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In this work, we describe several results exhibited during a talk at the El Escorial 2012 conference. We aim to pursue the development of a multi-frequency Calderón-Zygmund analysis introduced in [10]. We set a definition of general multi-frequency Calderón-Zygmund operators. Unweighted estimates are obtained using the corresponding multi-frequency decomposition of [10]. Involving a new kind of maximal sharp function, weighted estimates are obtained.

The so-called Calderón-Zygmund theory and its ramifications have proved to be a powerful tool in many aspects of harmonic analysis and partial differential equations. The main thrust of the theory is provided by

• the Calderón-Zygmund decomposition, whose impact is deep and far-reaching. This decomposition is a crucial tool to obtain weak type (1, 1) estimates and consequently L p bounds for a variety of operators; • the use of the "local" oscillation f --Q f (for Q a ball). These oscillations appear in the elementary functions of the "bad part" coming from the Calderón-Zygmund decomposition and in the definition of the maximal sharp function, which allows to get weighted estimates.

The oscillation f --Q f can be seen as the distance between the function f and the set of constant functions on the ball Q, indeed the average is the best way to locally approximate the function by a constant. By this way, the constant function being associated to the frequency 0, we understand how the classical Calderón-Zygmund theory is related to the frequency 0.

As for example, well-known Calderón-Zygmund operators are the Fourier multipliers associated to a symbol m satisfying Hörmander's condition

|∂ α m(ξ)| |ξ| -|α| = d(ξ, 0) -|α| ,
which encodes regularity assumption of the symbol relatively to the frequency 0.

In this work, we are interested in the extension of this theory with respect to a collection of frequencies and we focus on sharp constants relatively to the number of the considered frequencies. Such questions naturally arise as soon as we work on a multi-frequency problem:

• Uniform bounds for a Walsh model of the bilinear Hilbert transform (see [START_REF] Oberlin | New uniform bounds for a Walsh model of the bilinear Hilbert transform[END_REF] by Oberlin and Thiele);

• A variation norm variant of Carleson's theorem (see [START_REF] Oberlin | A variation norm Carleson theorem[END_REF] by Oberlin, Seeger, Tao, Thiele and Wright); • Such a multi-frequency Calderón-Zygmund was introduced by Nazarov, Oberlin and Thiele in [START_REF] Nazarov | A Calderón Zygmund decomposition for multiple frequencies and an application to an extension of a lemma of Bourgain[END_REF] for proving a variation norm variant of a Bourgain's maximal inequality. Similarly to the fact that a Fourier multiplier with a symbol satisfying Hörmander's condition is a classical Calderón-Zygmund, we may extend this property to a collection of frequencies. More precisely, let Θ := (ξ 1 , ..., ξ N ) be a collection of frequencies and consider a symbol m verifying for all multi-indices α |∂ α m(ξ)| d(ξ, Θ) -|α| , with d(ξ, Θ) := min 1≤i≤N |ξ -ξ i |. Such symbols give rise to Fourier multipliers, which should be the prototype of what we want to call multi-frequency Calderón-Zygmund operators.

In the 1-dimensional setting with a collection of frequencies Θ := (ξ 1 , ..., ξ N ) (assumed to be indexed by the increasing order ξ 1 < ξ 2 < • • • < ξ N ), an example is given by the multi-frequency Hilbert transform which corresponds to the symbol

m(ξ) =    -1, ξ < ξ 1 (-1) j+1 , ξ j < ξ < ξ j+1 (-1) N +1 , ξ > ξ N .
Let us now detail a definition of "multi-frequency Calderón-Zygmund" operator: Definition 0.1. Let Θ := (ξ 1 , ..., ξ N ) be a collection of N frequencies of R n . An L 2 -bounded linear operator T is said to be a Calderón-Zygmund operator relatively to Θ if there exist operators (T j ) j=1,...,N and kernels (K j ) j=1,...,N verifying

• Decomposition: T = N j=1 T j ; • Integral representation of T j : for every function f ∈ L 2 compactly supported and x ∈ supp(f ) c ,

T j (f )(x) = K j (x, y)f (y);
• Regularity of the modulated kernels: for every x = y

N j=1 ∇ (x,y) e iξ j •(x-y) K j (x, y) |x -y| -n-1 .
Remark 0.1. As usual, we can weaken the regularity assumption and just require an ǫ-Hölder regularity on the modulated kernels.

