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of elastic waveguides using the wave finite element method
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Abstract

A model reduction strategy is proposed within the framewalrkhe wave finite

element method for computing the low- and mid-frequencgddrresponse of sin-
gle and coupled straight elastic waveguides. For any waglega norm-wise error
analysis is proposed for efficiently reducing the size of wave basis involved
in the description of the dynamic behavior. The strategyalgdated through the
following test cases: single and coupled beam-like strestwvith thick cross-
sections, plates and sandwich structures. The relevantdgeahodel reduction
strategy for saving large CPU times is highlighted, comsigethe computation
of the acoustic radiation of plates and Monte Carlo simaregiof coupled waveg-

uides.
Key words: Wave finite elements, model reduction, mid-frequenciesusiic

radiation.

1. Introduction

This paper addresses, within the framework of the wave felgment (WFE),
a model reduction strategy of matrix formulations for comipm the low- and

mid-frequency (LF and MF) forced response of single and tamligtraight elastic
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waveguides. Some of these elastic systems are depictedureFi (i.e. single and
coupled beam-like structures with thick cross-sectiotetep and sandwich struc-
tures). Within the MF framework, the cross-sections of wganeges are expected to
undergo oscillating spatial dynamics as well as local rasoas. The WFE method
aims at computing the LF and MF wave modes which travel aloygaaveguide
in positive and negative directions. The computation ofwilawe modes results
from a finite element (FE) procedure which enables the wadegtross-section
to be discretized by means of several degrees of freedom $PQke number of
wave modes is actually linked to that of the DOFs used forrditing the cross-
section, which implicitly depends on the excitation fregeye For example, a large
number of wave modes can be required to capture the MF behaeiowhen the
cross-section undergoes oscillating dynamics. WFE mfdrirulations have been
deeply investigated in a former paper [1] for computing thenfonic responses of
waveguides such as those depicted in Figure 1 (other workbegound in [2, 3]).
These formulations use reduced bases of wave modes toedptuvaveguide dy-
namics in the LF and MF range. Reducing these wave base®gfficiin terms of
wave modes which effectively contribute for expressingwhaeeguide behavior,
appears crucial in many applications (e.g. acoustic riadiaif plates where a large
number of coupling terms need to be computed at many fregustaps, or Monte
Carlo simulations (MCS) involving a large number of iteoais).

The strategy for selecting the contributing wave modes tdtates the moti-
vation behind the present paper. The issue is to providetamative solution to
the commonly used strategy that consists in retaining theewaodes which are
propagating at a certain frequency [1]. The drawback of susélection procedure
is that the wave modes are ranked in accordance to the inmagiaats of their
wavenumbers, regardless of their contribution to the &irecbehavior. In fact,

should a few high order modes (i.e. whose wavenumbers éxiigh imaginary
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parts) contribute to the forced response, the classic guoeestates that almost the
full wave basis has to be considered. Proposing anotheaegyréor efficiently se-
lecting the contributing wave modes constitutes an opehectgge. The final goal
is to propose wave bases with optimal reduced sizes withvataeeducing CPU
times for computing the forced responses of waveguides.

Model order reduction (MOR) techniques have been wideBtée in the liter-
ature within the frameworks of CMS approaches [4], SVD-das®l Krylov-based
methods [5]. Within the CMS framework, an optimal modal retthn technique
based on the study of an error norm for coupling interfaceg®has been proposed
inrefs. [6, 7]. A moment matching method (i.e. which considew order terms of
Taylor series around some pulsatiopthat investigates displacement vectors over
coupling interfaces has been proposed in ref. [8]. Momerttihiag approaches
have also been addressed from the point of view of Krylov gaibs techniques
for estimating scalar transfer functions with minimum erfi®j. Finally, a Ratio-
nal Krylov based model reduction method that investigatagirivalued transfer
functions of single-input multi-output (SIMO) dynamic $gs1s has been proposed
in refs. [10, 11]. Other discussions on SVD-based methodseaound in refs.
[5, 12].

Although the aforementioned MOR techniques seem inteigstet, their ap-
plication to WFE matrix formulations does not seem strdaistard. The first
difficulty is that WFE-based transfer functions are more plicated than those
involved by other MOR techniques; the issue is that most ehtlatrices involved
by the WFE formulations depend on the frequency, as oppasetdssic FE ap-
proaches where conventional mass / stiffness matricesativerrof concern. The
second difficulty lies in the fact that wave bases are notogithal, which means
that matrix systems cannot be decoupled into sets of indigmerequations. The

problem turns out to be as follows: among all the wave modes};—; o,
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whose amplitudes aréQ;};, extract a reduced family®;};—1.om (m < n)
with amplitudes{Q,}; such thatQ; ~ Q; Vj € {1,...,2m} andQ; ~ 0
Vi e {2m +1,...,2n}, taking into account that the wave modgB; }, are not
orthogonal. In matrix form, this yields the following erroormsHQ - EQH
and||£.Q|| to be assessed and minimized, whérand £ play the role of inci-
dence matrices. Reducing these error norms by means of adfasave modes
{515]-}]- with optimal reduced size constitutes an original chaléemgich is ad-
dressed within the present study.

The key idea behind the proposed MOR procedure is to invokeita fium-
ber of forward / backward passings of waves along any wadegiar expressing
the wave amplitude$@j}j. In this framework, it is shown that the error induced
for expressing the waveguide displacements and forces edoinded in terms
of matrix norms which are not necessarily decreasing fonstiof the number of
retained wave modes. The resulting error bound is found tgebsitive — that is,
it increases — when the size of the wave basis is overestimatbus, the prob-
lem is to find a minimum for such an error bound with regard ® tlamber of
retained wave modes. This constitutes an efficient strategigtermine precisely
the number of wave modes required to compute the forced mespaf waveguides
accurately.

The rest of the paper is organized as follows. The WFE framewsre-
called in Section 2; also, the concept of model reductionliriig the error norms
|1Q — £Q|| and||£.Q|| (see above) is presented. The MOR strategy is detailed
in Section 3, considering the single waveguide case; boofit® aforementioned
error norms are detailed; the procedure that invokes a finitaber of forward
/ backward passings of waves along waveguides, for expigesise wave ampli-
tudes, is detailed; an error bound|t® — £Q|| + ||£: Q|| is proposed:; it is shown

that the minimization of this error bound yields the wave e®dhich effectively
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contribute to the waveguide behavior to be selected effigieihe case of cou-
pled systems involving two waveguides connected througklastic junction is

fully investigated in Section 4. Numerical experiments lareught in Section 5;
the frequency forced responses of single and coupled walegare simulated;
the accuracy of the MOR strategy for describing the wavegfitced responses
with a few wave modes is highlighted; also, the efficiencyhef MOR strategy for
saving large CPU times is highlighted, considering the aataiion of the acous-
tic radiation of a square plate as well as Monte Carlo sinaratinvolving two

waveguides connected with an elastic junction (whose &iggnencies are uncer-

tain).

2. WFE method

2.1. Theory

The WFE method has been originally developed for describingerically the
waves traveling along periodic structures [13]. Such stmes are called periodic
in the sense that they can be described by means of similatraatures, with
the same lengtld, which are connected along a main axis- referred to as the
direction of propagation. Also, these substructures asaraed to be discretized
by means of a similar FE model containing a similar numbef DOFs over its
left and right boundaries. The FE models of several kindseofoplic structures
— namely, waveguides — and related substructures are dépictigure 1. In the
present study, these waveguides are supposed to be al&gipative (considering
a loss factom) and subjected to harmonic disturbance under frequen@yr (w

being the pulsation).

Figure 1



Within the WFE method, the waves traveling alongthadirection (see above)
of any waveguide are computed using the FE model of the teltbstructure.
Clearly, this requires the mass and stiffness matrices @fstibstructure to be
known, e.g. using a commercial FE software. Also, the dynastiffness matrix
of the substructure, condensed on its left and right boueslanas to be expressed.
The strategy for computing the waves is to consider a statveepresentation
[14] for linking the vectors of displacements / forces betwehe left (or right)
boundaries of two adjacent substructukeandk — 1. In the frequency domain,

this relationship is expressed in terms dfrax 2n symplectic matrixS as [1]
ul) = suk-1 k=2,...,N+1, D

where N is the number of substructures considered along the wholeguide,
while N + 1 is to be understood as the number of substructure boundaagsthe
coupling interfaces between the substructures as wellesath limiting bound-
aries of the waveguide). These substructure boundariedegieted in Figure 2.

In Eq. (1),u refers to &@n x 1 state vector expressed as

u=| 4 [, )

+F

whereq andF are the vectors of displacements and forces, respectivety, the
left or right boundary of the substructures. The sign ahBacsults from the
convention made for expressing the forces on the left ort figlundaries of the
substructures. It is worth emphasizing that the matils expressed from the
condensed dynamic stiffness matrix of the substructure ésg. ref. [15] for
further details).

The computation of the waves traveling along thedirection follows directly

from Bloch’s theorem [16]:



Bloch’s theorem: a simple statement.Let S be d— periodic, thusu*) can be

expanded a3 Qg.k)@j wherngk) = e—iﬁrf'ngk_l) V.

It is worth recalling that/ is the length (i.e. along the—direction) of any sub-
structure used for describing the whole waveguide. Blotié®rem particularly
states that the eigenvalues®f namely{.;,}; — can be expressed s~ %4},
where{(; } ; have the meaning of wavenumbers. Regarding these, the canes
classified as propagating (i.e. the imaginary parts of theewambers are close to
zero), evanescent (i.e. the real parts of the wavenumbeida@se to zero) or com-
plex (i.e. the real and imaginary parts of the wavenumberohthe same order).
On the other hand, the tern{®; }; are the eigenvectors & — also known as the
wave shapes —, which relate the spatial distribution of thelaicements and forces
over the substructure boundaries. Several illustratidngave shapes are brought
in ref. [1], considering the waveguides depicted in FigureFbr example, con-
sidering beam-like structures, the wave shapes are to berstodd as particular
spatial distributions of the displacements and internade over the cross-section,
“traveling” at different velocities along the waveguide. ref. [1], it is shown that
the WFE method is well suited for describing the classic wshagpes (i.e. longi-
tudinal, torsional, flexural, shearing) as well as many iokiigh order wave shapes
(with an oscillating spatial behavior over the cross-segtiwhich are useful to
capture the structure dynamics in the MF range.

The set of termq(p;, ®;)};, as well as{®;};, are usually called the wave
modes. They are twice as many as the number of DOFs contaueedh® left or
right substructure boundary, i.en. Considering that the matri8 is symplectic
(see above) yield$ (., ®;)}; to be split inton incident andn reflected wave

modes, say: waves traveling towards and waves traveling outward the right
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(or left) boundary of the waveguide. These incident and ctftwave modes are
denoted ag (¢, ®3°°)}; and{(u:**, ®1°*)};; they are usually defined such that
|uiP| < 1and|u5e*| > 1V (such a consideration arises from the fact thas a
symplectic matrix, i.e. its eigenvalues come in pairgad /i.)).

Otherwise, Bloch’s theorem also implies that any stateoreaf®) — which
relates the vectors of displacemeqt§ and forces'(¥) at the substructure bound-
aryk (k = 1,...,N + 1), along the waveguide — can be expanded in terms of
wave modegq ®;}; and wave amplitude§Q; };. The wave mode expansions are

expressed as

q(k) _ ‘I’éaninc(k) + ‘I,geeref(k) k=1,...,N+1, (3)

:EF(k) _ (I’%aninc(k) + (I,ﬁeeref(k) k=1,...,N+1, (4)
where® ", &7, i and ®°* are squarer x n matrices constituted from the
displacement and force components of the incident and teflezave shapes; also,
Qirc(k) andQref(¥) aren x 1 vectors of wave amplitudes, whose variation along
the waveguide is expressed as [1]

Qinc(k) _ uk—lQinc(l) k=1,...,N+1, (5)

Qref(k) _ u—(k—l)Qref(l) k=1,...,N+1. (6)
Here, p is defined ag: = diag{yu;*°};. Considering thatu;*| < 1Vj (see
above) results ifju|| < 1 (||.|| being the2—norm).

