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Uniformly exponentially or polynomially stable
approximations for second order evolution equations and
some applications

Farah Abdallah* Serge Nicaisel Julie Valeint Ali Wehbe?
May 4, 2012

Abstract

In this paper, we consider the approximation of second order evolution equations. It is well
known that the approximated system by finite element or finite difference is not uniformly
exponentially or polynomially stable with respect to the discretization parameter, even if
the continuous system has this property. Our goal is to damp the spurious high frequency
modes by introducing numerical viscosity terms in the approximation scheme. With these
viscosity terms, we show the exponential or polynomial decay of the discrete scheme when the
continuous problem has such a decay and when the spectrum of the spatial operator associated
with the undamped problem satisfies the generalized gap condition. By using the Trotter-Kato
Theorem, we further show the convergence of the discrete solution to the continuous one. Some
illustrative examples are also presented.

1 Introduction and main results

Let H be a complex Hilbert space with norm and inner product denoted respectively by ||.|| and
(.,.). Let A : D(A) — H be a self-adjoint and positive operator with a compact inverse in H. Let
V = D(A?) be the domain of A2. Denote by D(Az)’ the dual space of D(Az) obtained by means
of the inner product in H.

Furthermore, let U be a complex Hilbert space (which will be identified to its dual space) with
norm and inner product denoted respectively by ||.||;; and (.,.)y and let B € L(U, H). We consider
the closed loop system

(1) W(t) + Aw(t) + BB*w(t) = 0,
w(0) = wp, w(0) = w1,
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where ¢ € [0, 0o) represents the time, w : [0, co) — H is the state of the system. Most of the
linear equations modeling the vibrations of elastic structures with feedback control (correspond-
ing to collocated actuators and sensors) can be written in the form (1), where w represents the
displacement field.

We define the energy of system (1) at time ¢ by

1/7,. 2 1 2
E(t) = 5 (Ie@)? + |4t ) -
Simple formal calculations give
t
E(O)—E(t):/ (BB*a(s), i(s))ds, Vit > 0.
0

This obviously means that the energy is non-increasing.

In many applications, the system (1) is approximated by finite dimensional systems but usually
if the continuous system is exponentially or polynomially stable, the discrete ones do no more inherit
of this property due to spurious high frequency modes. Several remedies have been proposed and
analyzed to overcome this difficulties. Let us quote the Tychonoff regularization [?, 7, 7, 7], a bi-
grid algorithm [?, ?], a mixed finite element method [?, ?, 7, ?, ?|, or filtering the high frequencies
[?, 7, ?] (both methods providing good numerical results).

As in [?, ?] our goal is to damp the spurious high frequency modes by introducing a numerical
viscosity in the approximation schemes. Though our paper is inspired from [?], it differs from that
paper on the following points:

(i) Contrary to [?] where the standard gap condition is required, we only assume that the
spectrum of the operator A'/? satisfies the generalized gap condition, allowing to treat more
general concrete systems,

(i) we analyze the polynomial decay of the discrete schemes when the continuous problem has
such a decay,

(#ii) we prove a result about uniform polynomial stability for a family of semigroups of operators,

(iv) by using a general version of the Trotter-Kato theorem proved in [?], we show that the
discrete solution tends to the solution of (1) as the discretization parameter goes to zero and
if the discrete initial data are well chosen.

Before stating our main results, let us introduce some notations and assumptions.

We denote by ||.||;, the norm
lelly =/ (A2, A2p), Vo € V.
lelly = V/(Ap, ©), Vi € D(A).

Remark that

We now assume that (V3)rs0 is a sequence of finite dimensional subspaces of D(A%). The inner
product in V}, is the restriction of the inner product of H and it is still denoted by (.,.) (since V3
can be seen as a subspace of H). We define the operator A, : Vj, — V}, by

(2) (Anon, n) = (A% on, AZ¢p), Yon, Un € Vi



Let a(.,.) be the sesquilinear form on V}, x V}, defined by

(3) alion, Un) = (Abon, A2en), Y(en, ¥n) € Vi X Vi,
We also define the operators By : U — V;, by
(4) Bru = jpBu, Yue€eU,

where j, is the orthogonal projection of H into V} with respect to the inner product in H.
The adjoint B}, of By, is then given by the relation

Byow = B pn, Yon € Vi

We also suppose that the family of spaces (V},), approximates the space V = D(A%). More

precisely, if 7, denotes the orthogonal projection of V = D(A%) onto Vj,, we suppose that there
exist § > 0, h* > 0 and Cy > 0 such that, for all h € (0, h*), we have :

() Imne = elly, < Coh? | Ag, Y € D(A),

(6) Imne = @ll < Coh® || Agll, Vi € D(A).

Assumptions (5) and (6) are, in particular, satisfied in the case of standard finite element approx-
imations of Sobolev spaces.

Denote by {A; }r>1 the set of eigenvalues of A? counted with their multiplicities (i.e. we repeat
the eigenvalues according to their multiplicities). We further rewrite the sequence of eigenvalues
{Ak}r>1 as follows :

Ay < Ay <o < Ap, <o

where k1 = 1, ks is the lowest index of the second distinct eigenvalue, k3 is the lowest index of the
third distinct eigenvalue, etc. For all ¢ € N*, let [; be the multiplicity of the eigenvalue Ag,, i.e.

Moy < Akp = Mgy = oo = Mgyt —1 < Aty = )\ki+1'

We have k1 = 1, ko = 1+ 11, ks = 1+ 1 + ls, etc. Let {¢r,+;}o<j<i,—1 be the orthonormal
eigenvectors associated with the eigenvalue Ag,.
Now, we assume that the following generalized gap condition holds:

(7) IM € N*, 3yo > 0, Yk > 1, Mesar — A > M.

Fix a positive real number v} < v and denote by Ay, k =1,..., M the set of natural numbers k,
satisfying (see for instance [?])

Ak = Ay 270
Mo, — M1 < Y0 form+1<n<m+k-1,

/
)‘km+k - >‘km+k71 Z Y-

Then one easily checks that

{kmyj +Ukm € Ap, ke {l,...M},j€{0,....k—1},1€{0,....l;q; — 1} } = N".



Notice that some sets Ay may be empty because, for the generalized gap condition, the choice of
M takes into account multiple eigenvalues. For k, € Ay, we define By, = (B, ij)1<i, j<k the
matrix of size k x k by

n+j—1
IT Qs =)™t ifd < (1,5) # (1, 1),
Br, ij = azntio1
1 if (4, j) = (1, 1),
0 else .
More explicitly, we have
1 1 1 . 1
Akn,*l)\knﬂ ()\kn*)\kn+1)1()\kn*>\kn+2) (Akn*/\knJrl)"'1()\kn*>\kn+k,1)
0 A1~ Akn [C Y _/\kn)({\knﬂ ~Akyys) o [CY . _)‘kn)"‘(/l\knﬂ ~AMkppr—1)
By, = 0 0 O D [T VD I [ R O
0 0 0

1
()"erk-a 7>\kn).‘.(>\kn+k—1 7>\kn+k‘—2)

Lemma 1.1 The inverse matriz of By, is given by

n+i—2
1 H (Aknﬁ»]’fl - )‘kq) Zfl <Jjt 7é 1,
L= q=n
Fetd 1 ifi=1,
0 else,
that is to say
1 1 . e 1
0 (Akn+1 - )\k‘”n) e ()\k7,+k71 - )\kn)
Bk—n1 -1 0 0 (CYSIRNED VIS [0V V| 7
0 0 T ()\kn+k—1 - )\kn) t (Ak;n+k—1 - Akn+k72)
and therefore
1 1 1
00 --- 0
Bk_n1 — ) ) . |, when n — 4o0.
0 0

Proof. The form of Bk_n1 is obtained by induction on the size k of By, . The generalized
gap condition (7) implies that A, — A, = 0 asn — +00, V0 < j < k — 1. This leads to the
convergence of B 1 ]

Now, for k, € Aj, we define the matrix ®; with coefficients in U and size k x L,,, where

k
L, = Zlnﬂ-,l, as follows : for alli =1, ..., k, we set
i=1

B* Comin g if Ly i1 <j<Lpi,
(q)kn)ij:{ 0 Phoiaty bt elsejw ' =



where
(8) Ln’o = O7 Ln,i == Z ln+i’71 for i Z 1.
/=1

For a vector ¢ = (¢;)2; in U™, we set [|c[[;; , its norm in U™ defined by

m
2 2
||C||U,2 = Z lleall -
=1

In this paper, we prove two results. The first result gives a necessary and sufficient condition
to have the exponential stability of the family of systems

(I}h(t> + Ahwh(t) + BhB,’;wh(t) + haAhd}h(t) =0
wh(O) = Wohp € Vh, ol)h(O) = Wip € Vh,

9)

in the absence of the standard gap condition assumed in [?]. Here and below wqy, (resp. wiy) is an
approximation of wy (resp. wy) in Vj,. For that purpose, we need to make the following assumption

(10) Jag >0, Vk € {1,..., M}, Vk, € Ay, VC € RE, ||B,;L1<I>kn(]||U , > a||Cll,,
where ||.||5 is the euclidian norm. The first main result is the following
Theorem 1.2 Suppose that the generalized gap condition (7) and the assumption (10) are verified.
Assume that the family of subspaces (Vi) satisfies (5) and (6). Then the family of systems (9) is
uniformly exponentially stable, in the sense that there exist constants M, a, h* > 0 (independent
of h, won, wip) such that for all h € (0, h*) :

llion (D)7 + a(wn (1), wa(t)) < Me™(|lwin]|> + alwon, won)), ¥t > 0.
Remark 1.3 If the standard gap condition
(11) 370 > 07 n Z 1a )‘kr,L+1 - )\kn Z Yo
holds, then A; = N* and B; = 1. In this case, the assumption (10) becomes

Jag > 0, Yk, > 1, VC € R, || @4, Ol > a0 ||C]]; -

Moreover, if the standard gap condition (11) holds and if the eigenvalues are simple, the assumption
(10) becomes

(12) Jag >0, Vk > 1, [| B il = @o-
These assumptions are assumed in [?].

Remark 1.4 Note that Theorem 1.2 is the discrete counterpart of the exponential decay of the
solution of the continuous problem (1) under the assumptions (7) and (10), which follows Theorem
2.2 of [?] (see also [?]). Note that the assumption (H) from [?]| here holds since A is a positive
selfadjoint operator with a compact resolvent and B is bounded.



Remark 1.5 The uniform exponential stability of the family of systems (9) has been already
proved in Theorem 7.1 of [?] without any assumption on the spectrum of A and the dimension of the
space. The proof of this theorem is based on decoupling of low and high frequencies. More precisely,
the author combines a uniform observability estimate for filtered initial data corresponding to low
frequencies (see Theorem 1.3 of [?]) together with a result of [?]. Indeed, in [?], after adding the
numerical viscosity term, another uniform observability estimate is obtained for the high frequency
components. The two established observability inequalities yield the uniform exponential decay of

9).

If the condition (10) is not satisfied, we may look at a weaker version. Namely if we assume
that

* _ Q
(13) €N, 3ag >0, Vk € {1,..., M}, Vk, € Ay, VC € R, || B @y, C|, , > AZ—O [teilP

n

then we will obtain a polynomial stability for the family of systems
(14)
L L L L
On(t) + (1 +h)"2(I + hPAZ)2 Apwn(t) + (I + P A2 )(BLB;: + heA:fZ)(I +hAZ)Lhn(t) =0,
1
wn(0) = won € Vi, @i (0) = (1 + h8) "I + KA Jwiy, € V.

