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Abstract

The wave finite element method is investigated for computingthe low- and mid-

frequency forced response of coupled elastic systems involving straight structures

with junctions. The relevance of the method is discussed when a component mode

synthesis procedure is used for modeling the junctions. A norm-wise selection

criterion is proposed so as to reduce efficiently the number of junction modes re-

tained in the wave-based formulations. Component-wise perturbation bounds of

the wave-based displacement / force solutions are also derived to address slight

uncertainties for the junction eigenfrequencies. Numerical comparisons with stan-

dard finite element solutions as well as Monte Carlo simulations highlight the rel-

evance of the formulation.
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1. Introduction

This paper aims at investigating the wave finite element (WFE) method for

computing the low- and mid-frequency (LF and MF) forced response of coupled

systems involving straight beam-like structures – namely waveguides – with elas-

tic junctions. Such systems are extensively encountered inmany engineering areas

such as those involved in the manufacturing of chassis frames in automotive in-

dustry, among others. For example, the case of two waveguides connected with

a quarter of torus (junction) is depicted in Figure (1). Within the MF range, the

waveguide cross-sections, as well as the junctions, are expected to undergo os-

cillating spatial dynamics and resonances. It turns out that the behavior of these

coupled systems is expected to involve both global waveguide resonances (i.e. in-

duced by the system left and right boundaries) and local cross-section / junction

resonances whose related modal densities can exhibit largevariations [1, 2].

The strategy for computing the LF and MF forced response of elastic systems

by means of WFE matrix formulations has been recently proposed in ref. [3] (other

approaches can be found in refs. [4, 5]). In this framework, reduced bases of nu-

merical wave modes with one-dimensional propagation (but not necessarily uni-

form cross-section shapes1) are used to span the kinematic fields of waveguides.

The key feature of these wave-based matrix formulations is that the use of “natural”

wave motions as representation bases enforces their convergence, even if reduced

bases of relatively small dimensions are dealt with. In other words, these matrix

formulations exhibit sizes that are expected to be much smaller compared to what

is encountered when using other types of reduced-order models (e.g. component

mode synthesis [7], Krylov subspace techniques [8] or proper orthogonal decom-

1These wave shapes are provided using a discretization scheme for the cross-section that results

from a finite element (FE) modeling of a small substructure [6].
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position [9]), yielding extra CPU time savings. The strategy for addressing the

forced response of coupled systems has also been proposed inref. [3, 10]. In

this framework, a FE mesh tying procedure between waveguides and junctions,

based on Lagrange Multipliers, is used for computing wave reflection / transmis-

sion coefficients. The relevance of the technique has been highlighted in ref. [3]

for addressing the system depicted in Figure (1); the drawback of this analysis is

that the response of the junction has only been investigatedas static.

The present study aims at investigating the WFE method further on in the fre-

quency domain for computing the forced response of coupled systems involving

resonant junctions. The two following topics are particularly addressed: (i) a com-

ponent mode synthesis (CMS) procedure so as to describe the frequency behavior

of junctions with a small number of elastic modes; (ii) a perturbation analysis so

as to address slight uncertainties for the junction eigenfrequencies. The concepts

of CMS techniques and perturbation analysis are not new and have been widely

treated in the literature in different kinds of FE problems.However, their applica-

tion to wave-based matrix formulations does not seem straightforward. In fact, a

WFE-based CMS / Craig Bampton (CB) procedure that uses junction modes for

computing wave reflection / transmission coefficients has already been proposed in

ref. [11]. A quite similar approach has also been proposed inref. [12] in the frame-

work of the spectral element method (SEM) for computing timeresponses of sys-

tems involving two-node waveguides with FE junctions. However, regarding these

works, a question arises as to how selecting an optimal reduced family of junction

modes for computing the system forced response with accurate precision. This

task addresses model order reduction procedures with a viewto saving additional

CPU time when solving the WFE formulations2. Several works have been carried

2This appears especially attractive in the framework of parametric studies, the junction modes
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out on that issue concerning classical substructuring approaches, where norm-wise

estimators are invoked as selection criteria of component modes [13, 14, 15]. The

feature of these approaches is that the mode selection can beperformed in a single

pre-processing step, without the need for computing the forced responses. In other

words, these approaches appear advantageous compared to the usual empiric strat-

egy that consists in selecting the modes in “ascending order”, i.e. using arbitrary

numbers of modes as test cases in several time consuming post-processing steps.

The way such norm-wise criteria can be applied within the WFEframework consti-

tutes an interesting challenge which had never been investigated so far. Otherwise,

perturbation analysis of the system forced response seems to constitute another

open challenge within the WFE framework that addresses uncertainty propagation

and interval analyzes [16].

The issues mentioned above are addressed in the present study. For the sake of

clarity, the case of two waveguides connected with a single junction is considered

(cf. Figure 1). The paper is organized as follows. The WFE strategy for computing

the forced response of the coupled system is briefly recalledin Section 2 according

to previous works [3, 10, 17]; additional statements and proofs are brought with

regard to the computation of the reflection and transmissioncoefficients. Section 3

addresses the CMS / CB procedure for describing the junctiondynamics; a wave-

based norm-wise criterion is proposed for selecting the junction modes that are of

primary interest for computing the forced response of the coupled system; the rele-

vance of this strategy is highlighted when compared to the conventional procedure

that consists in sorting the modes in ascending order. Section 4 finally addresses

perturbation analysis for computing WFE solutions when slight uncertainties af-

fect the junction eigenfrequencies. Component-wise bounds are formulated in this

being considered as independent input data.
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sense. The relevance of the strategy is discussed through comparisons with Monte

Carlo simulations (MCS).

Figure 1

2. WFE method

2.1. Basic concepts

The WFE method aims at providing numerically the LF and MF wave prop-

agation into periodic elastic structures [18]. In the present study, these structures

are supposed to be dissipative with a loss factorη and subjected to harmonic dis-

turbance under frequencyω/2π (whereω is the pulsation). It is assumed that each

structure is described from a set of identical substructures. These are modeled by

means of the same FE model and connected along a principal axis x referred to as

the direction of propagation (see Figure 2). The length of each substructure, along

this direction, is denoted asd. Also, it is assumed that both left and right cross-

sections of each substructure are discretized in the same way, i.e. they contain the

same numbern of degrees of freedom (DOFs).

Figure 2

The WFE method requires the mass and stiffness matrices(M,K) of a typical

substructure (see Figure 2) to be known; it uses a state vector representation [6]

for linking the kinematic variables – i.e. displacementsq and forcesF – expressed

over the left or right cross-section of a substructurek to those expressed over a

similar cross-section (either left or right) for an adjacent substructurek − 1. In the

frequency domain, this relationship is expressed in terms of a 2n × 2n symplectic

matrixS as [3]:

u(k) = Su(k−1), (1)
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whereu is a2n × 1 state vector expressed as:

u =


 q

±F


 . (2)

According to the action-reaction law, the sign ofF in Eq. (2) needs to be switched

depending on which left or right cross-section is considered 3. In Eq. (1),S for-

mally reflects a translation operator between state vectorsu(k−1) and u(k), say

between abscissaxk−1 andxk = xk−1 + d. The wave mode computation follows

directly from Bloch’s theorem [19]:

Bloch’s theorem: a simple statement.Let S be d− periodic, it turns out that

u(k) can be expanded as
∑

j Q
(k)
j Φj whereQ

(k)
j = e−iβjdQ

(k−1)
j ∀j.

The terms{Q(k)
j Φj}j are usually called the eigenstates ofS. According to

Bloch’s theorem, these represent waves traveling along thestructure as{e−iβjd}j .

Bloch’s theorem particularly states that eigenvalues ofS – namely{µj}j – can be

expressed as{e−iβj d}j where{βj }j have the meaning of wavenumbers. Also,

the terms{Φj }j are the eigenvectors ofS – also called the wave shapes – that

relate spatial distributions of displacements and internal forces over the structure

cross-section. The wave modes of the waveguide are defined as{(µj ,Φj )}j . Ac-

cording to the symplectic nature ofS and since dissipative structures are consid-

ered, they can be readily classified as{µinc
j }j=1,...,n = {µj : |µj | < 1}j and

{µref
j }j=1,...,n = {µj : |µj | > 1}j , where superscriptsinc andref respectively

denote the incident and reflected waves (see Figure 2)4. As a result, the wave

3The conventions−FL andFR are usually stated for the left and right cross-sections, respec-

tively.
4The terms “incident” and “reflected” denote the waves traveling in the x−positive and

x−negative directions (respectively), i.e. the waves traveling towards and outwards the right waveg-
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shapes{Φj }j can be expressed in matrix form as:

Φ =


 Φinc

q Φref
q

Φinc
F Φref

F


 , (3)

i.e. in terms of squaren × n matricesΦinc
q , Φinc

F , Φref
q andΦref

F , where the sub-

scriptsq / F refer to as displacement / force components.

