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Abstract—In this paper, we deal with the cyclic scheduling 

problem. More precisely, we consider the cyclic job shop with 

assembly tasks. Such a problem is made of several jobs, each 

job consisting of tasks (assembly/disassembly tasks and 

transformation tasks) being assigned to machines in a cyclic 

way. This kind of scheduling problem is well fitted to medium 

and large production demands, since the cyclic behavior can 

avoid the scheduling of the whole tasks by considering only a 

small temporal window (cycle). Thus, cyclic scheduling is a 

heuristic to solve the scheduling problems whose complexity is 

NP-hard in the general case. Many methods have been 

proposed to solve the cyclic scheduling problem. Among them, 

we focus on the mathematical programming approach. We will 

propose here a mathematical model for cyclic scheduling with 

assembly tasks and Work-In-Process minimization, and we 

illustrate this approach with an example from literature. 

I. INTRODUCTION 

YCLIC scheduling problems take place in different 

application areas such as compiler design, automated 

manufacturing systems, digital signal processing, railway 

scheduling, timetabling, etc. We will focus here on the 

automated manufacturing systems. In this domain, the 

production consists of cyclic jobs assigned to machines. 

Each job consists of assembly/disassembly tasks and 

transformations tasks. The assembly tasks show the 

synchronization between operations, and the disassembly 

promote parallelism. 

This problem has to be optimized with regard to several 

criteria like throughput and Work-in-Process (WIP - the 

number of parts in the system). The WIP, which is an 

economic criterion, represents the intermediate stock. In the 

cyclic context, the throughput criteria will be replaced by 

minimizing the Cycle Time (CT). 

These two criteria are antagonistic. On one hand, to 

maximize the throughput, we have to use enough parts 

(WIP) to feed the bottleneck machine. On the other hand, 

with a few number of WIP (one for example) the resources 

will be pending for parts (in particle, the bottleneck 

machine(s)) and the throughput will not be optimized. 

Hence to take into account these two criteria, we will follow 
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the resolution developed by Camus [4]. It consists of two 

phased approach. The planning step, which determine the 

optimal cycle time, and the scheduling step, which consists 

on minimizing the WIP while respecting the optimal cycle 

time (as a hard constraint). This approach ensures the 

existence of a scheduling, since a sufficient number of WIP 

allows to saturate the bottleneck1 machine(s). 

We focus here on the scheduling of operations in a 

precalculated cycle time, and we do not look for the best 

production ratios to be produced during a cycle time (an 

issue largely studied by Chrétienne [5] and Hanen [11]). In 

fact, we suppose that we know exactly what to produce 

during a cycle, which allows us to determine the optimal 

cycle time based on the workload of the critical resource. 

We are interested here in the cyclic scheduling problem 

with assembly tasks and Work-In-Process minimization. 

The remainder of this paper is organized as follows. In 

section 2, we will introduce systems with 

assembly/disassembly tasks, and we will propose a cyclic 

approach to solve these problems. In addition, we will 

define the WIP in these systems. In section 3, we will 

describe the mathematical model. In section 4, we will use 

an illustrative example in the literature to explain our 

approach. To conclude, we propose several perspectives to 

extend our work. 

II. CYCLIC SCHEDULING PROBLEM WITH 

ASSEMBLY/DISASSEMBLY TASKS 

A. Systems with Assembly/Disassembly tasks 

The production lines of manufacturing system often 

include assembly/disassembly tasks. This can be accounted 

for the nature of the aimed output, which requires to 

assemble and/or disassemble several parts ([13], [17], [18], 

[19], [20], [21]). There are also many systems with only 

disassembly tasks, for example disassembly lines used in 

recycling ([8], [10], [15]). We can also find a system with 

only assembly tasks (like [16]). 

In this context, the system must include the suitable 

resources able to perform these tasks. In these systems 

(“Fig.1,” [20]) there are three categories of operations:  

Transformation tasks: affects the state of the pieces without 

adding extra parts in the system. 
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Assembly tasks: consists of assembling at least two parts to 

produce a new one. In this case, the number of parts in the 

system will decrease. 