2.2. Conventions

For any waveguide, let us denote @3¢ and ®*¢f the matrices of incident

and reflected wave modes defined as

inc ‘I,re:f
Ppinc — q ’ (I>ref — q . , (7)
inc re
q)F q)F



where the matrice® "¢, ®%°%, ®z*° and ;" have been defined in Section 2.1.
It is worth recalling that the vectors of wave amplitudesderoted a€™<(*) and
Qret(h),

As a convention, these notations for matrices and vectdr®gvused through-
out the paper to denote the wave modes that are incident toefledted by the
right boundaryof the waveguide (cf. Figure 2). In contrast, considering |#it
boundaryof the waveguide, it is proposed to denote the matrices adémt and re-
flected wave modes aBinc* and®ref*, and to denote the related vectors of wave
amplitudes afi**(*) and Q*<t*(¥). These matrix and vector terms are simply

expressed as

(I)inc* — (I)ref , (I,ref* — (I,inc7 (8)

Qinc*(k) _ Qref(k) 7 Qref*(k) _ Qinc(k) k=1,...,N+1. (9)

Such conventions involving the right and left boundariethefwaveguide are de-
picted in Figure 2. They are introduced here as a means tifyctae concept
behind incident and reflected wave modes. Also, the follgwiatations are intro-

duced as a means to simplify the subsequent formulationg mate paper:

Qinc _ Qinc(N—H) ’ Qref _ Qref(N—l-l)’ (10)

Qinc* _ Qinc*(l) ’ Qref* _ Qref*(l)’ (ll)

where {Q"¢, Q**f} are to be understood as the vectors of wave amplitudes ex-
pressed at the right boundary of the waveguide (i.e. thetsuddsre boundary
N + 1), while {Q*™<*, Q****} are the vectors of wave amplitudes expressed at the
left boundary of the waveguide (i.e. the substructure baondl). The meaning
of substructure boundaries is clarified in Figure 2. Usirggdforementioned no-

tations enables the boundary conditions of the waveguidie wimply expressed.



For instance, Neumann or Dirichlet boundary conditiong@aglily written as [17]
Qref — (CQinc 4 F , Qref* — (C*Qinc* 4 F*, (12)

whereC and C* aren x n matrices whose components refer to the reflection
coefficients, whileF andF* aren x 1 vectors whose components play the role of
excitation sources (expressions for those matrices ardrgairectly follows from
the wave mode expansions (3) and (4)). Also, Eqg. (12) can plkeapo describe
coupling conditions, e.g. considering two waveguidesnd2 connected with an

elastic junction (cf. Figure 2(d)). In this case, the maffixxan be partitioned as
[1]

c_ Cn Gy | (13)

Ca1 Co

where the components of matric€s; andC,, denote the reflection coefficients
of the wave modes traveling in waveguidieand?2 towards the coupling junction,
while the components of matric€s, andC,; denote the transmission coefficients
of these wave modes through the coupling junction.

It must be noted that, according to Egs. (5) and (6), the veatbwave ampli-
tudes{Q"c, Q***} and{Q*c*, Q**f*} are linked as

Qinc _ MNQref* ’ Qinc* — MNQref' (14)

Figure 2

2.3. Forced response computation

The strategy for computing the forced response of waveguides been pro-

posed in ref. [1]. In brief, considering a single waveguidbjscted to Neumann

10



or Dirichlet boundary conditions (cf. Figure 1(a-c)), itlnche shown that the vec-
tors of wave amplitude€** and Q*** (cf. Eq. (12)) are the solutions of the
following 2n x 2n matrix system:
I, —cruN
—Cp 1,

Qret* B F* | a5)
Qref F
The computation of the vectors of displacemexits and forces %) follows from
the wave mode expansions (3) and (4).

In contrast, considering two waveguides connected thramgslastic junction

(cf. Figure 1(d)) yields the following matrix system to bens@ered:

L, ~Cim"| 0 0 Qse* Fi
—Cppyt 1 0  —Cpp? ref 0
11H7 ny 129 Q1 (16)
—Co 0 I, —Copoud? Qzet 0
.o 0 | -Cimwy> L, || QF% | [F]

where the subscriptsand?2 refer to vector and matrix terms associated to waveg-
uides1 and2, respectively; otherwiseC’; and C; are two matrices of reflection
coefficients which describe the waveguide boundaries treatat involved by
the coupling conditions. Considering Eq. (16), the sizehef inatrix system is
2(n1 + n2) x 2(ny + ny), wheren, (resp. ny) is the number of DOFs used for
discretizing the left or right boundary of any substructcoasidered in waveguide

1 (resp. waveguide).

2.4. Concept of model reduction
2.4.1. Some general notations and properties related toiradrms

The proposed model reduction strategy mainly focuses omgkeof matrix
norms. As a preliminary step, it is proposed to clarify thikof@ing notations and

properties that are used throughout the paper:
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e The notation||X]|| refers to the2—norm of a matrix or a vectoX. The
consistency property of the—norm means thaf AB|| < ||A]||||B|| for

arbitraryp x ¢ matrix A andg x r matrix B;

e A rectangularn x m (m < n) real matrixC will be called orthogonal or
unitary in the sense th&” C = I,,,. The2—norm will be said to be unitarily

invariant in the sense thg§tCD|| = ||D|| for anym x p matrix D;

e The notatiorp(E) refers to the spectral radius of a square mdijxvith the

property thap(E) < |[E||.

Apart from this, the notatiodA” denotes the transpose of a matAx while the

notationI,, denotes ther x n identity matrix.

2.4.2. Error norms

Within the WFE framework, the displacements and internadds of any waveg-
uide are usually approximated by means of a reduced I@&@-i}sj—:l,m,gm contain-
ing a same numben (m < n) of incident and reflected wave modes. The related
vectors of wave amplitudes are obtained by considering tagixnformulations
(15) or (16). The reduced basis is extracted from the fullevaasis{®;},;—1 2,
already depicted in Section 2.1. Considering such a redoasid yields the wave

expansions to be expressed as

a(k) _ &;éncéinc(k) + &;geféref(k) k=1,...,N+1, (17)

LF0) = Feqiet) § FEQR® k=1, N1, 18)

where @i, &z, i and ®L°f aren x m matrices constituted from the dis-

placement and force components of the incident and reflezéee modes; also,
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Qirc(®) and Q%) are them x 1 related vectors of wave amplitudes, whose

variations along the waveguide follow from Egs. (5) and &) a

Qireh) — ph-1Qinc()  p—1, . N 41, (19)

Qrefh) — (-1 Qret() g — 1 N1, (20)

wherepi = diag{fi5*°};, {i1j"°}; C {1}, being the wave parameters associ-
ated to the wave mode{sfj}j (cf. Section 2.1); it is worth noting thafu|| < 1,
becausé|p|| < [|u|| (itis worth recalling thap: = diag{s;"°}; while {fi3*°}; C
{u57};) and||u|| < 1 (see below Eg. (6)).

The idea behind the technique of model order reduction (MBR) approxi-
mate the vectors of displacements and forces over any schst boundary: as
q® ~ q® andF® ~ F® with reasonable accuracy while using a reduced wave
basis of minimum siz@€m. Investigating these vectors of displacements and forces
by means of a reduced wave basis (instead of the full baséjlesnthe computa-
tion of the forced responses to be done using matrix systésmall sizes (cf. e.qg.
Eq. (15)), i.e.2m x 2m instead of2n x 2n. Such a MOR strategy addresses the

minimization of the norms|/q®) — q(®|| and||[F*) — F(*)||, whose derivation is

proposed hereafter.

Let us introduce then x n incidence matrixC defined aghi* = ®icL7,
Pref = ref LT, pinc = pineLT, Bt = LT, whereL” is real orthogonal
(i.e. itis unitary). Clearly speaking, the matuiXis constructed so that each of its
rows contains a single and0 elsewhere. Considering such an incidence matrix

yields the errorgi®) — g andF®* — F®) to be expressed as
a(k) - q(k) _ q)(ilncAQinc(k) + q)gefAQref(k) k=1,...,N+1, (21)
i(ﬁ(k) _F(k)) _ (I’%HCAQinC(k) _|_(I,§efAQref(k) k=1,...,N+1, (22)
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whereAQ<(k) and AQ*e(%) are expressed of the form
AQ=L"Q-Q. (23)

From the consistency property of the norm (see Section 2.4.1), it turns out from

Egs. (21) and (22) thatg®) — q*)|| and||[F*) — F*)|| are bounded as

1Y = a9l < (192 AQ=)]| + [1@5 | aQ==<)|
k=1,...,N+1, (24)

IF®) — F®)|| < |j@e)] [|AQ™ M| + ||| | AQ™ W]
k=1,...,N+1. (25

It is worth emphasizing that the matric@%nc and ®i*¢, as well as the matrices
®r°f and @57, are linked aghz®® = R®° and @1 = —R®:"°, whereR is

a diagonal symmetry transformation matrix [1], i.e. whishuhitary. This yields
1 @2]| = ||@5Pe|| and||@FE|| = ||
variant (see Section 2.4.1). As a result, considering E25.4nd (25) yields

, because the—norm is unitarily in-

G = ™| < @< (|aQi=®)| +||aqr®)))
k=1,...,N+1, (26)

[FE — F®|| <@g (aQ=®]|| + |aQ=®)|)
k=1,...,N+1. (27)

To summarize, the issue behind the reduction of the ndtgl¥ — q*)|| and
IIF®) — F®)|| is to reduce the termfAQ®)|| + [JAQ*t(*)||, i.e. to reduce
the error normg|AQ™<(¥)|| and ||[AQ**f(¥)||. Bounds of these error norms are

expressed as follows.
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Let us introduce thén — m) x n incidence matrixC, such thatC! is uni-
tary and£T L, + LTL = I,,. The expected matriX, is defined so that each of
its rows contains a singlé (whose location is actually imposed by the constraint

£Tr,. + £7L =1,,) and0 elsewhere.

Proposition 1. The error normg|AQ<(¥)|| and||AQ***(¥)|| are bounded as

1AQ|| < 11Q — £Q]| + |1£:Q]l- (28)

Proof. Let us denote a§) either Qi*<(k) or Qrf(¥), Considering tha =
LTLQ + (I, — £T£)Q and using the fact that? £, + LT L = 1, yields

Q=LTLQ+lc.Q. (29)

According to Eq. (23)AQ is expressed as”Q — Q which, according to Eq.
(29), gives

AQ=L"(Q-LQ) - LI L:Q. (30)
It follows that||AQ)|| is bounded as
1AQI| < I£7(Q - £Q)|| +]1£7 £:Q]- (31)

Considering thatt” and 27 are unitary (by definition) yield§£7(Q — £Q)|| =
1Q — £QJ| and||£T £, Q]| = ||£.Q|| (since the2—norm is unitarily invariant).
Taking into account these results in Eq. (31) leads to EqQ, é8expected. [

In Eq. (28),ZQ and@ are the vectors of wave amplitudes associated to the

retained wave mode{sfj}j, respectively computed (cf. Egs. (15) and (16)) using
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the full wave basi{®;}; and the reduced wave bagi®;};. On the other hand,
L.Q is the vector of wave amplitudes associated to the residaskvwnodes —
i.e. which are not included in the reduced bals; } ; — computed using the full
wave basis{®;};. According to Proposition 1, the err¢)A Q|| involved by the
reduction of the wave basis reveals two aspects. One isdittkéhe norm|Q —
ZQ|| which addresses the accuracy of the reduced model to contipait@ave
amplitudes of the retained wave modes; the other one isditdkéhe norm| L, Q||
which addresses the error involved when the residual wawemare omitted in
the WFE matrix formulation (cf. Egs. (15) and (16)).

