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DISCRETE SYNCHRONIZATION UNDER THE HIERARCHICAL VIEW POINT

CAMILLE POIGNARD

Abstract. We study the synchronization problem of dynamical systems in case of a hierarchical structure
among them, of which interest comes from the growing necessity of understanding properties of complex
systems, that often exhibit such an organization. Starting with a set of 2n systems, we define a hierarchical
structure inside it by a matrix representing all the steps of a matching process in groups of size 2. This
leads us naturally to the synchronization of a Cantor set of systems, indexed by {0, 1}N: we obtain a global

synchronization result generalizing the finite case. In the same context, we deal with this question when
some defects appear in the hierarchy, that is to say when some links between certain systems are broken.

We prove a local synchronization result under the condition that these defects are present at the N smallest
scales of the hierarchy (for a fixed integer N) and their number be in

√
n when n goes to infinity.

1. Introduction

Complex systems are systems presenting a very high number of components, all interacting each other,
in such a way some macroscopic phenomena emerge, that cannot be deduced from the knowledge of the dy-
namics inherent to each unit. Understanding what are the main macroscopic properties that usually appear
in such general structures is a real important challenge, for their omnipresence in a very large number of do-
mains (see [19]): from natural sciences (with cells, neural networks, pacemaker cells of the heart), chemistry,
computer sciences, social sciences (with economic networks inside a country), to the mathematics of weather
and climate. With the well-known Lorenz model, this last subject takes its origin in chaotic systems (that
is to say deterministic systems presenting a high sensibility in initial conditions, that make them have an
unpredictable dynamics) which have motivated so many studies from the last century until now.
Among emergent dynamical phenomena, one which is widely observed in concrete life is synchronization,
which is the property that all the entities tend to have the same behavior. Without this phenomenon, many
actions such as running could not take place. More theoretically, synchronization has been exhibited in sys-
tems of coupled oscillators ([6], [16]), notably when each oscillator presents a chaotic behavior ([17]). Such a
chaotic synchronization is remarkable for in a certain sense it’s a way to control the initial erratic behavior
(see [10]).

Other interesting properties to understand are more related to the nature of the complex system (rather
than its behavior), more precisely to the geometry of its spatial configuration. One that constantly appears
both in experiments and in theoretical frameworks is hierarchy.
The typical example of a hierarchical structure arises from the tilings of grounds (mathematically of man-
ifolds): given a finite set of tiles filling the ground with copies of themselves, they may sometimes cluster
each other into patches which are finitely distinct at fixed size, in such a way a new tiling can be made by
these patches. And so on, this process repeats infinitely, each time considering the last patches obtained as
the new (finite) set of tiles.
Obviously any periodic configuration presents such a structure, but mathematicians demonstrated the inter-
est of the hierarchical ones, when was proven the existence of a finite set of tiles filling the plane aperiodically
(i.e no translation let the tiling invariant) and hierarchically, but for which no periodic tiling of the plane
could be obtained. R. Berger was the first to give such a set of tiles in 1966 (see [2]), then followed other
ones with less tiles ([21],[18]). In 1982, the physicist D.Shechtman discovered the existence of a solid (an
aluminium-manganese alloy) presenting a 5-fold symmetry in its diffraction diagram, but lacking transla-
tional symmetry, upsetting by the way the current belief that any solid was either a crystal perfectly ordered
(i.e periodic) or an amorphous totally disordered one.
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These advances showed the periodic configurations constituted in fact a small set in the world of ordered
structures, the set of hierarchical ones containing it being definitely much bigger. Over the years, the ubiquity
of hierarchy in organization of matter has been strongly reinforced, confirming what was concretely under
our eyes from the beginning, but at bigger scales: the way rivers split into smaller ones, galaxies gather, but
also tree shapes, lobes of compound leaves (see [20]), muscular fibers etc... Indeed, in the growing theory of
quasi-crystals, most of the aperiodic tilings discovered until now were constructed by forcing them to have a
hierarchy ([12], [15]). This is the case of substitution tilings, where the set of prototiles gather in homothethic
copies of themselves (see [7], [8]). Recently natural quasi-crystals such as the icosahedrite were discovered
in Russia. In fluid mechanics, patterns in the Faraday experiments presenting a multi-level structure were
discovered in 1996 ([4]). Such an omnipresence suggests that hierarchy has a strong robustness and stability
to perturbations.