The structure of the above discrete system has been inspired from the one introduced in [?] for
the exponential stability case where the authors have used system (9) corresponding to [ = 0. In
both cases, this choice is motivated by the corresponding observability estimates. The numerical

L L L
viscosity term (I +h%A?)(ByBj, —l—h‘)A;f 2)Y(I+hP A2 )~ (t) is added to damp the high frequency
modes and as the set of high frequency modes is larger in the polynomial case, the viscosity term
1
is naturally stronger. In the case [ > 2 the powers of (I + h?A?) have been added to guarantee
the boundedness of the resolvent of A; ;, (defined below) near zero. The question of the optimality
of these viscosity terms remains open.
The second main result of our paper is the following one.

Theorem 1.6 Suppose that the generalized gap condition (7) and the assumption (13) are verified
with | € N* even. Assume that the family of subspaces (V3,) satisfies (5) and (6). Then the family
of systems (14) is uniformly polynomially stable, in the sense that there exist constants C, h* > 0
(independent of h, won, wip) such that for all h € (0, h*):

Lo 2 C
|+ 14D @)+ alon(®), wn®) <l o)l

L 2 C
H(I+ h9A}2L)*1wh(t)H Fawn(0), wn(®) < ol >0 Y(won,win) € Vi x Vi,

where for g € N*, ”'HD(A;I,) is the graph norm of the matriz operator A?,h given in (40) of Section
4 below. ’

For a technical reason, we assume ! to be even (see Lemma 4.4). If (13) holds for ! odd, then
it is also true for [ 4+ 1 and we can apply the previous result with [ + 1.

Remark 1.7 If the standard gap condition (11) holds, the assumption (13) becomes

* n o
3l e N*, 3ag > 0, Yk, > 1,VC € R ||y, C|; > N IC]l, -



Moreover, if the standard gap condition (11) holds and if the eigenvalues are simple, the assumption
(13) becomes

* * Qg
(15) 3l € N*, Jap >0, Vk > 1, ||B (pk”UZE.

Remark 1.8 As before, Theorem 1.6 is the discrete counterpart of the polynomial decay of the
solution of the continuous problem (1) under the assumptions (7) and (13), that follows from
Theorem 2.4 of [?] (see also [?]).

The paper is organized as follows: In Section 2, we show that the generalized gap condition
and the observability conditions (10) and (13) remain valid for filtered eigenvalues. Section 3 first
recalls a result about uniform exponential stability for a family of semigroup of operators, and
then extends such a result to the case of uniform polynomial stability. Some technical lemmas are
proved in Section 4. Sections 5 and 6 are devoted to the proof of Theorem 1.2 and 1.6 respectively.

1
In Section 7, we show that the solution wy, (resp. (I + h?A?)~'dy,) tends to w, the solution of
(1), (resp. w ) in V (resp. in H) as h goes to zero and if the discrete initial data are well chosen.
Finally, we illustrate our results by presenting different examples in Section 8.

2 Spectral analysis of the discretized problem

The eigenvalue problem of the discretized problem is the following one: find Ay, 5 €]0, +00[, ¢k, 1 €
V4, such that

(16) alr,ns ¥n) = A n (k. s Y1), Vibn € Vi

Let N(h) be the dimension of V;. We denote by {A7 , }i<k<n(n) the set of eigenvalues of (16)
counted with their multiplicities. Let {¢k, n}1<r<n(n) be the orthonormal eigenvectors associated
with the eigenvalue A7 .

In this Section, we show that the generalized gap condition (7) and the observability conditions
(10) and (13) still hold for the approximate problem (uniformly in h), provided that we consider
only “low frequencies”. More precisely, we first have the following result :

Proposition 2.1 Suppose that the generalized gap condition (7) and the assumption (10) are
verified. Then, there exist two constants € > 0 and h* > 0, such that, for all 0 < h < h* and for
all k€ {1,...,N(h)} satisfying

(17) hoNE <,

we have

(18) IM € N*, 3y >0, Megar.n — Mo n > My

and

(19) Ja>0,Ype{l,...,M}, Vk, € A, ,, VC € REn, ||B,;nl<1>,%hc||U72 > a0y,

where « is independent of h, and where the matriz @y, p, € M, 1, (U), with coefficients in U, is
defined as follows : for alli=1,..., p, we set

i) - B;@kn+'i—1+j_Ln,i—l_1»h Zf L”Li—l <j< L%i?
(P n)ij = 0 else
b



where L, ;—1 is defined by (8) and
App = {kn € Ay satisfying (17) and s.t. kyyp—1 + lpip—1 —1 < N(h)}.

For the proof of this proposition, we need a result proved by Babuska and Osborn in [?]. For
that purpose, we introduce €p,(n, 7) such that

)= if i _ 7
ealm g)= ok af lle = unlly

where Mj(Ax,) = {p € M(Ax,) : alp, Pr,.n) = - = alp, Pr,tj—2,n) = 0} and M(Ay,) =
{¢ : is an eigenvector of Az corresponding to Ay, , [l¢|| = 1}. The restrictions a(e, @i, n) =

.. = a(p, Yk, +j—2,n) = 0 are not imposed if j = 1. Then, we have the following estimate about
the eigenvalue and eigenvector errors for the Galerkin method in terms of the approximability
quantities ep(n, 7).

Theorem 2.2 There are positive constants C' and hg such that
(20)  Mepiin— Meptj < Cér(n, ), YO<h<hg,j=0,..1l,—1 k,+j<N(h), neN
and such that the eigenvectors {¢g, +jto<j<i,—1 of Az can be chosen so that
(21) [[okptg b — Photilly < Cen(n, j), YO<h<hg,j=0,.., 1, =1, k,+j < N(h),n €N,
This result is proved by Babuska and Osborn in [?, p. 702] because
Aoiiin = Mots = Mt h = Mentd) Pkt b+ Mets) = 200 (Nt h — Mty
Remark 2.3 Notice that for every ¢ € M;(\g, ) we have

6h(na J)
(22) Coh? | Agll by (5)

Coha)\in H(pH = Cohe)\%n_i_j.

INIA A

Proof of Proposition 2.1. We begin with the proof of the generalized gap condition for the
approximate eigenvalues Ay 1. First, we use the Min-Max principle (see [?]) to obtain

(23) Mo < Agon, Ve € {1,...,N(h)}.

Second, we use the estimates (20) and (22) and we have

(24) Meon < M+ C(Coh?A2)? < N + C(Coe)? < N + CCe,
for all k € {1,..., N(h)} verifying (17) and € < 1. Therefore, we may write

Aottt b — Moo = Mesar — A — CC2e > My — CC2¢ > M%O —: M~

for all k € {1, ..., N(h)} satisfying (17) and for ¢ < 2%292.
0




Now, we prove the estimate (19) which is the approximated version of (10). Notice that

lngi—1
1Pk, n = P,y < C_max | z% 1B*Pkitiin = B kit
j:
logi—1
< Ci:&?ﬁ?}i—l Z;) ||B*||L(H7 U) ||<pkfn+i+jvh _(pkn+i+j||
lnj+_i—1
< C_max ZO 1Bl 22z, ) 10t h = Proitilly
lnj-;—l
_ o
< O,_max | Z% en(n +1i, j) by (21)
]:
ln+7‘,71
032
< O _pax Z WXy DY (22)
7=0
Thus, by (17), we get
(25) 19k, n = Pr, [l < Ce.

Therefore the triangular inequality leads to

||Bl~c_n1(1)kmhc||U’2

1B, @4, C + By (®p, 0 — 21,)C|

2 HBk_nlq)knOHU,z - HBk_nl(q)kn»h - (I)kn’)OHU,Q
> o |Clly — ||By, (®r,.n = @1,)C;
1 1 1
00 --- 0
by (10). But, as Bk_1 = . .. | + By, with Ry, — 0, when k;, — 400 (see Lemma
0 0
1.1), we obtain
11 1
. 0 0 0
HBI;L (Pk,, 0 — ‘I>lcn)CHU72 < (g, n — P, )C

(26) 0 e 0
+  [Re, (Prn — Ph )Cly o
< Cl®ka,n = P, Mg ICNg + 10 [|Pky, . — P [l 1€l
< Ce(l+m.)IC]l5,

U,2

where n,, = || Rk, || = 0. Thus

_ Qo
15, @k, 1l = (a0 = Ce(1+ 1)) [|Cll, > - €1

[070)
for € < 2c(1+ max(1 + ny,)) -

For the polynomial stability, we have the same kind of result, but more filtering is necessary in
order to have the discrete counterpart of the observability condition (13) (uniformly in h).



Proposition 2.4 Suppose that the generalized gap condition (7) and the assumption (13) are
verified. Then, there exist two constants € > 0 and h* > 0, such that, for all 0 < h < h* and for
all k € {1,...,N(h)}, satisfying

€

(27) RINZ < <30

we have (18) and

(28) Ja>0,Vp € {1,..., M}, Vk, eAph,VCeRL | B, @k Icl,

(6
thHU@ZK

where A;{)h = {k, € A, satisfying (27) and s.t. kntp—1 + lntp—1 — 1 < N(h)}.

Proof. The generalized gap condition for the approximate eigenvalues Ay j, is a consequence of
Proposition 2.1, because A, > A1 > 0.
To prove the estimate (28) we notice that

n+7_1

1Pk, = Pr,lly < C _nax Z WO SC RN

Moreover by the triangular inequality and (13), we have

HBk_nl@k'thHU72 ||CH2 - HB (bk vh ™ q)k’“)CHU72 :

By (26) and (27), we obtain

— a C(1+nn
IBe @wnClly, = G =5 *j lCl,
> (;Tf) - T(l + nn)) ||C||2 R with Pn = )\Ln+p71 — )\i:n —0
> ﬁ 1C1l,

for an appropriate choice of ¢ > (0. =

3 Uniform stability results

3.1 Exponential stability result
The proof of Theorem 1.2 is based on the following result (see Theorem 7.1.3 in [?]) :

Theorem 3.1 Let (T},)n>0 be a family of semigroups of contractions on the Hilbert spaces (Xp)n>0
and let (flh)h>0 be the corresponding infinitesimal generators. The family (Th)n>o is uniformly
exponentially stable, that is to say there exist constants M > 0, a > 0 (independent of h € (0, h*))
such that

ITa(®)lox,y < Mo, Ve 20,

if and only if the two following conditions are satisfied : B ~
i) For all h € (0, h*), iR is contained in the resolvent set p(An) of Ap,

i1) sup H(iw—ﬁh)le < 400
h€(0,h*),weER L(Xn)

10



3.2 Polynomial stability result

The proof of Theorem 1.6 is based on the results presented in this section by adapting the results

from [?] and from [?] to obtain the (uniform) polynomial stability of the discretized problem (14).

Throughout this section, let (T},(t)) .>o be a family of uniformly bounded C{ semigroups on
he(0,h*)

the associated Hilbert spaces (Xp)p,¢(op+) (i-e, IM >0, Vh € (0,h7), [[Th(t)llz(x,) < M ) and

let (flh) he(o,h+) be the corresponding infinitesimal generators.

In the following, for shortness, we denote by R(\, Aj,) the resolvent (A — Aj,)~'; moreover, for
any operator mapping X, into X, we skip the index £(X}) in its norm, since in the whole section
we work in Xj,.

Definition 3.2 Assuming that
(29) iR C p(Ap), Vhe (0,h"),
and that for all M > 1, there exists ¢ = ¢(M) > 0 such that

(30) sup || R(is, An)llc(x,) < ¢,
he(0,h*)
|s|<M

we define the fractional power fl;a fora >0 and h € (0,h*), according to [?] and [?], as

~ 1

—Q

5 A"\ — Ap) " ta,

o 211 T

where \=% = e~ 2182 gnd Rt is taken as the cut branch of the complex log function and where
the curve ' =T'1 Ul is given by

(31) D= {—e+te? tec[0,4+00)}U{—ec—te ™ te(—00,0]}
for some € > 0 small enough independent of h and 0 is a fixed angle in (0, g)

Remark 3.3 Throughout this section, whenever A, ® is mentioned, the assumptions (29) and (30)
are directly taken into consideration since otherwise A, “ is not well defined.