For example, the displacement components for several wave shapes are plot-

ted in Figure 3 when considering the beam-like structure case depicted in Figure

2. These shapes represent the usual LF wave motions (i.e. flexural, torsional,

longitudinal and shearing) and additional modes. The latter are not necessarily

assessed by means of analytical theories but play a crucial role for describing the

local structure dynamics in the MF domain. Apart from the prediction of these

MF modes, the feature of the WFE method is that it is not frequency-limited by

LF analytical assumptions (e.g. plane cross-sections). This is explained as it uses

a FE discretization scheme for addressing the cross-section dynamics in the short

wavelength domain.

Figure 3

Bloch’s theorem also states that each state vectoru(k) can be expanded as
∑

j Q
(k)
j Φj where{Φj}j and{Q(k)

j }j play the role of wave basis (with dimension

2n) and modal amplitudes, respectively. As a rule of thumb, such an expansion is

carried out with a reduced basis of wave shapes{Φ̃j}j=1,...,2m only, extracted from

the full basis{Φj}j=1,...,2n and with the same numberm (m ≤ n) of incident and

reflected modes. The strategy for selecting such a reduced basis is discussed in ref.

uide boundary.
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[3]. In matrix form, it turns out that wave expansion writes as:

q(k) ≈ Φ̃inc
q Q̃inc(k)+Φ̃ref

q Q̃ref(k) , ±F(k) ≈ Φ̃inc
F Q̃inc(k)+Φ̃ref

F Q̃ref(k) ∀k,

(4)

while the spatial distributions of the modal amplitudesQ̃inc(k) and Q̃ref(k) are

governed as:

Q̃inc(k) = µ̃k−1
Q̃inc(1) , Q̃ref(k) = µ̃−(k−1)

Q̃ref(1) ∀k. (5)

Here,µ̃ represents them × m diagonal eigenvalue matrix of the incident modes,

defined as̃µ = µ̃inc = (µ̃ref)−1 [3].

2.2. Mesh tying problem and wave-based coupling conditions

The problem of predicting the behavior of coupled waveguides using the WFE

method is addressed. Such a problem is depicted in Figure 1 and represents two

waveguides1 and2 connected with an elastic junction over two coupling interfaces

Γ1 andΓ2, where mesh compatibility is not necessarily verified. The underlying

mesh tying problem is illustrated in Figure 4 and concerns two substructures, for

waveguides1 and2, connected with a junction whose internal DOFs are considered

to be free from excitation sources. The fact that mesh compatibility is not assumed

means that the number of DOFs used for discretizing the cross-section of each

waveguidei – sayni – is not necessarily equal to the number of DOFs used for

discretizing the coupling junction overΓi.

Figure 4

The use of non-compatible meshes can be addressed by means ofLagrange

Multipliers combined with the Mortar method [20], where thecontinuity of dis-

placements acrossΓ1 andΓ2 is imposed in a weak sense. In this framework, the
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interpolation functions of the Lagrange Multiplier fields are chosen so that they

correspond to the trace of the junction interpolation functions overΓ1 andΓ2. This

yields a unique way to express the displacements of the junction from those of

the connected substructures, and conversely the forces applied to the substructures

from those applied to the junction [10, 17]. Using superscript / subscript notations

c andi as references to the coupling junction and the waveguidei (respectively)

yields:

qc|Γi
= (B(i)

c )−1B
(i)
i qi|Γi

, Fi|Γi
= −(B

(i)
i )T (B(i)

c )−TFc|Γi
i = 1, 2,

(6)

where{B(i)
c }i=1,2 are square positive definite matrices defined in refs. [10, 17],

while qi|Γi
andqc|Γi

(resp.Fi|Γi
andFc|Γi

) denote the displacements (resp. the

forces) of waveguidei and junction over coupling interfaceΓi. In matrix form, Eq.

(6) results in

−TT
D
∗T


 q1|Γ1

q2|Γ2


 =


 F1|Γ1

F2|Γ2


 , (7)

whereT is a block diagonal real matrix whose components are{(B
(i)
c )−1B

(i)
i }i=1,2

and which results from the use of Lagrange multipliers in themesh tying formula-

tion; D
∗ is the condensed form of the junction dynamic stiffness matrix – namely

D = −ω2Mc + Kc(1 + iηc) 5 – ontoΓ = Γ1 ∪ Γ2:

D
∗ = DBB − DBID

−1
II DIB, (8)

where subscriptsB / I refer to as interface / internal DOFs of the junction. Eq.

(7) expresses a relationship between the displacements andforces applied to the

5
M

c, Kc andηc are respectively the mass matrix, the stiffness matrix and the loss factor of the

junction.
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waveguides over the coupling interfaces. Introducing waveexpansions of the form

ui ≈ Φ̃iQ̃i (cf. Eq. (4)) – with a reduced basis{(Φ̃j)i}j of size2mi (mi ≤ ni)

– into Eq. (7) also yields a relationship between the wave mode amplitudes to be

considered as [10, 17]:

ÃrefQ̃ref = −ÃincQ̃inc, (9)

whereQ̃inc = [Q̃incT
1 Q̃inc T

2 ]T andQ̃ref = [Q̃refT
1 Q̃refT

2 ]T are vectors of size

(
∑

i mi) × 1; Ãref andÃinc are(
∑

i ni) × (
∑

i mi) matrices defined as

Ãref = TT
D
∗TΨ̃ref

q + Ψ̃ref
F , Ãinc = TT

D
∗TΨ̃inc

q + Ψ̃inc
F , (10)

whereΨ̃inc
q , Ψ̃ref

q , Ψ̃inc
F andΨ̃ref

F are matrices of same size(
∑

i ni) × (
∑

i mi),

defined as:

Ψ̃inc
q =


 Lc

1(Φ̃
inc
q )1 0

0 Lc
2(Φ̃

inc
q )2


 , Ψ̃ref

q =


 Lc

1(Φ̃
ref
q )1 0

0 Lc
2(Φ̃

ref
q )2


 ,

Ψ̃inc
F =


 Lc

1(Φ̃
inc
F )1 0

0 Lc
2(Φ̃

inc
F )2


 , Ψ̃ref

F =


 Lc

1(Φ̃
ref
F )1 0

0 Lc
2(Φ̃

ref
F )2


 .

(11)

Here,Lc
i is a squareni × ni matrix that plays the role of expressing the displace-

ments and forces of each waveguidei in the coordinate system of the coupling

junction(xc, yc, zc) 6.

The computation of Eq. (9) is addressed in the following:

Proposition 1. The matrixÃref is full column rank provided thatran(TΨ̃ref
q )⊥null(Kc∗),

whereKc∗ is the condensed form of the junction stiffness matrix onΓ.

6The components ofLc
i basically reflect the direction cosines of the local frame(xi, yi, zi), for

the waveguidei, in the local frame(xc, yc, zc).
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Proof. Let us proceed by contradiction and assume thatÃref is not full column

rank, i.e. its rank is different from the number of columns which is
∑

i mi. This

particularly means that there exists a family of modal amplitudes∪i{(Q̃
ref
j )i}j=1,...,mi

with at least one non-zero component that satisfies

ÃrefQ̃ref = 0. (12)

Left multiplying Eq. (12) by(Ψ̃ref
q Q̃ref)H (whereH denotes the conjugate trans-

pose), considering Eq. (10) and using imaginary parts yieldthe following energy

balance to be considered:

ω

2
Im

(
(Ψ̃ref

q Q̃ref)HTT
D
∗T(Ψ̃ref

q Q̃ref)
)

=
ω

2
Im

(
(Ψ̃ref

q Q̃ref)H(−Ψ̃ref
F Q̃ref)

)
.

