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Abstract

The wave finite element method is investigated for computiveglow- and mid-

frequency forced response of coupled elastic systemsvimgpbtraight structures
with junctions. The relevance of the method is discussechveheomponent mode
synthesis procedure is used for modeling the junctions. AnAwmise selection

criterion is proposed so as to reduce efficiently the numb@rretion modes re-

tained in the wave-based formulations. Component-wistugEtion bounds of
the wave-based displacement / force solutions are alswvedetd address slight
uncertainties for the junction eigenfrequencies. Nunatdomparisons with stan-
dard finite element solutions as well as Monte Carlo simaoitetihighlight the rel-

evance of the formulation.
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1. Introduction

This paper aims at investigating the wave finite element (YWREthod for
computing the low- and mid-frequency (LF and MF) forced mese of coupled
systems involving straight beam-like structures — namedyeguides — with elas-
tic junctions. Such systems are extensively encounterathiny engineering areas
such as those involved in the manufacturing of chassis fsamautomotive in-
dustry, among others. For example, the case of two waveguidenected with
a quarter of torus (junction) is depicted in Figure (1). Witkthe MF range, the
waveguide cross-sections, as well as the junctions, arecteg to undergo os-
cillating spatial dynamics and resonances. It turns outtthebehavior of these
coupled systems is expected to involve both global wavegredonances (i.e. in-
duced by the system left and right boundaries) and localsesestion / junction
resonances whose related modal densities can exhibitvarggions [1, 2].

The strategy for computing the LF and MF forced responseadtiel systems
by means of WFE matrix formulations has been recently pregpasref. [3] (other
approaches can be found in refs. [4, 5]). In this framewacgkluced bases of nu-
merical wave modes with one-dimensional propagation (lbttecessarily uni-
form cross-section shapésare used to span the kinematic fields of waveguides.
The key feature of these wave-based matrix formulatiorisaisthe use of “natural’
wave motions as representation bases enforces their gemesr, even if reduced
bases of relatively small dimensions are dealt with. In otherds, these matrix
formulations exhibit sizes that are expected to be muchlemampared to what
is encountered when using other types of reduced-order Isméelg. component

mode synthesis [7], Krylov subspace techniques [8] or propénogonal decom-

These wave shapes are provided using a discretization schgrthe cross-section that results

from a finite element (FE) modeling of a small substructuile [6



position [9]), yielding extra CPU time savings. The strgtégr addressing the
forced response of coupled systems has also been proposefl if8, 10]. In
this framework, a FE mesh tying procedure between waveguage junctions,
based on Lagrange Multipliers, is used for computing waflecton / transmis-
sion coefficients. The relevance of the technique has bagidiited in ref. [3]
for addressing the system depicted in Figure (1); the dralwbéthis analysis is
that the response of the junction has only been investigatestatic.

The present study aims at investigating the WFE methodduh in the fre-
guency domain for computing the forced response of couplstess involving
resonant junctions. The two following topics are partidyladdressed: (i) a com-
ponent mode synthesis (CMS) procedure so as to describestiigehcy behavior
of junctions with a small number of elastic modes; (ii) a pdsation analysis so
as to address slight uncertainties for the junction eigepfencies. The concepts
of CMS techniques and perturbation analysis are not new aue been widely
treated in the literature in different kinds of FE problerffawever, their applica-
tion to wave-based matrix formulations does not seem sitfaigvard. In fact, a
WFE-based CMS / Craig Bampton (CB) procedure that usesigunatodes for
computing wave reflection / transmission coefficients haessadly been proposed in
ref. [11]. A quite similar approach has also been proposeeifir{12] in the frame-
work of the spectral element method (SEM) for computing thesponses of sys-
tems involving two-node waveguides with FE junctions. Hegreregarding these
works, a question arises as to how selecting an optimal estifaanily of junction
modes for computing the system forced response with aecyracision. This
task addresses model order reduction procedures with atgisaving additional

CPU time when solving the WFE formulatioAsSeveral works have been carried

2This appears especially attractive in the framework of pataic studies, the junction modes



out on that issue concerning classical substructuringcgmbes, where norm-wise
estimators are invoked as selection criteria of componarte® [13, 14, 15]. The
feature of these approaches is that the mode selection gagrfeemed in a single
pre-processing step, without the need for computing theebresponses. In other
words, these approaches appear advantageous comparedisugh empiric strat-
egy that consists in selecting the modes in “ascending ‘jrder using arbitrary
numbers of modes as test cases in several time consumingneasissing steps.
The way such norm-wise criteria can be applied within the VifeEhework consti-
tutes an interesting challenge which had never been igagst so far. Otherwise,
perturbation analysis of the system forced response seemanttitute another
open challenge within the WFE framework that addressesrtaiety propagation
and interval analyzes [16].

The issues mentioned above are addressed in the presentfbuthe sake of
clarity, the case of two waveguides connected with a singietjon is considered
(cf. Figure 1). The paper is organized as follows. The WF&sgy for computing
the forced response of the coupled system is briefly recadl&ection 2 according
to previous works [3, 10, 17]; additional statements andfzr@re brought with
regard to the computation of the reflection and transmissiefficients. Section 3
addresses the CMS / CB procedure for describing the jundiymamics; a wave-
based norm-wise criterion is proposed for selecting thetjan modes that are of
primary interest for computing the forced response of thegotam system; the rele-
vance of this strategy is highlighted when compared to tlweational procedure
that consists in sorting the modes in ascending order. @edtiinally addresses
perturbation analysis for computing WFE solutions wheghdliuncertainties af-

fect the junction eigenfrequencies. Component-wise bsamned formulated in this

being considered as independent input data.



sense. The relevance of the strategy is discussed througpacisons with Monte

Carlo simulations (MCS).

Figure 1

2. WFE method

2.1. Basic concepts

The WFE method aims at providing numerically the LF and MF evpwop-
agation into periodic elastic structures [18]. In the préstudy, these structures
are supposed to be dissipative with a loss fagtand subjected to harmonic dis-
turbance under frequenay/27 (wherew is the pulsation). It is assumed that each
structure is described from a set of identical substrustuidnese are modeled by
means of the same FE model and connected along a princifsat aderred to as
the direction of propagation (see Figure 2). The length oheaibstructure, along
this direction, is denoted a& Also, it is assumed that both left and right cross-
sections of each substructure are discretized in the samd.@athey contain the

same numben of degrees of freedom (DOFs).
Figure 2

The WFE method requires the mass and stiffness matfieed) of a typical
substructure (see Figure 2) to be known; it uses a state rviesgicesentation [6]
for linking the kinematic variables — i.e. displacemetitand forces" — expressed
over the left or right cross-section of a substructéreo those expressed over a
similar cross-section (either left or right) for an adjatcembstructuré: — 1. In the
frequency domain, this relationship is expressed in terfha2a x 2n symplectic

matrix S as [3]:

ul® = sul-b, (1)



whereu is a2n x 1 state vector expressed as:

u=| 1. )
+F
According to the action-reaction law, the signiofn Eq. (2) needs to be switched
depending on which left or right cross-section is considételn Eq. (1),S for-
mally reflects a translation operator between state veaitis') andu(*), say
between abscissa,_; andz; = x,_1 + d. The wave mode computation follows

directly from Bloch’s theorem [19]:

Bloch’s theorem: a simple statement.Let S be d— periodic, it turns out that

u(®) can be expanded g5, Qg.k)ig- Wherngk) — e—iﬁdeg.’f_l) Vi

The terms{Qg.k)@j}j are usually called the eigenstatesSf According to
Bloch’'s theorem, these represent waves traveling alongttheture as{e‘iﬁjd}j.
Bloch’s theorem particularly states that eigenvalueS efnamely{;}; — can be
expressed age %4}, where{g;}; have the meaning of wavenumbers. Also,
the terms{®,}, are the eigenvectors & — also called the wave shapes — that
relate spatial distributions of displacements and intefimr@es over the structure
cross-section. The wave modes of the waveguide are definggasp;)};. Ac-
cording to the symplectic nature 8fand since dissipative structures are consid-
ered, they can be readily classified @8"°}j=1,.» = {1; : |p;| < 1}; and
{15 Yj=1,.n. = {1t : [ps] > 1};, where superscriptsnc andref respectively

denote the incident and reflected waves (see Figure 2s a result, the wave

3The conventions-F, andF i are usually stated for the left and right cross-sectiorspee-

tively.
“The terms ‘“incident” and “reflected” denote the waves trianelin the z—positive and

x—negative directions (respectively), i.e. the waves tiagelowards and outwards the right waveg-



shapeq ®,}; can be expressed in matrix form as:

i £
@ _ ‘I,anc (I,ge (3)
q)%nc @Eef
i.e. in terms of square x n matrices®;™, 3¢, ®z°* and®¢**, where the sub-

scriptsq / F refer to as displacement / force components.

For example, the displacement components for several weyges are plot-
ted in Figure 3 when considering the beam-like structure ckepicted in Figure
2. These shapes represent the usual LF wave motions (i.eurdlexorsional,
longitudinal and shearing) and additional modes. Therlatte not necessarily
assessed by means of analytical theories but play a cratéafor describing the
local structure dynamics in the MF domain. Apart from thedprton of these
MF modes, the feature of the WFE method is that it is not fraqudimited by
LF analytical assumptions (e.g. plane cross-sectionss iStexplained as it uses
a FE discretization scheme for addressing the cross-sedyinamics in the short

wavelength domain.
Figure 3

Bloch’s theorem also states that each state veatbr can be expanded as
> QE’“)@]- where{®,}; and{QEk)}j play the role of wave basis (with dimension
2n) and modal amplitudes, respectively. As a rule of thumbhsarcexpansion is
carried out with a reduced basis of wave sha@s} ;1.2 only, extracted from
the full basis{®,} -1, .2, and with the same numbet (m < n) of incident and

reflected modes. The strategy for selecting such a reductslibaliscussed in ref.

uide boundary.



[3]. In matrix form, it turns out that wave expansion writes a

q(k) ~ (i’)éncéinc(k)_’_&;geféref(k) 7 j:F(k) ~ 5%ncéinc(k)+$§eféref(k) vk,
4

while the spatial distributions of the modal amplitud@™<®) and Q=<t(*) are

governed as:

Qinc(k) _ ﬁk—léinc(l) ’ Qref(k) _ ﬁ—(k—l)éref(l) k. (5)

Here, 1 represents the: x m diagonal eigenvalue matrix of the incident modes,

defined agi = 1™ = (7=°%)~' [3].

2.2. Mesh tying problem and wave-based coupling conditions

The problem of predicting the behavior of coupled wavegsiigging the WFE
method is addressed. Such a problem is depicted in Figure tepmesents two
waveguided and2 connected with an elastic junction over two coupling irdees
'y andT',, where mesh compatibility is not necessarily verified. Thderlying
mesh tying problem is illustrated in Figure 4 and concerns swbstructures, for
waveguided and2, connected with a junction whose internal DOFs are consiter
to be free from excitation sources. The fact that mesh califigtis not assumed
means that the number of DOFs used for discretizing the s®stson of each
waveguidei — sayn; — is not necessarily equal to the number of DOFs used for

discretizing the coupling junction ovér.
Figure 4

The use of non-compatible meshes can be addressed by mebhagrahge
Multipliers combined with the Mortar method [20], where tbentinuity of dis-

placements acrods; andI'; is imposed in a weak sense. In this framework, the

8



interpolation functions of the Lagrange Multiplier fieldeeachosen so that they
correspond to the trace of the junction interpolation fioret overl’; andI's. This
yields a unigue way to express the displacements of theiggmétom those of
the connected substructures, and conversely the forcdis@ppthe substructures
from those applied to the junction [10, 17]. Using supepgarsubscript notations
c andi as references to the coupling junction and the wavegildespectively)

yields:

@I, = BBV qilr, , Filr, = —(BNTBO) T, i=1,2,
(6)

where{B((f)}i:l,g are square positive definite matrices defined in refs. [10, 17
while q;|r, andq®|r, (resp.F;|r, andF¢|r,) denote the displacements (resp. the
forces) of waveguideé and junction over coupling interfadg. In matrix form, Eq.

(6) results in

F
T ailr, _ 1y ’ @

az2(r, Falr,
whereT is a block diagonal real matrix whose components{ais”) 18"}, 5
and which results from the use of Lagrange multipliers inrttesh tying formula-
tion; D* is the condensed form of the junction dynamic stiffness matnamely

D = —w?M° + K°¢(1 + in®) > —ontol' = T'; UTy:
D* = Dgg — ]D)BI]Dl_Il]DIBa (8)

where subscript® / I refer to as interface / internal DOFs of the junction. Eg.

(7) expresses a relationship between the displacementfoeres applied to the

SMe, K¢ andn® are respectively the mass matrix, the stiffness matrix haddss factor of the

junction.



waveguides over the coupling interfaces. Introducing weygansions of the form
w; ~ ®;Q, (cf. Eq. (4)) — with a reduced bas{$®,);}; of size2m; (m; < n;)
—into Eq. (7) also yields a relationship between the waveeradplitudes to be
considered as [10, 17]:

Aref Qref _ _;&incéinc’ (9)

whereQi*® = [Qi*” Qi T|T andQref = [Qi*fT Q°T]” are vectors of size

(32, my) x 1; AT and A are(Y); n,) x (32, m;) matrices defined as
Aref _ TTD*T {Iv,gef + {i,;ef ’ Ainc _ TT]D)*T {IV,‘:iinc + {IV,%nc’ (10)

wherewire, wret Wit and WEe* are matrices of same siz¢ ", n;) x (32, mi),

defined as:

g [ SO 0 ] g [a@ o ]
0 LY(Be), | 0 L5(EF),

e | @0 | [@e o
0 @ |0 @

(11)
Here, L is a squarer; x n; matrix that plays the role of expressing the displace-
ments and forces of each waveguida the coordinate system of the coupling
junction (z¢, ¢, 2°) ©.

The computation of Eq. (9) is addressed in the following:

Proposition 1. The matrixA**f is full column rank provided thatan(T\flgef)J_null(Kc*),

whereK*<* is the condensed form of the junction stiffness matriX'on

5The components of basically reflect the direction cosines of the local frapg vi, z;), for

the waveguide, in the local framgz°, y°, 2°).