The goal of this text is to deal with the Synchronization problem in case of a hierarchical structure among
the dynamical systems considered. This can be understood in many ways, for this reason alone there is not
yet a precise (mathematical) definition of such a structure: even in the tilings theory in which this concept is
very understandable, we do not have yet a clear definition of a hierarchical tiling. However, the ubiquity of
such structures in nature as well as in purely mathematical objects ensures us the interest of such a question.
Some numerical investigations in this direction have been done yet in the past, with purpose the analysis
of the route to synchronization. For instance in [3], A. Dı́az-Guilera considers a finite set of oscillators
described by a particular model issued from the Kuramoto continuous one (see [13]), and shows notably the
difference of rapidity presented by the local clusters that merge together time after time, through complete
synchronization (see also [1], in which the dynamics of each oscillator is described by the logistic map). Here
we aim at proving rigorous results on synchronization in case of a hierarchy, and especially (as we are going
to see below) to look at its influence on the dynamics of the whole structure when this one has some local
defects.
As explained above, the idea is to look at the situation where each system is linked to some of them, in such
a way exists in the whole set (regarded as a huge dynamical system) an imbricated structure in greater and
greater ones. More precisely, we first consider 2n systems (the general case pn is completely similar), each of
them having a dynamics represented by an expanding (so possibly chaotic) function f defined on a compact
K of R. We represent the hierarchy among them by a matrix Bn, defined as the product of all the structure
matrices associated to its n stages, with the assumption that each stage is associated to one parameter: this
comes to assuming all the couplings are the same at a given stage (see Figure 1 in which the links represent
the couplings).
Then, the synchronization of our systems write in terms of the coupled map Gn = Bn ◦ Fn, where Fn is
the vector-valued function of which components are all equal to f: it happens if the successive iterations
(Gn)

2
, (Gn)

3
, · · · of Gn asymptotically approach the diagonal in K2n . Obviously, finding conditions under

which the map Gn synchronizes is a very well known problem that has been fully studied for three decades
(see [11], [5], [14], [9],...). Nevertheless, our approach is of interest since it leads us naturally to the limiting
case of the synchronization of a very high number of systems, namely an uncountable one, which constitutes
the novelty of this work. Indeed, looking at the limit (when n tends to infinity) of our cascade structure, in
which our 2n elements are ordered by a tuple of 0 and 1, leads us to a Cantor set of systems, indexed by the
set {0, 1}N of sequences in 0 and 1.
In this context, we thus define a new setting for the synchronization problem (in which matrix couplings are
replaced by operators, initial conditions become functions, etc...) and we look at conditions under which
this phenomenon happens globally (i.e every point in K2n is attracted by the diagonal) or locally (only the
points in a neighborhood of the diagonal is attracted by it). Using the same approach as B. Fernandez in [5],
we obtain a global synchronization theorem that generalizes its result, providing the sequence of parameters
defining the stages of the hierarchy converge slowly to 1/2.

A natural extension of this first part of our work is to consider the situation where the entire set of our
systems contains some that are uncoupled, regarding by the way whether the hierarchy forces them to syn-
chronize with the other ones or not (see Figure 2 in which the broken links represent the uncoupled systems).
If it is the case, can we authorize a high number of uncoupled systems, namely an infinite one in our Cantor
set of systems? How do their positions in the hierarchy influence the synchronization?
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We answer these two questions by proving that providing the number of uncoupled systems increase in
√
n

when n goes to infinity, and they stay at the smallest N scales of the hierarchy (for a fixed integer N), then
local synchronization takes place on a neighborhood of the diagonal, that does not depend on the position
of the broken links inside the last N scales.

The paper is organized in three parts. The first one (Part 2) contains the basic notations. The second (Part
3) deals with our hierarchical synchronization problem in the finite case of 2n systems, which constitutes the
preliminaries for the third part about the case of a Cantor set.
In Subsection 3.1, we begin by presenting the global synchronization result on the dynamical system Gn =
Bn,ǫ ◦ Fn, where the notation ǫ = (ǫ1, · · · , ǫn) refers to the n parameters associated to the n stages of the
hierarchy, and recall briefly the proof of this already known theorem.
Subsection 3.2 deals with our synchronization problem when some links are broken in the hierarchy, which
comes to replacing some blocks inside the structure matrices that define Bn,ǫ by identical blocks I2k−1 , for

some k in [1, n]. The resulting new coupling matrix B̃n,ǫ is no more symmetric, which prevents us from
applying the same technique as previously. In fact, there is no chance to have a global synchronization in
this case, for the new dynamical system G̃n,ǫ admits in general some fixed points outside the diagonal (see
Example 3.7). We thus look at a local result. In Paragraph 3.2.a, given an integer N , we prove that, if
the broken links stay at the first N scales of the hierarchy (i.e the N smallest ones), and if their number is

smaller than
√
n, then the eigenvalues of B̃n,ǫ tends to 0 as n goes to infinity, except the one corresponding

to the direction of the diagonal, which is obviously one (see Lemma 3.6). With this spectrum information,
using a Taylor development at first order, we show in Paragraph 3.2.b (Lemma (3.8)) that for every n ≥ N

enough great, any dynamical system G̃n,ǫ presenting such a configuration synchronizes on a neighborhood
of the diagonal. Besides, we prove that the size of this neighborhood does not depend on n, which will be
the crucial point for the study of the same question in the infinite case.