Remark 0.2. If the decomposition is assumed to be orthogonal (which means that for i = j, T i T * j = 0) then it follows that each operator T j is a modulated Calderón-Zygmund operator. Such a multi-frequency Calderón-Zygmund operator can also be pointwisely bounded by a sum of N modulated (classical) Calderón-Zygmund operators and have the same boundedness properties with an implicit constant of order N . The aim is to study how this order can be improved using sharp estimates.

We first obtain unweighted estimates for such operators: Theorem 0.1. Let Θ be a collection of N frequencies and T an associated multi-frequency Calderón-Zygmund operator. Then

• for p ∈ (1, ∞), T is bounded on L p with T L p →L p N 1 p -1 2 .
• for p = 1, T is of weak-type (1, 1) with

T L 1 →L 1,∞ N 1 2 .
This theorem relies on an adapted Calderón-Zygmund decomposition introduced in [10] by Nazarov, Oberlin and Thiele. We point out that there the constant N 1 2 is shown to be optimal and this is the same for the previous weak-type estimate.

Concerning weighted estimates, it is well-known that linear Calderón-Zygmund operators are bounded on L p (ω) for p ∈ (1, ∞) and every weight ω belonging to the Muckenhoupt's class A p (see Definitions 1.1 and 1.2 for more details about Muckenhoupt's class A p and Reverse Hölder class RH s ). Similar properties are satisfied by the Hardy-Littlewood maximal operator and some other linear operators as Bochner-Riesz multipliers [START_REF] Vargas | Weighted weak type (1, 1) bounds for rough operators[END_REF][START_REF] Carro | Weighted estimates in a limited range with applications to the Bochner-Riesz operators[END_REF] or non-integral operators (like Riesz transforms) [START_REF] Auscher | Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part I : General operator theory and weights[END_REF]. All these boundedness, obtained by using suitable Fefferman-Stein inequalities related to maximal sharp functions, involve weights belonging to the class W p (p 0 , q 0 ) := A p p 0 ∩ RH ( q 0 p ) ′ for some exponents p 0 < q 0 . 1 As a consequence, it seems that these classes of weights are well-adapted for proving boundedness of linear operators. Following this observation, we will consider a multi-frequency maximal sharp function, in order to prove weighted estimates for our multi-frequency operators: Theorem 0.2. Let Θ be a collection of N frequencies. For p ∈ (1, ∞), s ∈ (1, p) and t ∈ (1, ∞), then every multi-frequency Calderón-Zygmund operator T is bounded on L p (ω) for every weight

ω ∈ RH t ′ ∩ A p s with T L p (ω)→L p (ω) N γ and γ := tp s min{2, s} + 1 2 - 1 s .
We emphasize that this result is only interesting when γ < 1.

The current paper is organized as follows: after some preliminaries about weights, examples of multi-frequency operators and the main lemma for the multi-frequency analysis, Theorem 0.1 is proved in Section 2. Then in Section 3, we develop the general approach for weighted estimates, based on a suitable maximal sharp function. In Section 4, we describe how this point of view could be used to Bochner-Riesz multipliers.

1 From [START_REF] Johnson | Change of variable results for Ap and reverse Hölder RHr classes[END_REF], we know that for r, s > 1, Ar ∩ RHs = ω, ω s ∈ A 1+s(r-1) , so these classes of weights are equivalent to a class of powers of Muckenhoupt's weights.

Notations and preliminaries

Let us consider the Euclidean space R n equipped with the Lebesgue measure dx and its Euclidean distance |x -y|. Given a ball Q ⊂ R n we denote its center by c(Q) and its radius by r Q . For any λ > 1, we denote by λ Q := B(c(Q), λr Q ). We write L p for L p (R n , R) or L p (R n , C). For a subset E ⊂ R n of finite and non-vanishing measure and f a locally integrable function, the average of f on E is defined by

- E f dx := 1 |E| E f (x)dx.
Let us denote by Q the collection of all balls in R n . We write M for the maximal Hardy-Littlewood function:

Mf (x) = sup Q∈Q x∈Q - Q |f |dx. For p ∈ (1, ∞), we set M p f (x) = M(|f | p )(x) 1/p .
The Fourier transform will be denoted by F as an operator and we make use of the other usual notation F(f ) = f too.

In the current work, we aim to develop a multi-frequency analysis, based on the following lemma:

Lemma 1.1 ([2]
). Let Θ ⊂ R n be a finite collection of frequencies and Q be a ball. For every function φ belonging to the subspace of L 2 (3Q), spanned by (e iξ• ) ξ∈Θ , we have for p ∈ [START_REF] Auscher | Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part I : General operator theory and weights[END_REF][START_REF] Borwein | Nikolskii-type inequalities for shift invariant function spaces[END_REF] (1)

φ L ∞ (Q) (♯Θ) 1 p - 3Q |φ| p dx 1 p
.

