
HAL Id: hal-00755752
https://hal.science/hal-00755752

Submitted on 21 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A model reduction strategy for computing the forced
response of elastic waveguides using the wave finite

element method
Jean-Mathieu Mencik

To cite this version:
Jean-Mathieu Mencik. A model reduction strategy for computing the forced response of elastic waveg-
uides using the wave finite element method. Computer Methods in Applied Mechanics and Engineer-
ing, 2012, 229-232, pp.68-86. �10.1016/j.cma.2012.03.024�. �hal-00755752�

https://hal.science/hal-00755752
https://hal.archives-ouvertes.fr


A model reduction strategy for computing the forced response
of elastic waveguides using the wave finite element method

J.-M. Mencik

ENI Val de Loire, Université François Rabelais de Tours, LMR laboratory, Rue de la Chocolaterie,
BP 3410, F-41034 Blois Cedex, France

Abstract

A model reduction strategy is proposed within the frameworkof the wave finite

element method for computing the low- and mid-frequency forced response of sin-

gle and coupled straight elastic waveguides. For any waveguide, a norm-wise error

analysis is proposed for efficiently reducing the size of thewave basis involved

in the description of the dynamic behavior. The strategy is validated through the

following test cases: single and coupled beam-like structures with thick cross-

sections, plates and sandwich structures. The relevance ofthe model reduction

strategy for saving large CPU times is highlighted, considering the computation

of the acoustic radiation of plates and Monte Carlo simulations of coupled waveg-

uides.

Key words: Wave finite elements, model reduction, mid-frequencies, acoustic

radiation.

1. Introduction

This paper addresses, within the framework of the wave finiteelement (WFE),

a model reduction strategy of matrix formulations for computing the low- and

mid-frequency (LF and MF) forced response of single and coupled straight elastic
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waveguides. Some of these elastic systems are depicted in Figure 1 (i.e. single and

coupled beam-like structures with thick cross-sections, plates and sandwich struc-

tures). Within the MF framework, the cross-sections of waveguides are expected to

undergo oscillating spatial dynamics as well as local resonances. The WFE method

aims at computing the LF and MF wave modes which travel along any waveguide

in positive and negative directions. The computation of thewave modes results

from a finite element (FE) procedure which enables the waveguide cross-section

to be discretized by means of several degrees of freedom (DOFs). The number of

wave modes is actually linked to that of the DOFs used for discretizing the cross-

section, which implicitly depends on the excitation frequency. For example, a large

number of wave modes can be required to capture the MF behavior, i.e. when the

cross-section undergoes oscillating dynamics. WFE matrixformulations have been

deeply investigated in a former paper [1] for computing the harmonic responses of

waveguides such as those depicted in Figure 1 (other works can be found in [2, 3]).

These formulations use reduced bases of wave modes to capture the waveguide dy-

namics in the LF and MF range. Reducing these wave bases efficiently, in terms of

wave modes which effectively contribute for expressing thewaveguide behavior,

appears crucial in many applications (e.g. acoustic radiation of plates where a large

number of coupling terms need to be computed at many frequency steps, or Monte

Carlo simulations (MCS) involving a large number of iterations).

The strategy for selecting the contributing wave modes constitutes the moti-

vation behind the present paper. The issue is to provide an alternative solution to

the commonly used strategy that consists in retaining the wave modes which are

propagating at a certain frequency [1]. The drawback of sucha selection procedure

is that the wave modes are ranked in accordance to the imaginary parts of their

wavenumbers, regardless of their contribution to the structure behavior. In fact,

should a few high order modes (i.e. whose wavenumbers exhibit high imaginary
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parts) contribute to the forced response, the classic procedure states that almost the

full wave basis has to be considered. Proposing another strategy for efficiently se-

lecting the contributing wave modes constitutes an open challenge. The final goal

is to propose wave bases with optimal reduced sizes with a view to reducing CPU

times for computing the forced responses of waveguides.

Model order reduction (MOR) techniques have been widely treated in the liter-

ature within the frameworks of CMS approaches [4], SVD-based and Krylov-based

methods [5]. Within the CMS framework, an optimal modal reduction technique

based on the study of an error norm for coupling interface forces has been proposed

in refs. [6, 7]. A moment matching method (i.e. which considers low order terms of

Taylor series around some pulsationω) that investigates displacement vectors over

coupling interfaces has been proposed in ref. [8]. Moment matching approaches

have also been addressed from the point of view of Krylov subspace techniques

for estimating scalar transfer functions with minimum error [9]. Finally, a Ratio-

nal Krylov based model reduction method that investigates matrix-valued transfer

functions of single-input multi-output (SIMO) dynamic systems has been proposed

in refs. [10, 11]. Other discussions on SVD-based methods can be found in refs.

[5, 12].

Although the aforementioned MOR techniques seem interesting yet, their ap-

plication to WFE matrix formulations does not seem straightforward. The first

difficulty is that WFE-based transfer functions are more complicated than those

involved by other MOR techniques; the issue is that most of the matrices involved

by the WFE formulations depend on the frequency, as opposed to classic FE ap-

proaches where conventional mass / stiffness matrices are rather of concern. The

second difficulty lies in the fact that wave bases are not orthogonal, which means

that matrix systems cannot be decoupled into sets of independent equations. The

problem turns out to be as follows: among all the wave modes{Φj}j=1,...,2n
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whose amplitudes are{Qj}j , extract a reduced family{Φ̃j}j=1,...,2m (m ≤ n)

with amplitudes{Q̃j}j such thatQ̃j ≈ Qj ∀j ∈ {1, . . . , 2m} and Qj ≈ 0

∀j ∈ {2m + 1, . . . , 2n}, taking into account that the wave modes{Φj}j are not

orthogonal. In matrix form, this yields the following errornorms ||Q̃ − L̃Q||

and||LrQ|| to be assessed and minimized, whereL̃ andLr play the role of inci-

dence matrices. Reducing these error norms by means of a basis of wave modes

{Φ̃j}j with optimal reduced size constitutes an original challenge which is ad-

dressed within the present study.

The key idea behind the proposed MOR procedure is to invoke a finite num-

ber of forward / backward passings of waves along any waveguide for expressing

the wave amplitudes{Q̃j}j . In this framework, it is shown that the error induced

for expressing the waveguide displacements and forces can be bounded in terms

of matrix norms which are not necessarily decreasing functions of the number of

retained wave modes. The resulting error bound is found to besensitive – that is,

it increases – when the size of the wave basis is overestimated. Thus, the prob-

lem is to find a minimum for such an error bound with regard to the number of

retained wave modes. This constitutes an efficient strategyto determine precisely

the number of wave modes required to compute the forced response of waveguides

accurately.

The rest of the paper is organized as follows. The WFE framework is re-

called in Section 2; also, the concept of model reduction involving the error norms

||Q̃ − L̃Q|| and ||LrQ|| (see above) is presented. The MOR strategy is detailed

in Section 3, considering the single waveguide case; boundsof the aforementioned

error norms are detailed; the procedure that invokes a finitenumber of forward

/ backward passings of waves along waveguides, for expressing the wave ampli-

tudes, is detailed; an error bound of||Q̃−L̃Q||+ ||LrQ|| is proposed; it is shown

that the minimization of this error bound yields the wave modes which effectively
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contribute to the waveguide behavior to be selected efficiently. The case of cou-

pled systems involving two waveguides connected through anelastic junction is

fully investigated in Section 4. Numerical experiments arebrought in Section 5;

the frequency forced responses of single and coupled waveguides are simulated;

the accuracy of the MOR strategy for describing the waveguide forced responses

with a few wave modes is highlighted; also, the efficiency of the MOR strategy for

saving large CPU times is highlighted, considering the computation of the acous-

tic radiation of a square plate as well as Monte Carlo simulations involving two

waveguides connected with an elastic junction (whose eigenfrequencies are uncer-

tain).

2. WFE method

2.1. Theory

The WFE method has been originally developed for describingnumerically the

waves traveling along periodic structures [13]. Such structures are called periodic

in the sense that they can be described by means of similar substructures, with

the same lengthd, which are connected along a main axisx – referred to as the

direction of propagation. Also, these substructures are assumed to be discretized

by means of a similar FE model containing a similar numbern of DOFs over its

left and right boundaries. The FE models of several kinds of periodic structures

– namely, waveguides – and related substructures are depicted in Figure 1. In the

present study, these waveguides are supposed to be elastic,dissipative (considering

a loss factorη) and subjected to harmonic disturbance under frequencyω/2π (ω

being the pulsation).

Figure 1
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Within the WFE method, the waves traveling along thex−direction (see above)

of any waveguide are computed using the FE model of the related substructure.

Clearly, this requires the mass and stiffness matrices of the substructure to be

known, e.g. using a commercial FE software. Also, the dynamic stiffness matrix

of the substructure, condensed on its left and right boundaries, has to be expressed.

The strategy for computing the waves is to consider a state vector representation

[14] for linking the vectors of displacements / forces between the left (or right)

boundaries of two adjacent substructuresk andk − 1. In the frequency domain,

this relationship is expressed in terms of a2n × 2n symplectic matrixS as [1]

u(k) = Su(k−1) k = 2, . . . , N + 1, (1)

whereN is the number of substructures considered along the whole waveguide,

while N +1 is to be understood as the number of substructure boundaries(say, the

coupling interfaces between the substructures as well as the two limiting bound-

aries of the waveguide). These substructure boundaries aredepicted in Figure 2.

In Eq. (1),u refers to a2n × 1 state vector expressed as

u =


 q

±F


 , (2)

whereq andF are the vectors of displacements and forces, respectively,over the

left or right boundary of the substructures. The sign aheadF results from the

convention made for expressing the forces on the left or right boundaries of the

substructures. It is worth emphasizing that the matrixS is expressed from the

condensed dynamic stiffness matrix of the substructure (see e.g. ref. [15] for

further details).

The computation of the waves traveling along thex−direction follows directly

from Bloch’s theorem [16]:
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Bloch’s theorem: a simple statement.Let S be d− periodic, thusu(k) can be

expanded as
∑

j Q
(k)
j Φj whereQ

(k)
j = e−iβjdQ

(k−1)
j ∀j.

It is worth recalling thatd is the length (i.e. along thex−direction) of any sub-

structure used for describing the whole waveguide. Bloch’stheorem particularly

states that the eigenvalues ofS – namely{µj}j – can be expressed as{e−iβjd}j ,

where{βj }j have the meaning of wavenumbers. Regarding these, the wavescan be

classified as propagating (i.e. the imaginary parts of the wavenumbers are close to

zero), evanescent (i.e. the real parts of the wavenumbers are close to zero) or com-

plex (i.e. the real and imaginary parts of the wavenumbers are of the same order).

On the other hand, the terms{Φj }j are the eigenvectors ofS – also known as the

wave shapes –, which relate the spatial distribution of the displacements and forces

over the substructure boundaries. Several illustrations of wave shapes are brought

in ref. [1], considering the waveguides depicted in Figure 1. For example, con-

sidering beam-like structures, the wave shapes are to be understood as particular

spatial distributions of the displacements and internal forces over the cross-section,

“traveling” at different velocities along the waveguide. In ref. [1], it is shown that

the WFE method is well suited for describing the classic waveshapes (i.e. longi-

tudinal, torsional, flexural, shearing) as well as many other high order wave shapes

(with an oscillating spatial behavior over the cross-section) which are useful to

capture the structure dynamics in the MF range.

The set of terms{(µj ,Φj )}j , as well as{Φj }j , are usually called the wave

modes. They are twice as many as the number of DOFs contained over the left or

right substructure boundary, i.e.2n. Considering that the matrixS is symplectic

(see above) yields{(µj ,Φj )}j to be split inton incident andn reflected wave

modes, sayn waves traveling towards andn waves traveling outward the right
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(or left) boundary of the waveguide. These incident and reflected wave modes are

denoted as{(µinc
j ,Φinc

j )}j and{(µref
j ,Φref

j )}j ; they are usually defined such that

|µinc
j | < 1 and|µref

j | > 1 ∀j (such a consideration arises from the fact thatS is a

symplectic matrix, i.e. its eigenvalues come in pairs as(µ, 1/µ)).

Otherwise, Bloch’s theorem also implies that any state vector u(k) – which

relates the vectors of displacementsq(k) and forcesF(k) at the substructure bound-

ary k (k = 1, . . . , N + 1), along the waveguide – can be expanded in terms of

wave modes{Φj }j and wave amplitudes{Qj }j . The wave mode expansions are

expressed as

q(k) = Φinc
q Qinc(k) + Φref

q Qref(k) k = 1, . . . , N + 1, (3)

±F(k) = Φinc
F Qinc(k) + Φref

F Qref(k) k = 1, . . . , N + 1, (4)

whereΦinc
q , Φref

q , Φinc
F andΦref

F are squaren × n matrices constituted from the

displacement and force components of the incident and reflected wave shapes; also,

Qinc(k) andQref(k) aren × 1 vectors of wave amplitudes, whose variation along

the waveguide is expressed as [1]

Qinc(k) = µ
k−1Qinc(1) k = 1, . . . , N + 1, (5)

Qref(k) = µ
−(k−1)Qref(1) k = 1, . . . , N + 1. (6)

Here,µ is defined asµ = diag{µinc
j }j . Considering that|µinc

j | < 1 ∀j (see

above) results in||µ|| < 1 (||.|| being the2−norm).