In the last section (Part 4), we go on our investigations by considering the limiting case of synchronization
of a Cantor set of systems, indexed by {0, 1}N. This time, initial conditions are no more vectors but functions
from {0, 1}N to R, and the previous structure matrices naturally become operators defined on the set of these
functions. In accordance with Part 3, we define the hierarchical structure among our systems as the limit Uǫ

of the composition of all these structure operators, (where ǫ stands for the sequence of parameters (ǫk)k≥1

associated to the stages of the hierarchy), of which existence must obviously be justified.
So, we begin Subsection 4.1 by proving the existence of Uǫ (h) for any continuous function h on {0, 1}N:
indeed, as the synchronization naturally involves the infinity norm, it is normal to first restrict our study
to the set of continuous ones (in fact, our two results will only work for such functions). Following [5], we
construct a scalar product on the set of functions on {0, 1}N, and obtain under the condition that ǫ converge
slowly to 1/2, a global synchronization result (Theorem (4.6)) in this setting, which constitutes the first
theorem of this paper. Like all the results of Part 4, the proof relies on a strong use of the functions constant
on the closed-open subsets of the Cantor set, which are dense in it (see Proposition (4.1)).
Finally in Subsection 4.2, we deal (as in the finite case) with the synchronization in case of broken links
inside the hierarchy. In order to get an infinity of broken links in

√
n staying at the smallest N scales of the

structure, we need to define again our structure operators this time on the closed-open subsets of {0, 1}N,
and then to take the limit of the composition of all of them. As above, the resulting new operator Wǫ is
well-defined on the set of continuous functions (see Lemma (4.8)). By construction, it acts on the constant

functions on the closed-open sets of size 2n exactly as the matrix B̃n,ǫ does on R
2n . This allows us to use

the same estimations as in Subsection 3.2. Using Proposition (4.1) again, we obtain a local synchronization
result (Theorem (4.10)), providing the sequence of parameters ǫ converge rapidly to 1/2, which constitutes
our second result. We finish the paper by giving the general versions of our results (Corollaries (4.11)
and (4.12)) in case of a matching in groups of size p in our construction, that is to say on a Cantor set
{a0, · · · , ap−1}N defined by an alphabet with p ≥ 3 letters.

2. Basic notations and definitions

2.1. The system. In all the text, we consider a segment K of R, stable under a map f : R → R, that is
to say such that f(K) ⊂ K (all the results we present are totally similar for functions defined on R

n, as
3



mentioned at the end of the text). The map f is assumed to be of class C2 and satisfies supz∈K

∣
∣f ′(z)

∣
∣ > 1.

In particular f can have a chaotic dynamics.

Example 2.1. The typical example is obviously the logistic map defined by f(x) = µx (1− x) for x in the
segment [0, 1], which exhibits chaos for the value of parameter µ ≈ 3.57.

As said in the introduction, we are interested in discrete dynamical systems of the form Xk+1 = A◦F (Xk)
where A is a linear map and F is a non-linear one, the components of F being equal to the same real-valued
function f. Depending on the space on which this system will be considered, the linear part A will be either
an endomorphism (in the first part the space is the finite dimensional one R

2n) or an operator acting on the
infinite dimensional space of continuous functions on a Cantor set X (see the second part).
The goal is to study the synchronization of such a system, that is to say its convergence to the diagonal of
the underlying space, that will be the set of vectors of which coordinates are all the same (denoted by I2n)
in the first part, and the set of constant functions on X (denoted by I) in the second one.

In the finite dimensional case, we use the notation A either to mention the endomorphism or its matrix
represented in the canonical basis (ej)1≤j≤2n of R

2n . The hierarchical structure will lead to the use of

the Kronecker product (that we’ll denote by ⊗) to define this endomorphism. Given two square matrices
M = (mi,j)1≤i,j≤m and N = (ni,j)1≤i,j≤n respectively of size m and n, the Kronecker product M⊗N is the

matrix of size mn defined by the equality:

M ⊗N =






m1,1N . . . m1,nN
...

...
mn,1N . . . mn,nN




 .

Obviously the same definition works for non-square matrices but we recall it just in this case that interests
us.

2.2. Vectors, matrices and norms. Each element X of R2n will be denoted by a capital letter and its
coordinates in the canonical basis (ej)1≤j≤2n in the following way

(
X(1), · · · , X(2n)

)
. Given such an element

X in R
2n , we will naturally consider the associated sum-vector XΣ belonging to I2n , defined by the equality:

XΣ =

((
X(1) + · · ·+X(2n)

)

2n
, · · · ,

(
X(1) + · · ·+X(2n)

)

2n

)

.

By convexity the vector XΣ belongs to K2n whenever X is in this set.

Given a matrix A, the notations χA, S (A) , det (A) , rank (A) will classically stand for the characteristic
polynomial, spectrum, determinant and rank of A. The algebraic multiplicity of an eigenvalue in χA will be
denoted by the symbol ⊗.
Two matrices will be constantly used in the first part of the paper. These are:

Tǫ =
[
1− ǫ ǫ
ǫ 1− ǫ

]

,

for a real parameter ǫ, and

1k =






1 · · · 1
...