To summarize, the model reduction strategy can be undersieceeking a
wave basis{ﬁ;j}j with optimal reduced size for minimizing the tefh® — £Q|| +
||£:Q||. Such an issue is addressed in the next section, considberggse of sin-
gle waveguides subjected to Neumann and Dirichlet boundamglitions (the case

of coupled waveguides will be discussed in Section 4).

3. MOR strategy

3.1. Preliminary comments

Let us consider a single waveguide involving Neumann / Biet bound-
ary conditions over its left and right ends (cf. for instarkigures 1(a-c)). EQ.
(28) expresses a bound for the error nofhQ||, i.e. either||AQi*<()|| or
[|AQret(¥)|| (it is worth recalling that these norms are to be considececey-
ery substructure boundary (k = 1,..., N + 1)). According to Eq. (9), the
vector of wave amplitude§*<f(*) writes asQ*<*(¥) | say it can be deduced from
the vector of wave amplitude@»<(*) by considering the following substitutions

C — C*andF — F~* (cf. Eq. (12)). In other words, the minimization prob-
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lem of ||AQ(*)|| + ||AQ™*f(*)|| (see Section 2.4.2) can be deduced from the
consideration of the error norffAQ<(¥)|| only, the latter being bounded as (cf.

Proposition 1)

HAQinc(k)H < Héinc(k) i EQinc(k)H + HﬁrQinc(k)H
k=1,...,N+1. (32)
In order to quantify the contribution of any wave mode forueidg the bound pro-
vided by Eq. (32), it is proposed to derive the vectors of wavelitudesQi»<(*)
and Q'*(*) by means of the wave parameteys; }; and {/i;}, (see Section 2),
as well as the waveguide boundary conditions (cf. Eq. (12Z))e key idea is
to consider a finite number of forward and backward passihgsges along the

waveguide for expressin@i*<(*) andQi»<(*), Such a strategy is proposed here-

after.

3.2. Expression of the vectors of wave amplitudes

Considering Eq. (5), the vector of wave amplitud@&*<(¥) is expressed as
pF~1Qirc() | |nvoking Egs. (9) and (11) yield@irc() = Qref* while invoking

the boundary conditions (12) leads to

Qireh) = pkl (C* Qe + ) k=1,...,N+1. (33)
According to Egs. (14) and (12), Eq. (33) results in

Qi) = =1 (C*p (CQ™ +F) +F7) k=1,...,N+1. (34)

Considering Egs. (10) and (5) yiel@¥ir® = Qinc(N+1) —  N=(k=1)Qinc(k) Ag

aresult, Eq. (34) can be written as
Qirctk) = A, Qi) 1B,  k=1,...,N+1, (35)
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where

Ay =prFtopNepN D k=1, .. N+1, (36)

B, = pf~! (C*uNF + F¥) k=1,...,N+1. (37)

Here, A, is an x n matrix that denotes the attenuation of wave amplitudescedu
by two reflections (one for each boundary) after one forwadtltzackward passing
of waves along the waveguide, i.e. until the waves reachtérdrgy position at the
substructurek. Otherwise,B; is an x 1 vector that denotes the influence of
excitation sources during such a forward and backward pasgiwaves along the

waveguide. Expressing Eq. (35) by recurrence, afterl iterations, leads to
L, — A)HQ™H® —=E® k=1 N+1 Vs>1, (38)

whereEgk) represents the vector of wave amplitudes resulting fsdorward and

backward passings of waves along the waveguide:
s—1
EF =Y Al|B; k=1,...,N+1 Vs>1 (39)
p=0

On the other hand, considering a reduced wave b@ig}; (i.e. with a same
numberm < n of incident and reflected wave modes) instead of the full vieasss
{®,};, the vector of wave amplitudes is to be expresseaz%ﬁ(k). Considering

the aforementioned derivations simply yields

I, — A)Q™® =EF k=1 N+1 Vs>1, (40)

where the tilde sign means that vectors and matrices havedxg@eessed using the
reduced wave basigb;}; instead of the full wave basigb;};. In this case A,
andE;, refer to am x m matrix and an x 1 vector, respectively, whose expressions

follow directly from Egs. (36) and (39).
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Egs. (38) and (40) involve the vectors of wave amplitu@é& *) andQirc(*),
respectively. They can be simplified provided that the fellg assumption is

made:

Assumption 1. The spectral radii of the matriceA; and A, are less than one,

i.e. p(Ay) < landp(Ag) < 1.

This assumption can be justified as follows. From Eq. (36cesp(Ay) <
I|AL]] andp(A) < ||Ax]| (by definition of the spectral radius), it is easy to see
that p(Ax) < [|l[*V||C||[|C*|| while p(Ax) < [|fl[*V]|C||[|C*]| (N being the
number of substructures considered along the waveguid®e B/ < ||p|| < 1
(see below Eqg. (20)), Assumption 1 appears to be satisfiadde that (i)||w||
is small enough compared to one (this in fact depends on theguade damping
[15]) and (ii) a sufficient numbelV of substructures is considered, i.e. the waveg-

uide is long enough.

Assumption 1 particularly means that there exists an imtege> 1 such that
[JAZ]l < 1 and||1~&2|| < 1Vs > sp. In this framework, invoking Neumann series
expansiongL, — Af)~t =L, + 300 At and(I, — A3) "t =L, + 300, A}
in Egs. (38) and (40) enables the vectors of wave amplit@f@s*) andQirc(*)

to be expressed as

Qi) = g 4 (Z A;q) EF)  k=1,...,N+1 Vs> s (41)
q=1
and

Qirch) = E(F) 4 (Z A;q) E® k=1, N+1 Vs>s. (42)
q=1
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The convergence of the Neumann series involved in thesetiensas readily
proved since|A3|| < 1 and||As|| < 1. In these equationg!" andE{" de-
note the contributions of forward and backward passings of waves along the
waveguide for describing the vectors of wave amplitu@és*) andQir<(*) (see
above); on the other han@y"** | Azq)Egk) and (Y02 }iz‘])ﬁgk) result from the
consideration of additional sets sfforward and backward wave passings for de-

scribing these vectors of wave amplitudes.

3.3. Error norms
3.3.1. General expressions

It is worth recalling that the error normiAQ™<(%)|| is estimated from Eq.
(32) by means of the error normgQ»<(*) — £Qirc(®)|| and ||£, Q™). In

Appendices A and B, it is shown that these error norms aredemias

‘yéiinc(k) i Zf(ginc(k)‘

< (Z Azq) IEX — LEX)|| + (Z 1AL ZAZQ) IE)|
q=0

q=1
k=1,...,N+1 V¥Ys>sy, (43)

and
1£:Q= P < | STIALN | ICES |+ | S 11c.A7LT|| | IE®)]
q=0 q=1
k=1,....N+1 Vs>sg (44)
Remarks.

e Bound of||Qir(®) — £Qi=<(M)|| (Eq. (43)):

Sincel|A|| < 1fors > s (cf. Section 3.2), it turns out thdE2 || A ||¢ =
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1/(1—| \AZ ||) (this is a classical result of geometric series). Thus,tdpan
the consideration of the matrix norhﬁi“, the first term on the right hand
side of Eq. (43) turns out to be linked with the error induced dpproxi-
mating CE" by E{", i.e. by means of the reduced wave basls };. The
second term is more complicated to understand. It actuaflyesents the
error induced for approximating a set:iafx n matrices{ZAZq}q by means
of m x n matrices{ AL}, derived from the reduced wave ba§®} . If
one supposes that = [L,,]0,,,x (n—ym)] ANAL: = (00, ) xm | In—m] yields
LA} = [LAYLT LAY LT and AL = [A}9]0,, (n_m)]: thus, the issue
is to approximate{ LA L7}, by means of A$?},, but also to reduce the

norms of a set of coupling matricé€A /LT },.

e Bound of|£,Q<(*)|| (Eq. (44)):
Since||A}|| < 1fors > sq (cf. Section 3.2), itturns outthat 2 [|A}[|? =

1/(1—[|A}]|)- Thus, apart from the consideration of the matrix ndjrAy;

the first term on the right hand side of Eq. (44) turns out tdridesd with the
error induced when the vecta, E) is neglected for describingi»c(*),
i.e. when the residual wave modes are omitted. Otherwisesebond term
relates the error induced when a set of coupling matr{desAZqZT}q are

neglected for expressing@i®c(+).

A bound of ||AQ*<(*)|| is obtained by summing Eqgs. (43) and (44). ltis
worth noting that this bound is to be addressed for everytaudisre boundary:
(k=1,...,N + 1) considered along the waveguide (cf. Figure 2). To avoid the
issue of analyzing thos® + 1 values of the bound, it is proposed to treat with its
maximum value only. Considering that Egs. (43) and (44) spesssed in terms of

Egk) andf}gk), i.e. by means oB;, andBy, (cf. Eqg. (39)), the maximum bound of
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[|AQ<(¥)|| is likely to be reached at the substructure boundary wheredms
||Bg|| and||By]|| are maximum. This substructure boundary is easily found to
be the left end of the waveguide — namely the substructureday 1 — where

B, = C*uNF 4 F*. The fact thai|B;|| and||B|| are maximum at this location

is readily proved from Eq. (37), considering thdB || < ||u|/*~'||B1|| < ||B1]|
and|[By|| < |7||*~!|[B1|| < [/B1]| (because|u|| < 1 and|||| < 1). Consid-
ering this substructure boundatythe vector of wave amplitude®*<() is to be

expressed aQ**t* (see Section 2.2), while the vecfEél) can be expressed as

s—1
E,=|) A”|B Vs>1, (45)
p=0
where
A=A =cpuNcpy |, B=B;=CuF+F~ (46)

To summarize, a bound ¢iAQ»<(¥)|| follows as||AQI®)|| < ||AQ*eT*]| VE,
where||AQF®**|| is bounded from Egs. (32), (43) and (44) as

|AQr|
< DAY | By — LB+ [ D IIA®]7 ] [[£Eq]]
q=0 q=0
+ (ZASQZEA”) [Es| + (ZﬁrAquT) |[Es||
q=1 q=1

Vs > sg. (47)

On the other hand, a bound pAQ***(¥)|| (i.e. invoking the amplitudes of
the reflected wave modes) is deduced from the summation of @83 and (44),

considering the following substitutionsA;, — A% = pN=(k=DCuNCrph!
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andB;, — B} = pN=*=D(CuNF* + F) (such expressions ok} and B} are
obtained by expressin@*¢t(*) on the same scheme gg<(%) (cf. Section 3.2),
i.e. considering Egs. (9), (11-14)). Also, the bound|afQre*(*)|| follows from
the consideration of the maximum values|@;|| and H]§;H: in this case, the
corresponding substructure boundary is found to be the eigth of the waveguide

— namely the substructure bounda¥y+ 1 — where
A* = AN, =CuNCuYy | B*=Bjy, =CpuF*+F. (48)

To summarize, a bound ofAQ*f(%)|| follows as||AQ™*f¥)|| < [|AQT*t|| VE,

where||AQ*®t|| is bounded as
|AQ™]

o0 o0
< | DONAT() B - LEL| + | D [JA™]|7 | [[£EX]

q=0 q=0
| DO NASL — LA | B+ | Y [[CA™ L] | B
q=1 q=1
Vs > sp, (49)
where
s—1
Ef = ZA*p B* Vs> 1. (50)
p=0

In Eq. (49),s; > 1is an integer defined such thaA7*|| < 1 andHK;SH < 1 for
s > sj. To ensure the existence of such an integer, it is assumeththapectral
radii of the matricesA; and K; are less than one, i.e. as already stated for the

matricesA; and A, (see Assumption 1).
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3.3.2. Simplified expressions

According to Eqgs. (26) and (27), the key issue behind the ggeg MOR
strategy is to minimize the terAQ**<®)|| + || AQ™*t(*)||. A bound for this
term is found by summing Eqgs. (47) and (49). At first glance, rtfinimization
of the resulting expression appears quite complex to cartymith regard to the
different summations which are involved in these equatiors solve this issue,
further simplifications are proposed. Eq. (47) is considdirst.