In fact, under the assumptions (29) and (30), for all M > 0 there exists ¢ = ¢(M) > 0 such
that
—p+if e p(An), Yhe (0,h*), V0 < pu<eV|Bl <M.

Indeed, for all M > 0 such that |3] < M, we have
(—p+iB— Ap) ™t = (i — Ap) " I — (i — Ap) 7'
and ~
(@B — An) M| < pee.
Hence, if |3 < M and pu < e < =, then (—pu + i — Ay) is invertible and we have

2c?

(32) I(—p+iB — An) = < 20|(iB8 — Ap) 7| < 2¢, Y € (0,%).

11



We choose M = |3(—e+ te”?)| = ¢|tan 6| when R(—e + te’) = 0, i.e. when t = —<,. Therefore,

cos O’

by (32), assumptions (29) and (30) imply that there exists ¢ > 0 independent of  such that the
curve I' is included in p(Ay) for any h € (0,h*), and hence A, * is well defined. In fact, if { € T’
such that 8§ > 0, then, by the Hille Yosida theorem, § € p(Ay), while if —e < € < 0, then, by
(32), € € p(Ap).

Proposition 3.4 If, in addition to assumptions (29) and (30), we have

(33) sup ||R(is, Ap)|lz(x,) = O(|s|*), |s| — oo,
he(0,h*)

then A;* is bounded independent of h € (0,h*).

Proof. We have

N 1 +oo . ) - )
A= g ) et te'?) = (—e + te'® — Ay)teat
(34)
1 0 ) ) _ .
+ — (—e —te )" (—e —te™ — Ap) Y (—e"?)dt.
21 ) _ o

Since (Th(t)) >0 is bounded, then by Hille-Yosida Theorem (see Theorem 1.3.1 of [?]) we get
he(0,h*)

Pt M
Ayl < L .
IR AR < 50 ¥Red >0
For —e < ReX < 0, we have |SA\| < M and therefore, by (32), we get

Let to > 0 be such that —e < Re(—e+te??) <0, V0 <t <ty = coesﬁ

and Re(—e+te®) >0, Vt > tg

and let t; = - < 0 be such that Re(—e —te™) < 0,Vt; <t <0 and Re(—e — te™ ) >

cos
0, Vt < 1. Therefore, split the integrals in (34) then use (32) in case of 0 <t < toorty <t< 0;
in addition to (33) in case of t >ty or ¢t < ¢; to get the uniform boundedness of A% m

The proof of the polynomial stability of (T}(t)),, (see Theorem 3.8 below) is based on the
following three lemmas. The first lemma is the discretized version of Lemma 3.2 in [?] and the
other ones are the discrete versions of similar results of Lemmas 2.1 and 2.3 in [?].

Lemma 3.5 Let S = {\ € C: a < Re\ < b} be a subset of p(Ay) for all h € (0,h*) where
0 <a<b. Then if (29), (30), and (33) are satisfied and if for some positive constants o and M
we have

A\ A
sup RN, An) |l <M
P
AES

then there exists a constant ¢ > 0 independent of h such that

sup [|RO\ An)A70 < c.
he(0,h*)
AES

12



Proof. There exists ¢ > 0 and ¢g, 0 < ¢ < g, such that

(35) lu— e >clul, YpeT, Yoo < |p| < — o

where the curve I' is given by (31).

Since b is finite, choose N large enough such that whenever A € S and |A|] > N we get both
po < largA] < m — ¢o and A does not belong to the sector bounded by the curve AT =
{—€[Al +t|A\|e?, t € [0, +00)} U {—€|A| —t|A\e™, t € (—o0,0]}.

For all such choice of A € S, we have according to (35)
(36) =€ > clu| VpeT.

Consider the following integral for all A € S with |A| > N

/J,_a
I)\:/ d/,L.
r = A

By the above choice of A, we have A ¢ T" and A ¢ |A\[l'. Consequently, the integral has no singular
points between I and |A\|T". Therefore, by the Cauchy theorem, we have

w 1 w
I, = / dp = / - dp.
A=A Al Jp o — etarar

1N <

Therefore, by (36), we get

|>\|°‘

Now, for |A\| > N with A € S, we have by the resolvent identity
- 1

ROADA" = oo | we RO ARG Ay
1 we 1 we ~
= — )\A dy — — Ap)d
5] u—AR( n)dp — 5 N_)\R(#a n)dp
_ L
= BROAD - o= [ R A

On the other hand, similar to the proof of Proposition 3.4,

—Q

" X 1 - ,
Ap)dp| < Ap)|ldp <
SR A < [ R A< ¢

r M=

where c¢ is independent of h. Therefore for all A € S, with |A| > N, we have

1+ |)\|a

A Ap) A
HR(7 h) h H— ‘A|

IR\, Ap)|[+c<ec c< .

|>\|°‘
Now, for A € S such that |A\| < N, we have
IR(X, A) AL || < (1RO A AR < e(1+ A7) < e(1+ N,

which completes the proof with Proposition 3.4. m
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Lemma 3.6 If (29), (30) and (33) are satisfied, then there exists ¢ > 0 independent of h such

that

(37) sup HR()\,Ah)A;”‘H <ec.
he(0,h*)
ReA>0

Proof. For all h € (0,h*), M > 0, and B > max{2M, 1}, consider Fj,(\) = R(\, A;)A~*(1 — g—z)
B
on the domain D = {)\ €C: ReA >0, M < |\ < 2}. F},, by the maximum principle, attains

its maximum for |\| = ok Therefore,

c
)| < =—.
B < 2
If there exists € > 0 such that ReA > €, then |Fj,(\)| < c.
Otherwise, for 0 < Re) < €, using the resolvent identity

(38) R(\, Ap) = R(iIm\, A,) — ReAR(iImA, Ay)R(\, Ap)
then, as |[ImA| > M — € for all M > 0, we have
IR\, Ap)|| < e[ ITm|.

Therefore,

)\2
1- 2
B

5 <e.

[En(N)| < el ImA|*[A7

Hence, in all cases, there exists ¢ > 0 independent of B such that

|Fn(N)| < ec.
As a result, for all A € D,
|R(N, Ap)|| < HC'A” < A® < (14 [NP).
- B?

If 0 < ReX < |A\| < M, then by (38) and assumption (30), we get
IR\ Ap)l| < e[ RETmA, Ap)|| < e < e(1+[A1%).
Letting B — 400 yields R
[R(X, Ap)ll < c(14[A]%), VReA > 0.
Applying Lemma 3.5, we get for 0 < ReA < M,
IR, A AL < e
In addition, if ReA > M, by the Hille Yosida theorem and Proposition 3.4, there exists some
positive constants ¢; and ¢y such that

IR(Y, Ap) AR < ex <e

1AL
Re\ —
In all cases, we get (37). m
The last lemma in this section gives the necessary and sufficient conditions for the boundedness

of any family of Cy semigroups (S (t)) 0 -
he(0,h*)
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Lemma 3.7 Let (Sy(t)) 0 be a family of Cy semigroups on the associated Hilbert spaces
he(0,h*)

(Yn)pne(o,n-y and let (Eh)he(o,h*) be the corresponding infinitesimal generators. Then (Sp(t)) >0
’ he(0,h*)
18 uniformly bounded if and only if

(i) {\€C: Re\ >0} C p(Ey), Vh € (0,h*)

(i1) There exists ¢ > 0 independent of h such that

sup & [ (|R(E +in, En) || + | R + in, E;)[*)dn < c.

Proof. First, we assume that (S (¢)) is uniformly bounded. Then (i) holds by the Hille-Yosida
theorem. As for (ii), we only need to prove that

(39) sup & [ ||R(E +in, Ep)xn|?dn < cl|lzp|?, Vou € Y5,
he(one) T

because according to the theory of adjoint semigroups, (see [?]), S*(¢) is a Cy semigroup with the
same properties as S(t).
Similar to the proof of Theorem 1.1 in [?], we have for all h € (0,h*), x), € Y},

IR(E + in, Bp)an|? = /Re_msfh(s)ds,

where oo
fh(s) = / 67§(S+2u) < Sh(qu s)xh,Sh(u)xh >V, Yn du.

max{0,—s}

For s > 0, since (Sh(t)ne(o,n+) is uniformly bounded, i.e. sup [|Si(t)|| < M, we have

he(0,h*)
+o0 M?2 2 M? 2
ol [ et - L o ML
For s < 0, we have
+oo M2 2 E&s M2 2
o< [ aapesi2oy = IR Al
Hence, f, € LY(R) N £L>®(R) and
1 o~
3(fn(s)) = \/T?HR@ +in, En)an .

Using Lemma 21.50 in [?], it follows that

M|z

% /R |R(€ + in, Ep)xp||*dn = \/% /Rg<fh)(7')d7' <clfalli= < 2

15



Hence, (39) is verified. }
As for the sufficient condition, since {\ € C: ReX > 0} C p(Ey), with o = 1, we get for all
T €Yy

1 o+i00

Sh(t)l‘h = % 4 ekt()\ — Eh)_lxhd)\,
o—100
1 o+ico At N At _ i
- E = By 2zpd) + S () — Bp)"lay, | 0T
omi Jy it ¢ o—ico

But %(A — Ep) x|t = 0 since according to Lemma 2.1 of |?], under condition (ii), we have

o —100

|R(X, Ep)axp|| — 0 as |A| = +0o0 whenever ReX > 0. Therefore,

1 o+i00 N _
(Sh)zh,Yn)y, v, = <2mt/ M- Ey) 2$hd/\,yh>
g —100 Yh7Yh
1 o+1i00 V B )
- A— B) 2z, > dA.
2mit /U_ioo ¢ <( W) s Y Yi,Ya

Let A = 1 + in with n € R. Then

e . |
<Sh(t)xh>yh>Yh,Yh ~ ot / et <R2(t +'”77Eh)xh7yh> dn.
Tt Jr Y, Yn

Holder’s inequality yields

€ int 1, . = 1 -,
‘<Sh(t)$h7il/h>Yh,Yh| %/}Ren <R(t+@’r]7Eh)fEhyR(t +Z7’],Eh)yh>Yh,Yh d’l’]
oo ([ IRG +n. B : [ IR+ in, By :

= 9rt ]R L 1, Lih )Th n = : 7, Loy, )Yn n

< cllzallllyall
Therefore

ISk()]| < ¢, Yh € (0, h%).

[

Now, we display the main theorem which leads to the polynomial stability of the discretized
problem (14).

Theorem 3.8 Let (T,(t)) >0 be a family of uniformly bounded Cy semigroups on the associ-
he(0,h*)

ated Hilbert spaces (Xh)he(o,h*) and let (Ah)he(o,h*) be the corresponding infinitesimal generators
such that (29) and (30) are satisfied. Then for a fived o > 0, the following statements are equiva-
lent:

(1) .
sup || R(is, Ap)|| = O(|s|*), s — o
RE(0,h*)
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(ii) .
sup ||Th()A, ¥ =0t 1), t— +o0
he(0,h*)
(iii)
sup || Th(t)A; | = O0(t=), t— +oo.
he(0,h*)

Proof. We begin to prove (ii) < (iii). We adapt the proof found in [?] Proposition 3.1 without
the discretization parameter h. Given (ii), we have

ot (2]

According to the moment inequality in Theorem I1.5.34 of [?], we remark that there exists a positive
constant L independent of h such that, for all v € (0,1), we have

<ec (%)n <en)t ", Yn e N*, h € (0,h"), t = +oo.