(13)

Physically, the left hand side term represents the power dissipated within the cou-

pling junction (since structural damping is accounted for), while the right hand

side term represents the opposite of the energy flow that leaves the coupling junc-

tion. It is well established from the law of Thermodynamics and energy-based

formulations (SEA-like methods among others [21, 22]) thatthese two quantities

are respectively positive and negative; as a result, the only way for Q̃ref to be the

solution of Eq. (13) is that each of these two quantities is equal to zero. Regarding

the left hand side term of Eq. (13), this particularly means that

Im

(
(Ψ̃ref

q Q̃ref)HTT
D
∗T(Ψ̃ref

q Q̃ref)
)

= 0. (14)

Considering the condensation scheme (8), it can be proved without difficulty that

Eq. (14) is in fact equivalent to

Im
(
(qc)HDqc

)
= 0, (15)

11



whereD andqc are respectively the dynamic stiffness matrix and the displacement

vector of the junction, the latter being defined as:

qc =


 −D

−1
II DIB

I


 (TΨ̃ref

q )Q̃ref. (16)

Considering that dynamic stiffness matrixD is expressed as−ω2Mc + Kc(1 +

iηc), and considering that mass matrixMc and stiffness matrixKc are real sym-

metric (i.e. they are hermitian), it turns out that Eq. (15) is equivalent to:

(qc)HIm(D)qc = ηc(qc)HKcqc = 0. (17)

Also note thatKc is symmetric positive semi-definite [23], meaning that the only

way for qc to be different from zero is that it is spanned by the null space of Kc,

i.e. Kcqc = 0. Using condensation procedure, this yields:

Kc∗(TΨ̃ref
q )Q̃ref = 0, (18)

whereKc∗ = Kc
BB−Kc

BI(K
c
II)

−1Kc
IB. Considering thatran(TΨ̃ref

q )⊥null(Kc∗)

(by assumption), it turns out necessarily that(TΨ̃ref
q )Q̃ref = 0. Finally, consid-

ering that matricesT andΨ̃ref
q are full column rank7 yieldsQ̃ref = 0, which is

contradictory to the statement previously made thatÃref is not full column rank.

�

Remark 1. The conditionran(TΨ̃ref
q )⊥null(Kc∗) is sufficient to prove the pre-

vious proposition. It could be violated at very low frequencies as rigid cross-section

wave shapes are expected to interact with the rigid body motions of the junction;

7This can be proved as: (i) the rank ofT represents the number of DOFs contained over the two

waveguide cross-sections; (ii) the wave mode matrices(Φ̃ref
q )1 and(Φ̃ref

q )2 are full column rank (a

formal proof is brought in ref. [3], Proposition 1).
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this remains possible provided the waveguides are positioned in such a manner

that those rigid body motions are possible. However, as the frequency increases,

the fact that wave mode shapes are subjected to local deformations prevents such

an issue.

Proposition 1 means that the left pseudo-inverse ofÃref – namely(Ãref)+

– can be computed as[(Ãref)HÃref]−1(Ãref)H [24]. It also means that there

exists a unique solutioñQref of Eq. (9) that satisfies the followingleast squares

(LS) problem:

min
Q̃ref

∥∥∥ÃrefQ̃ref + ÃincQ̃inc
∥∥∥

2
. (19)

This solution is thus given by [24]:

Q̃ref = −(Ãref)+ÃincQ̃inc. (20)

This provides a unique way to determine the amplitudes of thereflected modes

from those of the incident modes. This validates the formulation proposed in pre-

vious works [10, 17], i.e.:

Q̃ref = C̃Q̃inc where C̃ = −(Ãref)+Ãinc. (21)

The matrixC̃ physically expresses the reflection and transmission coefficients of

the wave modes across the coupling junction. It can be readily decomposed so as

to emphasize the dependency among the wave modes between waveguides:

 Q̃ref

1

Q̃ref
2


 =


 C̃11 C̃12

C̃21 C̃22




 Q̃inc

1

Q̃inc
2


 . (22)

Remark 2. The components of̃C are influenced by the way the vectors{(Φ̃j)i}j

are scaled. Choosing different strategies for scaling these vectors can yield largely

13



disparate results for the components ofC̃. Such an issue is not encountered in

analytical approaches involving cross-sections with one or two DOFs, since wave

shapes are quite simple in this case. This constitutes a challenge for plotting the

reflection / transmission coefficients and interpreting their physical behavior in the

frequency domain, e.g. by means of comparisons with analytical results. Scaling

each wave shape(Φ̃j)i so that the maximum value of their displacement compo-

nents is set to unity seems to constitute an adequate solution. It is worth noting that

such an issue does not affect the computation of the forced responses as scaling

effects of{(Φ̃j)i}j disappear through the wave mode expansion procedure.

2.3. Forced response computation

The problem of predicting the frequency response of the coupled system de-

picted in Figure 1 is addressed. The system involves two straight waveguides1

and2, composed respectively ofN1 andN2 substructures, connected through a

common junction over one of their boundaries. Considering the other boundaries,

waveguides1 and2 are submitted to prescribed forcesF0 and displacementsq0,

respectively. Such a problem involving Neumann and Dirichlet boundary condi-

tions has been addressed in [3]. In brief, the boundary conditions are addressed by

means of wave mode expansions of the form (4). In particular,the coupling condi-

tions through the junction are addressed by means of Eq. (21). A specific scaling

procedure for treating matrix structures with largely disparate terms – between the

components of̃µ−N andµ̃N (cf. Eq. (5)) and between the components ofΦ̃q and

14



Φ̃F – is used. This yields the following well-conditioned problem to be computed:



I (Φ̃inc
F )+1 (Φ̃ref

F )1µ̃
N1

1 0 0

−C̃11µ̃
N1

1 I 0 −C̃12µ̃
N2

2

−C̃21µ̃
N1

1 0 I −C̃22µ̃
N2

2

0 0 (Φ̃inc
q )+2 (Φ̃ref

q )2µ̃
N2

2 I




×




I 0 0 0

0 µ̃−N1

1 0 0

0 0 µ̃−N2

2 0

0 0 0 I







Q̃
inc(1)
1

Q̃
ref(1)
1

Q̃
ref(1)
2

Q̃
inc(1)
2




=




−(Φ̃inc
F )+1 F0

0

0

(Φ̃inc
q )+2 q0




, (23)

where the first matrix (whose size is2(
∑

i mi)× 2(
∑

i mi)) is expected to be well

conditioned [3], while the second matrix is diagonal and canbe inverted without

difficulty. Solving Eq. (23) provides the modal amplitudes{Q̃
inc(1)
1 , Q̃

ref(1)
1 } and

{Q̃
inc(1)
2 , Q̃

ref(1)
2 } at the ends of waveguides1 and2 where forces and displace-

ments are respectively prescribed. The spatial distribution of the modal amplitudes

along each waveguide follows from Eq. (5), while the spatialdistribution of the

kinematic variables (i.e. displacements and internal forces) follows from Eq. (4).

Remark 3. Within the WFE framework, the strategy used for computing the forced

response of coupled systems can be summarized through the following steps (to be

considered at each frequency):

1. Computation of wave modes by means of an eigenproblem [3] of size2ni ×

2ni (to be done for each waveguidei, if different);

2. Computation ofD∗ by means of Eq. (8), where the inverse of anc
I × nc

I

matrixDII is required (nc
I denotes the number of internal DOFs of the junc-

tion);
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3. Computation ofC by means of Eq. (21), where the pseudo-inverse of the

(
∑

i ni) × (
∑

i mi) matrix Ãref is required;

4. Computation of Eq. (23), where the inverse of a2(
∑

i mi) × 2(
∑

i mi)

matrix is required.

The sizes of the matrix subproblems involved in these steps do not depend on the

number of substructures considered for discretizing the waveguides. This yields

the CPU times to be considerably lowered compared to what is required by the

standard FE method when computing the full numerical model.Indeed, following

the classic FE framework yields the size of the full matrix problem to be rather

[nc +
∑

i ni(Ni + 1)] × [nc +
∑

i ni(Ni + 1)] whereNi is the number of sub-

structures used for each waveguidei andnc is the number of junction DOFs. It

is worth noting that steps 1-3 are to be addressed once and forall, whatever the

lengths and excitation sources of the waveguides change. This emphasizes a rela-

tive flexibility of the WFE approach in what only the small matrix problem (23) is

to be re-computed in case of such changes.

The forced response of the coupled system depicted in Figure1 is computed in

the next subsection. The issue consists in investigating the relevance of the WFE

method further on in the frequency domain (compared to the results exposed in ref.