2.2. Conventions

For any waveguide, let us denote asΦinc andΦref the matrices of incident

and reflected wave modes defined as

Φinc =


 Φinc

q

Φinc
F


 , Φref =


 Φref

q

Φref
F


 , (7)
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where the matricesΦinc
q , Φref

q , Φinc
F andΦref

F have been defined in Section 2.1.

It is worth recalling that the vectors of wave amplitudes aredenoted asQinc(k) and

Qref(k).

As a convention, these notations for matrices and vectors will be used through-

out the paper to denote the wave modes that are incident to andreflected by the

right boundaryof the waveguide (cf. Figure 2). In contrast, considering the left

boundaryof the waveguide, it is proposed to denote the matrices of incident and re-

flected wave modes asΦinc⋆ andΦref⋆, and to denote the related vectors of wave

amplitudes asQinc⋆(k) andQref⋆(k). These matrix and vector terms are simply

expressed as

Φinc⋆ = Φref , Φref⋆ = Φinc, (8)

Qinc⋆(k) = Qref(k) , Qref⋆(k) = Qinc(k) k = 1, . . . , N + 1. (9)

Such conventions involving the right and left boundaries ofthe waveguide are de-

picted in Figure 2. They are introduced here as a means to clarify the concept

behind incident and reflected wave modes. Also, the following notations are intro-

duced as a means to simplify the subsequent formulations made in the paper:

Qinc = Qinc(N+1) , Qref = Qref(N+1), (10)

Qinc⋆ = Qinc⋆(1) , Qref⋆ = Qref⋆(1), (11)

where{Qinc,Qref} are to be understood as the vectors of wave amplitudes ex-

pressed at the right boundary of the waveguide (i.e. the substructure boundary

N + 1), while {Qinc⋆,Qref⋆} are the vectors of wave amplitudes expressed at the

left boundary of the waveguide (i.e. the substructure boundary 1). The meaning

of substructure boundaries is clarified in Figure 2. Using the aforementioned no-

tations enables the boundary conditions of the waveguide tobe simply expressed.
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For instance, Neumann or Dirichlet boundary conditions arereadily written as [17]

Qref = CQinc + F , Qref⋆ = C
⋆Qinc⋆ + F

⋆, (12)

whereC and C
⋆ are n × n matrices whose components refer to the reflection

coefficients, whileF andF
⋆ aren × 1 vectors whose components play the role of

excitation sources (expressions for those matrices and vectors directly follows from

the wave mode expansions (3) and (4)). Also, Eq. (12) can be applied to describe

coupling conditions, e.g. considering two waveguides1 and2 connected with an

elastic junction (cf. Figure 2(d)). In this case, the matrixC can be partitioned as

[1]

C =


 C11 C12

C21 C22


 , (13)

where the components of matricesC11 andC22 denote the reflection coefficients

of the wave modes traveling in waveguides1 and2 towards the coupling junction,

while the components of matricesC12 andC21 denote the transmission coefficients

of these wave modes through the coupling junction.

It must be noted that, according to Eqs. (5) and (6), the vectors of wave ampli-

tudes{Qinc,Qref} and{Qinc⋆,Qref⋆} are linked as

Qinc = µ
NQref⋆ , Qinc⋆ = µ

NQref. (14)

Figure 2

2.3. Forced response computation

The strategy for computing the forced response of waveguides has been pro-

posed in ref. [1]. In brief, considering a single waveguide subjected to Neumann
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or Dirichlet boundary conditions (cf. Figure 1(a-c)), it can be shown that the vec-

tors of wave amplitudesQref andQref⋆ (cf. Eq. (12)) are the solutions of the

following 2n × 2n matrix system:

 In −C

⋆
µ

N

−Cµ
N In





 Qref⋆

Qref


 =


 F

⋆

F


 . (15)

The computation of the vectors of displacementsq(k) and forcesF(k) follows from

the wave mode expansions (3) and (4).

In contrast, considering two waveguides connected throughan elastic junction

(cf. Figure 1(d)) yields the following matrix system to be considered:



In1 −C
⋆
1µ

N1
1 0 0

−C11µ
N1
1 In1 0 −C12µ

N2
2

−C21µ
N1
1 0 In2 −C22µ

N2
2

0 0 −C
⋆
2µ

N2
2 In2







Qref⋆
1

Qref
1

Qref
2

Qref⋆
2




=




F
⋆
1

0

0

F
⋆
2




, (16)

where the subscripts1 and2 refer to vector and matrix terms associated to waveg-

uides1 and2, respectively; otherwise,C⋆
1 andC

⋆
2 are two matrices of reflection

coefficients which describe the waveguide boundaries that are not involved by

the coupling conditions. Considering Eq. (16), the size of the matrix system is

2(n1 + n2) × 2(n1 + n2), wheren1 (resp. n2) is the number of DOFs used for

discretizing the left or right boundary of any substructureconsidered in waveguide

1 (resp. waveguide2).

2.4. Concept of model reduction

2.4.1. Some general notations and properties related to matrix norms

The proposed model reduction strategy mainly focuses on theuse of matrix

norms. As a preliminary step, it is proposed to clarify the following notations and

properties that are used throughout the paper:
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• The notation||X|| refers to the2−norm of a matrix or a vectorX. The

consistency property of the2−norm means that||AB|| ≤ ||A|| ||B|| for

arbitraryp × q matrixA andq × r matrixB;

• A rectangularn × m (m ≤ n) real matrixC will be called orthogonal or

unitary in the sense thatCTC = Im. The2−norm will be said to be unitarily

invariant in the sense that||CD|| = ||D|| for anym × p matrixD;

• The notationρ(E) refers to the spectral radius of a square matrixE, with the

property thatρ(E) ≤ ||E||.

Apart from this, the notationAT denotes the transpose of a matrixA, while the

notationIn denotes then × n identity matrix.

2.4.2. Error norms

Within the WFE framework, the displacements and internal forces of any waveg-

uide are usually approximated by means of a reduced basis{Φ̃j}j=1,...,2m contain-

ing a same numberm (m ≤ n) of incident and reflected wave modes. The related

vectors of wave amplitudes are obtained by considering the matrix formulations

(15) or (16). The reduced basis is extracted from the full wave basis{Φj}j=1,...,2n

already depicted in Section 2.1. Considering such a reducedbasis yields the wave

expansions to be expressed as

q̃(k) = Φ̃inc
q Q̃inc(k) + Φ̃ref

q Q̃ref(k) k = 1, . . . , N + 1, (17)

±F̃(k) = Φ̃inc
F Q̃inc(k) + Φ̃ref

F Q̃ref(k) k = 1, . . . , N + 1, (18)

whereΦ̃inc
q , Φ̃ref

q , Φ̃inc
F andΦ̃ref

F aren × m matrices constituted from the dis-

placement and force components of the incident and reflectedwave modes; also,
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Q̃inc(k) and Q̃ref(k) are them × 1 related vectors of wave amplitudes, whose

variations along the waveguide follow from Eqs. (5) and (6) as

Q̃inc(k) = µ̃
k−1Q̃inc(1) k = 1, . . . , N + 1, (19)

Q̃ref(k) = µ̃
−(k−1)Q̃ref(1) k = 1, . . . , N + 1, (20)

whereµ̃ = diag{µ̃inc
j }j , {µ̃inc

j }j ⊆ {µinc
j }j being the wave parameters associ-

ated to the wave modes{Φ̃j}j (cf. Section 2.1); it is worth noting that||µ̃|| < 1,

because||µ̃|| ≤ ||µ|| (it is worth recalling thatµ = diag{µinc
j }j while {µ̃inc

j }j ⊆

{µinc
j }j) and||µ|| < 1 (see below Eq. (6)).

The idea behind the technique of model order reduction (MOR)is to approxi-

mate the vectors of displacements and forces over any substructure boundaryk as

q(k) ≈ q̃(k) andF(k) ≈ F̃(k) with reasonable accuracy while using a reduced wave

basis of minimum size2m. Investigating these vectors of displacements and forces

by means of a reduced wave basis (instead of the full basis) enables the computa-

tion of the forced responses to be done using matrix systems of small sizes (cf. e.g.

Eq. (15)), i.e.2m × 2m instead of2n × 2n. Such a MOR strategy addresses the

minimization of the norms||q̃(k) − q(k)|| and||F̃(k) − F(k)||, whose derivation is

proposed hereafter.

Let us introduce them × n incidence matrixL̃ defined as̃Φinc
q = Φinc

q L̃T ,

Φ̃ref
q = Φref

q L̃T , Φ̃inc
F = Φinc

F L̃T , Φ̃ref
F = Φref

F L̃T , whereL̃T is real orthogonal

(i.e. it is unitary). Clearly speaking, the matrix̃L is constructed so that each of its

rows contains a single1 and0 elsewhere. Considering such an incidence matrixL̃

yields the errors̃q(k) − q(k) andF̃(k) − F(k) to be expressed as

q̃(k) − q(k) = Φinc
q ∆Qinc(k) + Φref

q ∆Qref(k) k = 1, . . . , N + 1, (21)

±(F̃(k)−F(k)) = Φinc
F ∆Qinc(k)+Φref

F ∆Qref(k) k = 1, . . . , N +1, (22)

13



where∆Qinc(k) and∆Qref(k) are expressed of the form

∆Q = L̃T Q̃ −Q. (23)

From the consistency property of the2−norm (see Section 2.4.1), it turns out from

Eqs. (21) and (22) that||q̃(k) − q(k)|| and||F̃(k) − F(k)|| are bounded as

||q̃(k) − q(k)|| ≤ ||Φinc
q || ||∆Qinc(k)|| + ||Φref

q || ||∆Qref(k)||

k = 1, . . . , N + 1, (24)

||F̃(k) − F(k)|| ≤ ||Φinc
F || ||∆Qinc(k)|| + ||Φref

F || ||∆Qref(k)||

k = 1, . . . , N + 1. (25)

It is worth emphasizing that the matricesΦinc
q andΦinc

F , as well as the matrices

Φref
q andΦref

F , are linked asΦref
q = RΦinc

q andΦref
F = −RΦinc

F , whereR is

a diagonal symmetry transformation matrix [1], i.e. which is unitary. This yields

||Φref
q || = ||Φinc

q || and ||Φref
F || = ||Φinc

F ||, because the2−norm is unitarily in-

variant (see Section 2.4.1). As a result, considering Eqs. (24) and (25) yields

||q̃(k) − q(k)|| ≤ ||Φinc
q ||

(
||∆Qinc(k)|| + ||∆Qref(k)||

)

k = 1, . . . , N + 1, (26)

||F̃(k) − F(k)|| ≤ ||Φinc
F ||

(
||∆Qinc(k)|| + ||∆Qref(k)||

)

k = 1, . . . , N + 1. (27)

To summarize, the issue behind the reduction of the norms||q̃(k) − q(k)|| and

||F̃(k) − F(k)|| is to reduce the term||∆Qinc(k)|| + ||∆Qref(k)||, i.e. to reduce

the error norms||∆Qinc(k)|| and ||∆Qref(k)||. Bounds of these error norms are

expressed as follows.
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Let us introduce the(n − m) × n incidence matrixLr such thatLT
r is uni-

tary andLT
r Lr + L̃T L̃ = In. The expected matrixLr is defined so that each of

its rows contains a single1 (whose location is actually imposed by the constraint

LT
r Lr + L̃T L̃ = In) and0 elsewhere.

Proposition 1. The error norms||∆Qinc(k)|| and ||∆Qref(k)|| are bounded as

||∆Q|| ≤ ||Q̃ − L̃Q|| + ||LrQ||. (28)

Proof. Let us denote asQ either Qinc(k) or Qref(k). Considering thatQ =

L̃T L̃Q + (In − L̃T L̃)Q and using the fact thatLT
r Lr + L̃T L̃ = In yields

Q = L̃T L̃Q + LT
r LrQ. (29)

According to Eq. (23),∆Q is expressed as̃LT Q̃ − Q which, according to Eq.

(29), gives

∆Q = L̃T (Q̃ − L̃Q) − LT
rLrQ. (30)

It follows that ||∆Q|| is bounded as

||∆Q|| ≤ ||L̃T (Q̃ − L̃Q)|| + ||LT
r LrQ||. (31)

Considering that̃LT andLT
r are unitary (by definition) yields||L̃T (Q̃ − L̃Q)|| =

||Q̃ − L̃Q|| and ||LT
r LrQ|| = ||LrQ|| (since the2−norm is unitarily invariant).

Taking into account these results in Eq. (31) leads to Eq. (28), as expected. �

In Eq. (28),L̃Q andQ̃ are the vectors of wave amplitudes associated to the

retained wave modes{Φ̃j}j , respectively computed (cf. Eqs. (15) and (16)) using
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the full wave basis{Φj}j and the reduced wave basis{Φ̃j}j . On the other hand,

LrQ is the vector of wave amplitudes associated to the residual wave modes –

i.e. which are not included in the reduced basis{Φ̃j}j – computed using the full

wave basis{Φj}j . According to Proposition 1, the error||∆Q|| involved by the

reduction of the wave basis reveals two aspects. One is linked to the norm||Q̃ −

L̃Q|| which addresses the accuracy of the reduced model to computethe wave

amplitudes of the retained wave modes; the other one is linked to the norm||LrQ||

which addresses the error involved when the residual wave modes are omitted in

the WFE matrix formulation (cf. Eqs. (15) and (16)).