...
1 · · · 1




 ,

of size k. We define similarly 0k.

Concerning the norms, we denote by
∣
∣
∣
∣ ·
∣
∣
∣
∣
∞,n

the infinity norm on R
2n , defined by the relation:

∣
∣
∣
∣X
∣
∣
∣
∣
∞,n

= max
1≤i≤2n

∣
∣X(i)

∣
∣.
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In the second part, the same notation
∣
∣
∣
∣ ·
∣
∣
∣
∣
∞
will also stand for the infinity norm on the complete space

C (X,R) of continuous functions on a Cantor set X.

3. The finite case

In all this part we fix an integer n ≥ 1, and deal with the synchronization problem in R
2n .

3.1. Global synchronization. Let us take an initial condition X0 in K2n and consider the dynamical sys-
tem Xk+1 = Gn

k (X0), where Gn = Bn ◦Fn, with Bn a matrix of size 2n representing a hierarchical structure
that we define below, and Fn = (f, · · · , f)

︸ ︷︷ ︸

2n terms

.

To define Bn, we can think of the 2n components of X0 as the initial state of some particles evolving
in time. We want to synchronize their dynamics by acting on all the systems issued from the following
successive two-by-two matching process: we first match the particles two-by-two, getting 2n−1 systems in
R

2. In mathematical terms, the synchronized behavior of each of these systems is naturally associated to
matrices of the form Tǫ, for some (possibly distinct) reals ǫ very close to 1/2.
Then we gather again those 2n−1 systems two-by-two, obtaining 2n−2 systems of 4 components, of which
synchronized behavior is related to the matrix Tǫ ⊗ I2.
We reproduce this process n times until we reach at the end two big dynamical systems of 2n−1 particles,
and the corresponding matrix Tǫ ⊗ I2n−1 .

This hierarchical process can be represented by a diagram as in figure 1 (where the points at the bottom
represent the particles to synchronize): If at each of its steps we have the separated synchronizations (which
is symbolized by some links), then all of the 2n particles will behave identically. Each step corresponds to
a particular scale of synchronization: the first step corresponds to the smallest scale (since we act on the
systems of smallest dimension, that is of dimension two), while the nth corresponds to the greatest one, with
an action on the systems of largest dimension, that is 2n−1. For the moment the usefulness of this process
does not seem to be relevant, for many other coupling matrices that do not represent this hierarchy could
have been used (an extensive literature exists on this subject, see [9], [14]), but it will appear in Part 4.

ε1

ε2

ε3

ε4

Figure 1. Diagram of synchronization in the case n = 4. Each scale is represented by one parameter.

By construction we have obtained a tuple of matrices that we’ll call the structure matrices associated to
this hierarchical process. They represent each of its n steps:
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An
1,ǫ1 =






Tǫ1
. . .

Tǫ1




 ,An

2,ǫ2 =






Tǫ2 ⊗ I2
. . .

Tǫ2 ⊗ I2




 , · · · ,An

n,ǫn = Tǫn ⊗ I2n−1 .

We now define the matrix Bn,ǫ by:

Bn,ǫ = An
n,ǫn · · ·An

1,ǫ1 ,

where ǫ stands for the tuple (ǫ1, · · · , ǫn) defining the matrices An
k,ǫk

. Each of them is defined by only one
parameter ǫk to make it commute with the other ones. We have mentioned the dimension n in this notation,
since our goal is to understand what happens when n goes to infinity (see Part 4).

Remark 3.1. Obviously the matching two-by-two is arbitrary: the exactly same construction and results
established below work in this general case of a p-by-p matching applied to pn particles (see Subsection
(4.3)). So for a clearer presentation (avoiding more complicated notations) we prefer to deal only with the
two-by-two gathering, and then to present briefly the general case at the end of the text.

In this context, the global synchronization result was obtained by B.Fernandez (see [5]):

Theorem 3.2. Assuming the tuple ǫ = (ǫ1, · · · , ǫn) defining the structure matrices An
1,ǫ1 , · · · ,An

n,ǫn satisfies
the relation:

∀k ∈ {1, · · · , n}, |1− 2ǫk| sup
z∈K

∣
∣f ′(z)

∣
∣ < 1,

then the dynamical system Gn,ǫ = Bn,ǫ ◦ Fn globally synchronizes, i.e we have:

∀X ∈ Kn, max
1≤i,j≤2n

∣
∣Gn,ǫ

m (X)(i) −Gn,ǫ
m (X)(j)

∣
∣ −→
m→∞

0.

Proof. Following [5] we introduce:

J =

[
0 1
1 0

]

, and C1 =






J
. . .

J




 ,C2 =






J⊗ I2
. . .

J⊗ I2




 , · · · ,Cn = J⊗ I2n−1 .