Remark 1.1. In [START_REF] Borwein | Nikolskii-type inequalities for shift invariant function spaces[END_REF], this lemma is stated and proved in a one-dimensional setting. However, the proof only relies on the additive group structure of the ambient space by using translation operators. So the exact same proof can be extended to a multi-dimensional setting.

Remark 1.2. The question of extending the previous lemma for p ∈ (2, ∞) is still open in such a general situation. Of course, (1) is true for p = ∞ and so it would be reasonable to expect the result for intermediate exponents p ∈ (2, ∞). Unfortunately, the well-known interpolation theory does not apply here. However, in some specific situations, we may extend this lemma for p ≥ 2. Indeed, if p = 2k is an even integer then applying (1) with p = 2 and Θ k :

= {θ i 1 + ... + θ i k , θ i ∈ Θ} to φ k yields φ L ∞ (Q) φ k 1 k L ∞ (Q) (♯Θ k ) 1 2k - 3Q |φ| 2k dx 1 2k ≃ (♯Θ k ) 1 p - 3Q |φ| p dx 1 p
.

By this way, we see that an extension of (1) for p ≥ 2 may be related to sharp combinatorial arguments, to estimate ♯Θ k (a trivial bound is ♯Θ k ≤ (♯Θ) k which does not improve (1)).

We aim to obtain weighted estimates, involving Muckenhoupt's weights.

Definition 1.1. A weight ω is a non-negative locally integrable function. We say that a weight ω ∈ A p , 1 < p < ∞, if there exists a positive constant C such that for every ball Q,

- Q ω dx - Q ω 1-p ′ dx p-1 ≤ C.
For p = 1, we say that ω ∈ A 1 if there is a positive constant C such that for every ball Q,

- Q ω dx ≤ C ω(y), for a.e. y ∈ Q.
We write

A ∞ = ∪ p≥1 A p .
We just recall that for p ∈ (1, ∞), the maximal function M is bounded on L p (ω) if and only if ω ∈ A p . We also need to introduce the reverse Hölder classes.

Definition 1.2. A weight ω ∈ RH p , 1 < p < ∞, if there is a constant C such that for every ball Q, - Q ω p dx 1/p ≤ C - Q ω dx .

It is well known that

A ∞ = ∪ r>1 RH r . Thus, for p = 1 it is understood that RH 1 = A ∞ . 1.1.
Examples of multi-frequency Calderón-Zygmund operators. Let us detail particular situations where such multi-frequency operators appear.

The multi-frequency Hilbert transform. As explained in the introduction, an example of such multi-frequency operators in the 1-dimensional setting is the multi-frequency Hilbert transform. In R, consider an arbitrary collection of frequencies Θ := (ξ 1 , ..., ξ N ) (assumed to be indexed by the increasing order ξ 1 < ξ 2 < • • • < ξ N ). The associated multi-frequency Hilbert transform is the Fourier multiplier corresponding to the symbol

m(ξ) =    -1, ξ < ξ 1 (-1) j+1 , ξ j < ξ < ξ j+1 (-1) N +1 , ξ > ξ N .
Associated to Θ, we have a collection of disjoint intervals ∆ := {(-∞, ξ 1 ), (ξ 1 , ξ 2 ), ..., (ξ N , ∞)}. It is well-known by Rubio de Francia's work [START_REF] Rubio De Francia | A Littlewood-Paley inequality for arbitrary intervals[END_REF] that for q ∈ (1, 2], the functional

(2) f → ω∈∆ F -1 [1 ω Ff ] q 1 q is bounded on L p for p ∈ (q ′ , ∞).
The boundedness of the multi-frequency Hilbert transform is closely related to the understanding of (2) for q → 1.