10



Proof. Let us proceed by contradiction and assume R is not full column
rank, i.e. its rank is different from the number of columnsiaihis 3 °, m;. This
particularly means that there exists a family of modal ampésui{(@;ef)i}j:17.,,7mi

with at least one non-zero component that satisfies
Aref Qref —0. (12)

Left multiplying Eq. (12) by(®zefQ*e%)! (where H denotes the conjugate trans-
pose), considering Eq. (10) and using imaginary parts \tleddfollowing energy
balance to be considered:

gIm (({Iv,geféref)HTTD*T({IV,geféref)) _ gIm ((@geféref)H(_@;eféref)) )

(13)

Physically, the left hand side term represents the powsipgited within the cou-
pling junction (since structural damping is accounted,fevhile the right hand
side term represents the opposite of the energy flow tha¢$ethe coupling junc-
tion. It is well established from the law of Thermodynamicgl &nergy-based
formulations (SEA-like methods among others [21, 22]) thate two quantities
are respectively positive and negative; as a result, theway for@ref to be the

solution of Eq. (13) is that each of these two quantities isaétp zero. Regarding
the left hand side term of Eq. (13), this particularly medra t

Im <({Ivlgef(§ref)HTTD*T({IV,;eeref)> —0. (14)

Considering the condensation scheme (8), it can be proviéwbwtidifficulty that

Eq. (14) is in fact equivalent to

Im ((qC)H]DqC) =0, (15)

11



wherel) andq® are respectively the dynamic stiffness matrix and the disgghent
vector of the junction, the latter being defined as:
) ) .
qc _ 11 “YIB (T‘I’gef)Qref- (16)
I
Considering that dynamic stiffness matfixis expressed asw?M¢° + K¢(1 +
in®), and considering that mass mathf°¢ and stiffness matridK¢ are real sym-

metric (i.e. they are hermitian), it turns out that Eq. (Ibgquivalent to:
(@©) " Im(D)q° = n°(q°)"K°q° = 0. (a7)

Also note thafK¢ is symmetric positive semi-definite [23], meaning that thé/o
way for q° to be different from zero is that it is spanned by the null spaick®,

i.e. K¢q® = 0. Using condensation procedure, this yields:
Kc*(T{Iv,gef)Qref =0, (18)

whereK** = Kg, —Kg; (K$;)~'K$;. Considering thatan(T ¥ ) Lnull(K)
(by assumption), it turns out necessarily thﬁ‘@gl"'f)émf = 0. Finally, consid-
ering that matrice& and WZ** are full column ranK yields Q¢ = 0, which is
contradictory to the statement previously made thEtE is not full column rank.

O

Remark 1. The conditioman(Tilgef)Lnull(KC*) is sufficient to prove the pre-
vious proposition. It could be violated at very low frequiescas rigid cross-section

wave shapes are expected to interact with the rigid bodyamstdf the junction;

"This can be proved as: (i) the rankBfrepresents the number of DOFs contained over the two
waveguide cross-sections; (ii) the wave mode matr@&e$f)1 and(EI;gef)z are full column rank (a

formal proof is brought in ref. [3], Proposition 1).

12



this remains possible provided the waveguides are posilion such a manner
that those rigid body motions are possible. However, asrdguency increases,
the fact that wave mode shapes are subjected to local defomagrevents such

an issue.

Proposition 1 means that the left pseudo-inversA & — namely(Aref)+
— can be computed ggAref)H Aref]~L(ATef)H [24]. It also means that there
exists a unigue solutiotiref of Eq. (9) that satisfies the followinigast squares

(LS) problem

min ;&reféref + Aincéinc ) (19)
Qref 2

This solution is thus given by [24]:
Qref _ _(Aref)-{—gincéinc. (20)

This provides a unique way to determine the amplitudes ofréfflected modes
from those of the incident modes. This validates the fortmgproposed in pre-

vious works [10, 17], i.e.:
Q™ = CQ'™ where C = —(A*f)TAlme, (21)

The matrixC physically expresses the reflection and transmission caafits of
the wave modes across the coupling junction. It can be gedditomposed so as

to emphasize the dependency among the wave modes betweeguicas:
ref (E (E ) inc
(31 _ ~11 ~12 (31 . (22)
gef Co1 Coo Q3"

Remark 2. The components of are influenced by the way the vectc{n(sfj)i}j

are scaled. Choosing different strategies for scalingetestors can yield largely

13



disparate results for the components@f Such an issue is not encountered in
analytical approaches involving cross-sections with ansvo DOFs, since wave
shapes are quite simple in this case. This constitutes &nbal for plotting the
reflection / transmission coefficients and interpretingdrtpRysical behavior in the
frequency domain, e.g. by means of comparisons with acalytesults. Scaling
each wave shap(@j)i so that the maximum value of their displacement compo-
nents is set to unity seems to constitute an adequate sululitis worth noting that
such an issue does not affect the computation of the forcgubnses as scaling

effects of{(ifrj)i}j disappear through the wave mode expansion procedure.

2.3. Forced response computation

The problem of predicting the frequency response of the leougystem de-
picted in Figure 1 is addressed. The system involves twagstravaveguidesl
and 2, composed respectively d¥; and N, substructures, connected through a
common junction over one of their boundaries. Consideltrgather boundaries,
waveguidesl and2 are submitted to prescribed forcEg and displacementg,
respectively. Such a problem involving Neumann and Digtthloundary condi-
tions has been addressed in [3]. In brief, the boundary tiondiare addressed by
means of wave mode expansions of the form (4). In partictiiarcoupling condi-
tions through the junction are addressed by means of Eq. £%pecific scaling
procedure for treating matrix structures with largely disgte terms — between the

components ofi ¥ andz’’ (cf. Eq. (5)) and between the componentsigfand

14



®; —is used. This yields the following well-conditioned preivl to be computed:

T (@)@ 0 o |
—Cp i I 0 —Cafi)>
—@2117]1\71 0 I —@22139[2

o 0 CHPECHOBTSEE S
(1 0 | 0o o][Q=M] [-@m)w ]

) 0o BT o o (?Ji*ef(l) ) 0 oy

0 o | o Qgef(l) 0
0 0 | o I[[Q™V] | (®=)q

where the first matrix (whose sized§) ", m;) x 2(>_, m;)) is expected to be well
conditioned [3], while the second matrix is diagonal and barnverted without
difficulty. Solving Eq. (23) provides the modal amplitudg® >, Q***")} and
{QiM Qze*(M} at the ends of waveguiddsand?2 where forces and displace-
ments are respectively prescribed. The spatial distobutf the modal amplitudes
along each waveguide follows from Eq. (5), while the spaliatribution of the

kinematic variables (i.e. displacements and internaldeydollows from Eq. (4).

Remark 3. Within the WFE framework, the strategy used for computiregftirced
response of coupled systems can be summarized througHltheifng steps (to be

considered at each frequency):

1. Computation of wave modes by means of an eigenproblent ze2n; x
2n; (to be done for each waveguidgf different);

2. Computation ofD* by means of Eq. (8), where the inverse of@ax ng
matrix D1 is required ¢$ denotes the number of internal DOFs of the junc-

tion);

15



3. Computation ofC by means of Eq. (21), where the pseudo-inverse of the
(32, mi) x (32, m;) matrix A™** is required;
4. Computation of Eq. (23), where the inverse o2&, m;) x 2(>_, m;)

matrix is required.