[3]), i.e. when the junction undergoes resonances. The reflection / transmission

coefficients for wave modes and energy flows, across the junction, are also investi-

gated.
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2.4. Numerical results

2.4.1. Forced response

The wave-based matrix formulation (23) is applied for computing the forced re-

sponse of the coupled system depicted in Figure 1, where two straight waveguides

with similar rectangular cross-sections are involved. Thewaveguides are coupled

“transversally” by means of an elastic junction which represents a quarter of torus:

the main axes of the two waveguides – say axesx1 andx2 – are perpendicular so

that coupling among wave modes of different natures (say forinstance, flexural

and torsional) is likely to occur. Apart from the coupling conditions, consider-

ing other boundaries, waveguides2 and1 are respectively clamped (i.e.q0 = 0)

and subjected to a uniform transverse force field that reflects vectorF0. The two

waveguides, as well as the coupling junction, exhibit the same material character-

istics: Young’s modulusE = 3.2 × 109 Pa, densityρ = 1180 kg.m−3, Poisson’s

ratio ν = 0.39, loss factorη = 0.01. The two waveguides have the same cross-

sectional areahy × hz = 0.2 m×0.15 m, while their respective lengths areL1 = 2

m andL2 = 1.5 m. The quarter of torus has an internal radius of curvature of

Rc = 0.05 m and a cross-section similar to those of the connected waveguides.

The waveguides1 and2 are discretized respectively by means ofN1 = 100 and

N2 = 75 similar substructures, each of these being composed of4× 3 linear brick

elements and having a lengthd = 0.02 m (see Figure 2). Linear brick elements are

also used for discretizing the junction. Each coupling interface is interpolated with

5 × 4 elements. In this case, the mesh compatibility over coupling interfaces is

not verified. Such a dissimilarity is invoked here to addressthe wave propagation

along waveguides apart from the internal dynamics of the coupling junction.

The total number of DOFs used for discretizing the coupling junction is810,

while 2 × 60 DOFs are used for discretizing each substructure. It is readily ver-
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ified that the full FE model of the coupled system involves810 + 60(N1 + 1) +

60(N2 + 1) = 8775 DOFs. On the other hand, the WFE formulation (23) uses two

reduced wave mode bases of respective sizes2m1 and2m2 (with m1,m2 ≤ 60)

for describing the waveguides; in the present case,m1 = m2 = m. This yields the

size of the wave-based matrix problem to be4m × 4m with 4m ≤ 240, which is

much less than the full FE model whose size is8775 × 8775.

The forced response of the coupled system is addressed over the frequency

bandBf = [10 Hz , 5000 Hz] which appears to be the same as the one involved in

previous work [3]. Nonetheless, the local dynamics are expected to be more com-

plex in the present case, especially in terms of junction resonances, as quite soft

materials are considered. Eq. (23) is computed for providing the WFE displace-

ment solution, by means of Eq. (4). For each waveguidei, the wave shape basis

{(Φ̃j)i}j is supposed to include the classic LF modes as well as additional MF

modes whose contribution can be significant. Some of these shapes are depicted in

Figure 3 at2500Hz. They refer to as the classic LF flexural, torsional, longitudinal

and shearing modes with a non-uniform spatial behavior8, and some MF higher

order modes with an oscillating spatial dynamics for capturing the cross-section

resonances. The solutions provided by WFE (cf. Eq. (23)) with wave bases of

different sizes are compared with the standard FE solution,i.e. when the full FE

model is computed. The results are shown in Figure 5, where the transverse dis-

placement of waveguide1 (at one corner of its excited cross-section) is plotted

for 500 discrete frequencies. The reference solution provided by FE highlights a

relative complexity of the frequency behavior above2500 Hz, i.e. when the local

dynamics of the junction are solicited. Below this threshold, the behavior of the

8It is worth recalling that the rigid body assumption for the cross-section breaks down at high

frequencies.
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coupled system is mainly driven by the resonances of the waveguides, while the

response of the junction is mainly static. In this range, theWFE method works fine

with a few modes (see Figure 5(a)). At higher frequencies, the size of the wave

bases has to be enlarged to ensure the convergence of the method. Small errors still

subsist withm = 40 incident / reflected modes, around and above3000 Hz. The

convergence is finally achieved whenm = 50 incident / reflected modes are used.

Figure 5

2.4.2. Reflection / transmission coefficients of wave modes and energy flows

As mentioned previously, the computation of the forced response is directly

linked to that of the matrixC, whose components are the reflection and transmis-

sion coefficients of wave modes across the coupling junction. As mentioned, the

way these coefficients are plotted strongly depends on how the wave mode shapes

are scaled. Choosing an appropriate strategy to scale the wave modes in a “contin-

uous way” along the frequency domain (e.g. by means of the maximum value of

the wave displacement components) can yield regular curvesto be drawn. Several

components ofC are computed in this sense, when the size of the wave basis is

2m = 2 × 50 for each waveguide9. For example, the real part of the reflection

/ transmission coefficients among the flexural mode (Figure 3(a)), the torsional

mode (Figure 3(b)) and a given MF mode (Figure 3(e)) are presented in Figure 6.

As expected (see above), the flexural and torsional wave motions appear correlated

through the coupling junction. Mode conversions also occurbetween the flexural /

torsional modes and the MF mode around3000Hz, i.e. where the local dynamics

of the junction are involved. The fact that the shape of this MF mode (see Figure

3(e)) appears as a type of high order torsional wave motion could partly explain

9The relevance of such a size withm = 50 has been emphasized above.
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why this mode is coupled with the others.

Figure 6

The way the mode conversion operates is usually examined from the point of

view of energy flows (i.e. powers). The derivation of power reflection / transmis-

sion coefficients is detailed in Appendix A. These are shown in Figures 7 and 8 for

the incident flexural and torsional modes (a) and (b) (cf. Figure 3). Reflection /

transmission between these modes and shearing / MF modes (d)and (e) (cf. Figure

3) is particularly addressed. The flexural and torsional modes appear strongly cou-

pled each other below3300Hz when shearing / MF modes are mainly evanescent.

This appears coherent in the sense that evanescent modes do not convey energy

[25]. At higher frequencies, the shearing / MF wave modes become propagating.

Coupling phenomena appear quite complex as energy exchanges with these modes

occur. Particularly, retaining MF modes in the wave bases for computing the WFE

displacement solutions becomes relevant. It is shown that power reflection / trans-

mission coefficients exhibit a frequency behavior which is oscillating, i.e. driven

in part by the local dynamics of the junction.

Figure 7

Figure 8

3. CMS-based approach

3.1. Introduction

The relevance of the WFE formulation has been highlighted for computing the

forced response of coupled systems. The local dynamics of the coupling junc-

tion have been addressed using FE analysis and a condensed form of the dynamic
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stiffness matrix. Another way to assess the behavior of the junction is to consider

component mode synthesis (CMS) procedures, i.e. using a reduced family of elas-

tic modes as a representation basis. The motivation is to reduce the CPU times

further and to quantify the impact of these junction modes onto the response of

the global system. Such an analysis is commonly performed inthe framework of

uncertainty propagation to address small perturbations atthe scale of component

modes [16]. The fact that a few junction modes are dealt with is the key idea to

address such an analysis with reasonable computational times, e.g. when perform-

ing Monte Carlo simulations (MCS). This suggests to select among all the junction

modes those which effectively contribute to the system forced response. This issue

is investigated hereafter. Among all the variety of CMS procedures, the Craig-

Bampton (CB) method will be investigated specifically. Indeed, the relevance of

such a procedure has been widely proved for treating coupledproblems involving

FE substructures with a small number of elastic modes [26, 16].

3.2. CMS framework

The CB method is used for addressing the junction dynamics. For the sake of

clarity, the case of two waveguides connected with a single junction is considered

(cf. Figure 1). The basics of the CB method are recalled below:

Let Γ = Γ1 ∪ Γ2 denotes the interface between the junction and the waveg-

uides. The junction displacements are expressed in terms ofa reduced family of

fixed-interface elastic modes{(X̃el)j}j=1,...,mc (mc being the number of retained

modes) combined with constraint modes{(Xst)j}j=1,...,nc
B

(nc
B being the number

of DOFs contained overΓ) 10. This yields the displacements of internal and in-

10The constraint modes express the static response of the system in terms of interface displace-
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terface DOFs – denoted asqc
I andqc

B = qc|Γ, respectively – to be approximated

as

 qc

I

qc
B


 ≈


 X̃el Xst

0 I




 α̃

qc
B


 , (24)

whereα̃ is the vector of modal amplitudes;̃Xel is thenc
I × mc matrix of elastic

modes, whileXst is thenc
I × nc

B matrix of constraint modes:

Xst = −(Kc
II)

−1Kc
IB. (25)

Here,Kc refers to as the junction stiffness matrix. Invoking the junction dynamic

stiffness matrixD (cf. subsection 2.2) with the basis of elastic and constraint modes

leads to [16]:

 D̃el−el D̃el−st

D̃
T
el−st Dst−st




 α̃

qc
B


 ≈


 0

Fc
B


 , (26)

whereFc
B = Fc|Γ, while D̃el−el, D̃el−st andDst−st are expressed as:

D̃el−el = diag
{
γ̃j(−ω2 + ω̃2

j (1 + iηc))
}

j=1,...mc ,

D̃el−st = −ω2X̃T
el (Mc

IIXst + Mc
IB) , (27)

Dst−st = −ω2
(
XT

stM
c
IIXst + Mc

BIXst + XT
stM

c
IB + Mc

BB

)
+ (1 + iηc) (Kc

BIXst + Kc
BB) .