T A = AT, 0) A, )
< LI AT, (1) Ay 0| || T (1) Ay o |
< LMY“re'(n)t—m.

1 1
Choose v = — with n > — to get
an o

170 (1) A5 < e(m)t™=.
Conversely, assume that (i4¢) holds. Then

e t %’n’ n n
YA < (> <net e, Yne N

1T (8) A5 I = [T ( .

SR

Therefore, ~
I3 () A5 |

IN

el AR T (6) AL 1 I Tn (8) AR )1
< eM'Te(n)tTw, Vv e (0,1).
Take v = % with n > a to get
e ITh() AL =0 (¢71) .
Now, we prove the implication (i7) = (i) (for the continuous case, see [?]). Given (ii), define

my(t) = sup HTh(s)A;lH.
hG(O,h*)
s>t
Notice that mq(t) is non increasing. Let ugp € D(;lh), forn = (—flh + iT)uon, T € R, and let
vp(t) = e ug,. We have

{ oo — Apun, = e Tugy — Ap(eTuon) = €7 fon
’Uh(O) =  Uoh-

17



By the Duhamel formula,

_ t o
vp = eArugy + / e(t=9)Anei™s 0 ds.
0
By the boundedness of the semigroup (7} (t)) and the definition of m;, we have

luonll = lon () < ITh(t)A, " Apuonl| + ¢ ] fonl|
m1 (t)|| Anuonl| + ¢ ¢ fon |
< ma(t)([[ forll + [Tl[luonll) + ¢ t]| for |-

ASIZAN

Apply the above inequality with ¢ = G(|7|) where

1 1 . 1
mq,. <2(§_’_1)> Zf § > 0 and @ < m1(0),

G(¢) =
> ml(O),

where mfrl is the right inverse of m;. Therefore,

_ il 1
ma0)ir] = my (G| < g < 5.
Hence,
slluonll - < m1”(fG(I|T|))IIf0h||+CG(IT|)||f0h||
< oh
S e *C Gl
< (5 +c Gl fonll
Consequently, ~
I(im — Ap) M| < 1+ 2¢ G(|7]),
ie.,

sup ||(iT — Ap) 7Y < 1+ 2¢ G(|7)).
he(0,h*)

Since, by (i),

sup || Th()A | < Mt=, t— 400,
he(0,h*)

then, as m; is non-increasing, we get

mi(t) < Mts, t— +oo.

Besides, as the inverse of t= s t~—<, then

— 1 1 - a a
() < mi! (w) <c (2‘<s+1>> O 1)) < e, € - too.

Finally, we get

sup || (it — flh)*IH <1427 < ¢|7]%, |7| = 0.
he(0,h*)
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It remains to prove that (i) = (ii). For this aim, for all h € (0,h*), let X, = X, x X}, and
consider the operator Ay, given by the operator matrix

A, Ape

where D(Ap) = D(A) x D(A). For all h € (0,h*) and all A, € p(Ay), we have

< ROw,Ap) R*(, Ap)A;
R(\p,Ap) = ( 0 R(\n, Ap) '
Indeed,
A A A X In O
R\, An) (= An) = (A = An) R, An) = ( 0 I, )

Therefore, p(Ap) = p(Ay) and for all h € (0,h*), the operator Ay, is the generator of the Cy
semigroup (Th(t))i>0 on Xy defined by

Ta(t) < Th(t) tTh( A >

0 Ty (t)
In fact,
i) = ( W(t) tTh(t i )
= (O R
= R\, Ay),

where Ty, (t) is the Laplace transform of Ty, (t). Since for all h € (0, h*) we have
IR(is, An) || = O(|s|%), as |s| = +oo,

then by Lemma 3.6 we get

Hence, for all z;, = (x1p, x2n) € Xn, and Re\j, > 0, we have

. PO, 2
IRy An)an? = (RMh’AwmeQ(AmAh)Ah wh)H

R(An, Ap)zar,
¢ (IR, A)zinll? + 1RO, An)wan|?)

IN

Similarly, we have

IR, AR)anll* < (IR, Ap )z l® + | RO, A} )zon]|).
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Indeed, we have

In order to get L
sup [|R(X, A) (A7) < e,

he(0,h*)
ReA>0

we must have at least

IR(is, A})|| = O(|s|%), as |s| = +oo.

Actually, we have
R(is, A3) = [(is — A)]™ = [(is — An)*]™" = R(is, An)".

Therefore, we get R R
[ R(is, ARl < | R(is, An)|| = O(|s|*), as |s| = +oc.

Now, by Lemma 3.7, since for all h € (0, h*), T, (t) is a uniformly bounded family of Cj semigroups,
we get

sup & [ (1R(E +in, An)zn|?) + (| R(E + in, Ajxp|*)dn < 0o, Yy, € Xi.

Hence,

sup & [ (|R(E + in, An)zn|®) + (| R(E + in, Az |*)dn < oo, Van € X

Therefore, (Tn(t)) >0 isuniformly bounded over (Xn)j¢ (g 4+ Py Lemma 3.7. Since (Th(t)) >0
he(0,h*) ’ he(0,h*)
is uniformly bounded over (X);,¢ (g 5+), the definition of Ty (¢) implies that

sup |[tTh(t) A, || < +oo.
he(0h)

4 Preliminary lemmas

Ip this section, we fix [ € N, [ even. We introduce the Hilbert space X, = Vj, x V}, and the operator
Al,h : Xn — Xy defined by

1
(40) Ay = 0 ! (L+ RO+ 0045 )
’ —(1+hO) NI +hPAZ)A,  —hPA,T2 — BB

The space X}, is here equipped with the inner product

(41) <( o > ; < o ))Xh = a(un, Un) + (Un, On),  V(un, vn), (Un, On) € Xn,

vp, Up,
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with associated norm ||.||y, . Therefore, the system (14) is equivalent to the following first order
system in Xy, : R
Zh(t) = Appzn(t),  2n(0) = zon,

wn ()
where z,,(t) = 0 o 4L
(L+n")(I+hn"A;
system (9) in the particular case [ = 0. We define the bilinear form a!(., .) on V}, by

)~ Lon(8) > and zgp = ( zOh ) . Note that we recover the
Wh 1h

L
al(uh, ’Uh) = (A;L-i_z’u,h, ’Uh> s V(uh, Uh) eV, x Vh,

i.e.

N(h)
a'(un, vn) = Y exdi AT,
k=1
N(h) N(h)
for uy = Z CkPk, n, and vy, = degpk,h. Remark that a°(.,.) = a(.,.) defined in (3).
k=1 k=1

We easily prove that A; j, is maximal dissipative in X, hence (Tj 5 (t)) = (e*4#) forms a family
of Cy semigroups of contractions in Xj. In the sequel we prove that the family (Al,h)he(o,h*)
satisfies condition i) in Theorem 3.1 and the properties (29) and (30) of Subsection 3.2. Condition
i) in Theorem 3.1 or (29) in Subsection 3.2 is satisfied due to the following lemma:

Lemma 4.1 The spectrum of the operator /L,h contains no point on the imaginary axis.

Proof. Suppose that ( ¥n ) € X and w € R are such that

¥n
A Ph : Ph
A = .
o(0) ()
Then, by using the definition (40) of fll,h, we have
n = iw(1+ h?) (I + hP A7) )
L L L
(42) —(14+ ) NI + KO A2) Aoy, — iw(1 + h%(h%}ﬁ + By Bi)(I+hP A7) gy,
= —w*(1+h) I + R A7) Loy,
Let xn = (14+RO)(I + haAé)’lcph then the second relation of (42) becomes
L L
(43) (14 h®) 21 + B AZ)2 Apxn + iw(h? A, T2 + BuBL)xn = wxn.
If w = 0, then taking the inner product of (43) with x; € V},, we get (I + hoAhé)A,% xr = 0 and
hence x5, = 0 which implies by the definition of x;, that ¢ = ¥, = 0.
It then remains to consider the case w # 0. In that case, we take the imaginary part of the

inner product (in H) of (43) with x; € V4 to obtain

1+4 N
0 = (’Uhe (Ah 2X}L7 Xh) +w (BhBhXha Xh)
A 1,1
wh’ (Aﬁ “Xn, A, 4Xh) +w (Bixn, Bixn)y s
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that is to say
l+L 2 %
W ||AF o]+ 1BixalE = 0.
This leads to x; = 0, and hence ¢, = =0.m
Our main goal is to prove condition ii) of Theorem 3.1 in the case I = 0 and condition i) of

Theorem 3.8 as well as (30) in the case [ > 2 and o = 2[. In that last case (I > 2), these two
conditions are equivalent to

(44) sup (1+ |5|21)71||R(is,/il,h)Hg(Xh) < 0.
he(0,h*), s€ER

To prove this above property, we use a contradiction argument. More precisely, we will assume

that, for all n € N| there exist h,, € (0, h*), w, € R and z, = ( P ) € Xy, such that

Un
(45) ”Zn”%(hn = a(pn, Pn) + Hd’n”Q =1,Vn €N,
and
(46) 1+ |wn|2l) sznzn — Ahhnzn — 0, as n — oo,

han

where [ = 0 in the setting of Theorem 3.1.

Lemma 4.2 Assume that the sequences (hy,), (wy), (2,) satisfy (45) and (46). Then, we have

(47) (1+ lonl™) (! (s ) + || B tonl 1) = 0, a5 m = oc
and

. : 2 _ 1
(48) Jim a(en, @n) = lm [|[¢n]” = 5.

Proof. For (47), we take the inner product in X}, of iw,z, — fll’hn 2z, with z, and take the
real part. We obtain

R (iwnzn — A p, 20, zn>

_ _ER(( (4 011+ WA ), ) (= ))
~(U+ )T B AR ) A, pn — A F o — By, By W ) NV ) )
= R(= ) (I +HAD A B, 0n) + (L + ) ((1+HEAL ) An, o, G))
(B, AL # 0 + Ba, Bf, s )
= (A Bu, By, Y, ).
Then

(Ut fon*OR (im0 = Ay zns 20) = (1+ wal™) (W0l (Y, ) + || B, al7) = Oy (46).

hn

In order to prove (48), we introduce the operator

_ L 0 1
(49) Atp, = (1+ hi) YT+ thhn) ( —A, 0 ) :

n
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We have

i 0
A A %) . ,v(‘p")ex .
B ( n > Hn < Un hS AL 24, + By, Byt Un fin

0

We take the norm ||.|\th of ‘w2z, — A1p, 2n + ( o AL
n* hy, n

> to obtain

0 2
1+ |wy, 2 W 2n — Aln 2n + i
(1+ |wn|™) 1h,, ( Bo Aty )
n 2th
e 0
= (1+|wal™) ||iwnzn — App, 20 — ( * )
(L+ Jwnl|™) : Bu, B tn )y,

< 2(1 =+ |wn|2l)(Hiwnzn - Al,hnzn

2 2
X, + ||BhnB}>:n1r/)n’ )

2 . 9
T B ¢ull;,) — 0,

h

< O+ |wa™)(||iwnzn — Aip, 20

by (46) and (47). Therefore

2

(50) (1 + |wn|®) —0.

0
Wy 2n — Aln, 2n + L
1hy, < th:L':zwn >

We can now prove (48). If I = 0, then by Lemma 4.3 below there exists ng € N such that the
sequence (|wp|)n>n, is bounded away from zero. Hence, we may write

0
R (zw Z lhyZn + ( th}::Qw" )7‘”71 ( —n )>Xh (( Yn )7\ —¥n Xhp,

2
= a(pn, pn) — ”w”Hth

Xy,

and so, by (50) and (45), we have

lim (a(¢n, ¥n) — ||7/}n||%/hn) =0.

n—oo

This relation and (45) lead to (48). m

Lemma 4.3 Assume that (45) and (46) hold. Then there exists ng € N such that the sequence
(lwn)n>ne @s uniformly bounded away from zero.