We point out that in Rubio de Francia's result, the obtained estimates do not depend on the collection of intervals ∆. More precisely, excepted the end-point p = q ′ , the range (q ′ , ∞) is optimal for a uniform (with respect to the collection ∆) L p -boundedness of (2). So it is natural that for q → 1 things are more difficult, which is illustrated by our multi-frequency Calderón-Zygmund analysis. Indeed, for example if one considers the particular case Θ := (1, ..., N ), then following the notations of Remark 1.2, we have Θ k = {k, ..., kN } and so

♯Θ k = k(N -1)+1 ≃ kN .
Hence, in this situation we have observed (see Remark 1.2) that we can extend Lemma 1.1 to exponents p ∈ [1, ∞] (the implicit constant appearing in (1) is only depending on p). By this way, Theorem 0.2 can be improved and we obtain a better exponent

γ = tp s 2 + 1 2 - 1 s .
Consequently, it seems that for the L p -boundedness of the multi-frequency Hilbert transform, the collection Θ could play an important role (which was not the case for the ℓ q -functional (2) with q ′ < p).

Multi-frequency operators coming from a covering of the frequency space. Let (Q j ) j=1,...,N be a family of disjoint cubes and φ j a smooth function with φ j supported and adapted to Q j . Then consider the linear operator given by

T (f ) = N j=1 φ j * f.
It is easy to check that T is a multi-frequency Calderón-Zygmund operator, associated to the collection Θ := (ξ 1 , ..., ξ N ) where for every j, ξ j := c(Q j ) is the center of the ball Q j . With r j the radius of Q j , we have the regularity estimate

N j=1 ∇ (x,y) e iξ j •(x-y) φ j (x -y) |x -y| -n-1 N j=1 (r j |x -y|) n+1 (1 + r j |x -y|) M ,
for every integer M > 0.

So boundedness of T (Theorem 0.1) yields the inequality

(3) N j=1 φ j * f L p C(r 1 , ..., r N )N 1 p -1 2 f L p , with C(r 1 , ..., r N ) := sup t>0 N j=1 (r j t) n+1 (1 + r j t) M .
Let us examine some particular situations:

• If the cubes (Q j ) j have an equal side-length, then as for Proposition 4.1, simple arguments imply (3

) for p ∈ [1, ∞] without the constant C(r 1 , ..., r N ). • If the collection (Q j ) j is dyadic: it exists a point ξ 0 , d(Q j , ξ 0 ) ≃ r Q j ≃ 2 j then Littlewood-Paley theory implies (3) without the factor N | 1 p -1 2 | (in this case C(r 1 , ..., r N ) ≃ 1).
• If the cubes (Q j ) have only the dyadic scale: r Q j ≃ 2 j (but no assumptions on the centers of the balls) then Littlewood-Paley theory cannot be used. However, our previous results can be applied in this situation and so (3) holds and C(r 1 , ..., r N ) ≃ 1. We aim to use the new multi-frequency Calderón-Zygmund analysis to extend these inequalities with replacing the convolution operators by more general Calderón-Zygmund operators, still satisfying some orthogonality properties.

Multi-frequency operators coming from variation norm estimates. As explained in the introduction, the multi-frequency Calderón-Zygmund analysis has been first developed for proving a variation norm variant of a Bourgain's maximal inequality. So our results can be adapted in such a framework. For example, in [START_REF] Grafakos | Weighted norm inequalities for maximally modulated singular integral operators[END_REF] Grafakos, Martell and Soria have studied maximal inequalities of the form sup j=1,...,N

T (e iθ j • f )

L p f L p
where (θ j ) j=1,...,N is a collection of frequencies and T a fixed Calderón-Zygmund operator.

We can ask the same question, for a variation norm variant:

for q ∈ [1, ∞) consider   N j=1 T (e iθ j • f ) q   1 q
and study its boundedness on L p , with a sharp control of the behaviour with respect to N . By a linearization argument (involving Rademacher's functions), this ℓ q -functional can be realized as an average of modulated Calderón-Zygmund operators, associated to the collection Θ := (θ j ) j .

Unweighted estimates for multi-frequency Calderón-Zygmund operators

In this section, we aim to prove the weak L 1 -estimate for a multi-frequency Calderón-Zygmund operator, then Theorem 0.1 will easily follow from interpolation and duality. Proposition 2.1. Let Θ = (ξ 1 , ..., ξ N ) be a collection of N frequencies as above and T be a Calderón-Zygmund operator relatively to Θ. Then T is of weak type (1, 1) with (uniformly with respect to N )

T L 1 →L 1,∞ N 1 2 .
Proof. Consider f a function in L 1 and λ > 0, we use the Calderón-Zygmund decomposition 2 of [10] related to the collection of frequencies Θ. So the function f can be decomposed f = g + J∈J b J with the following properties:

• J is a collection of balls and (3J) J∈J has a bounded overlap;

• for each J ∈ J, b J is supported in 3J;

• we have ( 4)