The sizes of the matrix subproblems involved in these stepsot depend on the
number of substructures considered for discretizing theegaides. This yields
the CPU times to be considerably lowered compared to whatgsired by the
standard FE method when computing the full numerical mddekeed, following
the classic FE framework yields the size of the full matriolgem to be rather
n® 4+ >, ni(N; + 1)] x [n® + >, ni(N; + 1)] whereN; is the number of sub-
structures used for each waveguidandn® is the number of junction DOFs. It
is worth noting that steps 1-3 are to be addressed once arall fovhatever the
lengths and excitation sources of the waveguides changs.entphasizes a rela-
tive flexibility of the WFE approach in what only the small matproblem (23) is

to be re-computed in case of such changes.

The forced response of the coupled system depicted in Figisreomputed in
the next subsection. The issue consists in investigatiagdalevance of the WFE
method further on in the frequency domain (compared to thelteexposed in ref.
[3]), i.e. when the junction undergoes resonances. Thectifte/ transmission
coefficients for wave modes and energy flows, across theigumetre also investi-

gated.

16



2.4. Numerical results

2.4.1. Forced response

The wave-based matrix formulation (23) is applied for cotimmuthe forced re-
sponse of the coupled system depicted in Figure 1, wherettaigist waveguides
with similar rectangular cross-sections are involved. \Wageguides are coupled
“transversally” by means of an elastic junction which rejargs a quarter of torus:
the main axes of the two waveguides — say axeandz- — are perpendicular so
that coupling among wave modes of different natures (saynfstance, flexural
and torsional) is likely to occur. Apart from the couplingnciitions, consider-
ing other boundaries, waveguid2snd1 are respectively clamped (i.ep = 0)
and subjected to a uniform transverse force field that refleettorF,. The two
waveguides, as well as the coupling junction, exhibit theesanaterial character-
istics: Young's modulus? = 3.2 x 10° Pa, densityp = 1180 kg.m™3, Poisson’s
ratior = 0.39, loss factorn = 0.01. The two waveguides have the same cross-
sectional area,, x h, = 0.2 mx0.15 m, while their respective lengths afg = 2
m andL, = 1.5 m. The quarter of torus has an internal radius of curvature of
R° = 0.05 m and a cross-section similar to those of the connected wiales)
The waveguided and?2 are discretized respectively by meanshof = 100 and
N> = 75 similar substructures, each of these being composddxai linear brick
elements and having a length= 0.02 m (see Figure 2). Linear brick elements are
also used for discretizing the junction. Each couplingriiaiee is interpolated with
5 x 4 elements. In this case, the mesh compatibility over cogpimerfaces is
not verified. Such a dissimilarity is invoked here to addtbgswave propagation
along waveguides apart from the internal dynamics of thelaog junction.

The total number of DOFs used for discretizing the couplumggciion is810,

while 2 x 60 DOFs are used for discretizing each substructure. It isileaer-

17



ified that the full FE model of the coupled system invol#a® + 60(N; + 1) +
60(N2 + 1) = 8775 DOFs. On the other hand, the WFE formulation (23) uses two
reduced wave mode bases of respective stzesand2ms (with mq, mo < 60)

for describing the waveguides; in the present case= msy = m. This yields the
size of the wave-based matrix problem tode x 4m with 4m < 240, which is
much less than the full FE model whose siz8185 x 8775.

The forced response of the coupled system is addressed lmvéreguency
bandB; = [10 Hz, 5000 Hz] which appears to be the same as the one involved in
previous work [3]. Nonetheless, the local dynamics are ebgueto be more com-
plex in the present case, especially in terms of junctioonmasces, as quite soft
materials are considered. Eq. (23) is computed for progidie WFE displace-
ment solution, by means of Eq. (4). For each wavegujdbe wave shape basis
{(i;j)i}j is supposed to include the classic LF modes as well as adalitidF
modes whose contribution can be significant. Some of thesgeshare depicted in
Figure 3 ak500H z. They refer to as the classic LF flexural, torsional, londjital
and shearing modes with a non-uniform spatial behakji@nd some MF higher
order modes with an oscillating spatial dynamics for captuthe cross-section
resonances. The solutions provided by WFE (cf. Eq. (23)h wiave bases of
different sizes are compared with the standard FE solutienwhen the full FE
model is computed. The results are shown in Figure 5, wherérédmsverse dis-
placement of waveguidé (at one corner of its excited cross-section) is plotted
for 500 discrete frequencies. The reference solution providedByighlights a
relative complexity of the frequency behavior ab@#0 Hz, i.e. when the local

dynamics of the junction are solicited. Below this threshdahe behavior of the

81t is worth recalling that the rigid body assumption for thress-section breaks down at high

frequencies.
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coupled system is mainly driven by the resonances of the guigtes, while the
response of the junction is mainly static. In this range \HeE method works fine
with a few modes (see Figure 5(a)). At higher frequencies,sibe of the wave
bases has to be enlarged to ensure the convergence of thedmsthall errors still
subsist withm = 40 incident / reflected modes, around and abd@0 Hz. The

convergence is finally achieved when= 50 incident / reflected modes are used.
Figure 5

2.4.2. Reflection / transmission coefficients of wave moadeeaergy flows

As mentioned previously, the computation of the forced oasp is directly
linked to that of the matrixC, whose components are the reflection and transmis-
sion coefficients of wave modes across the coupling junctis mentioned, the
way these coefficients are plotted strongly depends on hewdve mode shapes
are scaled. Choosing an appropriate strategy to scale treewades in a “contin-
uous way” along the frequency domain (e.g. by means of thadrman value of
the wave displacement components) can yield regular ctioves drawn. Several
components ofC are computed in this sense, when the size of the wave basis is
2m = 2 x 50 for each waveguid&. For example, the real part of the reflection
[/ transmission coefficients among the flexural mode (Figyeg)3the torsional
mode (Figure 3(b)) and a given MF mode (Figure 3(e)) are pteden Figure 6.
As expected (see above), the flexural and torsional waveoms#ppear correlated
through the coupling junction. Mode conversions also ot&iween the flexural /
torsional modes and the MF mode arowt®d0Hz, i.e. where the local dynamics
of the junction are involved. The fact that the shape of this fdode (see Figure

3(e)) appears as a type of high order torsional wave motiaitdgoartly explain

The relevance of such a size with = 50 has been emphasized above.

19



why this mode is coupled with the others.
Figure 6

The way the mode conversion operates is usually examined the point of
view of energy flows (i.e. powers). The derivation of powdteetion / transmis-
sion coefficients is detailed in Appendix A. These are shawrigures 7 and 8 for
the incident flexural and torsional modes (a) and (b) (cf.ureg3). Reflection /
transmission between these modes and shearing / MF modasd @) (cf. Figure
3) is particularly addressed. The flexural and torsional esappear strongly cou-
pled each other belod300Hz when shearing / MF modes are mainly evanescent.
This appears coherent in the sense that evanescent modes donuey energy
[25]. At higher frequencies, the shearing / MF wave modesimecpropagating.
Coupling phenomena appear quite complex as energy exchaviethese modes
occur. Particularly, retaining MF modes in the wave basesdmputing the WFE
displacement solutions becomes relevant. It is shown thaepreflection / trans-
mission coefficients exhibit a frequency behavior whichgsikating, i.e. driven

in part by the local dynamics of the junction.
Figure 7

Figure 8

3. CMS-based approach

3.1. Introduction

The relevance of the WFE formulation has been highlighted¢donputing the
forced response of coupled systems. The local dynamicseotaipling junc-

tion have been addressed using FE analysis and a condemsedffthe dynamic
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stiffness matrix. Another way to assess the behavior ofthetjon is to consider
component mode synthesis (CMS) procedures, i.e. usinguaeddamily of elas-
tic modes as a representation basis. The motivation is taceethe CPU times
further and to quantify the impact of these junction modet® dhe response of
the global system. Such an analysis is commonly performeideriramework of
uncertainty propagation to address small perturbatiortseascale of component
modes [16]. The fact that a few junction modes are dealt vgitthé key idea to
address such an analysis with reasonable computatiores tieng. when perform-
ing Monte Carlo simulations (MCS). This suggests to seleutrag all the junction
modes those which effectively contribute to the systemddmesponse. This issue
is investigated hereafter. Among all the variety of CMS pishares, the Craig-
Bampton (CB) method will be investigated specifically. ladgethe relevance of
such a procedure has been widely proved for treating coypiaslems involving