Disassembly tasks: consists of disassembling one piece to 

produce, at least, two parts. In this case, the number of parts 

in the system will increase. 

It follows that the precedence constraints of operations 

can be multiple. Which means that, with assembly, one task 

can have two or more predecessors. However, with 

disassembly one task can have two or more successors. 

Hence, we have to deal with non-linear job, which means 

that a job can include many branches. 

 We will consider here systems that contain only one 

disassembly operation and one assembly operation. The 

disassembly operation comes before the assembly one. 

Between these two tasks we will find at least two branches 

(on Stage_2 – “Fig.1”). Thus, the disassembly and the 

assembly tasks will delimit the different stages of the system 

(“Fig.1”). This choice can be viewed as a primary model 

type that takes into account the most important constraint 

which is encountered in assembly/disassembly systems: the 

synchronization of tasks. This choice can be justified by the 

need of simplification to start studying this scheduling 

problem. However, in future works, we will consider other 

types of models within extended constraints (like systems 

with several assembly and disassembly tasks and/or with 

imbricated stages). 
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Fig 1. Assembly/Disassembly problem. 

 

B. Cyclic behavior 

We propose to schedule a production plan, i.e. to 

determine the sequences of operations on resources and the 

time of lunching of each task. The schedule must be within 

the Cycle Time, and every cycle we produce one piece.  

The Scheduling problems are well known to be highly 

combinatorial. It has been shown that project planning 

problems are of polynomial complexity and that cyclic 

scheduling problems are NP-complete. Taking into account 

transformation tasks and assembly/disassembly one, makes 

the first problem NP-hard in most cases and keeps the 

second one in the NP-complete class. Hence, the use of 

heuristics is generally recommended. The scheduling of 

cyclic production system can be a possible solution to global 

scheduling. The answer to the total demand will be given by 

the repetition of a sequence known as cyclic scheduling. 

However, the optimal scheduling of a cycle does not 

guarantee the optimality of the total production, since the 

“the sum of optimal sub-paths is not necessarily an optimal 

path” [1]. That's why the cyclic behavior is still a heuristic. 

We can evaluate the performance of the cyclic scheduling by 

comparing the total time production with a lower bound 

computed from workflow analysis and the workload of the 

bottleneck machine. 

In this work, we suppose that the production and the 

optimal cycle time have been fixed in the planning step from 

workflow analysis and performance evaluation using Petri 

nets (Camus [4], Korbaa [14]). 

C. Work-In-Process 

The aim of minimizing the WIP of a system is mainly due 

to the minimization of costs (intermediate stock, pallets 

design, and manufacturing). In factories, WIP levels 

between machines have capacity limits. This is mainly due 

to the limited physical space available to store the parts 

temporarily and the limits of the transport system. Also, if 

the number of WIP increases, it can produce a deadlock by 

overloading the system. 

To understand the WIP in systems with 

assembly/disassembly tasks, we suggest to present this 

concept in linear jobs systems with (system within which 

each task has only one predecessor and one successor 

operation i.e. without assembly/disassembly tasks). In linear 

Job systems, the WIP represents the number of products in a 

system. Since there are no assembly/disassembly tasks, then 

every part in the system is bound to a single product. 

Moreover, many studies [3], [7], [12], [14], [6] ...) consider 

that parts remain clamped to their transport resource (for 

example pallet) during their entire journey in the system. 

Hence, minimizing WIP or the number of pallets is the 

same. 

However, the number of parts in systems with non-linear 

production line does not match the number of products. In 

fact, if we consider that we have to produce a “chair,” we 

have to assemble 6 parts: 4 legs, the back and the seating. 

This means that, after assembly, the number of parts changes 

from 6 to 1. Hence, the previous definition of WIP has to be 

reviewed. 