To summarize, the model reduction strategy can be understood as seeking a

wave basis{Φ̃j}j with optimal reduced size for minimizing the term||Q̃−L̃Q||+

||LrQ||. Such an issue is addressed in the next section, consideringthe case of sin-

gle waveguides subjected to Neumann and Dirichlet boundaryconditions (the case

of coupled waveguides will be discussed in Section 4).

3. MOR strategy

3.1. Preliminary comments

Let us consider a single waveguide involving Neumann / Dirichlet bound-

ary conditions over its left and right ends (cf. for instanceFigures 1(a-c)). Eq.

(28) expresses a bound for the error norm||∆Q||, i.e. either ||∆Qinc(k)|| or

||∆Qref(k)|| (it is worth recalling that these norms are to be considered for ev-

ery substructure boundaryk (k = 1, . . . , N + 1)). According to Eq. (9), the

vector of wave amplitudesQref(k) writes asQinc⋆(k), say it can be deduced from

the vector of wave amplitudesQinc(k) by considering the following substitutions

C → C
⋆ and F → F

⋆ (cf. Eq. (12)). In other words, the minimization prob-
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lem of ||∆Qinc(k)|| + ||∆Qref(k)|| (see Section 2.4.2) can be deduced from the

consideration of the error norm||∆Qinc(k)|| only, the latter being bounded as (cf.

Proposition 1)

||∆Qinc(k)|| ≤ ||Q̃inc(k) − L̃Qinc(k)|| + ||LrQ
inc(k)||

k = 1, . . . , N + 1. (32)

In order to quantify the contribution of any wave mode for reducing the bound pro-

vided by Eq. (32), it is proposed to derive the vectors of waveamplitudesQinc(k)

andQ̃inc(k) by means of the wave parameters{µj}j and{µ̃j}j (see Section 2),

as well as the waveguide boundary conditions (cf. Eq. (12)).The key idea is

to consider a finite number of forward and backward passings of waves along the

waveguide for expressingQinc(k) andQ̃inc(k). Such a strategy is proposed here-

after.

3.2. Expression of the vectors of wave amplitudes

Considering Eq. (5), the vector of wave amplitudesQinc(k) is expressed as

µ
k−1Qinc(1). Invoking Eqs. (9) and (11) yieldsQinc(1) = Qref⋆, while invoking

the boundary conditions (12) leads to

Qinc(k) = µ
k−1

(
C

⋆Qinc⋆ + F
⋆
)

k = 1, . . . , N + 1. (33)

According to Eqs. (14) and (12), Eq. (33) results in

Qinc(k) = µ
k−1

(
C

⋆
µ

N
(
CQinc + F

)
+ F

⋆
)

k = 1, . . . , N + 1. (34)

Considering Eqs. (10) and (5) yieldsQinc = Qinc(N+1) = µ
N−(k−1)Qinc(k). As

a result, Eq. (34) can be written as

Qinc(k) = AkQ
inc(k) + Bk k = 1, . . . , N + 1, (35)
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where

Ak = µ
k−1

C
⋆
µ

N
Cµ

N−(k−1) k = 1, . . . , N + 1, (36)

Bk = µ
k−1

(
C

⋆
µ

N
F + F

⋆
)

k = 1, . . . , N + 1. (37)

Here,Ak is an×n matrix that denotes the attenuation of wave amplitudes induced

by two reflections (one for each boundary) after one forward and backward passing

of waves along the waveguide, i.e. until the waves reach the starting position at the

substructurek. Otherwise,Bk is a n × 1 vector that denotes the influence of

excitation sources during such a forward and backward passing of waves along the

waveguide. Expressing Eq. (35) by recurrence, afters − 1 iterations, leads to

(In − As
k)Q

inc(k) = E(k)
s k = 1, . . . , N + 1 ∀s ≥ 1, (38)

whereE(k)
s represents the vector of wave amplitudes resulting froms forward and

backward passings of waves along the waveguide:

E(k)
s =




s−1∑

p=0

A
p
k


Bk k = 1, . . . , N + 1 ∀s ≥ 1. (39)

On the other hand, considering a reduced wave basis{Φ̃j}j (i.e. with a same

numberm ≤ n of incident and reflected wave modes) instead of the full wavebasis

{Φj}j , the vector of wave amplitudes is to be expressed asQ̃inc(k). Considering

the aforementioned derivations simply yields

(Im − Ãs
k)Q̃

inc(k) = Ẽ(k)
s k = 1, . . . , N + 1 ∀s ≥ 1, (40)

where the tilde sign means that vectors and matrices have been expressed using the

reduced wave basis{Φ̃j}j instead of the full wave basis{Φj}j . In this case,̃Ak

andẼk refer to am×m matrix and am×1 vector, respectively, whose expressions

follow directly from Eqs. (36) and (39).
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Eqs. (38) and (40) involve the vectors of wave amplitudesQinc(k) andQ̃inc(k),

respectively. They can be simplified provided that the following assumption is

made:

Assumption 1. The spectral radii of the matricesAk and Ãk are less than one,

i.e. ρ(Ak) < 1 andρ(Ãk) < 1.

This assumption can be justified as follows. From Eq. (36), sinceρ(Ak) ≤

||Ak|| andρ(Ãk) ≤ ||Ãk|| (by definition of the spectral radius), it is easy to see

thatρ(Ak) ≤ ||µ||2N ||C|| ||C⋆|| while ρ(Ãk) ≤ ||µ̃||2N ||C̃|| ||C̃⋆|| (N being the

number of substructures considered along the waveguide). Since ||µ̃|| ≤ ||µ|| < 1

(see below Eq. (20)), Assumption 1 appears to be satisfied provided that (i)||µ||

is small enough compared to one (this in fact depends on the waveguide damping

[15]) and (ii) a sufficient numberN of substructures is considered, i.e. the waveg-

uide is long enough.

Assumption 1 particularly means that there exists an integer s0 ≥ 1 such that

||As
k|| < 1 and||Ãs

k|| < 1 ∀s ≥ s0. In this framework, invoking Neumann series

expansions(In −As
k)

−1 = In +
∑∞

q=1 A
sq
k and(Im − Ãs

k)
−1 = Im +

∑∞
q=1 Ã

sq
k

in Eqs. (38) and (40) enables the vectors of wave amplitudesQinc(k) andQ̃inc(k)

to be expressed as

Qinc(k) = E(k)
s +




∞∑

q=1

A
sq
k


E(k)

s k = 1, . . . , N + 1 ∀s ≥ s0, (41)

and

Q̃inc(k) = Ẽ(k)
s +




∞∑

q=1

Ã
sq
k


 Ẽ(k)

s k = 1, . . . , N + 1 ∀s ≥ s0. (42)
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The convergence of the Neumann series involved in these equations is readily

proved since||As
k|| < 1 and ||Ãs

k|| < 1. In these equations,E(k)
s and Ẽ

(k)
s de-

note the contributions ofs forward and backward passings of waves along the

waveguide for describing the vectors of wave amplitudesQinc(k) andQ̃inc(k) (see

above); on the other hand,(
∑∞

q=1 A
sq
k )E

(k)
s and(

∑∞
q=1 Ã

sq
k )Ẽ

(k)
s result from the

consideration of additional sets ofs forward and backward wave passings for de-

scribing these vectors of wave amplitudes.

3.3. Error norms

3.3.1. General expressions

It is worth recalling that the error norm||∆Qinc(k)|| is estimated from Eq.

(32) by means of the error norms||Q̃inc(k) − L̃Qinc(k)|| and ||LrQ
inc(k)||. In

Appendices A and B, it is shown that these error norms are bounded as

||Q̃inc(k) − L̃Qinc(k)||

≤




∞∑

q=0

||Ãs
k||

q


 ||Ẽ(k)

s − L̃E(k)
s || +




∞∑

q=1

||Ãsq
k L̃ − L̃A

sq
k ||


 ||E(k)

s ||

k = 1, . . . , N + 1 ∀s ≥ s0, (43)

and

||LrQ
inc(k)|| ≤




∞∑

q=0

||As
k||

q


 ||LrE

(k)
s || +




∞∑

q=1

||LrA
sq
k L̃T ||


 ||E(k)

s ||

k = 1, . . . , N + 1 ∀s ≥ s0. (44)

Remarks.

• Bound of||Q̃inc(k) − L̃Qinc(k)|| (Eq. (43)):

Since||Ãs
k|| < 1 for s ≥ s0 (cf. Section 3.2), it turns out that

∑∞
q=0 ||Ã

s
k||

q =
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1/(1−||Ãs
k ||) (this is a classical result of geometric series). Thus, apart from

the consideration of the matrix norm||Ãs
k||, the first term on the right hand

side of Eq. (43) turns out to be linked with the error induced for approxi-

matingL̃E
(k)
s by Ẽ

(k)
s , i.e. by means of the reduced wave basis{Φ̃j}j . The

second term is more complicated to understand. It actually represents the

error induced for approximating a set ofm×n matrices{L̃A
sq
k }q by means

of m × n matrices{Ãsq
k L̃}q derived from the reduced wave basis{Φ̃j}j . If

one supposes that̃L = [Im|0m×(n−m)] andLr = [0(n−m)×m|In−m] yields

L̃A
sq
k = [L̃A

sq
k L̃T |L̃A

sq
k LT

r ] andÃ
sq
k L̃ = [Ãsq

k |0m×(n−m)]: thus, the issue

is to approximate{L̃A
sq
k L̃T }q by means of{Ãsq

k }q, but also to reduce the

norms of a set of coupling matrices{L̃A
sq
k LT

r }q.

• Bound of||LrQ
inc(k)|| (Eq. (44)):

Since||As
k|| < 1 for s ≥ s0 (cf. Section 3.2), it turns out that

∑∞
q=0 ||A

s
k||

q =

1/(1−||As
k||). Thus, apart from the consideration of the matrix norm||As

k||,

the first term on the right hand side of Eq. (44) turns out to be linked with the

error induced when the vectorLrE
(k)
s is neglected for describingQinc(k),

i.e. when the residual wave modes are omitted. Otherwise, the second term

relates the error induced when a set of coupling matrices{LrA
sq
k L̃T}q are

neglected for expressingQinc(k).

A bound of ||∆Qinc(k)|| is obtained by summing Eqs. (43) and (44). It is

worth noting that this bound is to be addressed for every substructure boundaryk

(k = 1, . . . , N + 1) considered along the waveguide (cf. Figure 2). To avoid the

issue of analyzing thoseN + 1 values of the bound, it is proposed to treat with its

maximum value only. Considering that Eqs. (43) and (44) are expressed in terms of

E
(k)
s andẼ

(k)
s , i.e. by means ofBk andB̃k (cf. Eq. (39)), the maximum bound of
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||∆Qinc(k)|| is likely to be reached at the substructure boundary where the norms

||Bk|| and ||B̃k|| are maximum. This substructure boundary is easily found to

be the left end of the waveguide – namely the substructure boundary1 – where

B1 = C
⋆
µ

N
F + F

⋆. The fact that||Bk|| and||B̃k|| are maximum at this location

is readily proved from Eq. (37), considering that||Bk|| ≤ ||µ||k−1||B1|| < ||B1||

and||B̃k|| ≤ ||µ̃||k−1||B̃1|| < ||B̃1|| (because||µ|| < 1 and||µ̃|| < 1). Consid-

ering this substructure boundary1, the vector of wave amplitudesQinc(1) is to be

expressed asQref⋆ (see Section 2.2), while the vectorE
(1)
s can be expressed as

Es =




s−1∑

p=0

Ap


B ∀s ≥ 1, (45)

where

A = A1 = C
⋆
µ

N
Cµ

N , B = B1 = C
⋆
µ

N
F + F

⋆. (46)

To summarize, a bound of||∆Qinc(k)|| follows as||∆Qinc(k)|| ≤ ||∆Qref⋆|| ∀k,

where||∆Qref⋆|| is bounded from Eqs. (32), (43) and (44) as

||∆Qref⋆||

≤




∞∑

q=0

||Ãs||q


 ||Ẽs − L̃Es|| +




∞∑

q=0

||As||q


 ||LrEs||

+




∞∑

q=1

||ÃsqL̃ − L̃Asq||


 ||Es|| +




∞∑

q=1

||LrA
sqL̃T ||


 ||Es||

∀s ≥ s0. (47)

On the other hand, a bound of||∆Qref(k)|| (i.e. invoking the amplitudes of

the reflected wave modes) is deduced from the summation of Eqs. (43) and (44),

considering the following substitutions:Ak → A⋆
k = µ

N−(k−1)
Cµ

N
C

⋆
µ

k−1

22



andBk → B⋆
k = µ

N−(k−1)(Cµ
N

F
⋆ + F) (such expressions ofA⋆

k andB⋆
k are

obtained by expressingQref(k) on the same scheme asQinc(k) (cf. Section 3.2),

i.e. considering Eqs. (9), (11-14)). Also, the bound of||∆Qref(k)|| follows from

the consideration of the maximum values of||B⋆
k|| and ||B̃⋆

k||: in this case, the

corresponding substructure boundary is found to be the right end of the waveguide

– namely the substructure boundaryN + 1 – where

A⋆ = A⋆
N+1 = Cµ

N
C

⋆
µ

N , B⋆ = B⋆
N+1 = Cµ

N
F

⋆ + F. (48)

To summarize, a bound of||∆Qref(k)|| follows as||∆Qref(k)|| ≤ ||∆Qref|| ∀k,

where||∆Qref|| is bounded as

||∆Qref||

≤




∞∑

q=0

||Ã⋆s||q


 ||Ẽ⋆

s − L̃E⋆
s|| +




∞∑

q=0

||A⋆s||q


 ||LrE

⋆
s||

+




∞∑

q=1

||Ã⋆sqL̃ − L̃A⋆sq||


 ||E⋆

s|| +




∞∑

q=1

||LrA
⋆sqL̃T ||


 ||E⋆

s||

∀s ≥ s⋆
0, (49)

where

E⋆
s =




s−1∑

p=0

A⋆p


B⋆ ∀s ≥ 1. (50)

In Eq. (49),s⋆
0 ≥ 1 is an integer defined such that||A⋆s

k || < 1 and||Ã⋆s
k || < 1 for

s ≥ s⋆
0. To ensure the existence of such an integer, it is assumed that the spectral

radii of the matricesA⋆
k andÃ⋆

k are less than one, i.e. as already stated for the

matricesAk andÃk (see Assumption 1).
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3.3.2. Simplified expressions

According to Eqs. (26) and (27), the key issue behind the proposed MOR

strategy is to minimize the term||∆Qinc(k)|| + ||∆Qref(k)||. A bound for this

term is found by summing Eqs. (47) and (49). At first glance, the minimization

of the resulting expression appears quite complex to carry out with regard to the

different summations which are involved in these equations. To solve this issue,

further simplifications are proposed. Eq. (47) is considered first.

