−1)

αQ̃ref(1).

(56)

Left multiplying Eq. (56) by(Φ̃ref)T J and accounting for the symplectic orthogo-

nality property (9) clearly leads tõQinc(k) = µ̃
k−1

Q̃inc(1) ∀k. On the other hand,

left multiplying Eq. (56) by(Φ̃inc)TJ and accounting for Eq. (9) gives

(Φ̃inc)T JΦ̃ref
αQ̃ref(k) = (Φ̃inc)TJΦ̃

ref
µ̃
−(k−1)

αQ̃ref(1), (57)

which leads to

αQ̃ref(k) = µ̃
−(k−1)

αQ̃ref(1), (58)

32



as the matrix(Φ̃inc)TJΦ̃ref is diagonal and supposed to be invertible. Using (ii),

Eq. (58) can be rewritten as

Q̃ref(k) = α
−1

µ̃
−(k−1)

αQ̃ref(1). (59)

Accounting for (iii) — providing thatµ̃α ≈ αµ̃
6, that is to saỹµ−(k−1)

α ≈
αµ̃

−(k−1) ∀k — into Eq. (59) finally results iñQref(k) = µ̃
−(k−1)Q̃ref(1) ∀k.

�

Remark 6. It is not straightforward whether matricesµ̃ andα almost commute

sinceα is not diagonal in general. This is explained as the construction of the wave

modes{Υ̃ref

j }j and{Φ̃ref

j }j — provided by Eqs. (51) and (13), respectively —

can be quite different with regard to the symmetry transformation matrixR, when

the rotation of the cross-section induces non-negligible values within the compo-

nents of{Φ̃inc

j }j . For a pure transverse excitation involving flexural wave motions

as contributing modes, these values can be lowered providedthat the cross-section

reveals a sufficiently small height in the direction of the load. For a pure longitu-

dinal excitation, there is no such limitation as the contributing modes{Υ̃ref

j }j and

{Φ̃ref

j }j are longitudinal i.e. they are identically formulated by means of Eqs. (51)

and (13).

Remark 7. It is clear that the governing equations (21) and (22) can be stated

even though the reduced basis{Φ̃inc
j }j ∪ {Υ̃ref

j }j includes weakly contributing

modes7, in the sense that their influence is negligible.

6A more rigorous definition is to say that||µ̃α − αµ̃|| ≤ ǫ where ǫ is a second order of

min{||µ̃α||, ||αµ̃||} (see ref. [27] for further discussions).
7Recall that the selection of the reduced basis is rather empirical and based on the way they are

or become propagating behind a certain limiting frequency,whatever the excitation source.
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5.3. Boundary value problem

Using Eqs. (49), (50) and (51), the boundary conditions (27)and (28) of a

single waveguide, whose left and right boundaries are respectively submitted to

prescribed forces and prescribed displacements, write:

Φ̃inc
F Q̃inc(1) − Φ̃inc

F Q̃ref(1) = −F0, (60)

Φ̃inc
q Q̃inc(N+1) + Φ̃inc

q Q̃ref(N+1) = q0. (61)

Also, using the governing equations (21) and (22) results in

Φ̃inc
F Q̃inc(1) − Φ̃inc

F Q̃ref(1) = −F0, (62)

Φ̃inc
q µ̃

N
Q̃inc(1) + Φ̃inc

q µ̃
−N

Q̃ref(1) = q0, (63)

which, in matrix form, gives


 I −µ̃

N

µ̃
N

I





 I 0

0 µ̃
−N





 Q̃inc(1)

Q̃ref(1)


 =


 −(Φ̃

inc

F )+F0

(Φ̃
inc

q )+q0


 , (64)

where appropriate scalings have been used (cf. Section 4.1). The system (64)

involves matrices whose inverses can be computed without difficulties. The draw-

backs of the classic WFE problem (34), caused by the computations of(Φ̃
inc

F )+Φ̃
ref

F

and(Φ̃
ref

q )+Φ̃
inc

q , are circumvented through the regularization strategy (see Eqs.

(52) and (53)). Solving the system (64) finally gives


 Q̃inc(1)

Q̃ref(1)


 =


 I 0

0 µ̃
N





 I −µ̃

N

µ̃
N

I



−1 

 −(Φ̃
inc

F )+F0

(Φ̃
inc

q )+q0


 , (65)

where{Q̃inc(1), Q̃ref(1)} represent the modal amplitudes for the left cross-section

limit of the waveguide, where forces are prescribed. The spatial distribution of the

modal amplitude is obtained by means of Eqs. (21) and (22). The spatial distribu-

tion of the kinematic variables (say displacements and forces) finally result from
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Eqs. (19) and (20).

Remark 8. The regularized wave-based boundary value problem can suffer

from a lack of convergence for predicting the antiresonances, i.e. for frequencies

where two dual incident and reflected wave modes exhibit equal magnitudes and

opposite phases so that their contributions cancel each other. This is explained

as the symmetry property of these modes (see Eq. (13)) is not well transcribed

through the regularized strategy (for flexural wave motionsespecially).