In this context, Fournier [21], has proposed a definition 

for the WIP. He supposes that all parts generated after a 

disassembly task or disappeared after assembly (i.e. parts 

which belong to the same product), represent only one WIP. 



 

 

 

Hence, if we consider a cyclic production system, and we 

suppose that there are several parts in the cyclic window 

which belong to x products, then, there is x WIP in the 

system. However, this definition does not consider the 

number of pallets in the system. In fact, we can find two 

schedules that present two WIPs, for example, the first 

schedule needs 10 pallets while the second requires 15 

pallets. With this definition, we can not choose the first 

schedule (which needs less pallets) compared to the second 

one. 

Another point of view concerning the definition of the 

WIP is proposed by Trouillet [19]. He considers that the 

WIP in a system is equal to the maximum number of parts 

present in a cyclic window. 

In this paper, we will consider the definition of Trouillet, 

which aims to minimizing the maximum number of parts in 

the system. Moreover, we will consider that parts remain 

clamped to their transport resource (for example pallet) 

during their entire journey in the system. 

 

III. A MATHEMATICAL MODEL FOR CYCLIC SCHEDULING 

PROBLEM WITH ASSEMBLY TASKS 

A. Job Shop 

We use the following notations to define a job shop F. 

Machines: The set M = {m1, m2,…, m|M|} defines the set of 

machines of F. These resources are renewable and not 

shared by any operations. This means that they are reusable 

once they have finished the execution of a task and can only 

process one task at a time. 

Operation: We define an operation of F using the 

machine m ∈ M as a pair (m,d) ∈ M × N* where d is called 

the duration of the corresponding operation. We denote by 

O∞ ≡ M × N* the set of possible (machine, duration) pairs. 

Job: We define a job g of the job shop F as a sequence of 

operations. Among these operations, we can find 

Assembly/Disassembly tasks. We denote by: 

 

OG: set of all operations of the problem. 

 

Ei: Number of stages of the Job i. 

 

bi,j: Number of branches in stage j of the job i. 

 
,

:
i j

kE  Number of operations in the branch k of the stage j 

of the job i. 

 

We denote operations by ,

,

i j

k lo , while i, j, k and l stands 

respectively for: the job, the stage, the branch and the index 

of the operation for the corresponding branch.  

 

 s(i,j,k,l) = (I,J,K,L) where ,

,

I J

K Lo represent(s) the 

successor(s) of ,

,

i j

k lo . 

Job Shop: We define a job shop as a set of jobs G = {g1, 

g2, …, g|G|}. We denote by G the cardinal number of G, and 

we order the jobs of the job Shop by the formal parameter 

i∈\1, G ‘. 

B. Cyclic Scheduling Problem 

The goal of cyclic scheduling is to schedule the cyclic 

pattern, within which each operation of the job shop is 

scheduled in a time range called cycle time. The optimal 

cycle time is defined as the sum of durations of tasks 

associated with the bottleneck machine(s). 

Since this optimal cycle time is reachable (we have to use 

enough parts: a WIP for each tasks in the system), classical 

scheduling problems consist in minimizing the number of 

pieces in the system for a given cycle time, equal to 
*

( , )

( ( )).max

ij

max ij

m d
m

dC
∈∈= ∑

GOM
  

 

We will work here with a Cycle Time (CT) which is equal 

to *
maxC . 

CT = *
maxC  

C. Mixed Integer Programming Model 

We define below, “Fig.2,” a mixed integer programming 

model corresponding to the cyclic scheduling problem 

defined in section III.B.  
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Fig 2. Mixed Integer Programming Model  

 

- Variable , *
, 0, 1

i j
maxk lt C∈ −| ¢~ £¡ ⁄ corresponds to the 

activation date of the operation ,

,

i j

k lo  within the 

considered cycle; 