The first idea behind the simplification of Eq. (47) is to introduce the following

relative errorsǫE1 , ǫE2 , ǫA1 andǫA2 :

ǫE1 =
||Ẽs − L̃Es||

||Es||
, ǫE2 =

||LrEs||

||Es||
, (51)

ǫA1 =
||ÃsL̃ − L̃As||

||As||
, ǫA2 =

||LrA
sL̃T ||

||As||
. (52)

Also, it is proposed to consider the following assumption:

Assumption 2. The norms of the matricesAs and Ãs are such that||Ãs|| ≤

||As||.

This assumption appears to be satisfied provided that the relative errorǫA1 is

small enough1, which is what is expected for minimizing||∆Qinc(k)|| (see later).

In other words, this assumption does not seem to constitute apenalization of the

minimization procedure.

1In this case, one has̃AsL̃ ≈ L̃As, i.e. ||ÃsL̃|| ≈ ||L̃As|| and thus||Ãs|| ≤ ||As||, because

||ÃsL̃|| = ||Ãs|| (indeed,ÃsL̃ can be written as[Ãs|0m×(n−m)] (see Remarks below Eq. (44)))

while ||L̃As|| ≤ ||L̃|| ||As|| = ||As|| since||L̃|| = 1 (see below Eq. (B-2)).
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The second idea behind the simplification of Eq. (47) lies in the following

proposition:

Proposition 2. ||ÃsqL̃ − L̃Asq|| and ||LrA
sqL̃T || are bounded as

||ÃsqL̃− L̃Asq|| ≤ qǫA1 ||As||q , ||LrA
sqL̃T || ≤ qǫA2 ||As||q ∀q ≥ 1.

(53)

Proof. To prove that||ÃsqL̃ − L̃Asq|| ≤ qǫA1 ||As||q, let us consider the de-

compositionsÃsqL̃ = ÃsÃs(q−1)L̃ andL̃Asq = L̃AsAs(q−1). Considering that

L̃As = L̃As − ÃsL̃ + ÃsL̃ yields

ÃsqL̃−L̃Asq = Ãs(Ãs(q−1)L̃−L̃As(q−1))+(ÃsL̃−L̃As)As(q−1) ∀q ≥ 1.

(54)

Introducing the notations∆q = ÃsqL̃−L̃Asq, Eq. (54) reduces to∆q = Ãs∆q−1+

∆1A
s(q−1). This defines a recurrence equation that can be solved without difficulty

to yield ∆q =
∑q

t=1 Ãs(t−1)∆1A
s(q−t). Considering that||Ãs(t−1)|| ≤ ||Ãs||t−1

and||As(q−t)|| ≤ ||As||q−t leads to||∆q|| ≤
∑q

t=1 ||Ã
s||t−1||As||q−t||∆1||. Tak-

ing into account that||Ãs|| ≤ ||As|| (Assumption 2) yields||∆q|| ≤
∑q

t=1 ||∆1|| ||A
s||q−1 =

q||∆1|| ||A
s||q−1. The expected result is found by means of Eq. (52) since||∆1|| =

ǫA1 ||As||.

To prove that||LrA
sqL̃T || ≤ qǫA2 ||As||, let us consider the decompositionLrA

sqL̃T =

LrA
s(q−1)AsL̃T . SinceL̃T L̃ + LT

r Lr = In (cf. above Proposition 1), it follows

thatLrA
sqL̃T = LrA

s(q−1)L̃T L̃AsL̃T + LrA
s(q−1)LT

r LrA
sL̃T . Considering

that ||L̃AsL̃T || ≤ ||As|| and ||LrA
s(q−1)LT

r || ≤ ||As(q−1)|| (since ||L̃T || =

||LT
r || = ||L̃|| = ||Lr|| = 1 (see below Eq. (B-2))) while||As(q−1)|| ≤ ||As||q−1
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yields ||LrA
sqL̃T || ≤ ||LrA

s(q−1)L̃T || ||As|| + ||As||q−1||LrA
sL̃T ||. This de-

fines a recurrence relation whose solution is||LrA
sqL̃T || ≤

∑q
t=1 ||A

s||t−1||LrA
sL̃T || ||As||q−t.

This yields||LrA
sqL̃T || ≤ q||LrA

sL̃T || ||As||q−1. The expected result is found

by means of Eq. (52) since||LrA
sL̃T || = ǫA2 ||As||. �

According to Assumption 2 and Proposition 2, Eqs. (51), (52)and (53) enable

Eq. (47) to be expressed as

||∆Qref⋆|| ≤







∞∑

q=0

||As||q


 (ǫE1 + ǫE2 ) +




∞∑

q=1

q||As||q


 (ǫA1 + ǫA2 )


 ||Es||

∀s ≥ s0. (55)

Further simplifications of this equation can be brought taking into account some

classical results of the theory of mathematical series, for||As|| < 1:

∞∑

q=0

||As||q = lim
u→∞

(
1 − ||As||u+1

1 − ||As||

)
=

1

1 − ||As||
∀s ≥ s0, (56)

∞∑

q=1

q||As||q = lim
u→∞

(
||As||

1 − (u + 1)||As||u + u||As||u+1

(1 − ||As||)2

)

=
||As||

(1 − ||As||)2
∀s ≥ s0, (57)

where the integers0 is defined such that||As|| < 1 ∀s ≥ s0 (see above Eq.

(41)). The result provided by Eq. (56) is classical while Eq.(57) follows from the

consideration that
∑u

q=1 q||As||q = ||As||∂(
∑u

q=0 ||A
s||q)/∂||As||. Considering

Eqs. (56) and (57) yields Eq. (55) to be written as

||∆Qref⋆|| ≤

[
(ǫE1 + ǫE2 ) +

||As||

1 − ||As||
(ǫA1 + ǫA2 )

]
||Es||

1 − ||As||

∀s ≥ s0. (58)
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Otherwise, Eq. (38) yieldsEs = (In − As)Qinc(1) = (In − As)Qref⋆, i.e.

||Es|| ≤ (1 + ||As||)||Qref⋆||. As a result, Eq. (58) leads to

||∆Qref⋆|| ≤

[
(ǫE1 + ǫE2 ) +

||As||

1 − ||As||
(ǫA1 + ǫA2 )

]
1 + ||As||

1 − ||As||
||Qref⋆||

∀s ≥ s0. (59)

Eq. (59) provides a simplified bound of the error norm||∆Qinc(k)||, ∀k (cf. above

Eq. (47)). On the other hand, a bound of the error norm||∆Qref(k)|| (cf. above Eq.

(49)) follows from Eq. (59), considering the conventionsA → A⋆, B → B⋆ and

provided that||Ã⋆s|| ≤ ||A⋆s|| (cf. Assumption 2). This bound is readily written

as

||∆Qref|| ≤

[
(ǫE

⋆

1 + ǫE
⋆

2 ) +
||A⋆s||

1 − ||A⋆s||
(ǫA

⋆

1 + ǫA
⋆

2 )

]
1 + ||A⋆s||

1 − ||A⋆s||
||Qref||

∀s ≥ s⋆
0. (60)

Thus, considering Eqs. (59) and (60), a bound of||∆Qinc(k)|| + ||∆Qref(k)||

results in

||∆Qref⋆|| + ||∆Qref||

≤

[
(ǫE1 + ǫE2 ) +

||As||

1 − ||As||
(ǫA1 + ǫA2 )

]
1 + ||As||

1 − ||As||
||Qref⋆||

+

[
(ǫE

⋆

1 + ǫE
⋆

2 ) +
||A⋆s||

1 − ||A⋆s||
(ǫA

⋆

1 + ǫA
⋆

2 )

]
1 + ||A⋆s||

1 − ||A⋆s||
||Qref||

∀s ≥ max{s0, s
⋆
0}. (61)

Eq. (61) is readily rewritten by means of the following parameterEs:

Es = max

{[
(ǫE1 + ǫE2 ) +

||As||

1 − ||As||
(ǫA1 + ǫA2 )

]
1 + ||As||

1 − ||As||
,

[
(ǫE

⋆

1 + ǫE
⋆

2 ) +
||A⋆s||

1 − ||A⋆s||
(ǫA

⋆

1 + ǫA
⋆

2 )

]
1 + ||A⋆s||

1 − ||A⋆s||

}
, (62)

which yields

||∆Qref⋆|| + ||∆Qref|| ≤ Es(||Q
ref⋆|| + ||Qref||)

∀s ≥ max{s0, s
⋆
0}. (63)
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To summarize, according to Eqs. (26) and (27), the error norms ||q̃(k) − q(k)|| and

||F̃(k)−F(k)|| involved by the reduced WFE matrix formulation for computing the

displacements and internal forces (over any substructure boundaryk considered

along the waveguide) are bounded as

||q̃(k) − q(k)|| ≤ Es||Φ
inc
q ||(||Qref⋆|| + ||Qref||)

∀s ≥ max{s0, s
⋆
0}, (64)

||F̃(k) − F(k)|| ≤ Es||Φ
inc
F ||(||Qref⋆|| + ||Qref||)

∀s ≥ max{s0, s
⋆
0}. (65)

In these equations,||Φinc
q ||(||Qref⋆||+ ||Qref||) and||Φinc

F ||(||Qref⋆||+ ||Qref||)

can be viewed as bounds of||q(k)|| and ||F(k)|| (this is explained since||Qref⋆||

and||Qref|| are expected to be the maximum values of||Qinc(k)|| and||Qref(k)|| )

2. In this sense, the parameterEs appears as a measure of the relative errors induced

when approximating the vectors of displacementsq(k) and forcesF(k) by means

of a reduced wave basis (cf. Eqs. (17) and (18))3. As a result, reducingEs is the

key idea behind the wave mode selection strategy.

3.3.3. Features of the error boundEs

Considering Eq. (62), the WFE reduced formulation involvestwo kinds of

errors for expressing the vectors of displacements and forces. The first one is

linked to(ǫE1 + ǫE2 ) and(ǫE
⋆

1 + ǫE
⋆

2 ), say for approximating the vectorsEs andE⋆
s

2A justification of this statement follows from the discussions in Section 3.3.1.
3It is worth emphasizing that the computation of the vectors of wave amplitudes follows from

the matrix formulation (15), considering a reduced wave basis {Φ̃j}j instead of the full wave basis

{Φj}j .
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by means of the reduced vectorsẼs andẼ⋆
s; the second one is linked to(ǫA1 + ǫA2 )

and(ǫA
⋆

1 + ǫA
⋆

2 ), say for approximating the matricesAs andA⋆s by means of the

reduced matrices̃As andÃ⋆s.

When s → ∞, sinceρ(A) < 1 andρ(A⋆) < 1 (Assumption 1) and thus

lim
s→∞

||As|| = lim
s→∞

||A⋆s|| = 0, it appears thatEs → E∞ = max{(ǫE1 + ǫE2 ), (ǫE
⋆

1 +

ǫE
⋆

2 )}. In this case,Es andE⋆
s converge to the vectors of wave amplitudesQref⋆

andQref (a proof of this statement readily follows from Eq. (38), considering

that Es = E
(1)
s and Qref⋆ = Qinc(1)). Then the minimization problem is to

approximate the vectorsQref⋆ andQref explicitly by means of the reduced vectors

Q̃ref⋆ and Q̃ref. In particular, the problem is to reduce the contribution ofthe

residual wave modes, i.e.||LrQ
ref⋆|| and ||LrQ

ref||, for reducing the relative

errorsǫE2 andǫE
⋆

2 (cf. Eq. (51)). The solution consists in increasing the numberm

of retained wave modes so as to reduce the norms||LrQ
ref⋆|| and||LrQ

ref|| until

they reach an arbitrary small threshold (this is understoodsince these norms are

decreasing functions ofm) 4. The drawback of this procedure is that no rigorous

criterion exists to define this threshold exactly, which makes the strategy inefficient

for selecting precisely which wave modes are to be retained.