Proof. By a contradiction argument, we show that the sequence (wn)n contains no subsequence
converging to zero. Namely suppose that such a subsequence exists. For the sake of simplicity, we
still denote it by (wy),. Hence (50) implies that

(51) |
0 —(L4+h8)~H(I + RS AZ Yy :
—Alhnzn—l— 0 A1+% = 0 5 n; L( n h”)we 14l — 0 in th.
ho Ay 2y (L+h5) NI + RE AR ) An, n + DoAY
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Taking the inner product of first component in (51) with 1, we get

(1L 8) " a (T + h AT Yon, Gn ) = (1+ hE) ™ (altbn, ) + B! (o, ¥a)) = 0.

As h, < h*, then, by (47), we get

2

(52) |42 n||” = an, wn) 0.

The convergence of the first component in (51) implies that

1 1 2
|4z, +noag yoa| =0

Therefore, (52) yields

a+l)

(53) ho A, % 1p, — 0 in H.

1
The second component in (51) and the fact that a||lz|* < [|A7z||? = a(z,z) for all z € V}, imply
that

oy—1 0 A% \ A3 0 g3 :
(I+h,) I+ hnAhn)Ah,n‘Pn + hp A2 Y — 0 in H,
which, by (53), yields
L1
(L+h)) " (I +hSAZ YAF @n —0 in H.
Thus, as h, < h*, we get
a(@n, pn) — 0.

This above relation and (52) contradict (45). m
According to the above lemma, we note that the coefficient 1 + |wn|2l becomes equivalent to
lwn|*'. Now, we introduce the operator Dy, defined by

0 I
bu-( 0 1)

Note that Ay, = (1 + h8)"1 (I + hﬁAén)Dlhn. We then use the following spectral basis of the

operator Dy, . Namely, we extend the definitions of A 5, and of @i, p, for k € {—1,...,—N(h,)}
by setting Ay n, = —A_k, n, and @k p, = ©—k, h,. Then an orthonormal basis of X}, formed by
the eigenvectors of Dy, is given by
(54) Vi, b, = - ( RETLE ) , 0 < k| < N(hy),

V2 Phe, b

of associated eigenvalue i\ 5, , that is to say
Din, Ve by = Ak, by Vi, b -

Consequently, for all n € N, there exist complex coefficients (c})o<|x|<n(n,) such that

(55) = Y. G,

0<|k|<N (hy)
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The normalization condition (45) implies that

2
> lalr=

0<|k|<N (k)

Let € be the constant from Proposition 2.4 (if I = 0, we recover the condition from Proposition
2.1). For any n € N, we define

(56) M(hn) :max{k € {1,... N(hy)}

if h?(\1)2 < s and M (hy,) = 0 otherwise.

Lemma 4.4 Suppose that the sequences (hy), (wr), (2n) satisfy (45) and (46). Then, we have

N(hy,
(57) Z cp + )Pk, b s
k—1

(58) 3 jwn | [ + ¢ |F = 0,
M (hn)<k<N(hn)

and

(59) Yoo el

0<|k|<M;(hn)

wn = (L4 B0) ™ Ve, + RIA ) ‘ E

Proof. Relation (57) follows directly by taking the second component in (55) and by using (54)
and the fact that @i, = p_i »-
On the other hand, we use (55) and the fact that Uy, is an eigenvector of Dy, associated

with eigenvalue i)y, 5, to obtain for all ¢y, € Xj,
(60)

(iwnzn — A1n, Zn, 1;;%) = Z i (wn —(L+ R N, + hfl)\lljffn)) cp (\Ilk7hn7 z/zhn>

Xhn  0<|k|<N(hn)

ha

From (47) and (57), it follows that

N(h
(61) lwn|* RO a! (4, 1) = Z RONZEL oo [P e + ¢y |* = 0.

As we have A\, < Ay p,, for all k € {1,..., N(h,)} and by the definition (56), we obtain (58).
By (24), we have

et

(62) ROXR b, < B0 (e + (CROAZ)?)? < 2h8 AR + 204 RS (RO A])* < O)\z + cw <o = "
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for hf(Ax)? < 55 So, by using (61) and again (24), there exists a constant C' independent of hy,
k
such that

]\/[L(hn) 9 Ml(hn) 9
B D0 N lenl™ fep et <Oy e el [ ey
k=1 k=1
(63) My (hn)

< Ce Y RN Jwa P e ke P 0.
k=1

We also have for all ¢y, € X},

0 7 h?z n n 7
(64) << thl-‘,-éw > ) ¢hn> = Z ? AZT}L (Ck + cfk) (qjk’,hn7 d]hn)X
n TR x 0<|k| <N (hn) "

because [ is even. Relations (63) and (64) imply that for all ¢y, € X},

0 he -
l n n n
|wn | ( heAH%z/J ) - § o /\Zﬁin (ck + )Yk hs Yh, — 0.
nfh, = Yn My (ho) <IN (hn)

Xhp

So, we obtain with (50), (60) and the above relation, for all Yn, € Xp,, that the inner product in
th of Q/Jhn with

Yoo ifwn (wn — (L +h5) " Nk, + hszllchlin)) &Yk, h,
0<|k|<N(hy)
7]
+ > e Jwnl X (6 + €)Wk,
My (hn)<|KI<N (hn)

tends to zero. Taking 1, € Xj, to be equal to the same above relation and as the family (T, h,)
is orthogonal, the above relation implies (59). m

5 Proof of Theorem 1.2

We use the results of the previous section with | = 0 and set, for shortness, Aj := floyh and
M(hn) = M(](hn)

Proof of Theorem 1.2 This proof is based on Theorem 3.1. First, for all A € (0, h*), the
family (etA’*) forms a contraction semigroup. The family (Ay) satisfies the condition i) in Theorem
3.1 owing to Lemma 4.1. To show that the family (Aj) also satisfies the condition ii) in Theorem

3.1, we use a contradiction argument. Let (hy)n, (wn), and 2z, = ( i” ) € D(Ay,) be three

sequences satisfying (45) and (46). Notice that for &, € Ay, we have

Mbpshn = Mo 14l 1—Lhn 2 Ak = Moy 4l —1 — CE
= M~ Akpy — €20 —Ce
Yo . A/
> g=y



for e < g—é by (23) and (24). We now introduce the set

(65) F={neN|3k(n) e {1,..., M}, Fkm@m) € Apw), |k

(h,) and

‘km(nHk(n) 1+ ln(n) k() — 1| < N(hy,) such that ’wn — Ak

m(n)s

,Y/
<—>.
:)
We distinguish two cases.
First case : The set F is infinite. Then, without loss of generality, we can suppose that 7 = N
(otherwise we take a subsequence of (w,)). Then, by reducing the value of 4’ if needed, we can
assume that for all n € N, we have that for all k,,, € Ay, ¥’ = 1,..., M with m # m(n),

!
lwn = Nyt nn | > % Vi=0,. K =1, ¥ =0, ey — 1.

m+j

By using (59), we obtain that

M k—1 Imy;—1 )
w Y Yy > e 0
=Lk, € Ay 770 =0
m # m(n) 0 < |km+j + lmyj — 1] < M(hy)
Define now
(n)=1lmn)+;—1
(67) Z Z k‘,n(n)+j+l<pk7n(7L)+j+l7 P -
j=0  1=0
We have, by (57),
k—1 Imtj—1
¥n \TZ Z Z (s 1 T s ) )Pl s+ s
k=1km €Ay, j=0 1=0
1 <kmyj +1 < N(hyp)
and so, by (66) and (58), we obtain
(68)
Thus, since (||B;“L||L(Vh U))he(o,h*) is bounded, we deduce that
HBZ” ('Jjn - wn) U —0
The above relation and (47) imply that
(69) B, D 0.
But
k(n) =1lm () +5—
* 7 _ 1
HBhnwn v = Z Z By g+ B Pl 5+ i
U
% H h Phmnysbn 7" B;: (pkm(n)#»k(n)—1+lm(n)+k(n)—1_17hn)C HU
1
7z H 1)¢kru(n)7h ¢ HU’
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_ T

where C' = ( Ck () Chkmn)yHlmmy—1  Chmny+1 Ckm(n)+k(n)—l+lm(n)+k(n)71_1) . So, we
have

1 1 1

- . 0 0 0
* _
HBhnwn - ﬁ : : ¢km(n)7hnc
0 0 U2

We now use Lemma 1.1 to have

| n

> ¢ HB,;i(n)@km(n),hnCHU , for nlarge enough

(70) U

V

ca ||C||, by Proposition 2.1.

Gathering (67), (69) and (70), we obtain that ¢, — 0 in H. Therefore, by (68), ¢, — 0, which
contradicts (48).
Second case : The set F is finite. Then, we can assume, without loss of generality, that F is
empty (otherwise we take off the finite number of (w,)) , i.e., that for all n € N, we have that
!
Wn — Ae.n | > ”5 if 0 < [k] < M(hy).

Thus, by (59) and the above relation, we obtain that

S eqP—o.

0<|k|<M (hn)

Therefore, by (57), (58) and the above relation, we have 1, — 0 in H, which contradicts (48).
In conclusion, the family (Aj) satisfies the condition ii) in Theorem 3.1 and so the family of
systems (9) is uniformly exponentially stable. B

6 Proof of Theorem 1.6

Here we use the results of Section 4 with I > 0 and [ even. Without loss of generality, we may
assume that 0 < h < h* = 1.

Proof of Theorem 1.6 and of (30) This proof is based on Theorem 3.8. First, for all h € (0, h*),
(et4en) forms a family of contraction semigroups and the family (A4; ;)5 satisfies (29). To apply the
results of Theorem 3.8, the family (A4; ;) must also satisfy condition i) of Theorem 3.8 with o = 21
and condition (30) or equivalently condition (44) . We again use a contradiction argument to prove
Pn

this last condition. Let (hy)n, (wn)n and z, = W

) € X}, be three sequences satisfying (45)
and (46). Notice that for k,,, € Ay, we have

C
Abpish = M1l 1—1Lh 2 Ak = Mk il 1 —1 — 320 —
)\k
“m—1
CE ! CE
Z )\km, - Ak,m,1 - N2l 2 rYO - 220
k k
, 1 1
Yo /
> By
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721
for e < % by (23), (24) and because Ag,, > Ak, > 0. We introduce the set F, like

(71) Fo={neN|Fk(n) € {1, ..., M}, Fkyn) € Apn),

km(n)| < M;(hy,) and

[Fomn) ok (m) -1+ lon(y +kmy—1| < N () such that |wp = (14 h5) " Ny me + AN )

,.Y/
o
We distinguish two cases.

First case : The set JF3 is infinite. Then, without loss of generality, we can suppose that o = N
(otherwise we take a subsequence of (wy),). Then, by reducing the value of v’ if needed, we can
assume that for all n € N, we have that for all k,,, € Ay, k' = 1,..., M with m # m(n), and for all
|km+j + 1 < My(hy)

~

(72) |wn = (LB " Nyt F RO L )2 = VI =0 K = LV = 0, Dy — L.

oo\Q

Indeed, similar to (62), we have

= (L+h0) " N 41,1 + 1 Al:lﬂ-&-l ha)
> (L) Moyt = Mgy | = [0 = (L R T Ny b+ BOALT )

n knl(n); hn
6 0y 1+ 0y 1+
—/(1"‘? )2éh Nbmimys b T At )
> X7 L
- 2 4 )‘/ﬁ
) ¥ Ak . .
So choose again € < 60 to get (72). By using (59), we obtain that
M k—1 Imyji—1 9
2| n
m > Y > onl* et yaa| =0
=l k€ Ay 770 =0
m # m(n) 0 < |km+j + lmyj — 1| < Mi(hy)
Define now
(74) Y= — Zm i Pl 13 B
\/ﬁ = — (n)+
We have, by (57),
k—1 lngj—1
n \/>Z Z Z (sz+j+l + C’,i(k;m+j+l))gokm+j+l,hn7
k=1kn €Ay j: =0
1< kg +1 < N(hy)
and so, by (73) and (58), we obtain
(75) jwnl' || = Wal| = 0
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Thus, since (|| B} || £y, 1ry)ne(o, n+) is bounded, we deduce that

|wn|l HBZ,I(JM —1y) v — 0.