FE substructures with a small number of elastic modes [Z6, 16

3.2. CMS framework

The CB method is used for addressing the junction dynamiosthe sake of
clarity, the case of two waveguides connected with a singietjon is considered
(cf. Figure 1). The basics of the CB method are recalled below

LetI" = I';y U I's denotes the interface between the junction and the waveg-
uides. The junction displacements are expressed in terrageduced family of
fixed-interface elastic mode{$}~(e1)j}j:1,m7mc (m° being the number of retained
modes) combined with constraint modgXs: ), },=1.....g (ng being the number

of DOFs contained ovel) 0. This yields the displacements of internal and in-

0The constraint modes express the static response of thensystterms of interface displace-
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terface DOFs — denoted a§ andq§ = q°|r, respectively — to be approximated

as

)N(el Xst a

HoO

d , (24)

Q

(e}

C

dg 0 I dg

wherea is the vector of modal amplitudeiel is then§ x m* matrix of elastic

modes, whileXg; is then$ x ng matrix of constraint modes:
Xst = _(KEI)_IKEB' (25)

Here,K* refers to as the junction stiffness matrix. Invoking thegtion dynamic
stiffness matrixD (cf. subsection 2.2) with the basis of elastic and condtraodes

leads to [16]:

De1— De1— a 0
Nel el el—st ~ : (26)
DZl—st Dgt—st ds Fg

whereFg = F¢|r, while Dg;_e1, De1 st andDg; gt are expressed as:

De1—st = —w? XL (M$; Xgt + MS) (27)
Dst—st = —w? (X2 M§; Xor + Mg Xop + XL M + Mgg) + (1 + in°) (K§r Xs: + Kgg) -

Here,w; and~; represent the eigenpulsation and the modal mass of eadft elas
modej, respectively: the modal mass is readily writteryas- (iel)fMgl(fiel)j
and can be set to unity provided that eigenvecl{c{ﬂiel)j}j are normalized ap-
propriately [27]. Condensing the dynamic stiffness matrigpproximated as in

Eqg. (26) — onto the interfack finally results in

D*q§ ~ Fy, (28)

ments.
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whereD* is constructed as:
Sk =T S-1 7
]D) - ]Dst—st - Del_stDel_el]Del—st- (29)

Eqg. (28) is quite similar to what was used to derive the mesigtformulation
(7), except thaD* has been replaced Iﬁ}ik The latter is expressed in terms of the
modal parameters of the junction, e.g. eigenvec{()féel)j}j and eigenpulsations
{@;};. This leads the way in formulating the matfixand expressing the dynamic

response of the global system in terms of these modal pagasnet

3.3. Selection of contributing modes

Eg. (28) uses a reduced family of eigenvect{n(riel)j}jzl,m,mc for approx-
imating the junction dynamic stiffness matrix B ~ D*. This reduced family
is extracted from the full family of junction modes — namelXec1);}j=1,....ns
(n§ > m°) —whose sizex§ relates the number of junction internal DOFs. Rigor-
ously, invoking the full family{(Xc1);}; instead of{(f(el)j}j enablesD* to be
equal toD* 1. According to Egs. (29) and (27), this results as:

ng w4
D* = Dgy_gt — BT (Xe1);) (BT (Xe1);)" |, (30
- g (_w2 T B X)) (B (X)) ) . (30)
whereB = M¢; X, + Mg, while assumption is made thay = 1 Vj (see
previous subsection). In brief, the fact that one mgds neglected in Eq. (30)
yields the matrixD* to be perturbed aB* + A;D*, where

w4

AD* = BT (X.1):) (BT (Xe1)i)T i=1.....n% (31
J _w2 _’_wj2(1+177c)( ( 1)])( ( 1)]) j ) 7nI ( )

"This can be proved as the full family exhibits a dimensi§requal to the rank of the matri;.
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The key idea here is to quantify the impact of perturbafiigasD* + A;D* onto

the forced response of the coupled system. Within the WHBdveork, this sug-
gests to quantify the resulting perturbation onto the smtubf the LS problem
(19), i.e. for determining the amplitudes of reflected Wa@%f from a known
state of incident waveéim. A norm-wise procedure, by means of any consistent
norm ||.|| [24], appears suitable for addressing this task [13, 14, TBiis sug-
gests to compute the norm-wise relative emtdfjérefH/HQrefH induced while

computing Eqg. (21) witlh* 4 A;D*.

Proposition 2. Suppose thalf.|| is a consistent norm and th&Q=*f|| # 0 and
||C]| # 0; also suppose thah ;Q**c = 0. Then the relative erroff A ; Q*°f || /|| Q=°f ||
can be bounded as
14,Q _ [IA,C|
Q== — Cl|
providedQ*< is unitary and such thai CQ=<|| = ||C|].
Proof. The proof is straightforward from Eq. (21), consider|@*t|| = ||CQ=|| =
IC|| and A;Q*f = (A;C)Q'™ (sinceA; Q™ = 0): this yields||A;Q™*f|| =
1(A,©)Q™<|| < ||A,C||]|Q™|| = ||A;C]||, because the nori.|| is consistent

j=1,...,n, (32)

andQi® is unitary. O

Proposition 2 addresses a norm-wise boun{l&fQ~*f||/||Q**f|| by means
of [|A,;C]|/||C]|| only, without computingQ*™® by means of Eq. (23) (i.e. without
invoking the excitation sources). This yields the issueao§é CPU times to be
circumvented while considering different loading casesis worth noting that
assumptions|Qi=¢|| = 1 and||CQi=¢|| = ||C|| are not restrictive. They can be
verified a priori for any kind of excitation source and wave shape fields over th

cross-sections, provided the magnitudes of the latter@realy scaled.
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Remark 4. Formulating bounds fof{A;Q*f||/||Q**f|| addresses perturbation
theories for LS problems of the general fom)i{m||Ax — bl]2 (A, x andb being
understood aa™f, Q¥f and—AircQirc, respectively). This approach has been
investigated by several authors, whdnand b are perturbed a&\ + AA and

b + Ab, assumingrank(A) = rank(A + AA) [28, 29, 30]: for example, a first
order expression of the relative eridAx||,/||x||2 is brought in ref. [24] in case

whereA andAA are full column rank:

I[b||2
[[A[]2][x]|2

|b — Ax||o
[[A[]2][x]|2

< enn(A) <1 + + Ko (A) > + O(€%), (33)

where assumption is made tHahA||5/||All2 < e and||Ab||2/||bl]2 < ¢, and
wherera(A) = [|Al]2||AT||2 is the condition number cA.