For every integers k, l in N, the matrices Cl and An
k,ǫk

commute. Then it clearly comes, for every k in

{1, · · · , n} and every X in K:
∣
∣
∣
∣Gn,ǫ (X)− Ck (Gn,ǫ (X))

∣
∣
∣
∣
∞

≤ |1− 2ǫ| sup
z∈K

∣
∣f ′(z)

∣
∣ ·
∣
∣
∣
∣X − Ck (X)

∣
∣
∣
∣
∞,n

,

from which we get, for every m ≥ 0:

max
1≤i,j≤2n

∣
∣Gn,ǫ

m (X)(i) −Gn,ǫ
m (X)(j)

∣
∣ ≤

n∑

k=0

(

|1− 2ǫ| sup
z∈K

∣
∣f ′(z)

∣
∣

)m

·
∣
∣
∣
∣X − Ck (X)

∣
∣
∣
∣
∞,n

and the result. �

Remark 3.3. As explained in [5], this result also works for a Lipschitz function f on an interval which
can be the whole set R. In this case the Lipschitz constant replace the supremum of the derivative in the
assumption of the theorem.

3.2. Local synchronization in presence of broken links.

6



(a) One broken link at the 3rd scale. (b) One broken link at the 1st scale.

(c) 2n − (n+ 1) broken links at the first three scales. (d) 2n−1 − 1 broken links at the 1st scale.

Figure 2. Diagrams with broken links, in the case n = 4.

3.2.a. Position of the problem. Now we address the following question: in the set of our 2n particles, suppose
there is a subset composed of uncoupled elements, can we still make them synchronize with the other ones?
In other words, if there are some links that are broken in the hierarchical structure constructed above (see
Figure 2), can we still synchronize the whole set of particles?

The possible synchronization depends on the new structure matrices Ãn
k,ǫk

that no more commute since

some blocks T2 ⊗ I2k−1 (with 1 ≤ k ≤ n) have been replaced by blocks I2k . For instance, the structure
matrices associated to the scheme of Figure 2(a) are An

1,ǫ1 , · · · ,An
n−2,ǫn−2

and for the last two ones:

Ãn
n−1,ǫn−1

=

[
Tǫn−1 ⊗ I2n−2

I2n−2

]

,An
n,ǫn = Tǫn ⊗ I2n−1 .

Computing the spectrum of the new matrix B̃n,ǫ = Ãn
n,ǫn · · · Ãn

1,ǫ1 is complicated in general because of
this loss of commutativity. But as the reals ǫk are always taken very close to 1/2 in our setting, we compute
it in the case where we have ǫ = (1/2, · · · , 1/2), having in mind the continuity of the eigenvalues (in the
coefficients of the matrices).
The following lemma presents the main different schemes met in this case.
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Lemma 3.4. Let us consider the different structure matrices B̃n, 12
associated to the schemes of Figure 2 .

Then all those matrices B̃n, 12
are diagonalizable and we have:

(1) The spectrum associated to the diagram of Figure 2(a) is {1, 1
2
, 0⊗2n−2}.

(2) The spectrum associated to the diagram of Figure 2(b) is {1, 1

2n−1
, 0⊗2n−2}.

(3) The spectrum of the diagram of Figure 2(c) is {1,
(
2l − 1

2l

)⊗2n−l−1

, 0⊗2n−1, l = 1, · · · , n− 1}.

(4) The spectrum of the diagram of Figure 2(d) is {1,
(
2n−1 − 1

2n−1

)

, 0⊗2n−2}.

The proof of Lemma (3.4) makes use of the following little lemma:

Lemma 3.5. Let (A,B) two square matrices in R
k2

, for k ≥ 1, such that A+B be diagonalizable. Assume
the rank of A+ B is greater or equal to the rank of B. Then the following matrix Z:

Z =

[
A B
A B

]

is diagonalizable.

Proof. Let us call (λ1, · · · , λp) the distinct eigenvalues of A + B and (α1, · · · , αp) the dimensions of their
associated eigenspaces.
Suppose that 0 is an eigenvalue of A + B, say λ1 = 0 (this will be the case for our structure matrices B̃n).
We have, by the Schur theorem:

χZ = det (−X Ik)χA+B,

so the spectra are the same for both Z and A + B. Then the assumption tells us the following:

rank (Z) = rank (A + B) ,

so the dimension of the eigenspace associated to 0 for the matrix Z is k + α1, which is the multiplicity of 0
in the characteristic polynomial χZ.
The same happens to the other eigenvalues since for any X = (X1, X2) we have:

ZX = λiX ⇐⇒ {(A + B)X1 = λiX1, X1 = X2}.
Thus the matrix Z is diagonalizable.
The same reasoning works for the other case where 0 is not an eigenvalue of A + B. �

Proof. We only do the case (1) since the demonstrations of the other ones are similar. From the definition
of our hierarchical structure it clearly comes we have, for every n ≥ 1:

B̃n+1, 12
=











1

2n+1

(
12n−1 12n−1

12n−1 12n−1

)
1

2n

(
12n−1 02n−1

02n−1 12n−1

)

1

2n+1

(
12n−1 12n−1

12n−1 12n−1

)
1

2n

(
12n−1 02n−1

02n−1 12n−1

)











.