The firstidea behind the simplification of Eq. (47) is to imluge the following

relative errors®, e, ef* anded:

E HES_ZESH E HﬁrESH

e =m0, &=, (51)
! |1 Es || SN

A |[A°L— LAY A [ILALT]

=, &= (52)
! [|A] ? || A

Also, it is proposed to consider the following assumption:

Assumption 2. The norms of the matriced* and A* are such thafj|As|| <
[|AZ]].

This assumption appears to be satisfied provided that taéveelerrore?* is
small enougH, which is what is expected for minimizingAQi»<(*)|| (see later).
In other words, this assumption does not seem to constitpenalization of the

minimization procedure.

Yn this case, one ha&°L ~ LA®, i.e. ||[A°L|| ~ ||LA®|| and thus|A®|| < ||A®]|, because
||A*L|| = ||A®|| (indeed,A°L can be written a§A°|0,,,x (n )] (see Remarks below Eq. (44)))
while ||[ZA®]| < ||Z]|||A®|| = ||A®|| since||£|| = 1 (see below Eq. (B-2)).
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The second idea behind the simplification of Eq. (47) lieshia following

proposition:

Proposition 2. [|A%1£ — LA%|| and ||, A*1LT|| are bounded as

AL~ CA%|| < g A%, [ILAYET|| < g |AT]F Vg 1.

(53)

Proof. To prove that||AsiL — LA%|| < qe||AS
compositionsA 7L = ASA*@~D [ andLA% = LASAs(¢)). Considering that
LAS = LAS — ASL + A°L yields

7, let us consider the de-

AL LA = AS(A* VL LA D)L (ASL-LA®)AD g > 1.

Introducing the notationd,, = A%/£—LA*, Eq. (54) reduces th, = ASA, |+

A1 A1 This defines a recurrence equation that can be solved widiftiaulty
toyield A, = 9 Ast-DA; A=) Considering thaf] A5~ 1|| < [|A3|[t~!
and|[A*(@=0|| < ||A®||" leads to]| A,|| < ST, [|A®[[*71||A®]|7H| Ay |- Tak-

ing into account that A%|| < ||A®|| (Assumption 2) yield$| A, || < S°7_ [|Aq]]||A%]|7t =
ql|A1]| [|A%]|9~t. The expected result is found by means of Eq. (52) siisg | =

et ||A]].

To prove that| £, A5 LT|| < qe2||A%||, let us consider the decompositigpA LT =
LA DASLT SincelTL + £1L, = 1, (cf. above Proposition 1), it follows
that L, AILT = L, AS@DLTLASLT + £, A=V T2 ASLT. Considering
that [|[CA*LT|| < ||A®[| and ||C,A*@DL]|| < [|A*@=Y)|| (since ||LT]| =
1T = ||£]| = [|£:]| = 1 (see below Eq. (B-2))) whilg A*(= V|| < ||As[j2~!
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yields ||£; A5 LT|| < [|L.AS@DLT||[|A%|| + ||A||7Y]| £ A3LT]|. This de-

fines a recurrence relation whose solutiofids AS2L7T || < S°0, [|AS|[ 1| L. ASLT || ||A%[|2.
This yields|| £, A% LT|| < q||L.ASLT||||A%||"!. The expected result is found

by means of Eq. (52) sindeC, ASLT|| = el ||As||. O

According to Assumption 2 and Proposition 2, Egs. (51), &&] (53) enable
Eq. (47) to be expressed as

1AQ=| < KZAH) (e + ) + (ZqA”) (e + )
q=0 q=1

Vs > s9. (55)

Jron

Further simplifications of this equation can be broughtrigkihto account some

classical results of the theory of mathematical series}| fof|| < 1:

- 1—[JAs|[“*! 1
S JJA%]lY = 1in < - Vs >s0,  (56)
2 e \TT=TAT ) T T=[AT]

(e e}

| L (e 1)[JA%][* 4 ][ AS]=
S gl|A%]l? = 1im <||AS|| :
2 i - TA7)?
A7)
S | i L — Vs > s, (57)
1= AT

where the integes is defined such thafA’|| < 1 Vs > s, (see above Eq.
(41)). The result provided by Eq. (56) is classical while Ex¥) follows from the
consideration thak_,_, q|[A®||7 = |[A®[|0(3_,_, |[[A®[|7)/9]|A®||. Considering
Egs. (56) and (57) yields Eqg. (55) to be written as

[[A%]]
1—[[A%]]

|| Es||
1—[|A5]|
Vs > s9. (58)

IAQTH|| < | (e + €5) + (e +¢e3)
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Otherwise, Eq. (38) yield®, = (I, — A®*)Q™() = (I, — A%)Q™*, i.e
[|1Esl] < (14 ]]A%]])]|Q***||. As aresult, Eq. (58) leads to

* H SH A 1+HASH fx
|AQT™]| < (6E+6E)+ (e +€5) Q™|
T —jAs 2l 1—TAf|
Vs > s9. (59)

Eq. (59) provides a simplified bound of the error ndfthQ<(*)||, vk (cf. above
Eq. (47)). On the other hand, a bound of the error nmeref(’“)H (cf. above Eq.
(49)) follows from Eqg. (59), considering the conventiohs— A*, B — B* and
provided thai|A**|| < ||A**|| (cf. Assumption 2). This bound is readily written

as

1+||A*8|| ref
€ ) WHQ |

Vs > sp. (60)

1A (A

ref E* E*
laQee| < [ + )+ o

Thus, considering Egs. (59) and (60), a bound |afQ»c()|| 4+ ||AQTef(¥) ||

results in

1AQ™ | + [|AQ™|]

A’ 1+[JA%]
< (6E+6E)+ H (6A+6A):| HQref*H
[1 TIJAS T T A
© L Er [[A*]] A 1+ [[A*]] £
(e + )+ e &) | e 17|
[ ! ? 1 — [JA*s] 2 T Am|
Vs > max{so, $j}- (61)

Eq. (61) is readily rewritten by means of the following pasané;:

Al A Ay ] LAY
5S:max{[(eE+eE)+”7(e N il Ly
R TV 1—[[As]]

E* , E* [[A]] x| axy] 1A
_— _— 62
|:(€1 +62 )+1—H!*8H(61 +62 ) 1_HA*5H ’( )
which yields

|AQ™™ || + [[AQ™*[| < &([1Q7*|| + [|Q™**]])
Vs > max{so, $j}- (63)
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To summarize, according to Egs. (26) and (27), the error ad#f) — q*)|| and
|[E®) — F®)||involved by the reduced WFE matrix formulation for compgtthe
displacements and internal forces (over any substructauadaryk considered

along the waveguide) are bounded as

1% — ™| < &l1@F/(11Q7 || +11Q™*|I)
Vs > max{so, ${}, (64)

[E® —FW|| < &]1@51(1Q7(| + 11Q7|I)

Vs > max{so, $j}- (65)

In these equation$y || (|| Q||+ ||Q=**|]) and|| B |(||Q=**| + ||Q=**]|)

can be viewed as bounds p§*)|| and ||F*)|| (this is explained sincgQre*||
and||Qre*|| are expected to be the maximum valueg @<(¥) || and||Q=t*)||)

2. In this sense, the parametgrappears as a measure of the relative errors induced
when approximating the vectors of displacemeaiit8 and forcesF(*) by means

of a reduced wave basis (cf. Egs. (17) and (£8)\s a result, reducing; is the

key idea behind the wave mode selection strategy.

3.3.3. Features of the error bour#)
Considering Eq. (62), the WFE reduced formulation involtee kinds of
errors for expressing the vectors of displacements andegorcThe first one is

linked to (¢® + €&) and (B + &), say for approximating the vectoRs, andE*

2A justification of this statement follows from the discussadn Section 3.3.1.
31t is worth emphasizing that the computation of the vectdravave amplitudes follows from

the matrix formulation (15), considering a reduced wavesbp®; }; instead of the full wave basis

{®;};-
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by means of the reduced vectdts andﬁg; the second one is linked te + ¢2*)
and(eft” + "), say for approximating the matricés’ and A** by means of the
reduced matriced® and A*s.

Whens — oo, sincep(A) < 1 andp(A*) < 1 (Assumption 1) and thus
lin||A%|| = Llin[|A™|| = 0, itappears thaf, — s = max{ (el + ), (& +
¢E")}1. In this caseE, andE? converge to the vectors of wave amplitud@&**
and Q**t (a proof of this statement readily follows from Eq. (38), sinlering
thatE, = EY andQ=* = Qi<(1)). Then the minimization problem is to
approximate the vecto@**** andQ*e* explicitly by means of the reduced vectors
Q™ and Q™. In particular, the problem is to reduce the contributionthed

residual wave modes, i.€l|£,Q***|| and ||£,Q"**

, for reducing the relative
errorsel’ andef” (cf. Eq. (51)). The solution consists in increasing the nemib

of retained wave modes so as to reduce the n¢pfh€Q e**|| and|| £, Q**|| until
they reach an arbitrary small threshold (this is undersiginde these norms are
decreasing functions of:) 4. The drawback of this procedure is that no rigorous
criterion exists to define this threshold exactly, which swthe strategy inefficient
for selecting precisely which wave modes are to be retained.

On the other hand, Eq. (62) states thet + ¢2) and(e” + ") have to be
considered as additional sources of errors whennot too large. Unlike the case
whens — oo, the minimization o, appears not necessarily linked to an increase
of the numbenn of retained modes. For instance, the tetm®L — £LA®|| used
for expressing* does not appear necessarily as a decreasing function @n
the contrary, once the components of the mafi’ appear close to those of the
matrix LA* — that is to say, when an optimal reduced wave basis has bead fo

—, every additional increase of the size of these matricdlsndiuce an increase

“Indeed, the size of. is linked ton — m while the vector€Q*** andQ*** do not depend om.
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of the error bounds. From this point of viewg, appears sensitive when the size
of the wave basis is overestimated. This is the importaritifeaof the proposed
MOR strategy. As a result, the issue is to manage a globahmzation problem
among(e? +¢F) (resp.(¢F" + &) and(e* +€5) (resp. (e +e27)), for a given
integers. The error bound, is much more restrictive thafi,, in the sense that

it provides a clear answer for the number of wave modes thet ttabe retained.
This enables the selection of wave modes to be carried ouguita qualitative
way, the required number of wave modes being exactly detenby seeking a
minimum value of&,, i.e. for a particular reduced wave basis whose size is not

necessarily equal to the size of the full wave basis.