Here,ω̃j and γ̃j represent the eigenpulsation and the modal mass of each elastic

modej, respectively: the modal mass is readily written asγ̃j = (X̃el)
T
j Mc

II(X̃el)j

and can be set to unity provided that eigenvectors{(X̃el)j}j are normalized ap-

propriately [27]. Condensing the dynamic stiffness matrix– approximated as in

Eq. (26) – onto the interfaceΓ finally results in

D̃
∗qc

B ≈ Fc
B, (28)

ments.

22



whereD̃
∗ is constructed as:

D̃
∗ = Dst−st − D̃

T
el−stD̃

−1
el−elD̃el−st. (29)

Eq. (28) is quite similar to what was used to derive the mesh tying formulation

(7), except thatD∗ has been replaced bỹD∗. The latter is expressed in terms of the

modal parameters of the junction, e.g. eigenvectors{(X̃el)j}j and eigenpulsations

{ω̃j}j . This leads the way in formulating the matrixC and expressing the dynamic

response of the global system in terms of these modal parameters.

3.3. Selection of contributing modes

Eq. (28) uses a reduced family of eigenvectors{(X̃el)j}j=1,...,mc for approx-

imating the junction dynamic stiffness matrix asD
∗ ≈ D̃

∗. This reduced family

is extracted from the full family of junction modes – namely{(Xel)j}j=1,...,nc
I

(nc
I ≥ mc) – whose sizenc

I relates the number of junction internal DOFs. Rigor-

ously, invoking the full family{(Xel)j}j instead of{(X̃el)j}j enables̃D∗ to be

equal toD
∗ 11. According to Eqs. (29) and (27), this results as:

D
∗ = Dst−st−

nc
I∑

j=1

(
ω4

−ω2 + ω2
j (1 + iηc)

(BT (Xel)j)(B
T (Xel)j)

T

)
, (30)

whereB = Mc
IIXst + Mc

IB, while assumption is made that̃γj = 1 ∀j (see

previous subsection). In brief, the fact that one modej is neglected in Eq. (30)

yields the matrixD∗ to be perturbed asD∗ + ∆jD
∗, where

∆jD
∗ =

ω4

−ω2 + ω2
j (1 + iηc)

(BT (Xel)j)(B
T (Xel)j)

T j = 1, . . . , nc
I. (31)

11This can be proved as the full family exhibits a dimensionnc
I equal to the rank of the matrixDII.
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The key idea here is to quantify the impact of perturbatingD
∗ asD

∗ + ∆jD
∗ onto

the forced response of the coupled system. Within the WFE framework, this sug-

gests to quantify the resulting perturbation onto the solution of the LS problem

(19), i.e. for determining the amplitudes of reflected wavesQ̃ref from a known

state of incident waves̃Qinc. A norm-wise procedure, by means of any consistent

norm ||.|| [24], appears suitable for addressing this task [13, 14, 15]. This sug-

gests to compute the norm-wise relative error||∆jQ̃
ref||/||Q̃ref|| induced while

computing Eq. (21) withD∗ + ∆jD
∗.

Proposition 2. Suppose that||.|| is a consistent norm and that||Q̃ref|| 6= 0 and

||C̃|| 6= 0; also suppose that∆jQ̃
inc = 0. Then the relative error||∆jQ̃

ref||/||Q̃ref||

can be bounded as

||∆jQ̃
ref||

||Q̃ref||
≤

||∆jC̃||

||C̃||
j = 1, . . . , nc

I, (32)

providedQ̃inc is unitary and such that||C̃Q̃inc|| = ||C̃||.

Proof. The proof is straightforward from Eq. (21), considering||Q̃ref|| = ||C̃Q̃inc|| =

||C̃|| and∆jQ̃
ref = (∆jC̃)Q̃inc (since∆jQ̃

inc = 0): this yields||∆jQ̃
ref|| =

||(∆jC̃)Q̃inc|| ≤ ||∆jC̃|| ||Q̃inc|| = ||∆jC̃||, because the norm||.|| is consistent

andQ̃inc is unitary. �

Proposition 2 addresses a norm-wise bound of||∆jQ̃
ref||/||Q̃ref|| by means

of ||∆jC̃||/||C̃|| only, without computing̃Qinc by means of Eq. (23) (i.e. without

invoking the excitation sources). This yields the issue of large CPU times to be

circumvented while considering different loading cases. It is worth noting that

assumptions||Q̃inc|| = 1 and ||C̃Q̃inc|| = ||C̃|| are not restrictive. They can be

verified a priori for any kind of excitation source and wave shape fields over the

cross-sections, provided the magnitudes of the latter are correctly scaled.
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Remark 4. Formulating bounds for||∆jQ̃
ref||/||Q̃ref|| addresses perturbation

theories for LS problems of the general formmin
x

||Ax − b||2 (A, x andb being

understood as̃Aref, Q̃ref and−ÃincQ̃inc, respectively). This approach has been

investigated by several authors, whenA and b are perturbed asA + ∆A and

b + ∆b, assumingrank(A) = rank(A + ∆A) [28, 29, 30]: for example, a first

order expression of the relative error||∆x||2/||x||2 is brought in ref. [24] in case

whereA and∆A are full column rank:

||∆x||2
||x||2

≤ ǫκ2(A)

(
1 +

||b||2
||A||2||x||2

+ κ2(A)
||b − Ax||2
||A||2||x||2

)
+O(ǫ2), (33)

where assumption is made that||∆A||2/||A||2 ≤ ǫ and ||∆b||2/||b||2 ≤ ǫ, and

whereκ2(A) = ||A||2||A
+||2 is the condition number ofA.

Another possibility to carry out this analysis could consist in formulating Eq. (9)

by means of a full square system of the formAx = b, using a projection scheme

for reducing the dimension of the original over-dimensioned problem. In that case,

the relative error appears simply bounded as [24]:

||∆x||

||x||
≤

2ǫκ(A)

1 − ǫκ(A)
, (34)

whatever the consistent norm||.|| used, whereκ(A) = ||A|| ||A−1|| while it is

assumed thatǫκ(A) < 1.

Expressing||∆jQ̃
ref||/||Q̃ref|| by means of Eq. (33) or Eq. (34) is attractive as

quite straightforward indicatorsκ(A) andǫ are invoked. Unfortunately, these for-

mulations remain confined within the framework of restrictive assumptions – i.e.

ǫ << 1 for Eq. (33) andǫκ(A) < 1 for Eq. (34) – that does not seem to be

necessarily verified in the present study as junction resonances are considered. In

this case,κ(A) is expected to reach large values while the fact of perturbing D
∗

asD
∗ + ∆jD

∗ can yield non-negligible values ofǫ. Such an issue enforces the
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motivation of using Eq. (32) throughout this paper.

The bound||∆jC̃||/||C̃|| in Eq. (32) can be addressed as follows: from Eq.

(21), C̃ = −(Ãref)+Ãinc whereÃref andÃinc are given by Eq. (10). Without

loss of generality,||.|| can be chosen e.g. as the Frobenius norm||.||F [24]. Hence,

the bound writes||∆jC̃||F /||C̃||F and is readily formulated as:

||∆jC̃||F

||C̃||F
=

||(Ãref + ∆jÃ
ref)+(Ãinc + ∆jÃ

inc) − (Ãref)+Ãinc||F

||(Ãref)+Ãinc||F
j = 1, . . . , nc

I,

(35)

where

∆jÃ
ref = TT ∆jD

∗TΨ̃ref
q , ∆jÃ

inc = TT ∆jD
∗TΨ̃inc

q j = 1, . . . , nc
I.