By commutativity the sum of the two square matrices defining B̃n+1, 12
is diagonalizable with eigenvalues

1, 1/2 and 0. The result follows from Lemma (3.5). �

This lemma gives some important informations for the second part of our work.
As we could have expected, according to the cases (3) and (4), the more the broken links are numerous, the
more the eigenvalues associated to the transverse directions of the diagonal are close to the value 1. In (3),
the diagram contain 2n− (n+ 1) broken links meanwhile the one associated to the case (4) contains 2n−1−1
broken ones (recall that the total number of links in any diagram is 2n−1). As a consequence the structures
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(3) and (4) will not be chosen when we deal with the infinite case in Part 4.
More interesting is the case (1) which reveals the emphasis of the scale at which stand the broken links: to
make the eigenvalues associated to the transverse direction tend to 0 as n goes to infinity, they must not
be placed at the greatest scales of the diagram, i.e they must not link the biggest sub-systems of our set of
particles. Lastly, the case (2) tells us the rate of convergence to zero of the transverse eigenvalues associated
to the matrix (corresponding to this case) cannot be better than 1/2n.

Those ideas are confirmed by the next lemma, which proves that imposing there are at most E (
√
n)

broken links (where E (x) stands for the integer part of x) suffices to ensure the eigenvalues associated to
the transverse directions of the diagonal tend to zero as n goes to infinity.

1

2

3

N + 1

n− 1

n

Figure 3. Diagram of synchronization with E (
√
n) broken links at the first N scales (i.e

the N smallest ones).

Lemma 3.6. Let us fix an integer N ≥ 1 and assume there are exactly E (
√
n) broken links spread at the

scales 1, · · · , N of our diagram (see Figure 3). That is to say assume we have:

B̃n, 12
= An

n,1/2 · · ·An
N+1,1/2Ã

n
N,1/2 · · · Ãn

1,1/2,

where Ãn
N,1/2, · · · , Ãn

1,1/2 contain E (
√
n) identity blocks I2k for k ≤ N − 1.

Then B̃n, 12
is diagonalizable with following spectrum:

S

(

B̃n, 12

)

= {1, λn,1, · · · , λn,N , 0⊗2n−N−1},

the λn,i being some (possibly equal) positive numbers satisfying:

∀i ∈ {1, · · · , N} , λn,i ≤
1

2n−N−1
.

9



Proof. The demonstration is made by induction on n, using Lemma (3.5).

For every n ≥ N +1, let us set Ãn
N = Ãn

N,1/2 · · · Ãn
1,1/2, this matrix containing all the broken links, that is to

say all the blocks I2k , for some integers k smaller than N − 1. At the step n+ 1, Ãn+1
N admits E

(√
n+ 1

)

ones and so contains at most one more such link than Ãn
N . Thus we have:

Ãn+1
N =







Ãn
N 02n

02n Γn







,

where the matrix (of size 2n) Γn is still a product of the same form as Ãn
N , but in which there is only one or

zero matrix I2k (for k ≤ N − 1). Remark there are 1 + 2n − 2n−N different such matrices Γn, depending on
the position at which we choose to place the possible broken link. We will denote all these possible matrices
by Γn,k and finally define the matrix Cn,k by:

∀k ∈ {1, · · · , 1 + 2n − 2n−N}, Cn,k = An
n,1/2 · · ·An

N+1,1/2Γn,k.

Consequently, we have for every n ≥ N + 1, the following equality:

B̃n+1, 12
=









1

2
B̃n, 12

1

2
Cn

1

2
B̃n, 12

1

2
Cn,









where Cn = Cn,k for a certain integer k smaller than 1 + 2n − 2n−N .

Now let’s prove by induction that for every n ≥ N + 1, the following property is true:
Hn: “ For every integer k in [1, 1 + 2n − 2n−N ], the associated matrix Cn,k satisfies the following:

S

(
1

2
B̃n, 12

+
1

2
Cn,k

)

={1, λn,k,1, · · · , λn,k,N , 0⊗2n−N−1},

the λn,k,i being some (possibly equal) positive numbers verifying:

∀i ∈ {1, · · · , N}, λn,k,i ≤
1

2n−N−1
.

Moreover this matrix (1/2) B̃n, 12
+ (1/2) Cn,k is diagonalizable.”

For n = N + 1, the result is clear, as in Lemma (3.4). Let n ≥ 1 and assume Hn is true. Let’s also fix an

integer k smaller than 1 + 2n+1 − 2n+1−N and look at the term (1/2) B̃n+1, 12
+ (1/2) Cn+1,k.