- Variable { }, , ,
, , , 0,1

i j k l
I J K Lδ ∈  is the binary variable 

corresponding to the order between operations 

performed on the same machine, such that , , ,
, , , 1

i j k l
I J K Lδ = if 

, ,
,,

i j I J
K Lk lt t< and 0 otherwise. “Fig.3” presents a scheduling 

of the illustrative example used below (“Fig.6”). In this 

schedule, we have 1,2,2,2
1,2,2,1 1,δ =  since: 1,2 1,2

2,1 2,2<t t . 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 3. Variable δ (delta) 

 

- Variables , , ,
, , ,

i j k l
sI sJ sK sLα  and , , ,

, , ,
i j k l
sI sJ sK sLβ correspond to 

binary variables used to compute the WIP: 

̇ , , ,
, , , 1

i j k l
sI sJ sK sLα =  if ,

,

sI sJ

sK sLo  is executed before the 

completion time of ,

,

i j

k lo , where ,

,

sI sJ

sK sLo stands for 

a successor of operation ,

,

i j

k lo  in the job; 

 

̇ , , ,
, , , 1

i j k l
sI sJ sK sLβ =  if ,

,

sI sJ

sK sLo  overlaps two cycles and 

completes after the activation time of ,

,

i j

k lo  on 

the next cycle; 

 

“Fig.4” presents a scheduling of a cyclic linear job. This 

job consists of 3 tasks: 1,1

0,1o , 1,1

0,2o  and 1,1

0,3o  
1,1

0,1o is followed by 1,1

0,2o . 
1,1

0,2o is followed by 1,1

0,3o . 
1,1

0,3o is followed by 1,1

0,1o . 

We presents in “Fig.4” a scheduling to illustrate the case 

when we have , , ,
, , , 1

i j k l
sI sJ sK sLα =  and , , ,

, , , 1
i j k l
sI sJ sK sLβ = . 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 4. Binary variables used to compute the WIP (α and β). 

 

More explanations for α and β can be found in [2], 

since these two variables keep the same meaning for systems 

with or without assembly/disassembly tasks. 

- B ∈ N is a constant used to constrain the discrimination 

variables , , ,
, , ,

i j k l
sI sJ sK sLα  and , , ,

, , ,
i j k l
sI sJ sK sLβ  in a linear way. It 

has to be “big enough” (lower bound: *2. 1maxC − ) in 

order to make the inequalities (5) to (8) valid. This 

lower bound was computed as follow: 

In order to consider “(6)” as a valid inequality, we must 

have: , , , , ,,
, , , ,, ,. .α− − ≤ −i j i j k l i jsI sJ

sK sL sI sJ sK sLk l k lt t B d  If 
, , ,
, , , 1,α =i j k l

sI sJ sK sL then:  
, ,,

,, ,− + ≤i j i jsI sJ
sK sLk l k lt t d B  

 

In addition, we know that , *
, 1≤ −i j

maxk lt C and , *
, ,≤i j

maxk ld C  

then B must respects the following inequality: 
*2. 1− ≤maxC B  

- Remaining inequalities (5) to (8), (10) and (11) 

constrain the previous variables according to their 

meanings. 

-  Finally, the objective function “(1),” corresponds to the 

minimization of the WIP of the considered scheduling. 

It consists on two parts: a constant plus decision 

variables (α and β). Note that, if we consider only 

decision variables in the objective function (1), the 

mathematical model will compute, only, the WIP 

needed for one path and the extra WIP required by the 

other branches. Hence, to know the WIP of the 

schedule, we have to add the WIP needed to perform 

the rest of the branches. Indeed, in “Fig.5” we notice 

that, after a disassembly task, the system generates (nb–

1) new WIP, nb stands for the number of branches in 

the second stage (Stage_2). For example, before firing 

transition t1, the system presents one WIP, then, after 

firing t1, the system presents 3 WIP, which means that 

we need 2 = (3 –1) extra WIP to process the rest of 

branches in the second stage. 
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Fig 5. Variations of the Numbers of Tokens 

 