On the other hand, Eq. (62) states that(ǫA1 + ǫA2 ) and(ǫA
⋆

1 + ǫA
⋆

2 ) have to be

considered as additional sources of errors whens is not too large. Unlike the case

whens → ∞, the minimization ofEs appears not necessarily linked to an increase

of the numberm of retained modes. For instance, the term||ÃsL̃ − L̃As|| used

for expressingǫA1 does not appear necessarily as a decreasing function ofm. On

the contrary, once the components of the matrixÃsL̃ appear close to those of the

matrix L̃As – that is to say, when an optimal reduced wave basis has been found

–, every additional increase of the size of these matrices will induce an increase

4Indeed, the size ofLr is linked ton−m while the vectorsQref⋆ andQref do not depend onm.

29



of the error boundEs. From this point of view,Es appears sensitive when the size

of the wave basis is overestimated. This is the important feature of the proposed

MOR strategy. As a result, the issue is to manage a global minimization problem

among(ǫE1 +ǫE2 ) (resp.(ǫE
⋆

1 +ǫE
⋆

2 )) and(ǫA1 +ǫA2 ) (resp.(ǫA
⋆

1 +ǫA
⋆

2 )), for a given

integers. The error boundEs is much more restrictive thanE∞ in the sense that

it provides a clear answer for the number of wave modes that have to be retained.

This enables the selection of wave modes to be carried out in aquite qualitative

way, the required number of wave modes being exactly determined by seeking a

minimum value ofEs, i.e. for a particular reduced wave basis whose size is not

necessarily equal to the size of the full wave basis.

3.4. Selection of the wave modes

3.4.1. Introduction

The strategy for selecting the contributing wave modes is detailed as follows.

The key idea is to rank the wave modes in a preliminary step (see Section 3.4.3),

and then to plot the error boundEs as a function of the numberm of retained wave

modes (i.e. the firstm wave modes as ranked in this preliminary step). As a re-

sult, the strategy aims at identifying this number of retained wave modes which

corresponds to a minimum value of this functionm 7→ Es (the existence of such a

minimum follows from the comments in Section 3.3.3). For this task, the assump-

tions ||Ãs|| ≤ ||As|| as well as||Ã⋆s|| ≤ ||A⋆s|| need to be satisfied (Assumption

2), while it is assumed thatρ(A) < 1 as well asρ(A⋆) < 1 (Assumption 1). These

assumptions enable the error norms||q̃(k)−q(k)|| and||F̃(k)−F(k)|| to be bounded

as in Eqs. (64) and (65). It is worth recalling that Assumption 1 is satisfied pro-

vided that the number of substructures, or the waveguide damping, is high enough

(cf. comments below Assumption 1); also, Assumption 2 appears to be satisfied
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whenEs is small enough (cf. comments below Assumption 2).

It is worth emphasizing thatEs depends on the integers (i.e. the number of for-

ward and backward passings of waves along the waveguide), while it is frequency

dependent. Choosing an appropriate integers and an appropriate frequency for

expressingEs as a function of the numberm of retained wave modes only, appears

as a crucial task to undertake the minimization problem withless effort (e.g. re-

gardless of the discrete frequencies considered within thestudied frequency band).

Such an issue is addressed hereafter.

3.4.2. Expression of the error boundEs

Choice of the integers

The magnitude of the error boundEs is linked to(ǫE1 + ǫE2 ) and(ǫA1 + ǫA2 ), as

well as(ǫE
⋆

1 + ǫE
⋆

2 ) and(ǫA
⋆

1 + ǫA
⋆

2 ) (cf. Eq. (62)). Additionally, it depends on

the magnitudes of||As||/(1− ||As||) and(1 + ||As||)/(1− ||As||), as well as the

magnitudes of(||A⋆s||)/(1−||A⋆s||) and(1+ ||A⋆s||)/(1−||A⋆s ||). Choosing an

integers high enough so that these magnitudes are small enough is a crucial task for

computing small values ofEs (i.e. if one aims at stating that the reduced model is

accurate for predicting the dynamic behavior of the waveguide). However,s has to

be small enough if one requires(ǫA1 + ǫA2 ) and(ǫA
⋆

1 + ǫA
⋆

2 ) to impact significantly

the magnitude ofEs (see discussions in Section 3.3.3). As a rule of thumb, it is

proposed to chooses such that||As|| ≈ 0.1 and ||A⋆s|| ≈ 0.1. The motivation

behind this choice is that(1+ ||As||)/(1− ||As||) and(1+ ||A⋆s||)/(1− ||A⋆s||)

are enabled to be close to one, i.e. without overestimatingEs. As a result, it is

proposed to seek the integers as

s = max {u ≥ max{s0, s
⋆
0} : ||Au|| ≥ 0.1 , ||A⋆u|| ≥ 0.1} . (66)
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Choice of the frequency

The error boundEs (cf. Eq. (62)) is to be expressed at several discrete frequen-

cies, i.e. over the frequency band where the forced responseis to be computed. To

address this issue, it is proposed to consider the highest frequency only, whereEs

is likely to reach its maximum value. This is explained sincea maximum number

of wave modes are expected to contribute to the forced response, which means that

vectorsF, F
⋆ and matricesC, C

⋆ (cf. Eq. (12)) are expected to have a maximum

number of non-zero components (in other words, error norms for these vectors and

matrices are expected to be large); the same conclusion holds for the vectorsEs,

E⋆
s and the matricesAs, A⋆s, since they are expressed by means ofF, F

⋆, C and

C
⋆ (see Section 3.3.1). This means that the relative errorsǫE1 , ǫE2 , ǫA1 andǫA2 , as

well asǫE
⋆

1 , ǫE
⋆

2 , ǫA
⋆

1 andǫA
⋆

2 , are expected to be maximum.

To summarize, it is proposed to assess the error norms||q̃(k) − q(k)|| and

||F̃(k)−F(k)|| (see Eqs. (64) and (65)), at any discrete frequency considered within

the studied frequency band, by means of the boundEs formulated at the maximum

discrete frequency (considered within that frequency band) only.

3.4.3. Minimization of the error boundEs

As mentioned in Section 3.4.1, the key idea behind the minimization procedure

of the error boundEs is to rank the wave modes in a preliminary step. This pro-

cedure enablesEs to be considered as a function of the single variablem (i.e. the

first m wave modes as ranked in this preliminary step) for1 ≤ m ≤ n, wheren

is the total number of incident / reflected wave modes contained in the full wave
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basis. This procedure yields the minimization ofEs to be an easy task – indeed, this

requires us to plot the functionm 7→ Es and to identify its minimum value – which

is weakly expensive from the computational point of view5. The fact that such a

minimum value is likely to occur follows from the comments inSection 3.3.3.

Ranking the wave modes (as previously explained) efficiently appears as a key

issue to accelerate the convergence of the WFE reduced modelwhen the numberm

of retained wave modes increases. In other words, the objective behind the ranking

procedure is to find a minimum value ofEs which corresponds to a small value

of m, say a reduced basis of small size. This task requires us to provide a rough

estimate on how the wave modes are expected to contribute to the forced response.

A relevant solution is to rank the wave modes with respect to the magnitudes of the

components of the vectorsEs andE⋆
s – denoted as{Esj}j and{E⋆

sj}j , respectively

– as this yields the relative errorsǫE2 andǫE
⋆

2 to be strongly decreasing functions of

m (a justification of this statement follows from the discussions in Section 3.3.3).

Then the strategy for selecting the wave modes can be stated as follows:

1. Check thatρ(A) < 1 andρ(A⋆) < 1 (Assumption 1); if not, try to increase

the number of substructures or the waveguide damping;

2. Choose the integers according to Eq. (66);

3. Rank the wave modes with respect to the magnitudes of the components

{Esj}j ∪ {E⋆
sj}j ;

4. Compute the error boundEs by means of Eq. (62) at the highest frequency

considered within the studied frequency band, as a functionof m (i.e. the

first m wave modes as ranked in step 3);

5In fact, the procedure requires us to computeEs n times only (i.e. for1 ≤ m ≤ n), i.e. to

computeEs one single time for a givenm without scanning all the possible families ofm wave

modes for expressingEs.
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5. Define the domain of validity ofEs, i.e. when||Ãs|| ≤ ||As|| and||Ã⋆s|| ≤

||A⋆s|| (Assumption 2);

6. Identify the minimum value ofEs.

4. Application to coupled waveguides

4.1. Preliminary comments

The case of two waveguides1 and2 connected to an elastic junction, free from

excitation sources, is investigated (see Figure 1(d)). Following the WFE framework

(see Section 2.1), it is proposed to assess the behavior of each waveguidei (i =

1, 2) by means of wave modes{(µj)i, (Φj)i}j=1,...,2ni
. Also, it is proposed to

model the coupling junction by means of the matrixC described in Eq. (13). In

this sense, the relationships between the vectors of reflected and incident wave

amplitudes, at coupling interfaces, can be expressed as

Qref
i =

2∑

r=1

CirQ
inc
r i = 1, 2. (67)

Here, the reflected wave modes (denoted by means of the superscript ref) are to

be understood as the waves traveling outward from the junction, i.e. which are

induced by the incident wave modes for both waveguidesi andr.

Apart from the coupling conditions, considering the other boundaries of waveg-

uides1 and2 e.g. where forces or displacements can be applied, the relationships

between the vectors of reflected and incident wave amplitudes are quite similar to

Eq. (12), i.e.

Qref⋆
i = C

⋆
i Q

inc⋆
i + F

⋆
i i = 1, 2. (68)
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4.2. Error norms

The idea behind the MOR strategy is to approximate the vectors of displace-

mentsq
(ki)
i and internal forcesF(ki)

i of each waveguidei (i = 1, 2), over any

substructure boundaryki (ki = 1, . . . , Ni + 1, Ni being the number of sub-

structures used for describing the waveguidei) by means of a reduced wave basis

{(Φ̃j)i}j=1,...,2mi
(with a same numbermi ≤ ni of incident and reflected modes).

In this framework, the aim is to compute the forced response of the coupled struc-

ture using a reduced matrix formulation of small size2(m1 +m2) compared to the

conventional matrix formulation (whose size is2(n1 +n2)) obtained when the full

wave bases are considered (cf Eq. (16)). The related errors can be readily derived

on a same scheme as for Eqs. (26) and (27), i.e.
∥∥∥∥∥∥


 q̃

(k1)
1 − q

(k1)
1

q̃
(k2)
2 − q

(k2)
2




∥∥∥∥∥∥
≤ ||Φinc

q ||




∥∥∥∥∥∥


 ∆Q

inc(k1)
1

∆Q
inc(k2)
2




∥∥∥∥∥∥
+

∥∥∥∥∥∥


 ∆Q

ref(k1)
1

∆Q
ref(k2)
2




∥∥∥∥∥∥




k1 = 1, . . . , N1 + 1 k2 = 1, . . . , N2 + 1, (69)

and
∥∥∥∥∥∥


 F̃

(k1)
1 −F

(k1)
1

F̃
(k2)
2 −F

(k2)
2




∥∥∥∥∥∥
≤ ||Φinc

F ||




∥∥∥∥∥∥


 ∆Q

inc(k1)
1

∆Q
inc(k2)
2




∥∥∥∥∥∥
+

∥∥∥∥∥∥


 ∆Q

ref(k1)
1

∆Q
ref(k2)
2




∥∥∥∥∥∥




k1 = 1, . . . , N1 + 1 k2 = 1, . . . , N2 + 1, (70)

whereΦinc
q andΦinc

F are square(n1 + n2) × (n1 + n2) matrices defined as

Φinc
q =


 (Φinc

q )1 0

0 (Φinc
q )2


 , Φinc

F =


 (Φinc

F )1 0

0 (Φinc
F )2


 . (71)

In Eqs. (69) and (70),∆Q
inc(ki)
i and∆Q

ref(ki)
i (i = 1, 2) are expressed as∆Qi =

L̃T
i Q̃i − Qi, whereL̃i is anmi × ni incidence matrix such that̃LT

i is unitary (cf.
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Section 2.4.2). Considering as in Section 2.4.2 a(ni − mi) × ni incidence matrix

Lri – such thatLT
ri is unitary andLT

riLri + L̃T
i L̃i = Ini

∀i (cf. above Proposition

1) – yields the error norms on the right hand sides of Eqs. (69)and (70) to be

bounded as (cf. Eq. (28))
∥∥∥∥∥∥


 ∆Q1

∆Q2




∥∥∥∥∥∥
≤

∥∥∥∥∥∥


 Q̃1

Q̃2


 − L̃


 Q1

Q2




∥∥∥∥∥∥
+

∥∥∥∥∥∥
Lr


 Q1

Q2




∥∥∥∥∥∥
, (72)

whereL̃ andLr are(m1 +m2)× (n1 +n2) and(n1−m1 +n2−m2)× (n1 +n2)

matrices, respectively, defined as

L̃ =


 L̃1 0

0 L̃2


 , Lr =


 Lr1 0

0 Lr2


 . (73)

The derivation of Eq. (72) is based on the fact that bothL̃T andLT
r are unitary

matrices6. As suggested in Section 3.2, further derivation of the bound proposed

by Eq. (72) is achieved by expressing the vectors of wave amplitudesQinc(ki)
i and

Q
ref(ki)
i (i = 1, 2) in a suitable way. Using the methodology depicted in Section

3.2 while considering Eqs. (67) and (68) leads to

Q
inc(ki)
i = µ

ki−1
i

[
C

⋆
i µ

Ni

i

2∑

r=1

(
Cirµ

Nr−(kr−1)
r Qinc(kr)

r

)
+ F

⋆
i

]

ki = 1, . . . , Ni + 1 i = 1, 2, (74)

and

Q
ref(ki)
i = µ

Ni−(ki−1)
i

2∑

r=1

(
Cirµ

Nr
r

[
C

⋆
rµ

kr−1
r Qref(kr)

r + F
⋆
r

])

ki = 1, . . . , Ni + 1 i = 1, 2, (75)

whereµi is the diagonal matrix of the wave mode parameters{(µinc
j )i}j , defined

such that||µi|| < 1. Following the discussion in Section 3.3.1 while considering

6This statement is readily proved since the matricesL̃T
i andLT

ri are unitary∀i.
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Eqs. (74) and (75), it is proposed to assess the errors∆Q
inc(ki)
i and∆Q

ref(ki)
i

(i = 1, 2) as
∥∥∥∥∥∥


 ∆Q

inc(k1)
1

∆Q
inc(k2)
2




∥∥∥∥∥∥
≤ ||∆Qref⋆|| ,

∥∥∥∥∥∥


 ∆Q

ref(k1)
1

∆Q
ref(k2)
2




∥∥∥∥∥∥
≤ ||∆Qref|| ∀(k1, k2),

(76)

where

∆Qref⋆ =


 ∆Q

inc(1)
1

∆Q
inc(1)
2


 , ∆Qref =


 ∆Q

ref(N1+1)
1

∆Q
ref(N2+1)
2


 . (77)

Here,∆Qref⋆ refers to the error for the vectors of reflected wave amplitudes at the

left boundaries of the waveguides – i.e. whenk1 = 1 andk2 = 1 – where forces

and displacements are prescribed; also,∆Qref refers to the error for the vectors

of reflected wave amplitudes at the right boundaries of the waveguides – i.e. when

k1 = N1 + 1 and k2 = N2 + 1 – where coupling conditions are considered.