(36)

The error||∆jC̃||F /||C̃||F has to be computed for every discrete frequencyωk/2π

(k = 1, . . . , Nf ) considered within the frequency bandBf . One straightforward

way to address this issue consists in assessing||∆jC̃||F /||C̃||F as its maximum

value withinBf . This yields:

||∆jQ̃
ref
ωp

||F

||Q̃ref
ωp

||F
≤ max

{
||∆jC̃ωk

||F

||C̃ωk
||F

}

k=1,...,Nf

∀ωp j = 1, . . . , nc
I, (37)

where the subscriptsωp andωk refer to as the pulsations used for calculating the

vector / matrix terms. Eq. (37) addresses the impact of neglecting one junction

modej when computing the forced response of the coupled system. Itis therefore

proposed to retain the junction modes for which the bound in Eq. (37) is greater

than a specified threshold, and to neglect the others. Hereafter, the selection cri-

terion (37) is compared to the usual strategy that consists in sorting the modes in

ascending order. Its relevance is also discussed.

26



3.4. Numerical results

The wave-based matrix formulation (23) is applied for computing the forced

response of the coupled system depicted in Figure 1 and whosecharacteristics have

been detailed in subsection 2.4. In the CMS framework, the condensed form̃D
∗ of

the junction dynamic stiffness matrix is constructed by means of a reduced family

of elastic modes (cf. Eq. (29)). The strategy used for selecting these junction

modes constitutes the key point of the following study; the issue is to test the

convergence of the wave-based matrix formulation (23) for capturing the dynamics

of the coupled system over the frequency band of interest, i.e.Bf = [10 Hz , 5000

Hz] in the present case (cf. subsection 2.4).

One first attempt to select these modes is to use the conventional “ascending

order” strategy, consisting in retaining the modes whose eigenfrequencies are be-

low a certain frequency limit while rejecting the others. The procedure for defining

this limit accurately is not a simple task: this indeed depends on the degree of

complexity, a priori unknown, required to capture the junction spatial dynamics

and coupling conditions. This explains why this procedure is rather empirical, i.e.

using an arbitrary number of junction modes (sorted in ascending order) as a test

case and analyzing the convergence of the formulation in a post-processing step. In

this framework, it is thus proposed to constructD̃
∗ by means of arbitrary numbers

of junction modes, e.g.mc = 0 12, mc = 10, mc = 20 andmc = 30. The first30

junction eigenfrequencies are presented in Figure 9, wherethe maximum value of

Bf – i.e. 5000 Hz – is depicted by a violet line.

Figure 9

12In that case, the response of the junction is rather static asit is driven by the constraint modes

{(X̃st)j}j only.

27



Using these different numbersmc of junction modes for constructing̃D∗ and

computing the solutions of the wave-based matrix formulation (23) yields the forced

response of the coupled system. To this end, the behavior of each waveguide is as-

sessed by means ofm = 50 wave modes (indeed, the relevance of such a wave

mode expansion has been established in subsection 2.4). Theresults are shown in

Figure 10.

Expressing the static response of the junction – i.e. usingmc = 0 elastic

modes – clearly yields a lack of accuracy of the WFE formulation above2500 Hz,

i.e. when the junction exhibits local dynamics. Enlarging the number of junction

modes used in Eq. (23) solves this issue, as expected. Whenmc = 20, slight

differences between WFE and reference FE solutions still persist above4000 Hz,

even though the junction resonances are completely coveredover Bf by the re-

duced basis{(X̃el)j}j (the highest retained eigenfrequency is actually up to6000

Hz). The issue is that the family of junction modes is not richenough for capturing

the wave reflection / transmission phenomena across the junction. Accounting for

ten additional higher order modes (with additional eigenfrequencies between6000

Hz and8000 Hz) finally yields the convergence of the wave-based formulation.

Figure 10

To summarize, the ascending order strategy consists in selecting an arbitrary

number of junction modes, then computing the WFE solution bymeans of Eq.

(23) and analyzing the convergence of the wave-based matrixformulation in a

post-processing step. When the convergence is not reached,the number of modes

mc is increased and the convergence tested again. Apart from this repetitive post-

processing procedure, the major drawback of this strategy is that it could yield an

excessive number of elastic modes{(X̃el)j}j to be accounted for, part of them

being of weak influence (whatever their eigenfrequencies).
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Otherwise, using Eq. (37) leads to the selection of junctionmodes that effec-

tively contribute to the system forced response. Eq. (37) yields a bound of the

relative error||∆jQ̃
ref||/||Q̃ref|| that affects the WFE method when neglecting

one modej. A small bound means that a modej can be rejected away when com-

puting the solution of Eq. (23), with small impact. The bounds associated with the

first 30 junction modes are depicted in Figure 11.

Figure 11

The magnitudes of these bounds do not appear necessarily linked to the ranks

of the modes, contrary to what is implicitly considered withthe ascending order

strategy. Using Eq. (37) constitutes an efficient means of selecting the contribut-

ing modes, considering bounds that exceed for instance a threshold of10%. In

that case, this yields19 junction modes – i.e. modes1 to 17, 19 and22 – to be

selected among the former30. The WFE solution obtained using these19 elastic

modes is plotted in Figure 12; it appears coherent with the reference FE solution

and comparable with the solutions derived from the ascending order strategy with

30 modes (see Figure 10). Precisely, the convergence of both strategies can be

underlined when analyzing the relative error of the forced response (at the mea-

surement point) over the whole frequency bandBf
13. For this task, it is proposed

to deal with the quadratic accelerationΓ2
mes = (ω2||qmes||2)

2 instead of||qmes||2

(qmes being the displacement vector at the measurement point) “tostrenghten” the

influence of junction modes with high eigenfrequencies. A2−norm is introduced

to address the relative error over the frequency bandBf , the latter being expressed

13Such an approach has been discussed in ref. [31] with regard to the transfer functions of linear

systems.
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in terms of dicrete frequencies{ωk/2π}k=1,...,Nf
. This norm is defined as:

||Γ2
mes||Bf

=




Nf∑

k=1

(Γ2
mes)

2
ωk




1

2

. (38)

where the subscriptωk refers to as the pulsation used for calculating the quadratic

acceleration. The relative error thus writes as:

EWFE =
||(Γ2

mes)
WFE − (Γ2

mes)
FE||Bf

||(Γ2
mes)

FE||Bf

, (39)

where(Γ2
mes)

WFE and(Γ2
mes)

FE represent the WFE solution and the reference solu-

tion provided by FE, respectively. The relative errors for both strategies depicted

above are plotted in Figure 13 as functions of the number of junction modes re-

tained in the WFE formulation. As expected, the strategy based on Eq. (37) yields

the convergence to be reached efficiently with a few junctionmodes. The fact that

junction modes are ranked in accordance to their contribution enables the error to

decrease uniformly compared to the conventional ascendingorder strategy. It ap-

pears that retaining19 modes when using criterion (37) provides the same relative

error as the conventional strategy with22 modes. Of course this last result (i.e.22

modes for the conventional strategy) has been established since the system forced

response has been computed several times (i.e. consideringwave bases of different

dimensions as test cases for computing the error). The selection strategy based on

criterion (37) circumvents such an issue by investigating the contribution of each

mode in a pre-processing step. To summarize, the feature of Eq. (37) is that the

number of junction modes retained in the wave-based formulation can be reduced

compared to the conventional procedure; the norm-wise strategy also circumvents

the way to proceed empirically for testing the convergence of the formulation in

several time consuming post-processing steps.

Figure 12
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4. Perturbation analysis

4.1. Introduction

A CMS-based WFE approach has been investigated in the previous subsection

for computing the forced response of coupled systems involving elastic junctions.

Emphasis was on a model order reduction strategy using a few number of junction

modes. This yields the CPU time to be reduced further which isattractive when

analyzing for instance slight uncertainties of junction modes by means of Monte

Carlo simulations (MCS). A perturbation analysis that addresses those uncertain-

ties is proposed in this section. Again, the case of two waveguides connected with

one junction is investigated. In particular, forward component-wise bounds of the

WFE solutionui (i.e. the displacements and internal forces within each waveg-

uidei) are derived. The underlying assumptions of this perturbation analysis are as

follows:

• The eigenpulsatioñωj of each junction modej is perturbed as̃ω0
j + δω̃j ,

where:

|δω̃j/ω̃
0
j | ≤ θj << 1 j = 1, . . . ,mc. (40)

Here,ω̃0
j refers to as the baseline eigenpulsation, whileθj represents a deter-

ministic bound of|δω̃j/ω̃
0
j |;

• The constraint modes{(X̃st)j}j and elastic modes{(X̃el)j}j are unper-

turbed14;

• For each waveguidei, the wave modes{((µ̃j)i, (Φ̃j)i)}j are unperturbed.