J∈J |J| √ N f L 1 λ -1 ;
• the "good part" g satisfies (5)

g 2 L 2 f L 1 √ N λ; • the cubes J satisfy (6) f L 1 (J) |J|λN -1 2 , f -b J L 2 (J) |J|λ;
2 In [START_REF] Nazarov | A Calderón Zygmund decomposition for multiple frequencies and an application to an extension of a lemma of Bourgain[END_REF], the multi-frequency Calderón-Zygmund decomposition is only described in R. The proof is a combination of Lemma 1.1 and the usual Calderón-Zygmund decomposition. Since both of them can be extended in a multi-dimensional framework, the multi-frequency Calderón-Zygmund decomposition performed in [START_REF] Nazarov | A Calderón Zygmund decomposition for multiple frequencies and an application to an extension of a lemma of Bourgain[END_REF] still holds in R n .

• we have cancellation for all the frequencies of Θ: for all j = 1, ..., N and J ∈ J, b J (ξ j ) = 0. We aim to estimate the measure of the level-set

Υ λ := {x, |T (f )(x)| > λ} . With b = J b J , we have |Υ λ | ≤ |{x, |T (g)(x)| > λ/2}| + |{x, |T (b)(x)| > λ/2}| λ -2 T (g) 2 L 2 + |{x, |T (b)(x)| > λ/2}| λ -1 √ N f L 1 + |{x, |T (b)(x)| > λ/2}| ,
where we used the L 2 -boundedness of T . So it remains us to study the last term. Since (4), we get

J∈J 4J J |J| √ N f L 1 λ -1 .
Consequently, it only remains to estimate the measure of the set

O λ := x ∈ J∈J 4J c , |T (b)(x)| > λ/2 . Since (7) |O λ | λ -1 J T (b J ) L 1 ((2J) c ) ,
it is sufficient to estimate the L 1 -norms. Consider K the kernel of T and a point x 0 ∈ J∈J 4J c .

Then, we can use the integral representation and we have

T (b)(x 0 ) = K(x 0 , y)b(y)dy = J 3J
K(x 0 , y)b J (y)dy.

To each J, we aim to take advantage of the cancellation properties of b J , so we subtract the projection of [y → K(x 0 , y)] on the space, spanned by (e iy•η ) η∈Θ . So we have

T (b)(x 0 ) = J N j=1 3J K j (x 0 , y) -e iξ j •c(J) K j (x 0 , c(J))e -iξ j •y b J (y)dy = J N j=1 3J K j (x 0 , y) -K j (x 0 , c(J)) e iξ j •(x 0 -y) b J (y)dy
where c(J) is the center of J and K j (x, y) := K j (x, y)e -iξ j •(x-y) . We then write

T j (b)(x 0 ) := K j (x 0 , y) -K j (x 0 , c(J)) e iξ j •(x 0 -y) b(y)dy.
such that T (b) = j T j (b). Due to the regularity assumption on K (and so on K j ), it comes for y ∈ J and x 0 ∈ (2J) c (8

) N j=1 K j (x 0 , y) -K j (x 0 , c(J)) r J |x 0 -y| n+1 .

So we have

T (b J ) L 1 ((2J) c ) |x-y|≥r J r J |x -y| n+1 |b J (y)|dxdy b J L 1 |J|λ.
Finally, we obtain with [START_REF] Grafakos | Weighted norm inequalities for maximally modulated singular integral operators[END_REF] that

|O λ | J |J| √ N f L 1 λ -1 ,
which concludes the proof.

Remark 2.1. Following [START_REF] Nazarov | A Calderón Zygmund decomposition for multiple frequencies and an application to an extension of a lemma of Bourgain[END_REF], the bound of order N 1 2 is optimal for the multi-frequency decomposition and for the weak-L 1 estimate.

Weighted estimates for multi-frequency Calderón-Zygmund operators

Aiming to obtain weighted estimates on such multi-frequency operators (using Good-lambda inequalities), we also have to define a suitable maximal sharp function, associated to a collection of frequencies. Definition 3.1 (Maximal sharp function). Let Θ be a collection of N frequencies and s ∈ [1, ∞). Consider a ball Q, we denote by P Θ,Q the projection operator (in the L s -sense) on the subspace of L s (3Q), spanned by (exp iξ•) ξ∈Θ . Let us specify this projection operator: consider E the finite dimensional sub-space of L s (3Q), spanned by (e iξ• ) ξ∈Θ and equipped with the L s (3Q)norm. Since E is of finite dimension, then for every f ∈ L s (Q) there exists v

:= P Θ,Q (f ) ∈ E such that f -v L s (3Q) = inf φ∈E f -φ L s (3Q) .
This projection operator may depend on s, which is not important for our purpose so this is implicit in the notation and we forget it.