According to Section 3.2, bounds of||∆Qref⋆|| and ||∆Qref|| are derived from

the consideration of the following vectors of wave amplitudesQref⋆ andQref:

Qref⋆ =


 Q

inc(1)
1

Q
inc(1)
2


 , Qref =


 Q

ref(N1+1)
1

Q
ref(N2+1)
2


 . (78)

These vectors are readily expressed from Eqs. (74) and (75) as

Qref⋆ = AQref⋆ + B , Qref = A⋆Qref + B⋆, (79)

where

A =


 C

⋆
1µ

N1
1 C11µ

N1
1 C

⋆
1µ

N1
1 C12µ

N2
2

C
⋆
2µ

N2
2 C21µ

N1
1 C

⋆
2µ

N2
2 C22µ

N2
2


 , B =


 F

⋆
1

F
⋆
2


 , (80)

and

A⋆ =


 C11µ

N1
1 C

⋆
1µ

N1
1 C12µ

N2
2 C

⋆
2µ

N2
2

C21µ
N1
1 C

⋆
1µ

N1
1 C22µ

N2
2 C

⋆
2µ

N2
2


 , B⋆ =


 C11µ

N1
1 F

⋆
1 + C12µ

N2
2 F

⋆
2

C21µ
N1
1 F

⋆
1 + C22µ

N2
2 F

⋆
2


 .
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(81)

Bounds of the error norms||∆Qref⋆|| and||∆Qref|| result directly from Eqs. (47)

and (49),Es andE⋆
s being expressed as in Eqs. (45) and (50). It is worth recalling

that these bounds remain valid provided thatρ(A) < 1 andρ(A⋆) < 1 (Assump-

tion 1), while integerss0 ands⋆
0 (cf. Eqs. (47) and (49)) are to be considered such

that ||As|| < 1 for s ≥ s0 and||A⋆s|| < 1 for s ≥ s⋆
0.

As a result, a bound of||∆Qref⋆||+ ||∆Qref|| follows directly from Eq. (63).

It appears to be linked to the error boundEs previously defined in Eq. (62), pro-

vided that||Ãs|| ≤ ||As|| and||Ã⋆s|| ≤ ||A⋆s|| (Assumption 2). Also, the bounds

of ||q̃(k) − q(k)|| and||F̃(k) − F(k)|| result from Eqs. (64) and (65).

4.3. Selection of the wave modes

The selection of the wave modes for both waveguides1 and2 can be achieved

by considering the procedure depicted in Section 3.4. To address this task, it is

proposed to express the error boundEs as a function of a single variablem, i.e. the

number of incident / reflected wave modes retained for both waveguides1 and2.

In other words, it is proposed to assess the behavior of the waveguides using two

reduced wave bases{(Φ̃j)1}j and{(Φ̃j)2}j of same size2m, wherem = m1 =

m2.

As suggested in Section 3.4, the wave modes are to be ranked before under-

taking the minimization ofEs. This procedure enables the error boundEs to be

considered as a function of the single variablem (i.e. the firstm wave modes for

both waveguides1 and2, as ranked by the proposed procedure) whose minimum

value yields the number of wave modes to be retained. This ranking procedure

can be done independently for each waveguide, considering the components of the
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vectorsEs andE⋆
s that exhibit the largest magnitudes. In the present framework,

these vectors are expressed as

Es =


 Es1

Es2


 , E⋆

s =


 E⋆

s1

E⋆
s2


 , (82)

whereEsi andE⋆
si areni × 1 vectors associated to waveguidei (i = 1, 2). Thus,

the issue is to rank the wave modes of each waveguidei with respect to the mag-

nitudes of the components ofEsi andE⋆
si – denoted as{(Esj)i}j and{(E⋆

sj)i}j ,

respectively. As discussed in Section 3.4, this procedure enables the relative errors

ǫE2 andǫE
⋆

2 to be considered as strongly decreasing functions ofm. This yields the

convergence of the WFE formulation to be improved by considering reduced wave

bases of small size, constituted from the wave modes that efficiently contribute to

the dynamic behavior of the structure.

To summarize, the strategy for selecting the wave modes can be stated as fol-

lows:

1. Check thatρ(A) < 1 andρ(A⋆) < 1 (Assumption 1); if not, try to increase

the number of substructures (for each waveguide) or the waveguide damping;

2. Choose integers according to Eq. (66);

3. Rank the wave modes of each waveguidei (i = 1, 2) with respect to the

magnitudes of the components{(Esj)i}j ∪ {(E⋆
sj)i}j ;

4. Compute the error boundEs by means of Eq. (62) at the highest frequency

considered within the studied frequency band, as a functionof m (i.e. the

first m wave modes for both waveguides1 and2, as ranked in step 3);

5. Define the domain of validity ofEs, i.e. when||Ãs|| ≤ ||As|| and||Ã⋆s|| ≤

||A⋆s|| (Assumption 2);

6. Identify the minimum value ofEs.
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5. Numerical experiments

5.1. Validation of the MOR strategy

Let us consider the waveguides depicted in Figure 1, i.e.

• a clamped beam-like structure with thick cross-section whose left end is sub-

jected to a uniform transverse force field (Figure 1(a));

• a Reissner-Mindlin plate with one edge subjected to a prescribed transverse

displacement (Figure 1(b));

• a clamped sandwich beam with soft core and stiff skins whose left end (bot-

tom skin only) is subjected to a uniform transverse force field (Figure 1(c));

• two beam-like structures coupled with an elastic junction over one of their

boundaries, the other boundaries being respectively clamped and subjected

to a uniform transverse force field (Figure 1(d)).

The WFE matrix formulations for computing the forced response of such waveg-

uides are expressed by Eqs. (15) and (16) (see also ref. [1]).The relevance of

these formulations has been proved provided a sufficient number of wave modes

has been considered [1]. The classic model reduction strategy consists in retaining

the wave modes whose wavenumbers – computed at the smallest frequency con-

sidered within the involved frequency band – exhibit the smallest imaginary parts.

This turns out to be similar to retaining the wave modes for which the wave param-

eters{µ̃j}j (see Section 2) have the magnitudes that are closest to one. Following

this procedure, the frequency response functions of waveguides can be drawn as

shown in Figure 3(a-d), considering as number of incident / reflected wave modes

e.g.m = 30 for the beam,m = 60 for the plate,m = 80 for the sandwich structure

andm = 30 for the coupled system (say for each of the connected waveguides).
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The WFE solutions are compared to conventional FE solutionsinvolving the full

discretized models of the waveguides (cf. Figure 3). For this task, the quadratic

velocity of each waveguide7 at one measurement point (located in the excitation

area for the beam-like and sandwich structures; located in the middle of the free

left boundary for the plate) has been considered. Clearly, it is shown that the WFE

formulation suffers from a lack of convergence at high frequencies for predicting

the structure resonances and anti-resonances. To solve this issue, the sizes of the

wave bases need to be enlarged. The drawback of this approachis that a large num-

ber of wave modes can be taken into account, even if part of these modes weakly

contribute for expressing the forced responses. This is explained since the selec-

tion of the wave mode is carried out in accordance to the magnitudes of the wave

parameters{µ̃j}j (see above), i.e. considering only the way the wave modes are

propagating at a certain frequency (regardless of their contribution for describing

the boundary conditions of the waveguides).

Figure 3

In contrast, the MOR strategy based on the minimization of the error boundEs

(Eq. (62)) yields an efficient means for selecting the wave modes that effectively

contribute to the forced response, irrespective of the magnitudes of the wave pa-

rameters{µ̃j}j . In other words, non-contributing wave modes whose wave param-

eters might exhibit magnitudes close to one are removed fromthe reduced basis, as

opposed to the classic procedure. This explains why the present model reduction

strategy yields reduced bases of relative small sizes. The relevance of this strategy

for computing the forced response of waveguides is highlighted hereafter.

7i.e. the square of the magnitude of the total velocity, considering the three directions of space

for solid finite elements and the transverse direction for plate elements.
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Beam-like structure

A clamped beam-like structure with thick rectangular cross-section, whose left

end is subjected to a uniform force field, is considered (cf. Figure 1(a)). The

material and geometric characteristics of the structure are: Young’s modulusE =

2 × 1011 Pa, densityρ = 7800 kg.m−3, Poisson’s ratioν = 0.3, loss factorη =

0.01, lengthL = 2 m and cross-section areahy × hz = 0.2 m × 0.3 m. The

waveguide is discretized by means of200 identical substructures, each of these

being discretized by means of4 × 6 linear finite elements (see Figure 1(a)). In

this case, the number of incident / reflected wave modes involved for computing

the forced response of the waveguide isn = 105. Using a reduced wave basis

{Φ̃j}j with saym = 30 incident / reflected wave modes selected by means of

the classic procedure (see above) yields the forced response to be computed as

shown in Figure 3(a), over a frequency bandBf = [10 Hz , 104 Hz]. Compared

to the reference FE solutions involving the full discretized waveguide, the WFE

formulation based on the reduced basis{Φ̃j}j with m = 30 incident / reflected

wave modes appears as suffering from a lack of convergence for predicting the

structure anti-resonances above7000 Hz.

On the other hand, using the MOR strategy proposed in Section3.4 yields the

error boundEs to be drawn as shown in Figure 4. As previously stated, the issue

is to identify a minimum value ofEs with m small enough, while considering the

assumptions||Ãs|| ≤ ||As|| and ||Ã⋆s|| ≤ ||A⋆s|| as valid (cf. green shaded

areas in Figure 4). The minimum value ofEs clearly appears when the number of

incident / reflected modes ism = 26. Here,Es is close to zero (say under0.1%)

which means that the WFE solution is likely to be highly accurate. The fact that

such a clear minimum point can be sought follows from the consideration of the
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relative errors(ǫA1 + ǫA2 ) and (ǫA
⋆

1 + ǫA
⋆

2 ) for deriving Es (cf. Section 3.3.3).

Consideringm = 26 as the number of incident / reflected modes yields the forced

response to be drawn as shown in Figure 5. As expected, the convergence of the

WFE formulation is entirely satisfied over the whole frequency band.

Figure 4

Figure 5

Another way to test the accuracy of the MOR strategy proposedin this paper

(cf. Section 3.4) is to compute the relative error||q̃(k) − q(k)||/||q(k)|| involved

for expressing the vector of displacementsq(k) over any substructure boundaryk.

Following the discussion at the end of Section 3.3.2, it can be stated that this rel-

ative error can be assessed by means of the minimum value of the error boundEs,

which in the present case is small (under0.1%). To check this feature, the rela-

tive error||q̃(k) − q(k)||/||q(k)|| (as involved by the MOR strategy when26 wave

modes are selected (see above)) has been plotted as a function of the frequency,

considering the left end of the structure (i.e. the substructure boundaryk = 1,

where the excitation sources are applied). The result is shown in Figure 6. Also,

the relative error involved by the classic model reduction procedure withm = 30

incident / reflected wave modes has been plotted. As expected, the MOR strategy

based on the consideration of the error boundEs for selecting the wave modes ap-

pears accurate over the whole frequency bandBf . It is shown that the relative error

is of the same order as the minimum value ofEs overBf , say relatively small (it

could be emphasized that the relative error exhibits a few peaks with high magni-

tudes localized at very low frequencies, which are meaningless: this is explained

since the norm||q(1)|| can be very small at the structure anti-resonances, leadingto

high values of the relative error). In comparison, the relative error involved by the
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classic procedure appears considerably high. It increasesas the frequency does to

reach30% at104 Hz. Again, this clearly proves the relevance of the MOR strategy

proposed in the present paper.