14Such an assumption is commonly used in the literature [16].
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The issue to provide forward component-wise bounds of the perturbed vectorui =

u0 +δui, using first order Taylor series expansions15, is the key idea of the present

study. Comparisons with the results of MCS are investigatedin subsection 4.3.

4.2. Bounds ofui

For each waveguidei, the state vectorui is expressed as in Eq. (2) – say, in

terms of displacement vectorqi and force vectorFi – for a cross-section located

at longitudinal positionkidi (ki = 1, . . . , Ni + 1; di being the length of a typical

substructure). According to the wave mode expansionui ≈ Φ̃iQ̃i and sinceΦ̃i

is considered as unperturbed,ui = u0
i + δui can be assessed asΦ̃i(Q̃

0
i + δQ̃i),

i.e. by means ofδQ̃i only. The related component-wise bounds are investigated

hereafter:

According to Eq. (5), the wave mode amplitudesQ̃i at positionkidi are linked

to thoseQ̃(1)
i expressed at one of the waveguide boundaries (e.g. where excitations

are imposed). This writes as:

Q̃i = Q̃
(ki)
i = M̃iQ̃

(1)
i ki = 1, . . . , Ni + 1, i = 1, 2, (41)

where

M̃i =


 µ̃ki−1

i 0

0 µ̃
−(ki−1)
i


 ki = 1, . . . , Ni + 1, i = 1, 2. (42)

This yields a simple way to expressδQ̃i by means ofδQ̃(1)
i , asM̃i remains unper-

turbed (cf. subsection 4.1). The perturbed vectorδQ̃
(1)
i can be assessed by means

of Eq. (23); in abridged notations, this writes:

Ã
C̃
D̃Q̃ = F̃ , (43)

15In this framework, the superscript0 denotes the solutions computed whenω̃j = ω̃0

j ∀j.
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whereQ̃ = [Q̃
(1)T
1 Q̃

(1)T
2 ]T ; Ã

C̃
represents the first matrix in Eq. (23) which is

square and linked to the components ofC̃, the latter being constructed by means of

the junction modes (cf. previous subsection); the remaining termsD̃ andF̃ do not

depend on the junction modes:̃D represents the second matrix in Eq. (23) which

is diagonal, whileF̃ reflects the excitation sources. According to this, taking into

account that̃Q is formulated as̃Q = D̃−1Ã−1

C̃
F̃ (cf. Eq. (43)) yields the derivative

∂Q̃/∂ω̃j to be written as

∂Q̃

∂ω̃j

= D̃−1

(
−Ã−1

C̃

∂Ã
C̃

∂ω̃j

Ã−1

C̃

)
F̃ j = 1, . . . ,mc, (44)

where the term between the brackets denotes the derivative of A−1
C

; according to

Eq. (23), the derivative∂AC/∂ω̃j in Eq. (44) readily writes by means of the

derivative∂C̃/∂ω̃j (cf. Appendix B) as:

∂Ã
C̃

∂ω̃j

=




0 0 0 0

−
∂C̃11

∂ω̃j

µ̃N1

1 0 0 −
∂C̃12

∂ω̃j

µ̃N2

2

−
∂C̃21

∂ω̃j

µ̃N1

1 0 0 −
∂C̃22

∂ω̃j

µ̃N2

2

0 0 0 0




j = 1, . . . ,mc. (45)

As a result, using first order Taylor series expansion yieldsthe variationδQ̃ as:

δQ̃ =
mc∑

j=1

(
∂Q̃

∂ω̃j

)0
δω̃j , (46)

where(∂Q̃/∂ω̃j)
0 follows from Eqs. (44) and (45) wheñωj = ω̃0

j . The derivation

of δQ̃(1)
i results from Eq. (46), while the formulation of component-wise bounds of

δui follows from the wave mode expansion procedure summarized at the beginning

of this subsection:

|δui| ≤

mc∑

j=1

∣∣∣∣∣∣
Φ̃iM̃i

(
∂Q̃

(1)
i

∂ω̃j

)0∣∣∣∣∣∣
ω̃0

j θj i = 1, 2, (47)
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where|.| denotes the operation of replacing each element of a matrix by its magni-

tude or its absolute value (i.e. should the real or imaginarypart ofui be required).

Thus, the bounds ofui can be expressed as:

• Case when the magnitude ofui is required:

|u0
i |−

mc∑

j=1

∣∣∣∣∣∣
Φ̃iM̃i

(
∂Q̃i

∂ω̃j

)0∣∣∣∣∣∣
ω̃0

j θj ≤ |ui| ≤ |u0
i |+

mc∑

j=1

∣∣∣∣∣∣
Φ̃iM̃i

(
∂Q̃i

∂ω̃j

)0∣∣∣∣∣∣
ω̃0

j θj i = 1, 2;

(48)

• Case when the real or imaginary part ofui is required:

u0
i−

mc∑

j=1

∣∣∣∣∣∣
Φ̃iM̃i

(
∂Q̃i

∂ω̃j

)0∣∣∣∣∣∣
ω̃0

j θj ≤ ui ≤ u0
i +

mc∑

j=1

∣∣∣∣∣∣
Φ̃iM̃i

(
∂Q̃i

∂ω̃j

)0∣∣∣∣∣∣
ω̃0

j θj i = 1, 2,

(49)

whereui and|.| have to be understood asRe(ui) and|Re(.)|, or Im(ui) and

|Im(.)|.

4.3. Numerical results

Component-wise bounds of the state vectors{ui}i=1,2 are investigated over

the frequency bandBf = [10 Hz , 5000 Hz]. The test case depicted in Figure 1

is considered. The wave-based numerical formulation (23) is addressed when the

coupling junction model usesmc = 19 elastic modes with uncertain eigenpulsa-

tions {ω̃0
j + δω̃j}j . These junction modes are selected by means of the criterion

(37) discussed in subsection 3.4. It is assumed that|δω̃j/ω̃
0
j | ≤ θj = 5% ∀j,

where{ω̃0
j}j denote the baseline eigenpulsations (cf. Figure 9). The component-

wise bounds of the state vectors{ui}i=1,2 are addressed by means of Eq. (48).

The state vectors provide the displacements and internal forces within waveguides
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1 and2 (see Section 2). Particularly, the displacement of waveguide 1 is investi-

gated at the measurement point, where forces are imposed. The baseline solution

represents the forced response computed using the CMS-based WFE formulation

with m = 50 wave modes andmc = 19 junction modes (cf. above). The bounds

of the transverse displacement are depicted in Figure 14. Asa logarithmic scale

is used, the higher bound is of primary importance since the lower bound may be

badly interpreted as involving close to zero or negative values16. As expected, the

bounds appear of primary importance when the junction exhibits local dynamics,

i.e. above2500 Hz. They exhibit large values around the local extrema of thebase-

line solution (cf. Figure 14(a)), when the junction resonances are reached. Monte

Carlo simulations (MCS) are carried out to test the relevance of the bounds (cf.

Figure 14(b)). To this end,100 sets of random values{ω̃0
j + δω̃j}j are used as

trials, eachδω̃j following a uniform distribution over the range|δω̃j/ω̃
0
j | ≤ θj.

For each trial, the components of{ui}i=1,2 are computed by means of Eq. (23). It

is worth emphasizing that solving the small WFE matrix system (23) leads to sig-

nificant CPU time savings compared to the usual FE approach (i.e. in case where

the full FE model of waveguides could be considered), say several seconds against

several minutes for each trial. As expected, the bounds provided by Eq. (48) appear

valid when compared to the results of MCS, in the sense they provide reasonable

confidence areas.

Figure 14

16One artefact to assess the logarithm of this bound is to remove negative values and to consider

positive close-to zero terms instead.