3.4. Selection of the wave modes

3.4.1. Introduction

The strategy for selecting the contributing wave modes iailéel as follows.
The key idea is to rank the wave modes in a preliminary step $&tion 3.4.3),
and then to plot the error bourdd] as a function of the number of retained wave
modes (i.e. the firsth wave modes as ranked in this preliminary step). As a re-
sult, the strategy aims at identifying this number of rezdinvave modes which
corresponds to a minimum value of this functien— &, (the existence of such a
minimum follows from the comments in Section 3.3.3). Fostiaisk, the assump-
tions||A¢|| < ||A%|| as well ag|A**|| < ||A**|| need to be satisfied (Assumption
2), while it is assumed thai A) < 1 as well ap(A*) < 1 (Assumption 1). These
assumptions enable the error noriigg” —q*|| and||F*) — F®)|| to be bounded
as in Egs. (64) and (65). It is worth recalling that Assumptiois satisfied pro-
vided that the number of substructures, or the waveguideghamis high enough

(cf. comments below Assumption 1); also, Assumption 2 apgpaabe satisfied
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whené&, is small enough (cf. comments below Assumption 2).

It is worth emphasizing tha; depends on the integef(i.e. the number of for-
ward and backward passings of waves along the waveguidd} ivis frequency
dependent. Choosing an appropriate integand an appropriate frequency for
expressing; as a function of the numben of retained wave modes only, appears
as a crucial task to undertake the minimization problem \agis effort (e.g. re-
gardless of the discrete frequencies considered withisttigied frequency band).

Such an issue is addressed hereafter.

3.4.2. Expression of the error boudd
Choice of the integes

The magnitude of the error boudd is linked to(e® + &) and (e + ¢2'), as
well as(eF" + eF") and (2" + €2") (cf. Eq. (62)). Additionally, it depends on
the magnitudes dfA®||/(1 —||A®||) and(1 + ||A®]|)/(1 —||A®||), as well as the
magnitudes of||A**|])/(1—||A**||) and(1+||A*¥]|)/(1—]||A**||). Choosing an

integers high enough so that these magnitudes are small enough isial¢ask for
computing small values d&; (i.e. if one aims at stating that the reduced model is
accurate for predicting the dynamic behavior of the waw@g)uiHowevers has to

be small enough if one requir¢s® + ¢2) and(ef*” + €5*") to impact significantly
the magnitude of; (see discussions in Section 3.3.3). As a rule of thumb, it is
proposed to choosesuch that/|A®|| ~ 0.1 and||A**|| ~ 0.1. The motivation
behind this choice is thatl + ||A*][)/(1 — ||A®|]) and(1 + ||A**]]) /(1 — [|A**]|)

are enabled to be close to one, i.e. without overestimatingAs a result, it is

proposed to seek the integeas

s = max {u > max{sp, sy} : ||AY|| > 0.1 , [[A*| >0.1}. (66)

31



Choice of the frequency

The error bound; (cf. Eq. (62)) is to be expressed at several discrete frequen
cies, i.e. over the frequency band where the forced resperisde computed. To
address this issue, it is proposed to consider the highegtiéncy only, wheré,
is likely to reach its maximum value. This is explained siac@aximum number
of wave modes are expected to contribute to the forced regpavhich means that
vectorsF, F* and matricesC, C* (cf. Eqg. (12)) are expected to have a maximum
number of non-zero components (in other words, error noamthese vectors and
matrices are expected to be large); the same conclusios Fmdhe vectorE;,,
E; and the matricea\®, A*®, since they are expressed by mean§ of*, C and
C* (see Section 3.3.1). This means that the relative eefors?, & ande?, as
well asef", & ef™ anded*”, are expected to be maximum.

To summarize, it is proposed to assess the error nof® — q*)|| and
I|IF®) —F®)|| (see Egs. (64) and (65)), at any discrete frequency coresioeithin
the studied frequency band, by means of the batyfdrmulated at the maximum

discrete frequency (considered within that frequency hanty.

3.4.3. Minimization of the error boung,

As mentioned in Section 3.4.1, the key idea behind the mization procedure
of the error bound’; is to rank the wave modes in a preliminary step. This pro-
cedure enables; to be considered as a function of the single variahlé.e. the
first m wave modes as ranked in this preliminary step)ifot m < n, wheren

is the total number of incident / reflected wave modes coathin the full wave

32



basis. This procedure yields the minimizatior€eto be an easy task —indeed, this
requires us to plot the function — &, and to identify its minimum value —which
is weakly expensive from the computational point of vigwThe fact that such a
minimum value is likely to occur follows from the comments3action 3.3.3.
Ranking the wave modes (as previously explained) effigieapipbears as a key
issue to accelerate the convergence of the WFE reduced nvbdalthe numbet
of retained wave modes increases. In other words, the algdmthind the ranking
procedure is to find a minimum value 6f which corresponds to a small value
of m, say a reduced basis of small size. This task requires utadera rough
estimate on how the wave modes are expected to contribute foriced response.
A relevant solution is to rank the wave modes with respedteanagnitudes of the
components of the vectols; andE; —denoted ag§E;; }; and{E}; };, respectively
— as this yields the relative errar§ andeE” to be strongly decreasing functions of
m (a justification of this statement follows from the discoss in Section 3.3.3).

Then the strategy for selecting the wave modes can be statfetavs:

1. Check thap(A) < 1 andp(A*) < 1 (Assumption 1); if not, try to increase
the number of substructures or the waveguide damping;

2. Choose the integeraccording to Eq. (66);

3. Rank the wave modes with respect to the magnitudes of thpaoents
{Egj}; U{ES;

4. Compute the error boung}, by means of Eq. (62) at the highest frequency
considered within the studied frequency band, as a funaifan (i.e. the

first m wave modes as ranked in step 3);

5In fact, the procedure requires us to compéten times only (i.e. forl < m < n), i.e. to
compute&; one single time for a givem: without scanning all the possible families of wave

modes for expressings.
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5. Define the domain of validity of, i.e. when||A®|| < ||A%|| and||A*5|| <
[|A*¥|| (Assumption 2);

6. ldentify the minimum value of;.

4. Application to coupled waveguides

4.1. Preliminary comments

The case of two waveguidésand2 connected to an elastic junction, free from
excitation sources, is investigated (see Figure 1(d))Jowatg the WFE framework
(see Section 2.1), it is proposed to assess the behaviochfveaveguide (i =

1,2) by means of wave modef )i, (®;)i}j=1,...2n,

it

Also, it is proposed to
model the coupling junction by means of the mattbdescribed in Eq. (13). In
this sense, the relationships between the vectors of reflemtd incident wave

amplitudes, at coupling interfaces, can be expressed as

2
Qe =>"C,Q  i=12 (67)
r=1

Here, the reflected wave modes (denoted by means of the stiperzf) are to
be understood as the waves traveling outward from the jumctie. which are
induced by the incident wave modes for both waveguidzasdr.

Apart from the coupling conditions, considering the otheufidaries of waveg-
uides1 and2 e.g. where forces or displacements can be applied, theoredhips
between the vectors of reflected and incident wave ampbtade quite similar to
Eq. (12), i.e.

Qiref* _ (C:Qiinw + FZ* 1= 17 2. (68)
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4.2. Error norms

The idea behind the MOR strategy is to approximate the veabdisplace-
mentSqu’i) and internal forcei‘gk’i) of each waveguidé (i = 1,2), over any
substructure boundary; (k;, = 1,...,N; + 1, N; being the number of sub-
structures used for describing the waveguidby means of a reduced wave basis
{(ij)i}jzl,m,gmi (with a same numben; < n; of incident and reflected modes).
In this framework, the aim is to compute the forced respotiskeocoupled struc-
ture using a reduced matrix formulation of small si¢ex; + m2) compared to the
conventional matrix formulation (whose size2ig:; + n2)) obtained when the full

wave bases are considered (cf Eq. (16)). The related emorbe readily derived
on a same scheme as for Egs. (26) and (27), i.e.

~(k k inc(k ref(k

qg 1) _qg 1) . ||q’inc|| A : (k1) . AQI £(k1)

~ - q inc re

qgk 2) qg@) AQ2 (k2) AQz £(k2)

kt=1,...,N1+1 ko=1,...,No+1, (69)
ﬁgk:l) o ngl)
ﬁg’@) o F§k2)

inc(lﬁ) ref(kl
< inc
< ||®g| inc(ka) + AQref(k?
where®:* and®z*¢ are squarén; + na) x (n1 + n2) matrices defined as

and

AQ;
ki=1,...,N1+1 ko=1,...,No+1, (70)

(@), 0
0 (®ir),

(")

(I)zllnc — .
0 (®F)

, P = . (71)

In Egs. (69) and (70)AQm° andAQref (i = 1,2) are expressed asQ; =

EZ. QZ- - Q; whereﬁi is anm,; x n; incidence matrix such thaﬁ'f is unitary (cf.
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Section 2.4.2). Considering as in Section 2.4(2a— m;) x n; incidence matrix
L.; —such that’” is unitary andc” £.; + LT L; = 1,,, Vi (cf. above Proposition
1) - vyields the error norms on the right hand sides of Eqs. &) (70) to be
bounded as (cf. Eq. (28))
. { Q ]
Q2

HEN

WhereZ and., are(m1 +m2) X (’I’Ll —l—’I’LQ) and(m —mi+ng— ’I’)’Lg) X (’I’Ll —l—’I’LQ)

AQ
AQs

+ , (72)

matrices, respectively, defined as

~ Zl 0 Erl 0
E = ~ 5 Er - . (73)
0 £2 0 £r2

The derivation of Eq. (72) is based on the fact that béthand LT are unitary
matrices®. As suggested in Section 3.2, further derivation of the bioproposed

inc(k;)

by Eq. (72) is achieved by expressing the vectors of waveitudpbQ; and

Qfef(k 2 (1 = 1,2) in a suitable way. Using the methodology depicted in Section

3.2 while considering Egs. (67) and (68) leads to

2
Ciu Y (Coople =B Qimelt)) 4
r=1

ki=1,...,N;+1 i=12 (74

Q;nc(kz) _ ufi—l

and

Qo) — pNim kil 22:( Cirpl [ ,’f"‘lQief(’“")JrF?D

r=1

ki=1,....,N;+1 i=1,2, (75)

wherep; is the diagonal matrix of the wave mode parame{é;@nc)i}j, defined

such that|u;|| < 1. Following the discussion in Section 3.3.1 while considgri

This statement is readily proved since the matriégsand £7; are unitaryvs.
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Egs. (74) and (75), it is proposed to assess the erk@s™*) and AQT****)
(1=1,2)as

AQinc(kl) e AQref(kl) .
ll AQinchz) sfaQ=il AQll”ef(/m) <NAQT (ki ko),
2 2
(76)
where
AQinc(l) ref(Ni+1)
refx _ 1 ref _ 1
AQ - AQ;nc(l) ) AQ - AQ;ef(N2+1) (77)

Here,AQ*°** refers to the error for the vectors of reflected wave ampdisuat the
left boundaries of the waveguides —i.e. whgn= 1 andk, = 1 — where forces
and displacements are prescribed; ald@*e* refers to the error for the vectors
of reflected wave amplitudes at the right boundaries of theegiides — i.e. when
ki = N1+ 1andks = N, + 1 — where coupling conditions are considered.
According to Section 3.2, bounds gAQ***|| and ||AQ**!|| are derived from

the consideration of the following vectors of wave amplga@*f* andQ=e:

Qinc(l) Q]{ef(NH-l)
refx ref _
Q B |: Q;nc(l) » Q B Q;ef(Ng-l—l) ’ (78)
These vectors are readily expressed from Egs. (74) and §75) a
Qref* — AQref* 4 B , Qref — A*Qref 4 B*, (79)
where
C*NNl(CllﬂNl C*I'LNl((lelJ’NQ F*
A= T T T L B=| T (80)
Copy?Corpy 't Copy?Coopy® 5
and
A Ci1 ) F} + Cropay*F

Crip " Ciplt Cropy*Chpd } B* —

Corp ' Crut Copud>Crpud Co1 )"} + CoopudF
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(81)

Bounds of the error normsAQ=**|| and||AQ**f|| result directly from Eqgs. (47)
and (49).E; andE’ being expressed as in Egs. (45) and (50). It is worth recallin
that these bounds remain valid provided thgA ) < 1 andp(A*) < 1 (Assump-
tion 1), while integers, ands) (cf. Egs. (47) and (49)) are to be considered such
that||A®|| < 1 fors > soand||A*¥|| < 1fors > s§.