In addition to this mathematical model, we define two 

other properties. Firstly, we consider that the first operation 

of the first job (operation 1,1

0,1o ) starts at time 0 (which means 

that 1,1

0,1 0t = ). Indeed, the steady state can be observed at 

different dates and always presents the same WIP. This is 

due to the cyclic behavior of the production. Hence, 

generality is maintained by considering that the cycle begins 

when the execution of operation 1,1

0,1o  starts. Secondly, the 

total WIP is made of the WIP needed to achieve each job 

separately. Let Ti be the total duration of the ith possible 

path from the first operation to the last one. If Ti is great to 

CT, then this sequence of operations is longer than a cycle 

and has to be cut into several cycles. This is done by 

introducing several parts of this sequence of operations: 

WIP. This number has to be at least equal to the integer 

superior or equal to Ti by CT. 

min

:   

i

i Possible operations sequences

T
WIP

CT

⎡ ⎤= ⎢ ⎥⎢ ⎥∑                      (12) 

 

Concerning the optimality of the solutions, this model 

reflects exactly the constraints that can be found in a 



 

 

 

scheduling problem, namely the constraints of precedence 

between operations and the constraints of resource sharing. 

Therefore, this model ensures the optimality of the solutions. 

On the other hand, we work with an exact approach and the 

resolution is done by a linear program solver (CPLEX). 

Note that the mathematical model can deal, either, with 

problems with linear jobs [2] or with Assembly/Disassembly 

tasks. 

IV. ILLUSTRATIVE EXAMPLE 

In this section we will use the example “Fig.1” of 

Disassembly/Assembly system, in order to illustrate the 

approach to compute optimal WIP with the mathematical 

model. The original example “Fig.6” was used by Trouillet 

in [20]. 

There are two main differences between “Fig.1” and 

“Fig.6”: 

- Transition t7 in “Fig.6” will be considered as the first 

operation in “Fig.1.” In fact, this is possible since the 

problem is cyclic. 

- In “Fig.6,” all the transitions are fired once except t1 and 

t2 which are fired twice. This property is replaced by the 

use of two successive operations for each transitions t1 

and t2. Indeed, this choice is justified by the fact that we 

use the same resource M3 for these two transitions. 

Hence, necessarily, transitions t1 and t2 will be 

performed on M3 sequentially. Here, we look to work 

with ordinary Petri net for reasons of understanding and 

readability for our model. 

The system contains 3 stages. The second stage contains 2 

branches.  
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Fig 6. Illustrative example used by Trouillet in [20] 

 

There are five resources denoted by M1, M2, M3, M4, M5. 

The Cycle Time (CT) is equal to 12, which is the workload 

of M3 (bottleneck resource). 

To compute a lower bound for the WIP, we know the 

optimal cycle time CT and the total duration of each possible 

path from the first task to the last one, through the different 

branches. For our example, we have two paths: 

- 
1,1

0,1o , 1,2

1,1o , 1,2

1,2o , 1,2

1,3o , 1,3

0,1o , 1,3

0,3o . 

- 
1,1

0,1o , 1,2

2,1o , 1,2

2,2o , 1,2

2,3o , 1,3

0,1o , 1,3

0,3o . 

If we suppose that we will process only the first path, then 

we will need at least 12 t.u., which means, at least, one part, 

i.e. one WIP. Then, the second path needs at least one WIP, 

as well. 

The WIP lower bound is equal to: 
12 12

2
12 12

⎡ ⎤ ⎡ ⎤+ =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 7. Scheduling on resources 

 

“Fig.7” represents the computed schedule of tasks on the 

resources using linear program solver CPLEX 9.0 on an Intel 

Pentium 4 at 2.8 GHz and 1Go RAM, under Windows XP. 

The resolution takes about 1s. 

 

“Fig.8” represents the same schedule, but, here, we focus 

on the number of pallets used in the system. 