Figure 6

Reissner-Mindlin plate

A square Reissner-Mindlin plate, with one edge subjected toa prescribed trans-

verse displacement, is considered (cf. Figure 1(b)). The material and geometric

characteristics of the structure are: Young’s modulusE = 2 × 1011 Pa, density

ρ = 7800 kg.m−3, Poisson’s ratioν = 0.3, loss factorη = 0.01, shear correc-

tion factorκ = 5/6, areaLx × Ly = 1 m × 1 m, thicknessh = 0.002 m. The

waveguide (i.e. the plate) is discretized by means of40 identical substructures

along thex−direction. The FE model of a representative substructure isshown

in Figure 1(b). It enablesn = 83 incident / reflected wave modes to be com-

puted for describing the forced response of the waveguide (see Section 2). Using

the classic wave mode selection procedure requires the reduced wave basis to be

considerably enlarged to reach the convergence of the WFE formulation [1]. For

instance, usingm = 60 incident / reflected wave modes yields the forced response

of the waveguide to be computed as shown in Figure 3(b), over afrequency band

Bf = [10 Hz , 2000 Hz]. In this case, the WFE formulation suffers from a lack of

convergence for predicting both structure resonances and anti-resonances, even at

low frequency. The issue is that some contributing wave modes exhibit wave pa-

rameters{µ̃j}j of very small magnitudes at low frequency (in other words, those

wave modes are strongly evanescent). Such high order wave modes need to be
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considered for capturing the highly fluctuating kinematic and mechanical fields,

especially around the plate corners where prescribed displacements apply.

On the other hand, using the MOR strategy proposed in Section3.4 yields the

error boundEs to be drawn as shown in Figure 7. As for the beam-like structure,

a minimum value ofEs clearly appears (the predicted error is less than1%). In

this case, the sought number of incident / reflected wave modes ism = 43. Using

these43 modes in the WFE matrix formulation (cf. Eq. (15)) yields theforced

response to be computed as shown in Figure 8. Again, the convergence of the

method appears to be perfectly satisfied over the whole frequency band. In this

case, the required number of wave modes appears considerably small compared to

the classic selection procedure.

Figure 7

Figure 8

As it was the case with the beam-like structure, the relativeerror involved for

expressing the vector of displacements over the left edge ofthe structure (substruc-

ture boundary1) – i.e. ||q̃(1) − q(1)||/||q(1)|| – can be computed as a function

of the frequency. The results provided by both MOR strategy based on the error

boundEs (i.e. withm = 43 incident / reflected wave modes) and classic procedure

(i.e. with m = 60 incident / reflected wave modes) are shown in Figure 9. Again,

the accuracy of the proposed MOR strategy is clearly highlighted; the relative error

appears less than1% over the whole frequency band. In other words, as stated in

Section 3.3.2, the relative error is of the same order as the minimum value ofEs

overBf .

Figure 9
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Sandwich structure

A clamped three-layered structure, consisting of a soft rubber core surrounded

by two stiff skins, is considered. The left end of the bottom skin is subjected to

a uniform transverse force field (cf. Figure 1(c)). The material and geometric

characteristics of the skins are: Young’s modulusEs = 2.1 × 1011 Pa, density

ρs = 7850 kg.m−3, Poisson’s ratioνs = 0.3, heighths = 2 × 10−3 m and width

50 × 10−3 m. Also, the material and geometric characteristics of the core are:

Young’s modulusEc = 1.5 × 106 Pa, densityρc = 950 kg.m−3, Poisson’s ratio

νc = 0.48, heighthc = 20 × 10−3 m and width50 × 10−3 m. The length of the

sandwich structure isL = 0.4 m. Dissipation phenomena are accounted for by

considering a same loss factorη = 0.02 for the three layers. The waveguide is dis-

cretized by means of200 identical three-layered substructures, each of these being

discretized using4×1 linear elements for the skins and4×4 linear elements for the

core (see Figure 1(c)). The number of incident / reflected wave modes involved for

computing the forced response of the waveguide isn = 105 (see Section 2). Using

a reduced wave basis{Φ̃j}j with saym = 80 incident / reflected wave modes se-

lected by means of the classic procedure (see above) yields the forced response as

shown in Figure 3(c), over a frequency bandBf = [50 Hz , 1500 Hz]. Compared

to the reference FE solution when the full waveguide is discretized, the WFE for-

mulation suffers from major drawbacks for predicting the structure resonances and

anti-resonances above1000 Hz, i.e. when the dynamics of the core are crucial.

Invoking the MOR strategy proposed in Section 3.4 yields theerror boundEs

to be considered (cf. Figure 10). The result is not as obviousas for the previous

cases (i.e. beam and plate). The error boundEs appears as a monotonous decreas-
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ing function ofm (i.e. the number of retained wave modes) without clear minima.

Regarding Eq. (62) and the discussions in Section 3.3.3, theissue is that the rela-

tive errors(ǫE1 + ǫE2 ) and(ǫE
⋆

1 + ǫE
⋆

2 ) exhibit values that are too large to balance

the value of(ǫA1 + ǫA2 ), (ǫA
⋆

1 + ǫA
⋆

2 ). Such a problem does not seem unsolvable.

Indeed, Figure 10 highlights two reasonable values of the error boundEs for m

small enough, i.e.Es ≈ 38% whenm = 33 andEs ≈ 18% whenm = 63. The re-

spective WFE solutions are plotted in Figure 11. Whenm = 33, the WFE solution

accuratly describes the structure behavior above700 Hz but suffers from severe

drawbacks at low frequencies. This is explained since the wave mode selection

criterion is carried out at the highest frequency withinBf (see Section 3.4.2), i.e.

some low-frequency contributing wave modes might have beenneglected. Consid-

eringm = 63 incident / reflected wave modes with a lower error boundEs clearly

solves this issue. As expected, the required number of wave modes appears quite

small compared to the classic selection procedure.

Figure 10

Figure 11

Again (see previous cases), the relative error||q̃(1)−q(1)||/||q(1)|| can be com-

puted as a function of the frequency, considering the vectorof the displacements

over the left boundary of the structure (substructure boundary 1) where the exci-

tation sources are applied. The results provided by both MORstrategy – when

63 incident / reflected wave modes are selected by means of the error boundEs –

and classic procedure with80 incident / reflected wave modes are shown in Fig-

ure 12. Again, the proposed MOR strategy appears more accurate compared to

the classic procedure. Also, as stated in Section 3.3.2, therelative error provided

by the proposed MOR strategy is of the same order as the value of Es (say, below
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18% whenm = 63) overBf , except around700 − 800 Hz. The fact that the er-

ror bound is computed at the highest frequency considered within Bf (see Section

3.3.2) can explain in part this lack of accuracy, although the frequency response

function depicted in Figure 11 is correctly predicted.

Figure 12

Two beam-like structures coupled with an elastic junction

Let us consider the coupled system depicted in Figure 1(d), involving two

beam-like waveguides connected to an elastic junction (i.e. a quarter of torus).

Apart from the coupling conditions, the other waveguide boundaries are respec-

tively submitted to a uniform transverse force field and clamped end. The dy-

namic behavior of the coupled system has been investigated in a recent paper [18],

over a frequency bandBf = [10 Hz , 5000 Hz] that enables the junction to un-

dergo resonances. The two waveguides, as well as the coupling junction, exhibit

the same material characteristics: Young’s modulusE = 3.2 × 109 Pa, density

ρ = 1180 kg.m−3, Poisson’s ratioν = 0.39, loss factorη = 0.01. The two waveg-

uides have the same cross-sectional areahy × hz = 0.2 m × 0.15 m, while their

respective lengths areL1 = 2 m andL2 = 1.5 m. The quarter of torus has an

internal radius of curvature ofRc = 0.05 m and a cross-section similar to those

of the connected waveguides. The two waveguides exhibit thesame cross-section

and are discretized by means of similar substructures whoserespective numbers

areN1 = 100 andN2 = 75. Each substructure is meshed using4 × 3 linear ele-

ments, yieldingn = 60 incident / reflected wave modes to be considered for each

waveguide for computing the forced response of the coupled system. A Lagrange
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multipliers formalism that enables the junction and the waveguides to be meshed

differently over the coupling interfaces is also considered [18]. Using two reduced

wave basis{(Φ̃j)1}j and{(Φ̃j)2}j (for waveguides1 and2, respectively) e.g. con-

sisting ofm1 = m2 = m = 30 incident / reflected wave modes, selected by means

of the classic procedure (see Section 5.1), yields the forced response of the coupled

system to be described as shown in Figure 3(d). In this case, since the substructures

used for both waveguides are similar, the reduced bases{(Φ̃j)1}j and{(Φ̃j)2}j

turn out to be similar. It is shown that the WFE formulation suffers from a lack

of convergence for predicting the system resonances and anti-resonances above

3000 Hz, i.e. when the local dynamics of the junction are of primary importance.

On the other hand, using the MOR strategy proposed in Section4.3 yields the

error boundEs to be drawn as shown in Figure 13. In this case, since the wave

modes are ranked independently for each waveguide (see Section 4.3), the reduced

bases{(Φ̃j)1}j and{(Φ̃j)2}j turn out to be different. These are constituted indi-

vidually considering them most contributing incident / reflected wave modes for

each waveguide. Considering Figure 13, a minimum value ofEs clearly appears,

as expected (here, the predicted error is less than0.001%!). The sought number of

incident / reflected wave modes appears to bem = 30. Using such reduced bases

{(Φ̃j)1}j and{(Φ̃j)2}j (i.e. constituted from the30 most contributing incident /

reflected wave modes for each waveguide) yields the forced response of the cou-

pled system to be computed as shown in Figure 14. The convergence of the method

completely agrees over the whole frequency band.

Figure 13

Figure 14

Again (see previous cases), the relative error||q̃
(1)
1 − q

(1)
1 ||/||q

(1)
1 || can be
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computed as a function of the frequency, considering e.g. the vector of the dis-

placements over the left boundary of the waveguide1 (substructure boundary1)

where the excitation sources are applied. The results are shown in Figure 15. Once

more, the accuracy of the proposed MOR strategy is clearly highlighted compared

to the classic procedure; considering the proposed MOR strategy yields the relative

error to be less than0.001% over the whole frequency band (as stated in Section

3.3.2, the relative error is correctly assessed by the minimum value ofEs overBf ).

Figure 15

5.2. Application to a plate radiating in an acoustic fluid

The MOR strategy appears to be very efficient for saving largeCPU time if for

instance one considers the computation of the power radiated by a plate in a sur-

rounding acoustic fluid. The fact that large CPU times are required for addressing

this kind of problem is explained since coupling terms amongwave modes (due

to the fluid) occur, leading to the computation of a full square matrix of radiation

impedance that is time consuming when many frequency steps are involved. In the

present case, a square Reissner-Mindlin plate whose characteristics are similar to

those depicted in Section 5.1 is considered. The structure is supposed to be sur-

rounded by an infinite rigid baffle while radiating in an acoustic fluid (air) whose

characteristics are: densityρ0 = 1 kg.m−3 and celerity of wavesc0 = 330 m.s−1.

The fluid is supposed to be inviscid and light, in the sense that its loading on the

plate is neglected. For this kind of problem, a relevant approach is to compute the

radiating power or, equivalently, the radiation efficiency. For this task, the method

of elementary radiators can be used [19]. This suggests to “discretize” the plate
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into elementary surfaces of same areaSradiator and constant normal velocities,

and to compute the radiation efficiency as

σ =
q̇H

n Rq̇n

ρ0c0Splate < (q̇n)2 >
, (83)

whereq̇n is the vector of normal velocities of the elementary radiators, expressed

asq̇n = iωqn whereqn is the vector of normal displacements; also,< (q̇n)2 > is

the mean quadratic velocity averaged over all the elementary radiators, defined as

< (q̇n)2 >=
1

2

1

Nrad

Nrad∑

k=1

|(q̇n)k|
2, (84)

whereNrad is the total number of elementary radiators that are used fordiscretizing

the plate, while(q̇n)k is the normal velocity of a given radiatork. Also, in Eq. (83),

Splate is the area of the plate whileR is a full square matrix whose components are

Rij =
ω2ρ0S

2
radiator

4πc0

sin(k0rij)

k0rij
(i 6= j) , Rii =

ω2ρ0S
2
radiator

4πc0
, (85)

wherek0 = ω/c0 is the acoustic wavenumber andrij is the distance between two

radiatorsi andj. A typical elementary radiator is depicted in Figure 16, with an

areaSradiator = Lx/20 × Ly/10 (Lx = 1 m andLy = 1 m being the length and

width of the plate). The normal velocity of each radiator is supposed to be constant

and equal to the normal velocity at its mid node (cf. Figure 16).