• Assume in a first case, the matrix Cn contains one broken link, which imposes Cn+1,k does not. In
this case we have:

Cn+1,k =









1

2n+1
12n

1

2n+1
12n

1

2n+1
12n

1

2n+1
12n









,

from which follows the relation:

χ(1/2)B̃
n+1, 1

2
+(1/2)Cn+1,k

= det (−XI2n)χ(1/4)B̃
n, 1

2
+(1/4)Cn+(1/2n+1)12n

.
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The matrices B̃n, 12
and Cn are clearly one-row sum (i.e each row of them sums to one) and one-row

column, as products of the structure matrices that verify this property. So the term (1/4) B̃n, 12
+

(1/4) Cn which is diagonalizable according to Hn, commutes with the matrix 12n and thus the sum
of these two terms is diagonalizable.
And since the matrix (1/4) Cn +

(
1/2n+1

)
12n contains only one broken link we have:

rank

(
1

4
B̃n, 12

+
1

4
Cn +

1

2n+1
12n

)

≥ rank

(
1

4
Cn +

1

2n+1
12n

)

,

from which we get by Lemma (3.5) that the desired term (1/2) B̃n+1, 12
+(1/2) Cn+1,k is diagonalizable.

To finish this case it suffices to remark we have:

S

(
1

4
B̃n, 12

+
1

4
Cn +

1

2n+1
12n

)

= {1, λn,k,1

2
, · · · , λn,k,N

2
, 0⊗2n−N−1},

as required.
• The second possibility is no broken link in Γn (or Cn) and one in Γn+1,k. Without loss of generality,

we can assume this broken link is in the first 2n rows of this matrix i.e we have:

Cn+1,k =









1

2
Cn,i

1

2n+1
12n

1

2
Cn,i

1

2n+1
12n









,

for an integer i smaller than 1 + 2n − 2n−N depending on k. Indeed the other case (corresponding
to other choices Γn+1,k′) is completely symmetric.
Here we observe the following equality:

1

2
B̃n+1, 12

+
1

2
Cn+1,k =

1

4









B̃n, 12
+ Cn,i −

1

2n
12n

1

2n
12n

B̃n, 12
+ Cn,i −

1

2n
12n

1

2n
12n









+
1

4









1

2n
12n

1

2n
12n

1

2n
12n

1

2n
12n









,

which permits to apply the exactly same reasoning as above.
• The last case in which there are no broken links in both Γn and Γn+1,k is similar and easier.

These three cases dealt with all the possible choices of Γn+1, thus Hn+1 is true.

Finally, applying again Lemma (3.5) to B̃n, 12
for any n ≥ N + 1, permits to conclude the proof.

�

3.2.b. A local synchronization lemma. Now let us establish the synchronization result in this context.
As the structure matrices Ãn

k,ǫk
no more commute, the method of B. Fernandez cannot be applied again.

More, there is no hope to synchronize globally our system since in general it admits some fixed points outside
the diagonal.

Example 3.7. Consider the case n = 2 (i.e dimension 4), with f as the logistic map (taken at the value of
parameter µ = 3.57, as in Example (2.1)) and the following structure matrices:

Ã2
1,ǫ1 =

[
Tǫ1

I2

]

, A2
2,ǫ2 = Tǫ2 ⊗ I2.
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This is the only interesting structure with broken link in this dimension. Then for (ǫ1, ǫ2) = (0.45, 0.476),

we have G̃2,ǫ (X) = B̃2,ǫ ◦F2 (X) = X for X ≈ (0.3394508235, 0.2491080749, 0.7404987705,−0.2406491883).

For this reason we adopt another approach based on a Taylor development at first order: although the
approximations deduced are coarse, it permits us to recover a commutativity on the differential of Gn, leading
to the existence of a contracting neighborhood of the diagonal I2n . This result has been yet established
notably by W. Lu in [14] (see also [9]) in a general setting (that does not take into account the hierarchical
structure and the broken links we are dealing with) but obviously without exhibiting how the contracting
neighborhood depends or not on the dimension of the space (here 2n). And as we need this information for
the second part, we demonstrate this result again:

Lemma 3.8. Let us fix an integer N ≥ 1 and take a tuple ǫ = (ǫ1, · · · , ǫn) with n ≥ N + 1. We consider

the system G̃n,ǫ = B̃n,ǫ ◦ Fn defining the same structure as in Lemma (3.6). Assume the tuple ǫ is enough
close to 1/2 so that we have:

6 sup
z∈K

|f ′ (z) |2N
n∑

k=1

|1− 2ǫk| < 1.

Then, there is a constant Λn such that, for every ǫ′ > 0 exists a real ηN > 0 (that does not depend on n)
defining the following neighborhood Ωn of the diagonal:

Ωn = {X ∈ K2n , ∀i 6= j |X(i) −X(j)| ≤ ηN},

on which the map
(

G̃n,ǫ

)2N

satisfies the inequality:

max
1≤i,j≤2n

∣
∣

(

G̃n,ǫ

)2N

(X)(i) −
(

G̃n,ǫ

)2N

(X)(j)
∣
∣ ≤ 2

(

ǫ′ + Λn + 3 sup
z∈K

|f ′ (z) |2N
n∑

k=1

|1− 2ǫk|
)

∣
∣X(i) −X(j)

∣
∣.