The above relation and (47) imply that

(76) wal' | B ]| = 0.

But

,[EE) - 451
“’J'n‘

V2 2 : § : m(n)+]+l hncpkmm)ﬂ'“’ hn
7=0

A
fwnl*|| B 8],

U
_ ‘Wﬂ‘
H hngoknz(n) hn e Bhngpknl(n)«#k(n)—1+lwn(n)+k(n)—1711hn)c HU
_ \wn\
- H o >¢km,(n);hnc | U’
—_ ... DRI T
where C' = ( Ck () Chkmn)y Hlmmy—1  Ckmny+1 Ckm(n)+k(n)4+lm(n>+k(n)4—1) - So, we
have
1 1 --- 1
~ . 0O o0 --- 0
l B* _ |wal & C
|wn | hn¥n = A . . . Em(n)s B
0 0 U2
We now use Lemma 1.1 to have
1 ~ _
|wn | HBann . > clwn| HB ooy L o C’H for n large enough
> cf‘l‘ﬁ I1Cl5 by Proposmon 2.4.

k

m(n)

But, w, verifies

wn— (L H0) " Mo +hn)\,1c:l(n) . )‘ < % by definition (71) of F, , thus

lwn| > (1+ hi)_l(Akmw,h +hl )\Hl h)— > /\k - WZ/' Therefore, we have

K (n)s hn m(n)s 1

’
% ()\kWL(n)1 hn = %)l

1
R A IClly
m(n)
1
77 car Ny
(77) > ﬁﬁ [IC]|, for n large enough
m(n)

CQx
> ICl, by (23)

Gathering (74), (76) and (77), we obtain that ¢, — 0 in H. Therefore, by (75), 1, — 0, which
contradicts (48).

Second case : The set F> is finite. We proceed similar to the proof of the second case of
Theorem 1.2.

In conclusion, the family (A, ;) satisfies (44); i.e., the condition (i) in Theorem 3.8 with a = 21
when [ is even and property (30) of Subsection 3.2.
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7 A convergence result

Here we want to prove that the solution wy, of the discrete problem (14) tends to the solution w of
the continuous problem (1) in X := V x H as h goes to zero and if the discrete initial data are well
chosen. This is obtained with the help of a general version of the Trotter-Kato Theorem proved
in [?] that is appropriated when the approximated semi-groups are defined in proper subspaces
of the limit one. The basic idea is that the convergence of the semi-groups is equivalent to the
convergence of the resolvent, hence we prove such a convergence result for the resolvents.

Before going on we recall that (1) is equivalent to

3(t) = Az(t) in X, 2(0) = (wo,w1) ",

where z(t) = (w(t),w(t)) " and

A0 = (s )= (M Lo ) ()

It is easy to check that A with domain ’D(fl) = D(A) x V is a maximal dissipative operator in
X, equipped with the inner product

((u,v)—r7 (u*,v*)T)X = a(u,u”) + (v,v") V(u,v)T, (u*w*)—r e X.

Moreover, A has no eigenvalues on the imaginary axis. We will denote by T'(t),t > 0 the strongly
continuous semi-group of contractions generated by A.
Let us start with some preliminary results.

Lemma 7.1 Let € N,| > 2. If f € V = D(Az), then

1
(78) 11+ 0T+ hPAZ) o f — mnflle < CRE|flv,
for some C > 0.
Proof. We write

N(h)

mnf =Y feern,
k=1

with fr € C. Hence
n
Up = (1 + ho)(l + heA}i )717Thf7

can be written

N(h)
=S v
k=1
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with v, = (1 4+ h9)(1 + he)\§€7h)_1fk. Consequently we have

N(h)

Z|fk|(1+h9(1+ha)\ ) —1)2

N(h)

- h29Z|f ‘2(1+hw )2

lvn = maf 17

N(h) 21

AL

< ch?® e
= Z |f | 1+ he)\l )2

N(h)
< ch® YN P (gOn)?

k=1

)\l—l
for some ¢ > 0 independent of h, where the function g : [0,00) — R is given by g(\) = (1+hON)

As the maximum of g is attained at Ay > 0 given by
0
RONy =11,

we get that
N(h

lon — I3 < ec3h ™ Z | FelP A7

since \g = clh*? and g(Ag) = CQh*G(ll_l) with ¢, co two positive constants independent of h. This
proves the first estimate since

N(h)

1
Z el Xen = [AZ w5 = almnf,7nf) < a(f, f) = A% 13
]
Corollary 7.2 Letl € N,l > 2, then for any f, € V}, we have
1+ 09I +hPAZ) < cht
(79) 0+ BT+ KD fu= all ) < OHF Ul

for some C > 0.

Proof. As in the previous lemma, we have

_1
I+ RAD =l = 1A (R WA ™ ) I
h
N(h) l
1—A 2
= WS A2l (—R
; kih (1+h9>\§€7h>
N(R)
< Ch262|fk 9(Aen))?,
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when
N (h)

=" fpron-

k=1

We then conclude as before. m

Lemma 7.3 Letl € N;1 > 2 and let f € D(A), then

(80) BOYALTE (1 + h0AR)~ mfll ;)SCh%HfIID(A)?

for some C > 0.

Proof. We easily see that

—1 L L
WA AD P = A AT AR
h

N(h) 2l+2
_ h20 2
Z ‘f | 1 + he/\l )4

N(h)

= 13U o)

and we conclude as before. m

Lemma 7.4 Letl € N, > 2 and let f € V, then

L < ChE|fv,

L L
B1) (1 +h")(I+h"AZ) " ByBj(1+ ") (I + h A7) n f — BhBZthHD(Aff) =
h
for some C > 0.

Proof. As in Lemma 7.1, we set

vn = (1+h0)(I + K0 AZ) " \my f.
First, we notice that
| BrBy(vn — 7 f)ll e < Cllon — mn f
and by Lemma 7.1 we get
| Bu By, (vn =7 f) |z < ChT| flv-
Second, by Corollary 7.2, we have

1
(1 + %) (I + h®AZ)~" By Bjvy — BuBjvnll, 3 < Ch || ByBjunl|ln

[V
~—

Cht (| BuBi(vn — wnf)lla + || Bu B fllar)
Cht| fllv,

IN N

where we use the fact that |7nfllg < c|lmnfllv < ¢||fllv. The conclusion follows from the two
above estimates. m
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Theorem 7.5 If z = (f,g9)" € D(A) x D(A), then
1(AL)  (mnfomng) T — A7 (f9) Tl x =0 as h — 0.
Proof. By the definition of Al’h and fl, we have

(un,vn) " = (Ap) " (T fomhg) T,
and ~
(u,0)" = A7 (f,9)7,
if and only if
" = (L+hO)(I+hOA2) o, f
1 l l
—Apun, =1 +0(I + heAg)*l(hGA,lﬁ + BpBi)op + (1 + %) (I + WP A? )" tmpg,
and
v=f
—Au= BB*v+g.

Therefore, we can write
—Apup = mng + Bp By f + Th,

where 7, € V3, is given by

1
Th 1+ he)(I + heA,i)_lﬂhg — Thy

L L
+ (L ROROI+hPAZ) A R,
L
+ (1 +n"(I +hA2) " By, Byoy, — BBy f.
By the previous Lemmas, 7, satisfies

(82) 1 < ChH|(£,9) T lpeayxv-

A
Therefore, up € V}, can be seen as the unique solution of
(83) a(un, wn) = —(Thg, wn) — (BaByma f,wn) — (raswn)  Vwn € Vi,
where (;) denotes the dual product in D(A;%). Since u € V is solution of
alu,w) = —(g,w) — (BB*f,w) YweV,

we get (recalling that Vi, C V)

a(u,wy) = —(g,wp) — (BB* f,wy) Ywy € Vj,.
Hence, taking the difference of this identity with (83), we obtain

a(u —up,wp) = (g — g, wn) + (B*(mnf — f), B*wn)u + (rh;wrn)  Ywp, € Vi,

34



Consequently, taking w, = mpu — up, we get

alu —up,u—up) = alu—up,u—mpu)+ alu — up, THUY — up)
= a(u—up,u—mu)+ (Thg — g, Tpu — up)
+ (B*(mnf — f), B*(mhu — up))u + (rn; mhu — up).
Hence, by Cauchy-Schwarz’s inequality and the boundedness of B*, we obtain
lu—unl? = a(u—up,u—up)
<l —wnllvilu = mullv + Cllmng — glla + lmnf — flla + IIT;LIID(A_%))IIWW —up||v.
h

Now, using the triangle inequality, we get
lu—unll} < C((Ilu = mnully + |7ng = glla + lmnf — flla + ||7”h||D(A—%))||U —unllv
h
+  (lmng =gl + llmnf = flla +llrall 1 )l — 7Thu||v)-
D(A, )
Hence, by Young’s inequality, we arrive at

u—unliy < Ol mnalfy +limag — ol + I = £+l
h

+ (mng = gl wnf = Fllas Il -y Vs = mwedl).

The estimates (5), (6), and (82) then yield
(84)  Ju—unli < C(h29||u||2D(A) + 0 1 Day + R NglDeay + R (S, 9 " Deayxv

+ (WU lipay + 2 llgllpay + REI(f, Q)T”’D(A)XV)he”uHD(A))-

For v — vy, we notice that
vevn=f— (Ut RO+ WA f = f = mnf +7nf — (1+ WO+ B0 AD) " my f,
and we conclude that it tends to zero in H due to the estimate (5) and Lemma 7.1. m
Corollary 7.6 If z = (f,g)" € V x H, recalling that j;, is the projection from H into Vj,, we have
1AL (o gng) T = A7H(f,9) Tlx = 0 as h = 0.

Proof. First for z = (f,g)" € D(A) x D(A), then

1(An) " (7 fsdng) T = A7 9) Tlix < 1(Aun) ™ (mnfomng) T — A7H(F,9) TlIx
[ (ALr) 0, jug — 7h9) Tl x -

The first term of this right-hand side tends to zero as h goes to zero by the previous Theorem.
On the other hand for the second term, as A;, satisfies (30) (see Section 6), there exists C > 0
(independent of h) such that for all h < h*

1(A1,n) 10, ng — 719) " llx < Clljng — mhlln.
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Hence, by the triangle inequality and the property ||g—jrglla < ||[g—7rgl|# (as jn in the projection
on Vj, in H), we get }
1(A1n) =10, jng — 7n9) "lx < 2C|g — mnglla-

By the estimate (6), we then conclude that this second term tends also to zero as h goes to zero.
If 2= (f,g) " is only in V x H, then for an arbitrary € > 0, we use the density of D(A) x D(A)
into V x H to get (F,G)T € D(A) x D(A) such that

Now, by the triangle inequality, we have
1AL fogng) T = A7 (o) Tl < 1CALR) T (f = F)nlg = G))

1A~ Fg-G) x|
1(Ain) " (mnF jnG) T — ATHE,G) T x.

(f.9)" —(F.G)||lx <e.

N

+ +

By the first step, there exists h. small enough such that
1(Ap) Y (mnFy jnG)T — A"HF,G)T||x <&,Y0 < h < h..
For the second term, by the boundedness of A1, we may write
AT (= Fg =) x <CI(f = Fg - G)T|lx < Ce.