The regularization strategy based on Eqs. (49) and (50) can be used for ad-

dressing the forced response of coupled systems. The resulting problem, for two

waveguides coupled through an elastic junction, is simply formulated as



I −µ̃
N1

wg1 0 0

−C̃11µ̃
N1

wg1 I 0 −C̃12µ̃
N2

wg2

−C̃21µ̃
N1

wg1 0 I −C̃22µ̃
N2

wg2

0 0 µ̃
N2

wg2 I







I 0 0 0

0 µ̃
−N1

wg1 0 0

0 0 µ̃
−N2

wg2 0

0 0 0 I







Q̃
inc(1)
wg1

Q̃
ref(1)
wg1

Q̃
ref(1)
wg2

Q̃
inc(1)
wg2




=




−(Φ̃inc
F )+wg1F0

0

0

(Φ̃inc
q )+wg2q0




, (66)

where the computations of the matrices(Φ̃inc
F )+wg1(Φ̃

ref
F )wg1 and(Φ̃inc

q )+wg2(Φ̃
ref
q )wg2

(see the original problem (44)) are not required.

5.4. Numerical validation

5.4.1. Sandwich structure

We address the forced response of the sandwich structure previously depicted

in Section 5.1 (see Figure 12), using the regularization strategy based on the wave
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mode expansion (49) and (50). This strategy is used for calculating the displace-

ment solution at a corner of the left cross-section limit, when the wave mode ampli-

tudes are computed by means of Eq. (65). The frequency response of the structure

under longitudinal and transverse loads are respectively drawn in Figures 16 and

17.

Figure 16

Figure 17

The resonances of the structures are quite well transcribedby the regularized

wave-based problem. The relevance of the formalism for capturing the vibratory

levels of the transversally excited structure over the entire frequency band is clearly

established compared to the classic WFE method, despite some drawbacks for pre-

dicting the antiresonances (cf. Remark 8). The accuracy of the regularized for-

malism is reached when only a small number of wave modes are retained in the

representation basis. The drawbacks of the classic WFE formulation — say, nu-

merical instabilities and pollution effects above500Hz (see Figure 15) — have

been circumvented through the regularization strategy, asexpected. Regarding the

frequency response of the longitudinally excited structure, it can be emphasized

however that the formalism suffer from pollution effects atlow frequency (this

is particularly verified whenm = 70), as the dimension of the wave basis can

exceed the vibration scale of the global cross-section [16]. In this sense, linear

dependency among modes are favored and badly conditioned problems are likely

to occur. However, these are not restrictive for the formulation and can easily be

removed away provided that the frequency is not too close to zero, with regard to

the fundamental resonance of the skins.

The relevance of the wave-based numerical problem (65) for predicting the

behavior of the transversally excited structure can be justified in the present ex-
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ample as the heights of the skin cross-sections, in the direction of the load, are

small enough so that the rotations of these cross-sections are supposed to induce

negligible values within the displacement and force components of{Φ̃inc

j }j (see

Remark 6). Within these assumptions, the regularization strategy can be applied in

theory to a large class of problems. As an example, the problem of determining the

vibratory behavior of a Reissner-Mindlin plate is investigated hereafter.

5.4.2. Reissner-Mindlin plate

We address the frequency response of the Reissner-Mindlin plate previously

depicted in Section 4.3.2 (see Figure 7). The solutions provided by the regular-

ized wave-based problem are shown in Figure 18. The main resonances of the

structure are correctly transcribed through the formalism, as expected. As was

previously observed for the case of the sandwich structure,the accuracy of the reg-

ularized formalism is quickly raised for providing these resonances over the entire

frequency band, i.e. when the size of the wave basis containsa small number of

modes only (saym = 40). This seems to constitute an interesting feature of the

regularized strategy compared to the classic WFE method (see Figure 8). This

might be explained given that the contribution of high orderMF modes does not

appear lowered in the calculation of the regularized solution (65), contrary to what

is simulated within the WFE framework when computing(Φ̃
inc

F )+Φ̃
ref

F µ̃
N and

(Φ̃
ref

q )+Φ̃
inc

q µ̃
N in Eq. (35) (see Section 4.1).

Figure 18

5.4.3. Conclusions

The regularization strategy provided by the wave mode expansion (49) or (50)

has been successfully used for describing the vibratory levels of a one-end-clamped

sandwich structure and a one-edge-clamped Reissner-Mindlin plate. The strategy
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exhibits two main features compared to the classic WFE formulation:

• It enables to circumvent numerical instabilities and pollution effects when

multi-layered systems are addressed;

• The convergence of the resulting boundary value problem is quickly raised

when the wave basis contains a small number of modes.