As aresult, a bound dfAQ**t*|| + |[|AQ**f|| follows directly from Eq. (63).
It appears to be linked to the error boufigdpreviously defined in Eq. (62), pro-
vided that||[As|| < [|A*|| and||A*¢|| < ||A**|| (Assumption 2). Also, the bounds
of ||g® — q®)|] and|[F*) — F*®)|| result from Egs. (64) and (65).

4.3. Selection of the wave modes

The selection of the wave modes for both waveguidesd2 can be achieved
by considering the procedure depicted in Section 3.4. Teesddthis task, it is
proposed to express the error boufichs a function of a single variabie, i.e. the
number of incident / reflected wave modes retained for botvegaidesl and2.
In other words, it is proposed to assess the behavior of tiveguedes using two
reduced wave basg$®;),}; and{(®,).}; of same siz&m, wherem = m; =
mo.

As suggested in Section 3.4, the wave modes are to be rankex hmder-
taking the minimization of,. This procedure enables the error boufadto be
considered as a function of the single variabidi.e. the firstm wave modes for
both waveguided and2, as ranked by the proposed procedure) whose minimum
value vyields the number of wave modes to be retained. Thismrgrprocedure

can be done independently for each waveguide, considdrengamponents of the
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vectorsE; and E} that exhibit the largest magnitudes. In the present framewo

these vectors are expressed as

E E*
B, = | | E=| "1, (82)
Ego E:z

whereE,; andE?; aren; x 1 vectors associated to waveguid@ = 1,2). Thus,
the issue is to rank the wave modes of each wavegindgith respect to the mag-
nitudes of the components &;; andE}; — denoted a$(Es;);}; and{(E%;)};,
respectively. As discussed in Section 3.4, this proceduables the relative errors
¥ andeE” to be considered as strongly decreasing functions.of his yields the
convergence of the WFE formulation to be improved by conmideeduced wave
bases of small size, constituted from the wave modes thategffiy contribute to
the dynamic behavior of the structure.

To summarize, the strategy for selecting the wave modes eatabed as fol-

lows:

1. Check thap(A) < 1 andp(A*) < 1 (Assumption 1); if not, try to increase
the number of substructures (for each waveguide) or theguagte damping;

2. Choose integet according to Eq. (66);

3. Rank the wave modes of each waveguidé = 1,2) with respect to the
magnitudes of the componer{téE;;); }; U {(E;):};;

4. Compute the error bount, by means of Eq. (62) at the highest frequency
considered within the studied frequency band, as a fundfon (i.e. the
first m wave modes for both waveguidésnd?2, as ranked in step 3);

5. Define the domain of validity of, i.e. when||A®|| < ||A%|| and||A*5|| <
[|A*¥|| (Assumption 2);

6. ldentify the minimum value of ;.
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5. Numerical experiments

5.1. Validation of the MOR strategy

Let us consider the waveguides depicted in Figure 1, i.e.

e aclamped beam-like structure with thick cross-sectionseheft end is sub-

jected to a uniform transverse force field (Figure 1(a));

e a Reissner-Mindlin plate with one edge subjected to a pilestitransverse

displacement (Figure 1(b));

e a clamped sandwich beam with soft core and stiff skins whefsehd (bot-

tom skin only) is subjected to a uniform transverse forcalfiEigure 1(c));

e two beam-like structures coupled with an elastic junctioarmne of their
boundaries, the other boundaries being respectively ddnapd subjected

to a uniform transverse force field (Figure 1(d)).

The WFE matrix formulations for computing the forced resgmof such waveg-
uides are expressed by Egs. (15) and (16) (see also ref. ThR.relevance of
these formulations has been proved provided a sufficientoeurof wave modes
has been considered [1]. The classic model reduction giratnsists in retaining
the wave modes whose wavenumbers — computed at the smeadigsefncy con-
sidered within the involved frequency band — exhibit the lgstimaginary parts.
This turns out to be similar to retaining the wave modes foictvkthe wave param-
eters{yi;}; (see Section 2) have the magnitudes that are closest to oliewifg
this procedure, the frequency response functions of wagegican be drawn as
shown in Figure 3(a-d), considering as number of inciderflécted wave modes
e.g.m = 30 for the beamn = 60 for the plateyn = 80 for the sandwich structure

andm = 30 for the coupled system (say for each of the connected wasteg)i
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The WFE solutions are compared to conventional FE solutiovaving the full
discretized models of the waveguides (cf. Figure 3). Fa thsk, the quadratic
velocity of each waveguidé at one measurement point (located in the excitation
area for the beam-like and sandwich structures; locatedantiddle of the free
left boundary for the plate) has been considered. Cleaik/shown that the WFE
formulation suffers from a lack of convergence at high freeugies for predicting
the structure resonances and anti-resonances. To sadvisgbe, the sizes of the
wave bases need to be enlarged. The drawback of this appedthett a large num-
ber of wave modes can be taken into account, even if part ebthedes weakly
contribute for expressing the forced responses. This ifamau since the selec-
tion of the wave mode is carried out in accordance to the nbadgs of the wave
parametergi;}; (See above), i.e. considering only the way the wave modes are
propagating at a certain frequency (regardless of theitriborion for describing

the boundary conditions of the waveguides).
Figure 3

In contrast, the MOR strategy based on the minimization e&tior bound,
(Eq. (62)) vyields an efficient means for selecting the wavelesahat effectively
contribute to the forced response, irrespective of the nadgs of the wave pa-
rameters{;z; } ;. In other words, non-contributing wave modes whose wavamar
eters might exhibit magnitudes close to one are removed finemeduced basis, as
opposed to the classic procedure. This explains why theeptesodel reduction
strategy yields reduced bases of relative small sizes. @leeance of this strategy

for computing the forced response of waveguides is higtdiginereafter.

’i.e. the square of the magnitude of the total velocity, adesing the three directions of space

for solid finite elements and the transverse direction fatgélements.
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Beam-like structure

A clamped beam-like structure with thick rectangular cresstion, whose left
end is subjected to a uniform force field, is considered (cufe 1(a)). The
material and geometric characteristics of the structuge doung’s modulugy =
2 x 10" Pa, densityp = 7800 kg.m3, Poisson’s ratior = 0.3, loss factor) =
0.01, length L = 2 m and cross-section arég, x h, = 0.2m x 0.3 m. The
waveguide is discretized by means 280 identical substructures, each of these
being discretized by means dfx 6 linear finite elements (see Figure 1(a)). In
this case, the number of incident / reflected wave modesviadolor computing
the forced response of the waveguidenis= 105. Using a reduced wave basis
{®,}, with saym = 30 incident / reflected wave modes selected by means of
the classic procedure (see above) yields the forced response computed as
shown in Figure 3(a), over a frequency baig = [10 Hz, 10* Hz]. Compared
to the reference FE solutions involving the full discretiaeaveguide, the WFE
formulation based on the reduced ba@%j}j with m = 30 incident / reflected
wave modes appears as suffering from a lack of convergencprédicting the
structure anti-resonances ab@@®0 Hz.

On the other hand, using the MOR strategy proposed in Se8tibyields the
error bound€; to be drawn as shown in Figure 4. As previously stated, thesiss
is to identify a minimum value of,; with m small enough, while considering the
assumptiong|As|| < ||A*|| and||A*s|| < ||A*¢|| as valid (cf. green shaded
areas in Figure 4). The minimum value &f clearly appears when the number of
incident / reflected modes i = 26. Here, &, is close to zero (say undér1%)
which means that the WFE solution is likely to be highly aeter The fact that

such a clear minimum point can be sought follows from the ickemation of the
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*

relative errors(ef + ¢2) and (e + €2") for deriving & (cf. Section 3.3.3).
Consideringm = 26 as the number of incident / reflected modes yields the forced
response to be drawn as shown in Figure 5. As expected, thvergemce of the

WEFE formulation is entirely satisfied over the whole frequyeband.
Figure 4
Figure 5

Another way to test the accuracy of the MOR strategy propaséliis paper
(cf. Section 3.4) is to compute the relative erfaf*) — q*){|/||q'*)|| involved
for expressing the vector of displacemeqt§ over any substructure boundaky
Following the discussion at the end of Section 3.3.2, it causthted that this rel-
ative error can be assessed by means of the minimum value efitbr bound’s,
which in the present case is small (undet%). To check this feature, the rela-
tive error||[q®) — q®||/||qa®|| (as involved by the MOR strategy whef wave
modes are selected (see above)) has been plotted as a ifiuottive frequency,
considering the left end of the structure (i.e. the subsirecboundaryk = 1,
where the excitation sources are applied). The result i/shio Figure 6. Also,
the relative error involved by the classic model reductioocpdure withm = 30
incident / reflected wave modes has been plotted. As expetied/IOR strategy
based on the consideration of the error bodndor selecting the wave modes ap-
pears accurate over the whole frequency bidpdit is shown that the relative error
is of the same order as the minimum valuecofover B, say relatively small (it
could be emphasized that the relative error exhibits a feakp&vith high magni-
tudes localized at very low frequencies, which are meaasgjl this is explained
since the norn|q‘? || can be very small at the structure anti-resonances, lesaling

high values of the relative error). In comparison, the retaérror involved by the
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classic procedure appears considerably high. It increesése frequency does to
reach30% at10* Hz. Again, this clearly proves the relevance of the MOR stygt

proposed in the present paper.

Figure 6

Reissner-Mindlin plate

A square Reissner-Mindlin plate, with one edge subjectedai@scribed trans-
verse displacement, is considered (cf. Figure 1(b)). Theenah and geometric
characteristics of the structure are: Young's modulus= 2 x 10'! Pa, density
p = 7800 kg.m‘3, Poisson’s ratiov = 0.3, loss factorn = 0.01, shear correc-
tion factorx = 5/6, areaL, x L, = 1 m x 1 m, thicknessh = 0.002m. The
waveguide (i.e. the plate) is discretized by meand(®identical substructures
along thex—direction. The FE model of a representative substructushasvn
in Figure 1(b). It enabless = 83 incident / reflected wave modes to be com-
puted for describing the forced response of the waveguigle $&ction 2). Using
the classic wave mode selection procedure requires theedduave basis to be
considerably enlarged to reach the convergence of the WiLfation [1]. For
instance, usingn = 60 incident / reflected wave modes yields the forced response
of the waveguide to be computed as shown in Figure 3(b), oftmgaiency band
By = [10 Hz, 2000 Hz|. In this case, the WFE formulation suffers from a lack of
convergence for predicting both structure resonances mtivdessonances, even at
low frequency. The issue is that some contributing wave m@&iibit wave pa-
rameters{yi; }; of very small magnitudes at low frequency (in other wordssth

wave modes are strongly evanescent). Such high order wadesmeed to be
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considered for capturing the highly fluctuating kinematno anechanical fields,
especially around the plate corners where prescribedagispients apply.