Finally for the first term, using the property (30) and the fact that 7, (resp. jn) is a projection
from V (resp. from H) into V},, we get for all h < h*

1(Au) ™ (T (f = F)yjnlg = G) Tlx < Cll(mn(f = F)yjnlg—G) Tlx < CI(f=F.g-G)"|lx < Ce.
All together we have obtained that
1)~ mnfoing) T — A7 (F,9) llx < (142C)e, Y0 < h < min{he,h*}.

This proves the result. m
We are now ready to state the convergence result.

Theorem 7.7 If (wo,w1)" €V x H, then
(85) Ty (t) (hewo, jnewn) T = T(t) (wo,w1) "l x — 0 as b — 0.

Proof. We use Theorem 2.1 of [?] with X = Z =V x H, X,, =V}, x V},, and P, : X — X, defined
by
Pu(f,9)" = (mnf.ing) T ¥(f,9)" € X,

and E,, = Py that here is the canonical injection of V}, x V4, into V' x H. The assumptions (Al)
and (A3) of [?] are trivially satisfied, while the assumption (A2) is a consequence of (5), (6) and
the density of D(A) x D(A) into V' x H.

Since Corollary 7.6 shows that point (a) of Theorem 2.1 of [?] holds, we conclude that point
(b) of this Theorem, namely (85), holds. m
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8 Examples

8.1 Two coupled wave equations

We consider the following system

Ut (2, 1) — Ugg(x,t) + ay(z, t) + B(@)u(z,t) =0 in (0,1) x Ry,
(86) Yer (T, 1) — Yo (T, ) + qu(z, t) + y(2)ys (2, 1) =0 in (0,1) x Ry,

u(0,t) = u(l,t) = y(0,t) = y(1,t) =0 vt > 0,

u(+,0) = ug, ut(+,0) = u1,y(-,0) = yo,y:(-,0) =31 in (0,1),

when « € R such that a > 0 is small enough (see below), 5 and « are two non-negative functions
such that 3(xz) > 8> 0 for x € Iy € (0,1) and v > v > 0 for z € I, C (0,1) where Ig and I, are
two open sets such that their measures do not vanish simultaneously. Hence, (86) is written in the
form (1) with the following choices: Take H = L?(0,1)?, the operator B as follows:

(57) Bo=vE( g )+vi( ) ),

when w = Z ), which is a bounded operator from H into itself (i.e. U = H) and the operator

A defined by
D(A) =V N H*0,1)%

Aw — —Ugy + ay
Yoz tau )
If o is small enough, namely if o < 72, this operator A is a positive selfadjoint operator in H,

since it is the Friedrichs extension of the triple (H,V,a), where the sesquilinear form a is defined
by

when V = H}(0,1)? and

1 *
a(w,w*) :/ (ug(U¥) g + Yo (Y*) e + ayu* + auy™) dz, Vw = < Z >,w* — ( Z* ) ev.
0

Indeed a is clearly a continuous symmetric sesquilinear form on V and is coercive if o < 72 due to
Poincaré’s inequality

1 1
/ lug|? do > 7r2/ lu|? dz, Yu € H(0,1).
0 0

Furthermore, A has a compact resolvent since D(A) is compactly embedded into H.

Let us now check that the generalized gap condition (7) and the assumptions (10) or (13) are
satisfied for our system (86). We start by the determination of the spectrum of the operator A.
Hence we are looking for w = (u,y)" € V. N H?(0,1)? different from 0 and A? > 0 solution of

~Ugy + ay = Nu in (0,1),
—Yow + au = N2y in (0,1).

If such a pair exists, we can set




and notice that s and d belong to HZ(0,1) N H?(0,1) and are solution of

82z +as = Asin (0,1),
—dyy — ad = \d in (0,1).

Hence s (resp. d) is an eigenvector of the Laplace operator —# with Dirichlet boundary
condition of eigenvalue A\ — o (resp. A2 + «). A first choice is then to have for all k € N*:
N = k?1% + a, s = sin(km) and d = 0. Coming back to (u,y), we find (since u = s + d and
y = s — d) a sequence of eigenvalues )\i, = k272 4+ « of associated eigenvector

wy = (sin(km-),sin(kw-)).

Note that each eigenvalue is simple and that w; j is of norm 1 in H.

A second choice is to take for all k € N*: A2 = k272 —q (which is meaningful since a < 72), s = 0
and d = sin(kw-). Again coming back to (u,y), we find a sequence of eigenvalues )\2_7,C =k%n? —a
of associated eigenvector

w_ i = (sin(kn-), —sin(km-)).

As before each eigenvalue is simple and w_ j, is of norm 1 in H.

Now we remark that the sequence {wy j}tren+ U {w_ p}ren+ is an orthonormal basis of H
(because wy i, + w_ j = 2(sin(kn-),0) and wy p —w_ = 2(0,sin(kn))) and therefore we have
found all possible eigenvectors of A. We have then shown that the spectrum of A is given by

Sp(A4) = {)‘i,k}kGN* U {A%,k}keN*a

and that each eigenvalue is simple (because the assumption o < 72 implies that k*7% + a <
(k +1)%72 — a).

We now need to estimate the distance between the consecutive eigenvalues of A/2. We have
two different cases to consider:
1. For all £ € N*, we need to look at the distance between Ay j and A_ ;. Since

200
ViET? + a4+ VE2? —

we see that this distance goes to zero as k goes to infinity.
2. For all k € N*, we look at the distance between Ay, and A_ ;1. Here we have

bk — A= \/k;27r2—|—a—\/k;27r2—a:

2km? + 72 — 2
\/(k+1)27r2—0z+\/k27r2+04’

Akt —Ar=V(k+1)272 —a— V2T +a =

which tends to 7w as k goes to infinity.

This shows that the generalized gap condition (7) is satisfied with M = 2. With the terminology
of Section 1, we see that A7 = () and A, = N*.

In order to check (10) or (13), for all k € N*, we set

ap = Atk — Ak,

that behaves like k=1 or equivalently like A:lk. We further need to use the matrix (see Lemma

1.1)
(11
Bk _(0 Oék>’
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as well as the matrix ®;, which here takes the form

. B*(,«J,JC 0
q>k o < 0 B*W+7k ) ’

Hence for all C' = (c,c2) " € R, we have

B;lq)kc = < ClB*wf’k + C2B*w+,k ) 9

apcaB*wy i,

and consequently

1B 1 Cl7 2 lexB*w— i, + c2B*wy kllf; + ekl |2 || B w k|7

1 1
ler + 02|2/ B(z) sin®(knz)dx + |cy — cl|2/ v(z) sin® (krx)da
o, 0

—|—|ak\2|02|2/0 (B(x) + v(z)) sin? (krz)da.

We have two different cases to consider:
First case: Ig # () and I, # 0.
In this case, we have

HB,;lCDkCH%LQ > min{ﬁﬁ}min{/ sin2(k7rx)dac,/
Is

I

sinQ(kmc)dx} ((e1+ c2)? + (c2 — 1)?)

= 2min{3,7} min{/ sinz(km:)dx,/ Sin2(k‘ﬂ'$)dl‘} (e +¢3)

Is I,

and hence (10) holds since min { / sin?(knz)dz, / Sinz(kwx)dx} is uniformly bounded from
Ig I,
below. Indeed, as I, # (), there exists a € (0,1) and € > 0 such that (a,a + €) C I,, and therefore

>

)

.92 € 1 . . € 1
>S4 - T > — —
/1 sin®(kmx)dx > 5t Tom (sin(2kmwa) — sin(2kw(a +¢€))) > 5~ 2%m

N

~

2
for kK > —. On the other hand, we clearly have
em

min / sin?(kma)dz > 0,
1<k< — Ly
em
which shows that |, I sin?(kmz)de is uniformly bounded from below.

Second case: Ig = @) or I, = ) (but not empty together). For instance, suppose that Iz = ()
and I, # 0.
As |ag| ~ )\:)1,6, we deduce that

B ' @1Cllu2 > aoAZ L IC|2,

for a positive constant «g, and shows that (13) holds with | = 1.
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As stated before, in the first case the system (86) is exponentially stable, while in the second
case (86) is polynomially stable. We refer to Theorem 2.4 of [?] or to [?, ?] for the proof of that
results.

As approximated space V},, we use the standard one based on P1 finite elements. More precisely,
for N €¢ Nand h = ﬁ, we define the points z; = jh, j = 0,1,...,N + 1. The space V}, is the
linear span of the family of hat functions (e;, €;); je(1,...,n} such that

ot
ej(z) = [1|xhx]] , for j=1,...,N.

Then, we define the operators Ay and By, by (2) and (4). It is well-known (see [?]) that the operator
A and the space V}, satisfy conditions (5) and (6) with 6 = 1.

Consequently, in the first case ( Ig # 0 and I, # (), we can apply Theorem 1.2 and thus
the family of systems (9) is uniformly exponentially stable, in the sense that there exist constants
M, «, h* > 0 (independent of h, uop, U1k, Yor, y1r) such that for all A € (0, h*) :

llion ()1 + alwn (), wn(t) < Me™ (Jwinll* + a(won, won)), Yt > 0,
where wy, = (un, yn), and wop = (Uon, Yon) € Vi (resp. wip = (uin, y1n) € Vi) is an approximation
of wo = (uo, Yo) (resp. w1 = (u1,¥1)).
In the second case (Ig = ) and I, # @), we can apply Theorem 1.6 with { = 2 and thus the

family of systems (14) is uniformly polynomially stable, in the sense that, there exist constants
C, h* > 0 (independent of h, ugp, w1n, Yor, Y1n) such that for all h € (0, h*):

1. 2 C
(58) I+ hAR (O + alen(0) wn(0) < N wmnonnls, , ¥ > 0.
where Aj 5, is given as in (40) with [ = 2, § = 1, and the the graph norm | - Ip(4,,) is defined by
lwon, win) 134, ) = Iwon, win)ll, + Az (won, win)lk, -

8.2 Two boundary coupled wave equations

We consider the following system

Ut — Ugg =0 in (0,1) x Ry,

Yt — You + By = 0 in (0,1) x Ry,
(89) u(0,t) =y(0,t) = vt > 0,

y-(1,t) = au(l t) Vit >0,

uz(1,t) = ay(1,t) Vit >0,

U( ) =0 ut( 70) ( ) =0 yt( O) Y1 in (07 1)a

when a, € R with § > 0 and o > 0 small enough (see below). Hence it is written in the form (1)
with the following choices: Take H = L?(0,1)?, the operator B as follows:

(1)

)
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when w = ( ; ), which is a bounded operator from H into itself (i.e. U = H) and the operator
A defined by

D(A) = {(u,y) € VN H?(0,1)*: y2(1) = au(1); us(1) = ay(1)}
when V = {w € H*(0,1)? : w(0) =0} and
Aw = ( :yZ ) '

If o is small enough, namely if o < 1, this operator A is a positive selfadjoint operator in H, since
it is the Friedrichs extension of the triple (H,V, a), where the sesquilinear form a is defined by

aw.wt) = | (0 )t (7)) dr— (1T (1) o (U)y(1), Voo = ( : ),w*: ( " ) ev.

Indeed a is clearly a continuous symmetric sesquilinear form on V' and is coercive if a < 1 due to
the trace theorem

1
u(1)? §/ lug | dz, YueV.
0

In addition to that, the operator A admits a compact resolvent as D(A) is compactly embedded
in H.

Let us now check that the generalized gap condition (7) and the assumption (13) are satisfied
for our system (89). We start by the determination of the spectrum of the operator A. Hence we
are looking for w = (u,y)" € D(A) different from 0 and A\? > 0 solution of

—Ugzy = Nu in (0,1),
~Yow = A2y in (0,1).