Since 0 ∈ E, we obviously have

(9) P Θ,Q (f ) L s (3Q) ≤ 2 f L s (Q) .
Then, we may define the maximal sharp function

M ♯ s,Θ (f )(x 0 ) := sup x 0 ∈Q - Q |f -P Θ,Q (f 1 Q )| s dx 1 s
.

Note that the usual sharp maximal function is the one obtained for Θ := {0} and in this situation it is well-known that the maximal sharp function satisfies a so-called Fefferman-Stein inequality (see [START_REF] Fefferman | H p spaces in several variables[END_REF]). We first prove an equivalent property for this generalised maximal sharp function: ∞) and p ∈ (s, ∞) be fixed. Then for every function f ∈ L s and every weight ω ∈ RH t ′ , we have for every p ≥ s

Proposition 3.1. Let s ∈ (1, ∞), t ∈ [1,
f L p (ω) N tp s max{ 1 2 , 1 s } M ♯ s,Θ (f ) L p (ω)
.

The proof relies on a Good-lambda inequality and Lemma 1.1.

Proof. We make use on the abstract theory developed in [START_REF] Auscher | Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part I : General operator theory and weights[END_REF] by Auscher and Martell. We also follow notations of [START_REF] Auscher | Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part I : General operator theory and weights[END_REF]Theorem 3.1]. Indeed, for each ball Q ⊂ R n we have the following

F (x) := |f (x)| s |f (x) -P Θ,Q (f 1 Q )(x)| s + |P Θ,Q (f 1 Q )(x)| s := G Q (x) + H Q (x).
By definition, it comes

- Q G Q dx ≤ inf Q M ♯ s,Θ (f ) s
and following Lemma 1.1 (with ( 9))

sup x∈Q H Q = P Θ,Q (f 1 Q ) s L ∞ (Q) N s max{ 1 2 , 1 s } - 3Q |P Θ,Q (f 1 Q )| s dx N s max{ 1 2 , 1 s } - Q |f | s dx N s max{ 1 2 , 1 s } inf Q MF.
So we can apply [1, Theorem 3.1] (with q = ∞ and a ≃ N s max{ 1 2 , 1 s } ) and by checking the behaviour of the constants with respect to "a" in its proof, we obtain for every p ≥ 1

M s (f ) s L p (ω) N spt max{ 1 2 , 1 s } M ♯ s,Θ (f ) s L p (ω) 
, which yields the desired result.

Then, we evaluate a multi-frequency Calderón-Zygmund operator via this new maximal sharp function.

Proposition 3.2. Let T be a Calderón-Zygmund operator relatively to Θ and s ∈ (1, ∞). Then, we have the following pointwise estimate:

M ♯ s,Θ (T (f )) N | 1 s -1 2 | M s (f ).
Proof. We follow the well-known proof for usual Calderón-Zygmund operators and adapt the arguments to the current situation. So consider a point x 0 and a ball Q ⊂ R n containing x 0 , we have to estimate

- Q |T (f ) -P Θ,Q (T (f )1 Q )| s dx 1 s
.

We split the function into a local part f 0 and an off-diagonal part f ∞ :

f = f 0 + f ∞ := f 1 10Q + f 1 (10Q) c .
By definition of the projection operator, we know that

- Q |T (f ) -P Θ,Q (T (f )1 Q )| s dx 1 s ≤ - Q |T (f ) -P Θ,Q (T (f ∞ )1 Q )| s dx 1 s ≤ - Q |T (f 0 )| s dx 1 s + - Q |T (f ∞ ) -P Θ,Q (T (f ∞ )1 Q )| s dx 1 s
.

For the local part, we use boundedness in L s of the operator T (Proposition 2.1), hence

- Q |T (f 0 )| s dx 1 s |Q| -1 s T (f 0 ) L s (Q) N ( 1 2 -1 s ) |Q| -1 s f 0 L s N | 1 2 -1 s | M s (f )(x 0 )
. Then let us focus on the second part, involving f ∞ . We use the decomposition (with an integral representation) since we are in the off-diagonal case:

for x ∈ Q T (f ∞ )(x) = N j=1 K j (x, y)f ∞ (y)dy.
Consider the following function, defined on 3Q by (where c(Q) is the center of Q)

Φ := x ∈ 3Q → N j=1 e iξ j •(x-c(Q)) K j (c(Q), y)f ∞ (y)dy.
So Φ ∈ E (see Definition 3.1) and hence [START_REF] Nazarov | A Calderón Zygmund decomposition for multiple frequencies and an application to an extension of a lemma of Bourgain[END_REF] -

Q |T (f ∞ ) -P Θ,Q (T (f ∞ )1 Q )| s dx 1 s ≤ - Q |T (f ∞ ) -Φ| s dx 1 s
.