35



5. Concluding remarks

The low- and mid-frequency forced response of coupled systems involving

straight structures connected with elastic junctions has been addressed using the

wave finite element (WFE) method. In this framework, the kinematic fields of

each straight structure are expanded in terms of numerical wave modes having a

one-dimensional propagation, while the junction dynamicsare captured using clas-

sic FE procedures. One feature of this study is that it uses a Lagrange Multipliers

formalism so as to relax mesh compatibility assumption overcoupling junction

interfaces. The resulting mesh tying formulation providesan efficient means for

computing the magnitudes of reflected waves from those that are incident towards

any given junction. The relevance of this formalism has beendiscussed from a

computational point of view; it has been highlighted for computing the forced re-

sponse of two beam-like structures coupled transversally through a quarter of torus

that undergoes local resonances. Also, a CMS-based WFE formulation that uses

junction elastic modes has been investigated. A strategy has been proposed for re-

ducing efficiently the number of modes retained in the formulation. In this frame-

work, a norm-wise criterion has been derived for selecting those junction modes

that are of primary importance for computing the system forced response. Finally,

a perturbation analysis has been proposed for assessing thesystem forced response

when slight uncertainties affect the junction eigenfrequencies. Component-wise

perturbation bounds have been formulated for the WFE solutions. The relevance

of the model has been emphasized through comparisons with Monte Carlo simula-

tions.
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Appendix A. Derivation of power reflection / transmission coefficients

Let P inc
i andP ref

i be the energy flows traveling in waveguidei towards and

outwards the junction, respectively. These can be defined asP inc
i = (ω/2)Im

(
(qinc

L )Hi (Finc
L )i

)

andP ref
i = −(ω/2)Im

(
(qref

L )Hi (Fref
L )i

)
, that is [32]:

P inc
i =

iω

4
(uinc

i )HJuinc
i , P ref

i = −
iω

4
(uref

i )HJuref
i ∀i, (A-1)

whereuinc
i =

∑
j(Q

inc
j )i(Φ

inc
j )i anduref

i =
∑

j(Q
ref
j )i(Φ

ref
j )i, while Ji is

given as

Ji =


 0 Ini

−Ini
0


 ∀i. (A-2)

It is commonly stated that energy flows resulting from wave interferences can be

neglected [25]. As a result, this yields

P inc
i =

∑

j

(P inc
j )i , P ref

i =
∑

j

(P ref
j )i ∀i, (A-3)

where

(P inc
j )i =

iω

4
(Φinc

j )Hi Ji(Φ
inc
j )i|(Q

inc
j )i|

2 ∀j, (A-4)

(P ref
j )i = −

iω

4
(Φref

j )Hi Ji(Φ
ref
j )i|(Q

ref
j )i|

2 ∀j. (A-5)

Also note that(Qref
j )i =

∑
r

∑
s(Cir)js(Q

inc
s )r, where(Cir)js refers to as the

componentjs of block matrixCir (cf. Eq. (22)). Neglecting wave interferences, it

turns out that each energy flow(P ref
j )i is expressed as:

(P ref
j )i = −

iω

4
(Φref

j )Hi Ji(Φ
ref
j )i

∑

r

∑

s

|(Cir)js|
2|(Qinc

s )r|
2 ∀j. (A-6)

Let us denote as(P ref
j )rs

i the term−(iω/4)(Φref
j )Hi Ji(Φ

ref
j )i|(Cir)js|

2|(Qinc
s )r|

2.

Thus the reflection and transmission coefficients for an incident energy flow(P inc
s )r
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traveling along any waveguider readily write as (respectively):

τ rs
rj =

(P ref
j )rs

r

(P inc
s )r

= −
(Φref

j )Hr Jr(Φ
ref
j )r

(Φinc
s )Hr Jr(Φinc

s )r
|(Crr)js|

2 r = i, (A-7)

τ rs
ij =

(P ref
j )rs

i

(P inc
s )r

= −
(Φref

j )Hi Ji(Φ
ref
j )i

(Φinc
s )Hr Jr(Φinc

s )r
|(Cir)js|

2 r 6= i. (A-8)

Appendix B. Derivation of ∂C̃/∂ω̃j

The matrixC̃ is formulated as−(Ãref)+Ãinc (cf. Eq. (21)) where, in the

CMS framework,Ãref andÃinc are expressed as

Ãref = TT
D̃
∗TΨ̃ref

q + Ψ̃ref
F , Ãinc = TT

D̃
∗TΨ̃inc

q + Ψ̃inc
F . (B-1)

In that case,̃D∗ refers to as the junction dynamic stiffness matrix approximated by

means of Eq. (29) when usingmc relevant junction modes (i.e. selected by means

of criterion (37)). The derivative of̃C with respect tõωj readily writes as

∂C̃

∂ω̃j

= −(Ãref)+

[(
−

∂Ãref

∂ω̃j

(Ãref)+ + (Ãref)+H (B-2)

×

(
∂Ãref

∂ω̃j

)H (
I − Ãref(Ãref)+

)

 Ãinc +

∂Ãinc

∂ω̃j


 j = 1, . . . ,mc,

where the matrix term(I−Ãref(Ãref)+) is linked to the derivative of the pseudo-

inverse(Ãref)+ [28] 17. In Eq. (B-2), the derivatives∂Ãref/∂ω̃j and∂Ãinc/∂ω̃j

are formulated by means of Eq. (B-1) as

∂Ãref

∂ω̃j

= TT ∂D̃
∗

∂ω̃j

TΨ̃ref
q ,

∂Ãinc

∂ω̃j

= TT ∂D̃
∗

∂ω̃j

TΨ̃inc
q j = 1, . . . ,mc.

17Notice that the derivative of the classic inverse(Ãref)−1 does not invoked such a term.
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(B-3)

Here,∂D̃
∗/∂ω̃j is readily expressed by means of Eqs. (29) and (27) as:

∂D̃
∗

∂ω̃j

= D̃
T
el−stD̃

−1
el−el

∂D̃el−el

∂ω̃j

D̃
−1
el−elD̃el−st j = 1, . . . ,mc, (B-4)

where

∂D̃el−el

∂ω̃j

= 2ω̃j(1 + iη)diag{δjk}k=1,...mc j = 1, . . . ,mc. (B-5)

To derive Eq. (B-5), the modal mass has been assessed implicitly asγ̃j = 1 ∀j (see

subsection 3.2).
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Figure 1: Neumann-to-Dirichlet problem involving two waveguides with an elastic coupling junc-

tion.
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Figure 2: Illustration of incident / reflected waves; finite element models of two connected substruc-

turesk − 1 andk.
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Figure 3: Spatial representation of several “cross-section” wave shapes at2500Hz (the direction of

propagation is indicated by an arrow): (a) flexural mode; (b)torsional mode; (c) longitudinal mode;

(d) shearing mode; (e-i) MF modes.
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Figure 4: Mesh tying problem considered in the WFE framework: junction with two connected

substructures.
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Figure 5: Frequency response of the coupled system depictedin Figure 1: (—–) solution provided

by FE; (–•–) solutions provided by WFE withm = 10 wave modes (a),m = 20 wave modes (b),

m = 40 wave modes (c),m = 50 wave modes (d).
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Figure 6: Frequency evolution of reflection (—–) and transmission (- - -) coefficients (real parts)

among flexural, torsional and MF modes.
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Figure 7: Frequency evolution of power reflection (—–) and transmission (- - -) coefficients for

incident flexural mode.
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Figure 8: Frequency evolution of power reflection (—–) and transmission (- - -) coefficients for

incident torsional mode.
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Figure 9: Eigenfrequencies of first30 junction modes; (—–) upper frequency limit (i.e.5000 Hz) of

Bf .
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Figure 10: Frequency response of the coupled system depicted in Figure 1: (—–) solution provided

by FE; (–•–) solutions provided by WFE with50 wave modes and using CMS withmc = 0 junction

modes (a),mc = 10 junction modes (b),mc = 20 junction modes (c) andmc = 30 junction modes

(d).
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Figure 11: Bounds provided by Eq. (37) for the first30 junction modes; (—–) threshold of10%

above which the junction modes are selected.
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Figure 12: Frequency response of the coupled system depicted in Figure 1: (—–) solution provided

by FE; (–•–) solutions provided by CMS-based WFE withmc = 19 junction modes selected by

means of criterion (37).

57



0 5 10 15 20 25 30
10

0

10
1

10
2

Number of selected junction modes

E
W
F
E

(%
)

Figure 13: Relative errorEWFE with ascending order strategy (—–) and criterion (37) (- - -) (the violet

line indicates that19 junction modes are selected).
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Figure 14: Frequency response of the coupled system depicted in Figure 1: (–•–) baseline solution

provided by CMS-based WFE withmc = 19 junction modes (a); (—–) MCS solutions with100

trials (b); (yellow shaded area: (a) and (b)) perturbation bounds obtained by means of Eq. (48).
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