On the other hand, using the MOR strategy proposed in Se8tibyields the
error bound€; to be drawn as shown in Figure 7. As for the beam-like strectur
a minimum value of€, clearly appears (the predicted error is less th#). In
this case, the sought number of incident / reflected wave misde = 43. Using
these43 modes in the WFE matrix formulation (cf. Eq. (15)) yields floeced
response to be computed as shown in Figure 8. Again, the genee of the
method appears to be perfectly satisfied over the whole émxyuband. In this
case, the required number of wave modes appears consigeraall compared to

the classic selection procedure.
Figure 7
Figure 8

As it was the case with the beam-like structure, the relagiver involved for
expressing the vector of displacements over the left edfjeedftructure (substruc-
ture boundaryl) —i.e. ||g®Y — q™M||/||lqV|| — can be computed as a function
of the frequency. The results provided by both MOR strategseld on the error
boundé&; (i.e. withm = 43 incident / reflected wave modes) and classic procedure
(i.e. withm = 60 incident / reflected wave modes) are shown in Figure 9. Again,
the accuracy of the proposed MOR strategy is clearly higkdid; the relative error
appears less that?s over the whole frequency band. In other words, as stated in
Section 3.3.2, the relative error is of the same order as thermam value of€,

overB;.

Figure 9
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Sandwich structure

A clamped three-layered structure, consisting of a sofbeulcore surrounded
by two stiff skins, is considered. The left end of the bottdkimss subjected to
a uniform transverse force field (cf. Figure 1(c)). The matesnd geometric
characteristics of the skins are: Young’s modultis = 2.1 x 10'! Pa, density
p® = 7850 kg.m~3, Poisson’s ratio* = 0.3, heighth® = 2 x 1073 m and width
50 x 1073 m. Also, the material and geometric characteristics of e @re:
Young’s modulusk® = 1.5 x 10° Pa, densityp® = 950 kg.m~3, Poisson’s ratio
v¢ = 0.48, heighth¢ = 20 x 1073 m and width50 x 10~3 m. The length of the
sandwich structure i, = 0.4 m. Dissipation phenomena are accounted for by
considering a same loss factpe= 0.02 for the three layers. The waveguide is dis-
cretized by means &X00 identical three-layered substructures, each of thesgbein
discretized using x 1 linear elements for the skins and 4 linear elements for the
core (see Figure 1(c)). The number of incident / reflectedewawdes involved for
computing the forced response of the waveguide s 105 (see Section 2). Using
a reduced wave bas{#b; }; with saym = 80 incident / reflected wave modes se-
lected by means of the classic procedure (see above) ytedsitced response as
shown in Figure 3(c), over a frequency bafig = [50 Hz, 1500 Hz]. Compared
to the reference FE solution when the full waveguide is disoed, the WFE for-
mulation suffers from major drawbacks for predicting theicture resonances and
anti-resonances abow€00 Hz, i.e. when the dynamics of the core are crucial.

Invoking the MOR strategy proposed in Section 3.4 yieldsettier boundf,
to be considered (cf. Figure 10). The result is not as obvasufor the previous

cases (i.e. beam and plate). The error bofindppears as a monotonous decreas-
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ing function ofm (i.e. the number of retained wave modes) without clear manim
Regarding Eq. (62) and the discussions in Section 3.3.3s#lve is that the rela-
tive errors(ef + €) and (F” + ¢F") exhibit values that are too large to balance
the value of(ef + &), (e£” + €57). Such a problem does not seem unsolvable.
Indeed, Figure 10 highlights two reasonable values of ther éround&, for m
small enough, i.e£; ~ 38% whenm = 33 and&; ~ 18% whenm = 63. The re-
spective WFE solutions are plotted in Figure 11. Wher= 33, the WFE solution
accuratly describes the structure behavior abt@eHz but suffers from severe
drawbacks at low frequencies. This is explained since theevmaode selection
criterion is carried out at the highest frequency withip (see Section 3.4.2), i.e.
some low-frequency contributing wave modes might have begfected. Consid-
eringm = 63 incident / reflected wave modes with a lower error boépdlearly
solves this issue. As expected, the required number of wadesappears quite

small compared to the classic selection procedure.
Figure 10
Figure 11

Again (see previous cases), the relative efii@) —q»||/||q" || can be com-
puted as a function of the frequency, considering the vemftdine displacements
over the left boundary of the structure (substructure baond) where the exci-
tation sources are applied. The results provided by both M@#&egy — when
63 incident / reflected wave modes are selected by means of ibretemundE, —
and classic procedure wit0 incident / reflected wave modes are shown in Fig-
ure 12. Again, the proposed MOR strategy appears more deccoapared to
the classic procedure. Also, as stated in Section 3.3.2ethéve error provided

by the proposed MOR strategy is of the same order as the valfie(say, below
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18% whenm = 63) over By, except around00 — 800 Hz. The fact that the er-
ror bound is computed at the highest frequency considertdna ; (see Section
3.3.2) can explain in part this lack of accuracy, although flequency response

function depicted in Figure 11 is correctly predicted.

Figure 12

Two beam-like structures coupled with an elastic junction

Let us consider the coupled system depicted in Figure 1(dplving two
beam-like waveguides connected to an elastic junction @euarter of torus).
Apart from the coupling conditions, the other waveguide rimtaries are respec-
tively submitted to a uniform transverse force field and @achend. The dy-
namic behavior of the coupled system has been investigateddcent paper [18],
over a frequency banff; = [10 Hz, 5000 Hz| that enables the junction to un-
dergo resonances. The two waveguides, as well as the cgyphiation, exhibit
the same material characteristics: Young's modulus= 3.2 x 10° Pa, density
p = 1180 kg.m~3, Poisson’s ratie = 0.39, loss factom = 0.01. The two waveg-
uides have the same cross-sectional @ga h, = 0.2 m x 0.15 m, while their
respective lengths arb; = 2m andL, = 1.5 m. The quarter of torus has an
internal radius of curvature dkR° = 0.05 m and a cross-section similar to those
of the connected waveguides. The two waveguides exhibidh@e cross-section
and are discretized by means of similar substructures wiresggective numbers
are N1 = 100 and N, = 75. Each substructure is meshed using 3 linear ele-
ments, yieldingn = 60 incident / reflected wave modes to be considered for each

waveguide for computing the forced response of the couptstes. A Lagrange
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multipliers formalism that enables the junction and the egandes to be meshed
differently over the coupling interfaces is also considdf]. Using two reduced
wave basig(®;),}; and{(®,).}, (for waveguides and2, respectively) e.g. con-
sisting ofm; = me = m = 30 incident / reflected wave modes, selected by means
of the classic procedure (see Section 5.1), yields the daesponse of the coupled
system to be described as shown in Figure 3(d). In this camm the substructures
used for both waveguides are similar, the reduced b{9(§§)1}j and{(t?[;j)g}j

turn out to be similar. It is shown that the WFE formulatiorifets from a lack

of convergence for predicting the system resonances allegonances above
3000 Hz, i.e. when the local dynamics of the junction are of priyrniarportance.

On the other hand, using the MOR strategy proposed in Seét®yields the
error bound€, to be drawn as shown in Figure 13. In this case, since the wave
modes are ranked independently for each waveguide (seei$é@), the reduced
bases{(tfj)l}j and{(;I;j)g}j turn out to be different. These are constituted indi-
vidually considering then most contributing incident / reflected wave modes for
each waveguide. Considering Figure 13, a minimum valué; afearly appears,
as expected (here, the predicted error is less @@ %!). The sought number of
incident / reflected wave modes appears tarbe- 30. Using such reduced bases
{(5[33-)1}]- and{(t?[;j)Q}j (i.e. constituted from th80 most contributing incident /
reflected wave modes for each waveguide) yields the forcgubrese of the cou-
pled system to be computed as shown in Figure 14. The comazge the method

completely agrees over the whole frequency band.
Figure 13
Figure 14

Again (see previous cases), the relative eﬂt’dﬁl) - q§1)|| / ||q§1)|| can be
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computed as a function of the frequency, considering e.g.v#ttor of the dis-
placements over the left boundary of the waveguidsubstructure boundari)
where the excitation sources are applied. The results amrsim Figure 15. Once
more, the accuracy of the proposed MOR strategy is cleaglylighted compared

to the classic procedure; considering the proposed MOReglirgields the relative
error to be less thaf.001% over the whole frequency band (as stated in Section

3.3.2, the relative error is correctly assessed by the mimimalue ofe, over3y).

Figure 15

5.2. Application to a plate radiating in an acoustic fluid

The MOR strategy appears to be very efficient for saving 1&B& time if for
instance one considers the computation of the power rad@tea plate in a sur-
rounding acoustic fluid. The fact that large CPU times areired for addressing
this kind of problem is explained since coupling terms amomge modes (due
to the fluid) occur, leading to the computation of a full seuaratrix of radiation
impedance that is time consuming when many frequency stepawlved. In the
present case, a square Reissner-Mindlin plate whose thastics are similar to
those depicted in Section 5.1 is considered. The structuseipposed to be sur-
rounded by an infinite rigid baffle while radiating in an adiuduid (air) whose
characteristics are: density = 1 kg.m~3 and celerity of waves, = 330 m.s™!.
The fluid is supposed to be inviscid and light, in the senseithdoading on the
plate is neglected. For this kind of problem, a relevant aagin is to compute the
radiating power or, equivalently, the radiation efficienEgr this task, the method

of elementary radiators can be used [19]. This suggestsisoré&tize” the plate
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into elementary surfaces of same ar£3q;..or and constant normal velocities,

and to compute the radiation efficiency as

. H .
q, Ran
o= - , 83
pOCOSplate < (Qn)2 ( )

whereq,, is the vector of normal velocities of the elementary rad®texpressed
asq, = iwq, whereq, is the vector of normal displacements; also(,, )? > is

the mean quadratic velocity averaged over all the elemendaiators, defined as

1 'rad

< (qn)2 >= 2N ’ (84)

whereN,..q4 is the total number of elementary radiators that are usediforetizing
the plate, whil€q,, ), is the normal velocity of a given radiatér Also, in Eq. (83),

Spiate 1S the area of the plate whil is a full square matrix whose components are

w?ppS? diator Sin(korii) ., . w?ppS? diat
R. = radiator R. = radiator (g5
1] 47TC() kOTij (Z 7é j) ) i1 471'00 ( )

whereky = w/cy is the acoustic wavenumber ang is the distance between two
radiatorsi andj. A typical elementary radiator is depicted in Figure 16,hnan

areaS,qdiator = L4/20 x L, /10 (L, = 1 mandL, = 1 m being the length and
width of the plate). The normal velocity of each radiatonipposed to be constant

and equal to the normal velocity at its mid node (cf. Figure 16
Figure 16

The WFE method can be used for approximating the vector ahabdis-
placements (and thus the vector of normal velocities) cahmadiators ag,, ~
L'®,Q, where®, = [®i*®I*f] (@ being the matrix of wave mode®;};),
Q = [Q=TQ=*T]T is the vector of wave amplitudes ani is an incidence

matrix for capturing the normal displacements at the relex@OFs. Thus, the
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numerator appearing on the right hand side of Eq. (83) canriteemas

afRap, = > QM [V SY LR LB Y| Q (86)
i>1
+2w? Z Z Re {QH [lil(i_I)H&v)é{E/HRijﬁl‘iqﬂl(j_l)] Q} )
i>1 j>i

whereQ is to be understood as the vector of wave amplitudes for thimt@as
located at the left end of the plate; algd,is a diagonal matrix with components
{ﬁg‘}j ({1;}; being the wave parameters already introduced in Sectignhiere

« is an integer that “scales” the lengthof a plate substructure (see Figure 1(b))
to the length of a radiator (i.€.,/20): in the present case, = 2; finally, R;; is a
square matrix extracted from the matiR (see above) and which relates the cou-
pling between two rows of radiatofsandj, distant from|i — j| L, /20. Otherwise,
expressing the denominator on the right hand side of Eq. {@3heans of WFE
wave modes does not add any more difficulty.