Another possibility to carry out this analysis could conhgisformulating Eq. (9)
by means of a full square system of the fokx = b, using a projection scheme
for reducing the dimension of the original over-dimensipeoblem. In that case,
the relative error appears simply bounded as [24]:

[|Ax]| - 2er(A)
Ix|] = 1—en(A)’

(34)

whatever the consistent norfh|| used, wheres(A) = ||A||||A~Y|| while it is
assumed thatx(A) < 1.

Expressing|A; Q|| /||Q"*f|| by means of Eq. (33) or Eq. (34) is attractive as
quite straightforward indicators(A ) ande are invoked. Unfortunately, these for-
mulations remain confined within the framework of restuietassumptions — i.e.

e << 1for Eq. (33) andex(A) < 1 for Eq. (34) — that does not seem to be
necessarily verified in the present study as junction resmsare considered. In
this casesx(A) is expected to reach large values while the fact of pertgriiin

asD* + A;D* can yield non-negligible values ef Such an issue enforces the
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motivation of using Eq. (32) throughout this paper.

The bound]||A;C||/||C|| in Eq. (32) can be addressed as follows: from Eq.
(21), C = —(Aref)* Ainc whereAr*f and Ai™ are given by Eq. (10). Without
loss of generality}|.|| can be chosen e.g. as the Frobenius nonf [24]. Hence,
the bound write$|A;C||»/||C||» and is readily formulated as:
||Aj(~:||F B ||(Aref +Ajgref)+(ginc +Aj111nc) _ (;&ref)-l-:&incHF

ICllr [[(Aret)+ Adae]|

where

AjATE = TTAD T O | AjAR = TTADTE®R  j=1,... 0
(36)

The error|A;C||/||C|| » has to be computed for every discrete frequengyr
(k = 1,...,Ny) considered within the frequency bas}. One straightforward
way to address this issue consists in asses$ihgC||r/||C||r as its maximum
value within3;. This yields:
12 Qe gmax{”Ai(EWk”F
Q| » ICu, I

where the subscripts, andwy, refer to as the pulsations used for calculating the

} Y wp j=1,...,n%, (37)
k=1,...,N;

vector / matrix terms. Eq. (37) addresses the impact of négfe one junction
mode;j when computing the forced response of the coupled systamthérefore
proposed to retain the junction modes for which the boundgn @7) is greater
than a specified threshold, and to neglect the others. Hergtfe selection cri-
terion (37) is compared to the usual strategy that consisteiting the modes in

ascending order. Its relevance is also discussed.
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3.4. Numerical results

The wave-based matrix formulation (23) is applied for cotmguthe forced
response of the coupled system depicted in Figure 1 and vehasacteristics have
been detailed in subsection 2.4. In the CMS framework, tinelensed forn* of
the junction dynamic stiffness matrix is constructed by nseaf a reduced family
of elastic modes (cf. Eq. (29)). The strategy used for selgdhese junction
modes constitutes the key point of the following study; thsué is to test the
convergence of the wave-based matrix formulation (23) &ptaring the dynamics
of the coupled system over the frequency band of interest3y. = [10 Hz, 5000
Hz| in the present case (cf. subsection 2.4).

One first attempt to select these modes is to use the conmahti@scending
order” strategy, consisting in retaining the modes whogerdgrequencies are be-
low a certain frequency limit while rejecting the others.efirocedure for defining
this limit accurately is not a simple task: this indeed dejseon the degree of
complexity, a priori unknown, required to capture the junction spatial dynamics
and coupling conditions. This explains why this procedsreather empirical, i.e.
using an arbitrary number of junction modes (sorted in adiognorder) as a test
case and analyzing the convergence of the formulation irseocessing step. In
this framework, it is thus proposed to constrilict by means of arbitrary numbers
of junction modes, e.gn® = 0 2, m¢ = 10, m¢ = 20 andm® = 30. The first30
junction eigenfrequencies are presented in Figure 9, wtherenaximum value of

By —i.e.5000 Hz —is depicted by a violet line.

Figure 9

2In that case, the response of the junction is rather staficigslriven by the constraint modes
{(Xt);}5 only.
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Using these different numbers® of junction modes for constructin@* and
computing the solutions of the wave-based matrix formorefP3) yields the forced
response of the coupled system. To this end, the behavi@cbfwaveguide is as-
sessed by means of = 50 wave modes (indeed, the relevance of such a wave
mode expansion has been established in subsection 2.4yesliés are shown in
Figure 10.

Expressing the static response of the junction — i.e. usifig= 0 elastic
modes — clearly yields a lack of accuracy of the WFE formalaabove2500 Hz,
i.e. when the junction exhibits local dynamics. Enlargihg humber of junction
modes used in Eg. (23) solves this issue, as expected. Wiies 20, slight
differences between WFE and reference FE solutions stiigieabovel000 Hz,
even though the junction resonances are completely covereds; by the re-
duced basis{(f(el)j}j (the highest retained eigenfrequency is actually u@Dti)
Hz). The issue is that the family of junction modes is not Bclough for capturing
the wave reflection / transmission phenomena across thégon@ccounting for
ten additional higher order modes (with additional eigegirencies betweeit)00

Hz and8000 Hz) finally yields the convergence of the wave-based fortiara
Figure 10

To summarize, the ascending order strategy consists iotsglean arbitrary
number of junction modes, then computing the WFE solutiomisans of Eq.
(23) and analyzing the convergence of the wave-based nfatmixulation in a
post-processing step. When the convergence is not reaitieedymber of modes
m° is increased and the convergence tested again. Apart fismetbetitive post-
processing procedure, the major drawback of this strat®egyat it could yield an
excessive number of elastic mod{a(&el)j}j to be accounted for, part of them

being of weak influence (whatever their eigenfrequencies).
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Otherwise, using Eq. (37) leads to the selection of junctimdes that effec-
tively contribute to the system forced response. Eq. (3&)dgi a bound of the
relative error||A;Q*f||/||Q*ef|| that affects the WFE method when neglecting
one modej. A small bound means that a moglean be rejected away when com-
puting the solution of Eq. (23), with small impact. The bosiredsociated with the

first 30 junction modes are depicted in Figure 11.
Figure 11

The magnitudes of these bounds do not appear necessakiyl lio the ranks
of the modes, contrary to what is implicitly considered wiitle ascending order
strategy. Using Eq. (37) constitutes an efficient meansletgag the contribut-
ing modes, considering bounds that exceed for instanceeahbid of10%. In
that case, this yield$9 junction modes — i.e. moddsto 17, 19 and22 — to be
selected among the forma0. The WFE solution obtained using thek®elastic
modes is plotted in Figure 12; it appears coherent with tfereace FE solution
and comparable with the solutions derived from the ascendider strategy with
30 modes (see Figure 10). Precisely, the convergence of battegies can be
underlined when analyzing the relative error of the forcesponse (at the mea-
surement point) over the whole frequency bﬁ)dm. For this task, it is proposed
to deal with the quadratic acceleratiol,., = (w?||qmes||2)? instead of|qmes| |2
(ames being the displacement vector at the measurement poingiréaghten” the
influence of junction modes with high eigenfrequencie2-form is introduced

to address the relative error over the frequency andhe latter being expressed

BSuch an approach has been discussed in ref. [31] with regahe transfer functions of linear

systems.
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in terms of dicrete frequencie{&zk/27r}k:17,,,7Nf. This norm is defined as:

Nf 2

T2 eslls, = [ D (TR, | - (38)
k=1

where the subscript;, refers to as the pulsation used for calculating the quadrati
acceleration. The relative error thus writes as:

SWFE _ H(anes)WFE - (Pgnes)FEHBf
(T Fes) ¥, ’

where(I'2,_ )"¥E and (T2, ., )FE represent the WFE solution and the reference solu-

mes mes

(39)

tion provided by FE, respectively. The relative errors fottbstrategies depicted
above are plotted in Figure 13 as functions of the number étjon modes re-
tained in the WFE formulation. As expected, the strateggtas Eq. (37) yields
the convergence to be reached efficiently with a few junatimues. The fact that
junction modes are ranked in accordance to their contahutinables the error to
decrease uniformly compared to the conventional asceruatitgy strategy. It ap-
pears that retaining9 modes when using criterion (37) provides the same relative
error as the conventional strategy wthmodes. Of course this last result (i22
modes for the conventional strategy) has been establishee the system forced
response has been computed several times (i.e. consiadesirebases of different
dimensions as test cases for computing the error). Theteslestrategy based on
criterion (37) circumvents such an issue by investigathg dontribution of each
mode in a pre-processing step. To summarize, the featurg.o{&) is that the
number of junction modes retained in the wave-based forionl@aan be reduced
compared to the conventional procedure; the norm-wiséegyalso circumvents
the way to proceed empirically for testing the convergernfcth® formulation in

several time consuming post-processing steps.

Figure 12
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4. Perturbation analysis

4.1. Introduction

A CMS-based WFE approach has been investigated in the piesidbsection
for computing the forced response of coupled systems imglglastic junctions.
Emphasis was on a model order reduction strategy using adeviber of junction
modes. This yields the CPU time to be reduced further whidttiactive when
analyzing for instance slight uncertainties of junctiondes by means of Monte
Carlo simulations (MCS). A perturbation analysis that addes those uncertain-
ties is proposed in this section. Again, the case of two waidag connected with
one junction is investigated. In particular, forward comet-wise bounds of the
WFE solutionu; (i.e. the displacements and internal forces within eachegav
uide¢) are derived. The underlying assumptions of this pertishanalysis are as

follows:

e The eigenpulsatiow; of each junction modg is perturbed a@? + 6wj,

where:
6@; /a9 <0, <<1  j=1,....,m". (40)

Here,&]o. refers to as the baseline eigenpulsation, whjleepresents a deter-

ministic bound of|6&; /&Y

e The constraint modes(fist)j}j and elastic mode$(f§el)j}j are unper-

turbed#:

e For each waveguidg the wave mode$((;);, (513]-)2-)}]- are unperturbed.

¥Such an assumption is commonly used in the literature [16].
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The issue to provide forward component-wise bounds of thieifeed vectom,; =
u’ + éuy, using first order Taylor series expansidhsis the key idea of the present

study. Comparisons with the results of MCS are investigatesibsection 4.3.

4.2. Bounds ofi;

For each waveguidg the state vecton; is expressed as in Eq. (2) — say, in
terms of displacement vecto; and force vectoiF; — for a cross-section located
at longitudinal positiork;d; (k; = 1,...,N; + 1; d; being the length of a typical
substructure). According to the wave mode expansipre ®;Q; and sinced;
is considered as unperturbed, = u? + du; can be assessed 35((5? + 5(32-),

i.e. by means 05@ only. The related component-wise bounds are investigated
hereafter:

According to Eq. (5), the wave mode amplitudésat positionk;d; are linked
to those@f.l) expressed at one of the waveguide boundaries (e.g. whatatmits

are imposed). This writes as:

Q=Q" =MmQ"Y k=1, N+1  i=12 (41)
where
. gt 0
M; = ! ki=1,...,N;+1, 1=1,2. (42)
0 "’_(ki_l)
1

This yields a simple way to expreééi by means 05(52(1), asM; remains unper-
turbed (cf. subsection 4.1). The perturbed veé@f.l) can be assessed by means

of Eqg. (23); in abridged notations, this writes:

A:DQ=F, (43)

5In this framework, the superscriptdenotes the solutions computed whgn= &7? vj.
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where @ = [Q{""QS""]T; A= represents the first matrix in Eq. (23) which is
square and linked to the component@oithe latter being constructed by means of
the junction modes (cf. previous subsection); the remgiténmsD andF do not
depend on the junction mode®. represents the second matrix in Eq. (23) which
is diagonal, whileF reflects the excitation sources. According to this, takimtg i
account that is formulated a® = 25—%15% (cf. Eq. (43)) yields the derivative
0Q/0w; to be written as

09 ~ . ~ 8A .
— =D — A= =1,....,m° 44
where the term between the brackets denotes the deriveftbd%‘h according to

Eq. (23), the derivativé) Ac/0w; in Eq. (44) readily writes by means of the
derivativea(ﬁ/afuj (cf. Appendix B) as:

0 0|0 0
a@HN aff:lz~
&TJC: j=1,...,m". (45)
J 8@21 ~N; 8<C22 ~N.
0|0 2
Ow;j Erikat Ow;j o, 12
0 0|0 0

As a result, using first order Taylor series expansion yitidsvariationd Q as:
~ K00 -
0Q = z_: (8—&]> 0wj, (46)

where(9Q/dw;)° follows from Eqs. (44) and (45) wheh; = &Y. The derivation
of 5@1(.1) results from Eq. (46), while the formulation of componens&bounds of

ou; follows from the wave mode expansion procedure summaritzibe deginning

Q!
( 0w )

of this subsection:

|ou;| < i

@0, i=1,2 (47)
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where|.| denotes the operation of replacing each element of a matiits lnagni-
tude or its absolute value (i.e. should the real or imagipary ofu; be required).

Thus, the bounds ai; can be expressed as:

e Case when the magnitude ©f is required:

|u0|—Z ®, M, (g?l> ~09 < | < |u0|—|—z &M, <392> N?Hj i=1,2;

Jj=1 j=1
(48)

e Case when the real or imaginary partwgfis required:

w -y M. (89) @0; < u; < u +Z oM, (?99) @y0;  i=1,2,
J

7j=1 7j=1
(49)

whereu; and|.| have to be understood 8s(u;) and|Re(.)|, or Im(u;) and

[In(.)].

4.3. Numerical results

Component-wise bounds of the state vectpus};—; » are investigated over
the frequency band; = [10 Hz, 5000 Hz]. The test case depicted in Figure 1
is considered. The wave-based numerical formulation (@addressed when the
coupling junction model uses° = 19 elastic modes with uncertain eigenpulsa-
tions {Uu? + 6w;};. These junction modes are selected by means of the criterion
(37) discussed in subsection 3.4. It is assumed |m7éjt/&]0-| < 8; = 5% Vj,
where{&?}j denote the baseline eigenpulsations (cf. Figure 9). Thepooent-
wise bounds of the state vectofs;},—; » are addressed by means of Eq. (48).