If we set K j (x, z) := K j (x, z)e -iξ j •(x-z) , then

T (f ∞ )(x) -Φ(x) = j K j (x, y) -K j (c(Q), y) e iξ j (x-y) f ∞ (y)dy.
From the regularity assumption on the kernels K j 's, we have for y ∈ (10Q) c (11

) j K j (x, y) -K j (c(Q), y) r Q sup z∈Q j ∇ x K j (z, y) r -n Q 1 + d(y, Q) r Q -n-1
.

We also have (since y ∈ (10Q) c and x, c(Q

) ∈ Q) |T (f ∞ )(x) -Φ(x)| |z|≥10r Q r -n Q 1 + |x -c(Q) -z| r Q -n-1 |f (c(Q) + z)|dz |z|≥5r Q r -n Q 1 + |z| r Q -n-1 |f (x 0 + z)|dz M(f )(x 0 ),
which concludes the proof.

We obtain the following corollary: 

T (f ) L p (ω) N tp 2s M ♯ s,Θ [T (f )] L p (ω) N tp 2s +( 1 2 -1 s ) M s (f ) L p (ω) N tp 2s +( 1 2 -1 s ) f L p (ω) ,
where we used weighted boundedness of the maximal function since ω ∈ A p s .

As explained in the introduction, this estimate is only interesting when the exponent tp 2s + 1 2 -1 s is lower than 1.

Connexion to Bochner-Riesz multipliers

In this section, we aim to describe how such arguments could be applied to generalized Bochner-Riesz multipliers. Weighted estimates for Bochner-Riesz multipliers has been initiated in [START_REF] Vargas | Weighted weak type (1, 1) bounds for rough operators[END_REF][START_REF] Christ | On almost everywhere convergence of Bochner-Riesz means in higher dimensions[END_REF][START_REF] Carro | Weighted estimates in a limited range with applications to the Bochner-Riesz operators[END_REF]. We first emphasize that we do not pretend to obtain new weighted estimates for Bochner-Riesz multipliers. But we only want to describe here a new point of view and a new approach for such estimates, which will be the subject of a future investigation. Such an application is a great motivation for pursuing the study of a multi-frequency Calderón-Zygmund analysis.

Consider also Ω a bounded open subset of R n such that its boundary Γ := Ω \ Ω is an hypermanifold of Hausdorff dimension n -1. For δ > 0, we then define the generalized Bochner-Riesz multiplier, given by

R Ω,δ (f )(x) := Ω e ix•ξ f (ξ)m δ dξ,
where m δ is a smooth symbol supported in Ω and satisfying in Ω

|∂ α m δ (ξ)| d(ξ, Γ) δ-|α| .
We first use a Whitney covering (O i ) i of Ω. That is a collection of sub-balls such that • the collection (O i ) i covers Ω and has a bounded overlap;

• the radius r O i is equivalent to d(O i , Γ).
Associated to this collection, we build a partition of the unity (χ i ) i of smooth functions such that χ i is supported on

O i with i χ i (ξ) = 1 Ω (ξ) and ∂ α χ i ∞ r -|α| O i .
Then, R δ may be written as

R δ (f )(x) = ∞ j=-∞ T j (f )(x), with T j (f )(x) := l, 2 j ≤r O l <2 j+1 Ω e ix•ξ f (ξ)m δ (ξ)χ l (ξ)dξ = 2 jδ U j (f )(x), (12) 
where we set

U j (f )(x) := l, 2 j ≤r O l <2 j+1 Ω e ix•ξ f (ξ)(2 -jδ m δ (ξ))χ l (ξ)dξ.
Observation : The main idea is to observe that the operator U j is a multi-frequency Calderón-Zygmund operator associated to the collection

Θ j := {c(O l ), 2 j ≤ r O l < 2 j+1 } with ♯Θ j ≃ 2 -j(n-1) .
However, these operators have specific properties, one of them is that the considered balls have equivalent radius, which means that these operators have only one scale 2 j . For example, this observation allows us to easily prove some boundedness: Proposition 4.1. Uniformly with j 0, the multiplier U j is a convolution operation with a kernel K j satisfying K j L 1 2 -j n-1 2 . Hence, it follows that U j is bounded on Lebesgue space L p for every p ∈ [1, ∞]. Moreover for every s ∈ [1, 2], p ∈ (s, ∞) and every weight ω ∈ A p s , U j is bounded on L p (ω) with U j L p (ω)→L p (ω) 2 -j n-1 s .