Then

The coupling condition in (89) gives

alcos A = absin A
b cos A = aasin \.

Since it is not possible to have sin A = 0 (otherwise a = b = 0), we obtain

b\ cos A
90 —
(90) = asnn’
and then
A
(91) tan A = +—,
«

because b # 0 (otherwise u = y = 0).
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We then have two sequences of eigenvalues defined by
m

Aok = 5

+ kT —e_
with limg_ 4o €— r =0 and e_ ; > 0 for all £ € N, and
)\+,k = g + k’iT + 6+’k;

with limy_, 4o €4 =0 and ey > 0 for all £ € N. Moreover as A_ ; and A} j satisfies (91), we

can verify that
@ @
€_ = arctan <> and e , = arctan () .
Ak Atk

By (90) and (91), the eigenvector associated with the eigenvalue Ay j is given by
Wi = by sin(Ay ko) (-1, n’,
and the eigenvector associated with the eigenvalue A_ ; is given by
wo g =b_gsin(A_ ;) (1, 1)7T,

where by ., b_ , are chosen to normalize the eigenvectors.

Since we have found all possible eigenvectors of A, we have shown that the spectrum of A is
given by

Sp(A) = {\] i teens U A2 4 drene,

and that each eigenvalue is simple.

We again need to estimate the distance between the consecutive eigenvalues of A'/? and as
before we consider two different cases:
1. For all £ € N*, we need to look at the distance between A; , and A_ ;. Since

o Q
Afk—A_ ) = €4+ €_ =arctan () + arctan () ,
Atk Ak

we see that this distance goes to zero as k goes to infinity.
2. For all k € N*, we look at the distance between Ay, and A_ ;1. Here we have

Aokl — Ape =T — (€46 + € k1),

which tends to 7 as k goes to infinity.
This shows that the generalized gap condition (7) is satisfied with M = 2.
In order to check (13), for all k € N*| we set

ap = Ay k— Ak

that behaves like £~ or equivalently like /\Zlk. As in the previous subsection for all C' = (c1,¢) " €
R2, we have

Blzlq)kC: ( 1B w_ i+ coB*wy ),

opcaB*wy g
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and consequently

1B, @ Cll 2

lex B w— g, + c2B*wy k| + okl |2 ||| B*w kI

1
6/ (b— kersin(A_ gx) + by ko sin()\+,k:1:))2 dx
0

1
+Blag)?|e2Pb2 / sin?(\; x)dz.
0

By using Young’s inequality with € > 0 and the fact that the eigenvectors are normalized (by the

choice of by 1), we obtain

|B'®,ClE, > B (1 - ) b k/ sin?(A_ yx)dz + B (1 —€) c3b% k/ sin®(\; pz)dz
’ € ) “Jo
1

+Blak|?[c2|b7 / sin?(\y x2)dz

0
= §(<1—1>C%+(1+az—e)cg>.

We then take € = 1 + /2, which implies

(since o < 2). Consequently

a? 1 o
1402 —e=—k d 1-=->-k
+ap —¢€ 5 an €>4,

1By @xCllT s > Tai(e] + c3).

oo™

As |ag| ~ A”L, we deduce that

1By ' @4Clluz = aoAZL[IC]2,

for a positive constant «g, and shows that (13) holds with { = 1.

We construct the space V}, like in the previous subsection, i.e. it is the span of (e;, ¢;); jef1,.... N 41}
that still satisfies (5) and (6) with 6 = 1.

Consequently, we can apply Theorem 1.6 with [ = 2 and thus the family of systems (14) is
uniformly polynomially stable, in the sense that the estimate (88) holds.

8.3 A more general wave type system

We consider the following more general system: let w = (wy,--- ,wn)T be a solution of

Wit — Wee + Mw + BB*w; =0 in (0,1)Y x Ry,
(92) w(0,t) =w(l,t) =0 vt > 0,
w(+0) =w® w(-,0) =w®  in (0,1)V,

where M € My (R) is symmetric and such that Ay + M is positive definite in H = L?(0,1)",
when Ay is the operator of domain D(4g) = H}(0,1)Y N H?(0,1)" and such that Aoy = —yy,
for all u € D(Ayp); B € L(U, H), with U a complex Hilbert space.
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Hence it is written in the form (1) with the self-adjoint positive operator A defined by A =
Ag + M and D(A) = D(Ap) = V N H2(0,1)N, when V = H}(0,1)V. We remark that A admits a
compact resolvent since D(A) is compactly embedded into H.

As M is symmetric, M can be diagonalized by an orthogonal matrix, i.e. there exist a real
orthogonal matrix O and a diagonal matrix D such that OT MO = D. We denote by d; (i =
1,--+, N) the coefficients of the diagonal matrix D.

We start by the determination of the spectrum of the operator A. Hence we are looking for
w €V N H?0,1)Y different from 0 and A2 > 0 solution of

—wep + Mw = N2w.
If we denote by U = OTw, then U = (u1,--- ,un)’ satisfies

—Uys + DU = XU,
which is equivalent to

d2
Tam

(A —dj)u;, in (0,1), Vi=1,---,N.
Hence there exists ¢; € C such that

u; =V2¢;sin(kn.), A, =k7r’+d;, i=1,- N.
Therefore we have found N families of eigenvectors and eigenvalues:

Uik = V2f;sin(kr.), X, =kn*+d;, i=1---,N,

where (fi)ie{1,...,n} is the canonical basis of CY. Coming back to the initial eigenvalue problem,
we have N families of eigenvectors given by

(93) wir=0U, i=1,---,N,
and the spectrum of A is given by
Sp(A) = (A khwen- U+ U {AR i drene
For simplicity we now assume that all d; are different and, for instance that
di <dy <---<dy.

We still estimate the distance between the consecutive eigenvalues of A/2:
1. For all k € N*, we need to look at the distance between A; , and A;x (¢ # j). Since

/ d; — d;
)\i,kaj,k:\/k27T2+di7 k2m2 + i = J

VEITE + d; + /K22 + d;

we see that this distance goes to zero as k goes to infinity.
2. For all k € N*, we look at the distance between Ay ; and Ay r41. Here we have

2km? + 712 +dy —dy
VE+1)272 4 dy +VEIR? Fdy

AMas1 —Ive =V (k+1)212 +dy — VK272 +dy =
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which tends to 7 as k goes to infinity.

This shows that the generalized gap condition (7) is satisfied with M = N. With the terminol-
ogy of Section 1, we see that A; = -+ = Ay_1 = 0 and Ay = N*. Hence, for N > 1, our previous
results will allow to obtain stability results for system (92).

If the eigenvalues are simple (a necessary condition is that all d; are different), then in order

to verify (10) or (13), we have to bound from below HBk_l(I)kCHQUZ with C' = (¢1,-++ ,cn) € RV,
Bk_l defined in Lemma 1.1 and @ given by
B*wyp - 0
Q) = : - :
O [P B*O‘)N,]C
Such a lower bound can only be made on some particular examples.

Note that, if N =2, B is defined by (87) and

0 1
M“"<1 0>

with a > 0, then we are back to the setting of Subsection 8.1. Indeed M is symmetric with Ag+ M
positive definite for o small enough, and diagonalized by the orthogonal matrix

0:&5(11 1) (withD:a(Ol ?))

We then finish this subsection by considering another example. Take NV = 3 and

w1 w1 0 0
Bl w |=vBl 0 |+ w |+Ve[ o0 |,
w?) 0 0 UJ3

with non negative real numbers 3, v, ¢, which is a bounded operator from H into itself (i.e.
U = H). We chose the matrix M defined by

M=«

O = O

10
0 1], a>0
10

which is obviously symmetric. As previously we can verify that Ag + M is positive definite if
a < 72 /2. Moreover M can be diagonalized by the orthogonal matrix

1 1 N
1 =2 1
into
—\2a
D =



Then the spectrum of A = Ay + M is given by
Sp(A) = {K*7* — V2a}pen- U {k*7*}ren- U {K?7® + V2a}pen-,

and the eigenvalues are simple (because the assumption a < 72/2 implies that k%72 + v2a <
(k + 1)272 — \/2a). Moreover, as we have shown previously, the generalized gap condition (7) is
satisfied with M = 3. Thanks to (93) the normalized eigenvectors are given by

1 1 1 V2 1 1
wig = —F= —V2 | sin(kr), Wo = —= 0 sin(km), w3k =——= V2 | sin(kn).
\@ 1 \ﬁ 7\@ \/i 1
We set 1,2 1,3 2,3
a,(f 2 = Dok — Augs 04;(C B = Xak = Ak Oé;(C B = Xa g — Ao
Therefore, for all C = (c1,ca,c3)T € R3, we have
2
) 1 1 1 B*wi i, 0 0 c1
||B;1<I>kCHU,2 0 oz,(cm) a,(cl’a) 0 B*wa i, 0 C
0 al"¥al®? 0 0 Brws i cs

U2

1,2)

2
2 s »
= ||01B*wl’k + CQB*CUQ)]C + CSB*W?,,]@HH + HCQCV](C B* wo i + 03041(c )B*WB’kHH

2
2] (1,3) (2,3 2
+lesl? [af a1 Brws il

After some calculations, we obtain

- 2 1
| By 1<I>;€C’||U)2 = g(cl+\/§CQ+03)2+%(03—01)2+Z(01—\f262+03)2+§(\/§a,§1’2)62+a,§1’3)03)2
c 2 B+56
Ml ‘C e 3)’ + (—v2alPe; + M eg)? 4 | ;l ;1,3)@22,3)‘ (ﬂ ",

Hence different decay results can be obtained for system (92) according to the values of 8, v
and 0.
First if 8,7, > 0, then we have
_ 2
| By ' @xC| 5 = C(F + ¢5 + c3)

for C' > 0, which shows that (10) holds and therefore system (92) is exponentially stable.
Second if v =0 and 5,9 > 0, we have

. 2
||B,€_1(I>kC'|‘2m2 % (20% + 4¢3 + 2¢3 + 4cic3 + min {oz,(cm), a}(€173)} (4c% +2c3)
+ min {ag -3) a,(f 3)} 03)

. 2 2
7“““5{3’5} ((2 -2)3 +4 (1 -+ min {a,(cl’z), a,(cl’j)} ) 3

2
+ <2 — 2¢ 4+ 2min {a,gl’Q), oz,(cl’3)} > c%) ,
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2
by Young’s inequality with € > 0. We then take ¢ = 1 + min {a,(cm), ag’g)} /2, which implies

2

9 min {a,(gm), a](€1,3)}
2——>
€ 2

2 2
. 2 -2+ 2min {a,(j’?),a}(cm)} _ min {ag,z)’ a,(j’?’)} 7

if k is large enough. Consequently if k is large enough, we have obtained that

Y

2 (5.5 min{ail’m’af'g)}z (1,2) (1,312 (1,2) (1,312
HB,;ICD;CC’HUQ mmi’} 5 c%—|—4min{ak’ say } cg—l—min{ak’ o } 3

4 2
M min {a,(cl’z), a,(:’g)} (3 +c3+3),

Y

2
which shows that (13) holds with [ = 1, since min {a,(:’z), a,(Cl’S)} ~ /\fi

We construct the space V}, like in the previous subsection, i.e. it is the span of (e;, 5, ex); j ke{1,..., N}
that still satisfies (5) and (6) with 6 = 1.

Consequently, in the first case (8,7,d > 0), we can apply Theorem 1.2 and thus the family of
systems (9) is uniformly exponentially stable. In the second case (8,8 > 0 and v = 0), we can
apply Theorem 1.6 with [ = 2 and thus the family of systems (14) is uniformly polynomially stable,
in the sense that (88) holds.
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