 

 

 

 

 

 

 

 

 

 

 
Fig 8. Scheduling from the part’s point of view 

 

 “Fig.8” shows that the schedule requires 3 pallets. Hence 

the optimal number of WIP is equal to 3. This level of WIP 

was found by the mathematical model through variables α 

and β: 
1,1,0,1
1,2,1,1α  + 1,1,0,1

1,2,2,1α  + 1,2,1,1
1,2,1,2α  + 1,2,1,2

1,2,1,3α  + 1,2,2,1
1,2,2,2α  + 1,2,2,2

1,2,2,3α  + 
1,2,2,3
1,3,0,1α  + 1,2,1,3

1,3,0,1α  + 1,3,0,1
1,3,0,2α + 1,3,0,2

1,1,0,1α  + 1,1,0,1
1,2,1,1β  + 1,1,0,1

1,2,2,1β  + 
1,2,1,1
1,2,1,2β  + 1,2,1,2

1,2,1,3β  + 1,2,2,1
1,2,2,2β  + 1,2,2,2

1,2,2,3β  + 1,2,2,3
1,3,0,1β  + 1,2,1,3

1,3,0,1β  + 
1,3,0,1
1,3,0,2β + 1,3,0,2

1,1,0,1β  = 2 

 

All the variables here are null except: 1,2,1,2
1,2,1,3α  = 1,3,0,2

1,1,0,1α  = 

1. We can verify these two values from “Fig.8,” while 
1,2 1,2 1,2

1,2 1,2 1,3t d t+ >  and 1,3 1,3 1,1

0,2 0,2 0,1t d t+ > . 



 

 

 

The mathematical approach computes the WIP needed for 

one path and the extra WIP required by the other branches. 

Hence, to find out the WIP needed for the whole schedule, 

we must add (n–1) pallets (section 3.C) to the WIP level 

found by the resolution of the mathematical model. 

In this case, the WIP computed using mathematical model 

is equal to 2 and we have two branches in the second stage. 

Hence, the WIP of the schedule is equal to 2 + (2 – 1) = 3. 

We notice here that the optimal WIP computed with our 

approach is equal to 3 and that the lower bound of the WIP 

is equal to 2. In fact, this theoretical value cannot be 

reached. Indeed, we mentioned that we have two possible 

paths from the first task to the last one. If we consider that 

we will perform each path separately, which means that we 

consider that machine M3 will be available at any time. With 

this relaxation, we need 12 t.u. to perform each path apart, 

which means 2 WIP. However, “Fig.1” shows that M3 is 

shared by the two paths. Hence, there will be, necessarily, an 

extra time while processing one of these two paths, which 

means that there will be a need for at least one more WIP. 

Then, the level of WIP found by our approach (3) is thus 

optimal. 

V. CONCLUSION 

This paper deals with cyclic scheduling problems with 

assembly/disassembly tasks and Work-In-Process 

minimization. The main contribution here is to propose a 

mathematical model of the scheduling issue of such systems. 

First, we have presented systems with 

assembly/disassembly tasks and we have shown the interest 

of using cyclic scheduling approach to solve these problems. 

Secondly, we have clearly defined the concept of WIP in 

these systems. Afterwards, we have proposed a 

mathematical model which deals with the specificity of 

assembly systems, i.e. synchronization of multiple tasks. 

Then, we have used an illustrative example that has been 

previously used by Trouillet [20] to explain our model and 

our resolution method.  

This study shows that one can solve optimally problems 

with assembly/disassembly tasks. We have shown that we 

can find an optimal scheduling (cycle time) for 

assembly/disassembly systems like Fournier in [9]. 

However, our approach allows, in addition, to find the 

optimal WIP in the system. 

Future works will consider extended 

assembly/disassembly systems: with several tasks and 

imbricated stages. In addition, we can add extra constraints 

to the problems like working with a limited WIP. Moreover, 

we aim to substitute the CPLEX solver for an algorithm 

especially fitted to the mathematical model, in order to 

improve the resolution time. 
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