Regarding Eqg. (86), the feature of the WFE approach is theatrthtrix terms
inside the square brackets do not depend on the plate bguodaditions. Once
these terms have been computed, the computation of thdicadé&ftficiency can
be investigated for several kinds of boundary conditionthéwer CPU times
compared to the FE method. Nonetheless, even in the WFE Warkethe CPU
times remain substantial. Indeed, the computation of ttietian efficiency based
on Eqg. (86) requires many matrix multiplications and suniomat (for instance,
the second term in square brackets needs to be complidomes) that have to be
considered at many discrete frequencies. To highlightgbist, it is proposed to
compute the radiation efficiency considerin@g1 discrete frequencies uniformly
spread on a frequency baity = [10 Hz, 2000 Hz| (cf. Figure 17). Considering
the full wave basis (here, the number of incident / reflectedi@s isn = 83 (see

Section 5.1)) yields the CPU time to héh2min12s using an Inté® Core'™ 2
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Duo processor. Thus, reducing the sizes of the matricesestdng involved in Eq.
(86) efficiently appears crucial for lowering this compigaal cost. Considering
the reduced wave basis provided by the MOR strategy #dtimcident / reflected
modes (as established in Section 5.1), instead of the fulevirasis, yields the
radiation efficiency to be computed as shown in Figure 17. rEselt appears

to be perfectly similar to those obtained when the full waasi®is considered, as
expected. But the main advantage of the MOR strategy lidsiffietct that the CPU
time has been considerably reduced ®7min24s. This yields the CPU time to

be reduced o87% compared to the case when the full wave basis is considered.
From this point of view, the relevance of the proposed MORtsgy is clearly

highlighted.

Figure 17

5.3. Application to coupled waveguides involving juncsiavith uncertain eigen-

frequencies

Another way to highlight the relevance of the proposed MQRtsgy for sav-
ing large CPU times is to consider Monte Carlo simulation€@)linvolving many
iterations. Such an analysis has already been investigatedormer paper [18]
considering two waveguides coupled with an elastic jumctihose eigenfrequen-
cies exhibit slight uncertainties, i.e. when each junceayenfrequencyo; /2 is
perturbed aé?? + dw; with \5&]-/&;?] < 5%. In the work [18], a total number of
m* = 19 vibrational modes for the junction has been consideredgwti= 50 in-
cident / reflected wave modes have been used for each waeediid MOR strat-

egy proposed in the present work suggests that this numlveawed modes can be

53



reduced tan = 30 without penalyzing the description of the waveguide betravi
(see Section 5.1). The results of MCS with0 arbitrary trials for thel9 junction
eigenfrequencies are shown in Figure 18, considering ctisply m = 50 wave
modes (classic approach) amd= 30 wave modes (MOR strategy) for the waveg-
uides. Also, the component-wise bounds of the frequengyorese function — as
derived in ref. [18] — have been highlighted. The resultsvigled by the MOR
strategy appear similar to those provided by the classiewawde selection pro-
cedure, as expected. The feature of the proposed MOR stristdigat it requires
38min 25s for performing those MCS againgth 9min 38 s when the conventional

procedure is considered. This yields a reduction of the G of 45%.

Figure 18

6. Concluding remarks

A MOR strategy has been proposed within the wave finite elér(\éHE)
framework for selecting the wave modes which are relevantdonputing the LF
and MF forced response of elastic waveguides. Single anpleddinite waveg-
uides under prescribed forces or displacements have beestigated. The pro-
posed approach is based on the reduction of error normssgoriteng the displace-
ments and forces along the waveguides. The strategy foessipg these error
norms consists in considering a finite number of forward aamktvard passings of
waves along the waveguides. The fact that a few wave pasamegsonsidered is
the key idea behind the proposed MOR strategy. This endideseiection of the

wave modes to be carried out in a qualitative way, i.e. camsid the minimization
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of an error bound which increases when the sizes of the waseslme overesti-
mated. In many cases, the selection strategy provides laaridaunique answer to
the number of wave modes which are to be retained for any wigdegThe MOR

strategy enables the sizes of the wave bases to be reducdiitaigly compared

to the conventional approach, i.e. when the wave modes e ae with regard to
the magnitudes of their eigenvalues. The accuracy of the MttdRegy has been
clearly highlighted in both single and coupled waveguideesa Also, its relevance
in terms of CPU time savings has been highlighted consigehia computation of
the acoustic radiation of a square baffled plate, as well ag®iBarlo simulations

of a coupled system involving a junction with uncertain eigequencies.

Appendix A. Bound of ||Qirc(R) — £Qinc(k)]|
Considering Egs. (41) and (4aQ»<*) — £Qi=<(®) is written as
Qinch _ fQinct) — EW) _ FEM 4 i <Azq]§gk) _ ZAZquk)>
k:q::11,...,N—|— 1 Vs>sg. (A-1)

A bound of||Qi*<(®) — £Qi=<(¥)|| readily follows as

QI — EQUr]| < B — 25| + Y IIATEL) — ZATBLY)|
k= 1,.q.:.1,N+ 1 Vs> so. (A-2)
Further investigation of this bound follows from the corsation thatgzqﬁgk) =
AEP - 2BEF) + A ZEP, which yields
ASE®) _ FASNE® — AEF — FEF) + (AN — LASED

k=1,...,N+1 VYs>so. (A-3)
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From the consistency property of the-norm (see Section 2.4.1), Eq. (A-3) leads
to|| AYEL — LAYEY || < [|Ag|11||EY — ZEX| + || AL - LAY B

(to derive this inequality, it has been considered th&f?|| < ||A$||%). As aresult,
Eq. (A-2) yields

‘ ’Qinc(k) i EQinc(k) ‘ ’

< (DAl ) IEP — |+
q=0 q
k

M8

AL~ ﬁAsq) IEXM|
1

o, N+1 Vs>s9. (A-4)

Appendix B. Bound of ||£,Q1"<(F)||
According to Eq. (41)}|£,Q™(¥)|| is bounded as

1£:Q V|| < [|LEP |+ D I AFED|
q=1

k=1,....N+1 Vs>sy. (B-1)
Considering thatC, ASEY = £,A%272,EP + £,A3L7 LB (because
LI, + LTL = 1, (see above Proposition 1)), it turns out (from the consis-
tency property of the—norm) that||£, ASQE < |IL: ANLT||L, EM|| +
1L ASILT| |ICE{||. Considering Eq. (B-1) and using the fact tHat A9 £T|| =
[|£:LL|| =1 (sinceA? = I,, while the matrixC! is real orthogonal, i.eC, LI =

L) yields

1£:Q W) < (ZﬁrAZ‘]ﬁf) 1£:EX]| + (ZﬁrAZqET) ICEY|

q=0 q=1
k=1,....N+1 Vs>sy. (B-2)
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The matricest” and £7 are unitary, which means tha”|| = ||£7]| = 1 but
also that||Z|| = ||£L]| = 1 (this is proved sincé|Z|| = ||LTL||Y/? = ||L||"/?
and||L.|| = ||LTL||Y? = ||L£:]|*/?, since the2—norm is unitarily invariant).
Thus, according to the consistency property of 2henorm (see Section 2.4.1),
1LAPLT(] < 1L\ ALIGILT] < |Ag]1 and ||CES))| < ||£])[[EX)] <
||E§k)||. Therefore, Eq. (B-2) leads to

1£:Q®)| < (ZAiq) 1£EP|| + (ZErAZqET) BN

q=0 q=1
k=1,...,N+1 V¥s>sy (B-3)
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Figure 2: Representation of substructure boundariesr (thenber isN + 1 along the waveguide)

and representation of the conventions made to describetigent / reflected waves at the left and

right boundaries of waveguides.
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Figure 3: Frequency response function (quadratic velqciB)) for beam-like structure (a), plate (b), sandwich stuwe (c), coupled system (d):
(—) FE reference solution;e(e ) WFE solutions when the wave modes are selected by the classiedure (number of retained wave modes:

m = 30 (@),m = 60 (b), m = 80 (c) andm = 30 (d)).
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Figure 4: Error bound; as a function of the number. of incident / reflected wave modes for a
clamped beam-like structure whose left end is subjecteduttfarm transverse force field. (Green

shaded area): case where assumptjphs|| < ||A®|| and||A**|| < ||A**|| are satisfied.
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Figure 5: Frequency response function of a clamped beaarstikicture whose left end is subjected
to a uniform transverse force field=—) FE reference solutions(e ¢) WFE solution withm = 26

wave modes selected by means of the error batnd
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Figure 6: Relative error involved for expressing the veatdisplacements over the left boundary
of the beam-like structure—) WFE solution withm = 30 wave modes selected by means of the
classic procedure—~—) WFE solution withm = 26 wave modes selected by means of the error
boundé&s.
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Figure 7: Error bouncEs as a function of the number. of incident / reflected wave modes for
a Reissner-Mindlin plate with one edge subjected to a piEstrtransverse displacement. (Green

shaded area): case where assumptjphs|| < [|A®|| and||A**|| < ||A**|| are satisfied.
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Figure 8: Frequency response function of a Reissner-Mingliate with one edge subjected to a
prescribed displacement-——) FE reference solution;e(e ) WFE solution withm = 43 wave

modes selected by means of the error bofind
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Figure 9: Relative error involved for expressing the veabdisplacements over the left boundary
of the plate: {—) WFE solution withm = 60 wave modes selected by means of the classic

procedure;{—) WFE solution withm = 43 wave modes selected by means of the error ba&ind
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Figure 10: Error bound; as a function of the number of incident / reflected wave modes for
a clamped sandwich structure whose left boundary (bottom @hkly) is subjected to a uniform

transverse force field. (Green shaded area): case whemptisns||A°|| < ||A®|| and||A**|| <

[|A*?|| are satisfied.
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Figure 11: Frequency response function of a clamped sahdstiacture whose left boundary (bot-
tom skin only) is subjected to a uniform transverse forcealfi¢——) FE reference solution;e(e
o) WFE solution withm = 33 wave modes selected by means of the error baiinde e ) WFE

solution withm = 63 wave modes selected by means of the error b&und
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Figure 12: Relative error involved for expressing the veofaisplacements over the left boundary
of the sandwich structure=—) WFE solution withrm = 80 wave modes selected by means of the
classic procedure——) WFE solution withm = 63 wave modes selected by means of the error

boundé.
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Figure 13: Error bound; as a function of the number of incident / reflected wave modes for two
coupled waveguides subjected to prescribed forces. (Gileatled area): case where assumptions
[|A®|| < ||A®|| and||A**|| < ||A*®|| are satisfied.
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Figure 14: Frequency response function of two coupled waideg subjected to prescribed forces:
(—) FE reference solutions(e ¢) WFE solution withm = 30 wave modes selected by means of

the error bounds.
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Figure 15: Relative error involved for expressing the veofaisplacements over the left boundary
of waveguidel: (——) WFE solution withm = 30 wave modes selected by means of the classic

procedure;{—) WFE solution withm = 30 wave modes selected by means of the error ba&ind
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Acoustic fluid

Figure 16: lllustration of a Reissner-Mindlin plate sumded by a rigid baffle and radiating in a

light acoustic fluid.
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Figure 17: Radiation efficiency of a baffled Reissner-Mindilate, with one edge subjected to a
prescribed transverse displacement, radiating in ais:«) WFE solution with the full wave basis;

(——) WFE solution with the reduced wave basis provided by the MDBRtegy.
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Figure 18: Frequency response function (quadratic veldciB)) of two waveguides connected to an elastic junctisingt MCS —) with 100
trials for the junction eigenfrequencies; (yellow shadeshcomponent-wise perturbation bounds: (a) solutiongiged by the classic strategy using

m = 50 wave modes; (b) solutions provided by the MOR strategy using 30 wave modes.