Figure 16

The WFE method can be used for approximating the vector of normal dis-

placements (and thus the vector of normal velocities) of these radiators asqn ≈

L′Φ̃qQ̃, whereΦ̃q = [Φ̃inc
q Φ̃ref

q ] (Φ̃ being the matrix of wave modes{Φ̃j}j),

Q̃ = [Q̃incT Q̃refT ]T is the vector of wave amplitudes andL′ is an incidence

matrix for capturing the normal displacements at the relevant DOFs. Thus, the
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numerator appearing on the right hand side of Eq. (83) can be written as

q̇H
n Rq̇n = ω2

∑

i≥1

Q̃H
[
µ
′(i−1)H

Φ̃H
q L′HRiiL

′Φ̃qµ
′(i−1)

]
Q̃ (86)

+2ω2
∑

i≥1

∑

j>i

Re

{
Q̃H

[
µ
′(i−1)H

Φ̃H
q L′HRijL

′Φ̃qµ
′(j−1)

]
Q̃

}
,

whereQ̃ is to be understood as the vector of wave amplitudes for the radiators

located at the left end of the plate; also,µ
′ is a diagonal matrix with components

{µ̃α
j }j ({µ̃j}j being the wave parameters already introduced in Section 2.1), where

α is an integer that “scales” the lengthd of a plate substructure (see Figure 1(b))

to the length of a radiator (i.e.Lx/20): in the present case,α = 2; finally, Rij is a

square matrix extracted from the matrixR (see above) and which relates the cou-

pling between two rows of radiatorsi andj, distant from|i− j|Lx/20. Otherwise,

expressing the denominator on the right hand side of Eq. (83)by means of WFE

wave modes does not add any more difficulty.

Regarding Eq. (86), the feature of the WFE approach is that the matrix terms

inside the square brackets do not depend on the plate boundary conditions. Once

these terms have been computed, the computation of the radiation efficiency can

be investigated for several kinds of boundary conditions with fewer CPU times

compared to the FE method. Nonetheless, even in the WFE framework, the CPU

times remain substantial. Indeed, the computation of the radiation efficiency based

on Eq. (86) requires many matrix multiplications and summations (for instance,

the second term in square brackets needs to be computed190 times) that have to be

considered at many discrete frequencies. To highlight thispoint, it is proposed to

compute the radiation efficiency considering1041 discrete frequencies uniformly

spread on a frequency bandBf = [10 Hz , 2000 Hz] (cf. Figure 17). Considering

the full wave basis (here, the number of incident / reflected modes isn = 83 (see

Section 5.1)) yields the CPU time to be11h2min12s using an IntelR© CoreTM 2
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Duo processor. Thus, reducing the sizes of the matrices and vectors involved in Eq.

(86) efficiently appears crucial for lowering this computational cost. Considering

the reduced wave basis provided by the MOR strategy with43 incident / reflected

modes (as established in Section 5.1), instead of the full wave basis, yields the

radiation efficiency to be computed as shown in Figure 17. Theresult appears

to be perfectly similar to those obtained when the full wave basis is considered, as

expected. But the main advantage of the MOR strategy lies in the fact that the CPU

time has been considerably reduced to1h27min24s. This yields the CPU time to

be reduced of87% compared to the case when the full wave basis is considered.

From this point of view, the relevance of the proposed MOR strategy is clearly

highlighted.

Figure 17

5.3. Application to coupled waveguides involving junctions with uncertain eigen-

frequencies

Another way to highlight the relevance of the proposed MOR strategy for sav-

ing large CPU times is to consider Monte Carlo simulations (MCS) involving many

iterations. Such an analysis has already been investigatedin a former paper [18]

considering two waveguides coupled with an elastic junction whose eigenfrequen-

cies exhibit slight uncertainties, i.e. when each junctioneigenfrequencỹωj/2π is

perturbed as̃ω0
j + δω̃j with |δω̃j/ω̃

0
j | ≤ 5%. In the work [18], a total number of

mc = 19 vibrational modes for the junction has been considered, whilem = 50 in-

cident / reflected wave modes have been used for each waveguide. The MOR strat-

egy proposed in the present work suggests that this number ofwave modes can be
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reduced tom = 30 without penalyzing the description of the waveguide behavior

(see Section 5.1). The results of MCS with100 arbitrary trials for the19 junction

eigenfrequencies are shown in Figure 18, considering respectively m = 50 wave

modes (classic approach) andm = 30 wave modes (MOR strategy) for the waveg-

uides. Also, the component-wise bounds of the frequency response function – as

derived in ref. [18] – have been highlighted. The results provided by the MOR

strategy appear similar to those provided by the classic wave mode selection pro-

cedure, as expected. The feature of the proposed MOR strategy is that it requires

38min25s for performing those MCS against1h9min38 s when the conventional

procedure is considered. This yields a reduction of the CPU time of45%.

Figure 18

6. Concluding remarks

A MOR strategy has been proposed within the wave finite element (WFE)

framework for selecting the wave modes which are relevant for computing the LF

and MF forced response of elastic waveguides. Single and coupled finite waveg-

uides under prescribed forces or displacements have been investigated. The pro-

posed approach is based on the reduction of error norms for describing the displace-

ments and forces along the waveguides. The strategy for expressing these error

norms consists in considering a finite number of forward and backward passings of

waves along the waveguides. The fact that a few wave passingsare considered is

the key idea behind the proposed MOR strategy. This enables the selection of the

wave modes to be carried out in a qualitative way, i.e. considering the minimization
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of an error bound which increases when the sizes of the wave bases are overesti-

mated. In many cases, the selection strategy provides a clear and unique answer to

the number of wave modes which are to be retained for any waveguide. The MOR

strategy enables the sizes of the wave bases to be reduced significantly compared

to the conventional approach, i.e. when the wave modes are selected with regard to

the magnitudes of their eigenvalues. The accuracy of the MORstrategy has been

clearly highlighted in both single and coupled waveguide cases. Also, its relevance

in terms of CPU time savings has been highlighted considering the computation of

the acoustic radiation of a square baffled plate, as well as Monte Carlo simulations

of a coupled system involving a junction with uncertain eigenfrequencies.

Appendix A. Bound of ||Q̃inc(k) − L̃Qinc(k)||

Considering Eqs. (41) and (42),̃Qinc(k) − L̃Qinc(k) is written as

Q̃inc(k) − L̃Qinc(k) = Ẽ(k)
s − L̃E(k)

s +
∞∑

q=1

(
Ã

sq
k Ẽ(k)

s − L̃A
sq
k E(k)

s

)

k = 1, . . . , N + 1 ∀s ≥ s0. (A-1)

A bound of||Q̃inc(k) − L̃Qinc(k)|| readily follows as

||Q̃inc(k) − L̃Qinc(k)|| ≤ ||Ẽ(k)
s − L̃E(k)

s || +

∞∑

q=1

||Ãsq
k Ẽ(k)

s − L̃A
sq
k E(k)

s ||

k = 1, . . . , N + 1 ∀s ≥ s0. (A-2)

Further investigation of this bound follows from the consideration thatÃsq
k Ẽ

(k)
s =

Ã
sq
k (Ẽ

(k)
s − L̃E

(k)
s ) + Ã

sq
k L̃E

(k)
s , which yields

Ã
sq
k Ẽ(k)

s − L̃A
sq
k E(k)

s = Ã
sq
k (Ẽ(k)

s − L̃E(k)
s ) + (Ãsq

k L̃ − L̃A
sq
k )E(k)

s

k = 1, . . . , N + 1 ∀s ≥ s0. (A-3)
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From the consistency property of the2−norm (see Section 2.4.1), Eq. (A-3) leads

to ||Ãsq
k Ẽ

(k)
s − L̃A

sq
k E

(k)
s || ≤ ||Ãs

k||
q||Ẽ

(k)
s − L̃E

(k)
s ||+ ||Ãsq

k L̃ − L̃A
sq
k || ||E

(k)
s ||

(to derive this inequality, it has been considered that||Ãsq
k || ≤ ||Ãs

k||
q). As a result,

Eq. (A-2) yields

||Q̃inc(k) − L̃Qinc(k)||

≤



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q=0

||Ãs
k||

q


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sq
k ||


 ||E(k)

s ||

k = 1, . . . , N + 1 ∀s ≥ s0. (A-4)

Appendix B. Bound of ||LrQ
inc(k)||

According to Eq. (41),||LrQ
inc(k)|| is bounded as

||LrQ
inc(k)|| ≤ ||LrE

(k)
s || +

∞∑

q=1

||LrA
sq
k E(k)

s ||

k = 1, . . . , N + 1 ∀s ≥ s0. (B-1)

Considering thatLrA
sq
k E

(k)
s = LrA

sq
k LT

rLrE
(k)
s + LrA

sq
k L̃T L̃E

(k)
s (because

LT
r Lr + L̃T L̃ = In (see above Proposition 1)), it turns out (from the consis-

tency property of the2−norm) that||LrA
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s || ≤ ||LrA
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k LT

r || ||LrE
(k)
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T
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k = In while the matrixLT
r is real orthogonal, i.e.LrL
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56



The matricesL̃T andLT
r are unitary, which means that||L̃T || = ||LT

r || = 1 but

also that||L̃|| = ||Lr|| = 1 (this is proved since||L̃|| = ||L̃T L̃||1/2 = ||L̃||1/2

and ||Lr|| = ||LT
r Lr||

1/2 = ||Lr||
1/2, since the2−norm is unitarily invariant).

Thus, according to the consistency property of the2−norm (see Section 2.4.1),
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r || ≤ ||Lr|| ||A
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k||

q
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s ||. Therefore, Eq. (B-2) leads to
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Figure 1: Illustration of several elastic waveguides and representative substructures: (a) beam-like structure; (b)plate; (c) sandwich structure; (d)

coupled beam-like structures.
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Figure 2: Representation of substructure boundaries (their number isN + 1 along the waveguide)

and representation of the conventions made to describe the incident / reflected waves at the left and

right boundaries of waveguides.
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Figure 3: Frequency response function (quadratic velocity(dB)) for beam-like structure (a), plate (b), sandwich structure (c), coupled system (d):

(——) FE reference solution; (• • •) WFE solutions when the wave modes are selected by the classic procedure (number of retained wave modes:

m = 30 (a),m = 60 (b), m = 80 (c) andm = 30 (d)).
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Figure 4: Error boundEs as a function of the numberm of incident / reflected wave modes for a

clamped beam-like structure whose left end is subjected to auniform transverse force field. (Green

shaded area): case where assumptions||Ãs|| ≤ ||As|| and||Ã⋆s|| ≤ ||A⋆s|| are satisfied.
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Figure 5: Frequency response function of a clamped beam-like structure whose left end is subjected

to a uniform transverse force field: (——) FE reference solution; (• • •) WFE solution withm = 26

wave modes selected by means of the error boundEs .
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Figure 6: Relative error involved for expressing the vectorof displacements over the left boundary

of the beam-like structure: (——) WFE solution withm = 30 wave modes selected by means of the

classic procedure; (——) WFE solution withm = 26 wave modes selected by means of the error

boundEs.
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Figure 7: Error boundEs as a function of the numberm of incident / reflected wave modes for

a Reissner-Mindlin plate with one edge subjected to a prescribed transverse displacement. (Green

shaded area): case where assumptions||Ãs|| ≤ ||As|| and||Ã⋆s|| ≤ ||A⋆s|| are satisfied.
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Figure 8: Frequency response function of a Reissner-Mindlin plate with one edge subjected to a

prescribed displacement: (——) FE reference solution; (• • •) WFE solution withm = 43 wave

modes selected by means of the error boundEs.
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Figure 9: Relative error involved for expressing the vectorof displacements over the left boundary

of the plate: (——) WFE solution withm = 60 wave modes selected by means of the classic

procedure; (——) WFE solution withm = 43 wave modes selected by means of the error boundEs.
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Figure 10: Error boundEs as a function of the numberm of incident / reflected wave modes for

a clamped sandwich structure whose left boundary (bottom skin only) is subjected to a uniform

transverse force field. (Green shaded area): case where assumptions||Ãs|| ≤ ||As|| and||Ã⋆s|| ≤

||A⋆s|| are satisfied.
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Figure 11: Frequency response function of a clamped sandwich structure whose left boundary (bot-

tom skin only) is subjected to a uniform transverse force field: (——) FE reference solution; (• •

•) WFE solution withm = 33 wave modes selected by means of the error boundEs; (• • •) WFE

solution withm = 63 wave modes selected by means of the error boundEs.
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Figure 12: Relative error involved for expressing the vector of displacements over the left boundary

of the sandwich structure: (——) WFE solution withm = 80 wave modes selected by means of the

classic procedure; (——) WFE solution withm = 63 wave modes selected by means of the error

boundEs.
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Figure 13: Error boundEs as a function of the numberm of incident / reflected wave modes for two

coupled waveguides subjected to prescribed forces. (Greenshaded area): case where assumptions

||Ãs|| ≤ ||As|| and||Ã⋆s|| ≤ ||A⋆s|| are satisfied.
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Figure 14: Frequency response function of two coupled waveguides subjected to prescribed forces:

(——) FE reference solution; (• • •) WFE solution withm = 30 wave modes selected by means of

the error boundEs.
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Figure 15: Relative error involved for expressing the vector of displacements over the left boundary

of waveguide1: (——) WFE solution withm = 30 wave modes selected by means of the classic

procedure; (——) WFE solution withm = 30 wave modes selected by means of the error boundEs.
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Figure 16: Illustration of a Reissner-Mindlin plate surrounded by a rigid baffle and radiating in a

light acoustic fluid.
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Figure 17: Radiation efficiency of a baffled Reissner-Mindlin plate, with one edge subjected to a

prescribed transverse displacement, radiating in air: (• • •) WFE solution with the full wave basis;

(——) WFE solution with the reduced wave basis provided by the MORstrategy.
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Figure 18: Frequency response function (quadratic velocity (dB)) of two waveguides connected to an elastic junction, using MCS (—–) with 100

trials for the junction eigenfrequencies; (yellow shaded area) component-wise perturbation bounds: (a) solutions provided by the classic strategy using

m = 50 wave modes; (b) solutions provided by the MOR strategy usingm = 30 wave modes.
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