The state vectors provide the displacements and intermadgavithin waveguides
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1 and2 (see Section 2). Particularly, the displacement of wawgliis investi-
gated at the measurement point, where forces are imposedbadeline solution
represents the forced response computed using the CM8-B4sSE formulation
with m = 50 wave modes aneh = 19 junction modes (cf. above). The bounds
of the transverse displacement are depicted in Figure 14a lagarithmic scale
is used, the higher bound is of primary importance sincediet bound may be
badly interpreted as involving close to zero or negativeesi®. As expected, the
bounds appear of primary importance when the junction éshitical dynamics,
i.e. above2500 Hz. They exhibit large values around the local extrema obsee-
line solution (cf. Figure 14(a)), when the junction resaresare reached. Monte
Carlo simulations (MCS) are carried out to test the relegapicthe bounds (cf.
Figure 14(b)). To this endl00 sets of random value{azg? + 0w;}; are used as
trials, eachdw; following a uniform distribution over the rangjé@j/&?\ < 0;.
For each trial, the components ff; },—; » are computed by means of Eq. (23). It
is worth emphasizing that solving the small WFE matrix sys{@3) leads to sig-
nificant CPU time savings compared to the usual FE approaehili case where
the full FE model of waveguides could be considered), sagreggeconds against
several minutes for each trial. As expected, the bounddged\by Eq. (48) appear
valid when compared to the results of MCS, in the sense thaeyige reasonable

confidence areas.

Figure 14

180ne artefact to assess the logarithm of this bound is to remegative values and to consider

positive close-to zero terms instead.
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5. Concluding remarks

The low- and mid-frequency forced response of coupled systivolving
straight structures connected with elastic junctions leenkaddressed using the
wave finite element (WFE) method. In this framework, the kiagic fields of
each straight structure are expanded in terms of numeriaa¢ wnodes having a
one-dimensional propagation, while the junction dynaraiescaptured using clas-
sic FE procedures. One feature of this study is that it usesgadnge Multipliers
formalism so as to relax mesh compatibility assumption @arpling junction
interfaces. The resulting mesh tying formulation providesefficient means for
computing the magnitudes of reflected waves from those tieahaident towards
any given junction. The relevance of this formalism has be&isnussed from a
computational point of view; it has been highlighted for garting the forced re-
sponse of two beam-like structures coupled transverdaibugh a quarter of torus
that undergoes local resonances. Also, a CMS-based WFRifation that uses
junction elastic modes has been investigated. A strategy&an proposed for re-
ducing efficiently the number of modes retained in the foatiah. In this frame-
work, a norm-wise criterion has been derived for selectiape junction modes
that are of primary importance for computing the systemddnesponse. Finally,
a perturbation analysis has been proposed for assessiagdtieen forced response
when slight uncertainties affect the junction eigenfremues. Component-wise
perturbation bounds have been formulated for the WFE swisti The relevance
of the model has been emphasized through comparisons witheM@arlo simula-

tions.
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Appendix A. Derivation of power reflection / transmission cefficients

Let Pi2¢ and Pref be the energy flows traveling in waveguitléowards and
outwards the junction, respectively. These can be defin@{¥s= (w/2)Im ((qi**) (Fi*°);)
andPref = —(w/2)Im ((gf*f)¥ (Ffef);), that is [32]:

iw

4

iw

Piinc — I

(wire)1guime Pt — gt i (A

()

whereu;™® = 3°.(Q3%);(®;7); anduf*t = 37, (Q5);(®F*);, while J; is

given as

0 I,
~I, 0

It is commonly stated that energy flows resulting from wawverierences can be

neglected [25]. As a result, this yields

pie=N(BEe) PR3P v (A-3)
J J
where
inc iw inc\H inc incy |2 .
(P7¢)i = Z(q)j )it Ji( @37l (Q5")il Vj, (A-4)
ref iw ref\H ref refy |2 .
(P] )i = _I(q)j )i Jz’(‘I’j )i’(Qj )il vj. (A-5)

Also note that(Q%**); = 3=, 3. (Cir);s(Q3™)r, where(C;,);s refers to as the
componenys of block matrixC;,. (cf. Eq. (22)). Neglecting wave interferences, it

turns out that each energy flqujref),- is expressed as:
re iw re re inc .
(PFe); = (¥ FT(®T) Y Y 1(Can)jsP1@QF), P V). (A-6)

Let us denote agP;**);* the term—(iw/4)(<1>]r.ef)fIJi(<I>jr-ef)i]((Cir)js\2](Qinc)r 2.

Thus the reflection and transmission coefficients for amlerti energy flow P2¢),.
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traveling along any waveguidereadily write as (respectively):

rs (PP (@) T (255, .
7'7'j = (PjinC)T = — ((I’]inc)HJr(q’inc)r |((CTT)js|2 r=1i, (A-?)
(Pjref);‘s ((I);‘ef)ff']i(q);ef)i
7“8 = - = — N - (CZ’I‘ 's 2 .‘ A_8
T; (Pslnc)r ((I);.nc)ﬁ']r(q);smc)r |( )j | r 75 1 ( )

Appendix B. Derivation of 8C/8&;

The matrixC is formulated as—(A**f)*Air (cf. Eq. (21)) where, in the
CMS framework,A™f and Ai™® are expressed as
Aref _ TT]]Aj)*T {Iv,;ef + {Iv,;ef ’ Ainc _ TTfD*T {Iv,(ilnc + {IV,}i?nc. (B-1)

In that caseD* refers to as the junction dynamic stiffness matrix appratad by
means of Eq. (29) when using® relevant junction modes (i.e. selected by means

of criterion (37)). The derivative of with respect tao; readily writes as

aC < QAT <
% — _(Aref)—i- [(_ = (Aref)+ + (Aref)+H (B-Z)
J J
% a;&ref H (I - Aref (Aref)-‘r) Kil’lc + 8Ainc o 1 .
0, 0, STt

where the matrix ternill — A7 (A¥ef)™) is linked to the derivative of the pseudo-
inverse(Aref)* [28] 17. In Eq. (B-2), the derivative8A**f /9; anddA ™ /9,

are formulated by means of Eq. (B-1) as

aAref e 8]]5)*
8, e,

8A~inc _ TT a]?*
&uj Z?wj

Jyref
Tof

TeE j=1,..,m"

Notice that the derivative of the classic invefge™*?)~! does not invoked such a term.
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(B-3)

Here,dD* /0w, is readily expressed by means of Egs. (29) and (27) as:

oD*  ~ D~ .~ .
aaj = DZl—stDell—el 5&]- - Dell_elDel_St j=1,... ,mc7 (B-4)
where
ODg1_ N .
aeé,el =20;(1 + in)diag{djktk=1,.me  j=1,...,m°  (B-5)
J

To derive Eq. (B-5), the modal mass has been assessed ig@el; = 1V (see

subsection 3.2).
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Figure 1: Neumann-to-Dirichlet problem involving two wauedes with an elastic coupling junc-

tion.
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finiteraent models of two connected substruc-

Figure 2: lllustration of incident / reflected waves;

turesk — 1 andk.
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Figure 3: Spatial representation of several “cross-setti@ve shapes a&t500H z (the direction of
propagation is indicated by an arrow): (a) flexural modetd@ogional mode; (c) longitudinal mode;

(d) shearing mode; (e-i) MF modes.
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Figure 4: Mesh tying problem considered in the WFE framewqukction with two connected

substructures.
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