6. Concluding remarks

The low- and mid-frequency forced response of straight structures has been

addressed using the WFE method. In this framework, the kinematic fields are ex-

panded onto one-dimensional traveling wave modes, whose computation requires

the finite element model of a typical substructure. Depending on the degree of

complexity which is required for the spatial response, the mesh density of the sub-

structure can be modified so as to enrich the wave basis with highly oscillating

cross-section shapes. The WFE formulation has been investigated for addressing

the Neumann-to-Dirichlet problem. The resulting matrix form has been adapted

using appropriate scalings to circumvent poor conditionedproblems, as the ratios

between the wave force and wave displacement components canreach extremely

large values. The formalism has been successfully validated for addressing the

forced responses of a beam-like structure and a Reissner-Mindlin plate, as well

as the forced response of two waveguides transversally coupled through an elastic

junction. On the other hand, it has been emphasized that the WFE formulation

can suffer from numerical instabilities and pollution effects when multi-layered

systems are dealt with. The drawback of the method is that thewave components

can be largely disparate over the global cross-section, providing that the resulting

wave-based matrix problem can be ill-posed. A regularization strategy has been
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proposed to solve this issue. It involves an alternative wave expansion by which

reflected and incident modes are simply linked in a way similar to what is analyt-

ically stated for the plane longitudinal wave motion. More generally, it has been

emphasized that the formalism can be applied to any transversally excited struc-

tures provided that the height of their cross-sections, in the direction of the load,

is sufficiently small. The relevance of the regularization strategy has been estab-

lished for predicting the vibratory levels of a sandwich beam under longitudinal

and transverse loads, as well as a Reissner-Mindlin plate under transverse loads.
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Figure 1:Illustration of incident and reflected waves; FE model of a typical substructure.
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Figure 2: FE model of a clamped beam-like structure under longitudinal (a) or transverse

(b) load; FE model of a typical substructure (c).
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Figure 3:Spatial representation of several “cross-section” wave mode shapes for the beam-

like structure depicted in Figure 2, at7500Hz: (a) longitudinal mode; (b) flexural mode;

(c) shearing mode; (d-i) MF modes.
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Figure 4: Frequency response of the clamped beam-like structure depicted in Figure 2,

under longitudinal load: (—) solutions provided by FE; (· · · ) solutions provided by WFE

with 10 modes (a) and60 modes (b).
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Figure 5: Frequency response of the clamped beam-like structure depicted in Figure 2,

under longitudinal load: (—) solutions provided by FE; (· · · ) solutions provided by WFE

— based on Eq. (13) — with10 modes (a) and60 modes (b).
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Figure 6: Frequency response of the clamped beam-like structure depicted in Figure 2,

under transverse load: (—) solutions provided by FE; (· · · ) solutions provided by WFE —

based on Eq. (13) — with10 modes (a) and40 modes (b).
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Figure 7:FE model of a Reissner-Mindlin plate with on edge clamped into a support with

prescribed displacement (a); FE model of a typical substructure (b).
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Figure 8: Frequency response of the Reissner-Mindlin plate depictedin Figure 7: (—)

solutions provided by FE; (· · · ) solutions provided by WFE with10 modes (a),40 modes

(b), 60 modes (c) and80 modes (d).
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Figure 9: Spatial representation of several “cross-section” wave mode shapes for the

Reissner-Mindlin plate depicted in Figure 7, at1500Hz: symmetric flexural LF and MF

modes.
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Figure 10:FE model of two waveguides coupled through an elastic junction (a); FE model

of the underlying wave-based model, based on two coupled substructures (b).
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Figure 11:Frequency response of the coupled system depicted in Figure10: (—) solutions

provided by FE; (· · · ) solutions provided by WFE with10 modes (a) and40 modes (b).
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Figure 12:FE model of a sandwich beam under longitudinal (a) or transverse (b) load; FE

model of a typical substructure (c).
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Figure 13:Spatial representation of several “cross-section” wave mode shapes for the sand-

wich structure depicted in Figure 12, at1000Hz: (a) longitudinal mode; (b) shearing mode;

(c) flexural mode; (d-i) MF modes.
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Figure 14:Frequency response of the sandwich structure depicted in Figure 12, under lon-

gitudinal load: (—) solutions provided by FE; (· · · ) solutions provided by WFE with10

modes (a),30 modes (b),50 modes (c) and70 modes (d).
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Figure 15:Frequency response of the sandwich structure depicted in Figure 12, under trans-

verse load: (—) solutions provided by FE; (· · · ) solutions provided by WFE with10 modes

(a),30 modes (b),50 modes (c) and70 modes (d).
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Figure 16:Frequency response of the sandwich structure depicted in Figure 12, under longi-

tudinal load: (—) solutions provided by FE; (· · · ) solutions provided by regularized WFE

with 10 modes (a),30 modes (b),50 modes (c) and70 modes (d).
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Figure 17:Frequency response of the sandwich structure depicted in Figure 12, under trans-

verse load: (—) solutions provided by FE; (· · · ) solutions provided by regularized WFE

with 10 modes (a),30 modes (b),50 modes (c) and70 modes (d).
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Figure 18: Frequency response of the Reissner-Mindlin plate depictedin Figure 7: (—)

solutions provided by FE; (· · · ) solutions provided by regularized WFE with10 modes (a),

40 modes (b),60 modes (c) and80 modes (d).
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