Proof. The operator U j is a Fourier multiplier, associated to the symbol σ j (ξ) := l, 2 j ≤r O l <2 j+1

(2 -jδ m δ (ξ))χ l (ξ).

Since the considered balls (O l ) l are almost disjoint, it comes that σ j L 2 |{ξ, d(ξ, ∂Ω) ≃ 2 j }| 1 2 2 j 2 . Moreover, using regularity assumptions on m δ , we deduce that for every α ∂ α σ j L 2 2 -j|α| |{ξ, d(ξ, ∂Ω) ≃ 2 j }| 1 2 2 j( 1 2 -|α|) . So with K j := F(σ j ), it follows that for any integer M [START_REF] Rubio De Francia | A Littlewood-Paley inequality for arbitrary intervals[END_REF] (1 + 2 j | • |) M K j L 2 2 j 2 . Hence K j L 1 2 -j n-1 2 . Using Minkowski inequality, we deduce that for every p ∈ [1, ∞]

U j L p →L p K j L 1 2 -j n-1 2 .
Let us now focus on the second claim about weighted estimates. Using integrations by parts for computing the kernel K j , it comes for any integer M

(14) (1 + 2 j | • |) M K j L ∞ 2 j .
By interpolation with (13), for s ∈ [START_REF] Auscher | Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part I : General operator theory and weights[END_REF][START_REF] Borwein | Nikolskii-type inequalities for shift invariant function spaces[END_REF] we get [START_REF] Vargas | Weighted weak type (1, 1) bounds for rough operators[END_REF] (1 + 2 j | • |) M K j L s ′ 2 j s , which gives U j (f ) 2 -j n-1 s M s (f ). Hence, for every p > s and every weight ω ∈ A p s U j L p (ω)→L p (ω) 2 -j n-1 s .

In this context, ♯Θ j ≃ 2 -j(n-1) , so the constant 2 -j n-1 s is equivalent to (♯Θ j ) 1 s and this is a better constant than the one obtained in Corollary 3.3 (for a subclass of A p s weights). So improving these "easy bounds" means to obtain inequalities such as U j L p (ω)→L p (ω) (♯Θ j ) γ for some better exponent γ < 1 s .

Let us finish by suggesting how could we get improvements of our approach to get interesting results for Bochner-Riesz multipliers:

Question : The general approach, developed in the previous section, only allows to get an exponent

γ = tp 2s + 1 2 - 1 s
(with some s ∈ [2, p)) which is bigger than 1 2 (since p > s ≥ 2 and t > 1). So to improve this exponent γ, two things seem to be crucial:

• to extend the use of Lemma 1.1 for p ≥ 2 which would allow us to get an exponent tp s 2 instead of tp 2s ; • to use the geometry of the boundary Γ to get better exponents, even for the unweighted estimates. Indeed, for example for the unit ball (using its non vanishing curvature), we know that (see [START_REF] Lee | Improved bounds for Bochner-Riesz and maximal Bochner-Riesz operators[END_REF][START_REF] Tao | Recent progress on the restriction conjecture[END_REF]) 

U

  Proof. Using Propositions 3.1 and 3.2, it follows that for p > s ≥ 2 (assuming ω ∈ A p

	Corollary 3.3. Let Θ be a collection of N frequencies. For p ∈ (2, ∞), s ∈ [2, p) and t ∈ (1, ∞), a multi-frequency Calderón-Zygmund operator T is bounded on L p (ω) for every weight ω ∈ RH t ′ ∩ A p with s T L p (ω)→L p (ω) N tp 2s +( 1 2 -1 s ) .

s

)

  j L p →L p 2 -jδ(p)

	with if n = 2	δ(p) := max 2	1 2	-	1 p	-	1 2	, 0 .
	and if n ≥ 3 and p ≥ 2(n+2) n	or p ≤ 2(n+2) n+4				
		δ(p) := max n	1 2	-	1 p	-	1 2	, 0 .
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