The constant Λn tends to zero as n tends to infinity. In particular choosing ǫ′ enough small, the dynamical
system G̃n,ǫ synchronizes on the set Ωn for a sufficiently large n.

Proof. We first prove the result for the map G̃2N
n, 12

.

For every r ≥ 1, we have, by the Taylor formula with bounded remainder applied at first order:
∣
∣
∣
∣

(

G̃n, 12

)r

(X)−
(

G̃n, 12

)r

(XΣ)
∣
∣
∣
∣
∞,n

≤ sup
t∈[0,1]

∣
∣
∣
∣D(1−t)XΣ+tX

(

G̃n, 12

)r

(X −XΣ)−DXΣ

(

G̃n, 12

)r

(X −XΣ)
∣
∣
∣
∣
∞,n

+
∣
∣
∣
∣DXΣ

(

G̃n, 12

)r

(X −XΣ)
∣
∣
∣
∣
∞,n

.

Now we fix a small number ǫ′ > 0. The (uniform) continuity of the map X 7→ DXG̃n, 12
on the compact K2n ,

gives us the existence of a number ηr > 0 such that:

∀X,Y ∈ K2n ×K2n ,
∣
∣
∣
∣X − Y

∣
∣
∣
∣
∞,n

< ηr ⇒
∣
∣
∣
∣DX

(

G̃n, 12

)r

−DY

(

G̃n, 12

)r ∣
∣
∣
∣
∞,n

< ǫ′.

Indeed, for every X,Y ∈ K2n , applying successively the mean value inequality leads to the estimation:

∣
∣
∣
∣DX

(

G̃n, 12

)r

−DY

(

G̃n, 12

)r ∣
∣
∣
∣
∞,n

≤ sup
z∈K

∣
∣f ′(z)

∣
∣
r−1 · sup

z∈K

∣
∣f ′′(z)

∣
∣

(
r∑

i=1

∣
∣
∣
∣

(

G̃n, 12

)r−i

(X)−
(

G̃n, 12

)r−i

(Y )
∣
∣
∣
∣
∞,n

)

≤ r

(

sup
z∈K

∣
∣f ′(z)

∣
∣
2r−2 · sup

z∈K

∣
∣f ′′(z)

∣
∣

)
∣
∣
∣
∣X − Y

∣
∣
∣
∣
∞,n

,

which permits us to choose a convenient real ηr depending only on the integer r and the function f.
We consider the set Cηr

= {Z = (z(1), · · · , z(2n)) ∈ K2n : ∀i 6= j
∣
∣z(i) − z(j)

∣
∣ < ηr}. If X is in Cηr

, the upper

bound in the Taylor inequality above is smaller than ǫ′
∣
∣
∣
∣X −XΣ

∣
∣
∣
∣
∞,n

. We now estimate the second term of

the sum for X in this set.
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Let Pn the matrix of GL2n (R) conjugating B̃n, 12
to its diagonal form (see Lemma (3.6)):















1
λn,1

. . .

λn,N

0
. . .

0















.

Clearly Pn
−1 (X −XΣ) belongs to the space vect (e2, · · · , e2n), as X −XΣ is orthogonal to the diagonal.

From this we get:

∣
∣
∣
∣DXΣ

(

G̃n, 12

)r

(X −XΣ)
∣
∣
∣
∣
∞,n

≤
∣
∣
∣
∣Pn

∣
∣
∣
∣
∞,n

∣
∣
∣
∣Pn

−1
∣
∣
∣
∣
∞,n

(

2N+1sup
z∈K

∣
∣f ′(z)

∣
∣ · 1

2n

)r
∣
∣
∣
∣X −XΣ

∣
∣
∣
∣
∞,n

.

The embarrassing condition number
∣
∣
∣
∣Pn

∣
∣
∣
∣
∞,n

∣
∣
∣
∣Pn

−1
∣
∣
∣
∣
∞,n

may goes to infinity as n does (this is the case

numerically) but it’s easy to see by induction this number is smaller than 2nN . Thus if we choose the integer
r enough great, for instance r = 2N we get:

∣
∣
∣
∣DXΣ

(

G̃n, 12

)2N

(X −XΣ)
∣
∣
∣
∣
∞,n

≤ Λn

∣
∣
∣
∣X −XΣ

∣
∣
∣
∣
∞,n

,

where the term Λn defined by:

Λn =
1

2nN

(

2N+1sup
z∈K

∣
∣f ′(z)

∣
∣

)2N

,

goes to zero as n tends to infinity. The result is proved in the case ǫ = (1/2, · · · , 1/2).

Then, to prove the general case it suffices to compare our map G̃n,ǫ with the map G̃n,1/2 we have just
studied. Here again the mean value inequality gives us:

∣
∣
∣
∣DXΣ

(

G̃n,ǫ

)2N

(X −XΣ)
∣
∣
∣
∣
∞,n

≤ 3 sup
z∈K

∣
∣f ′(z)

∣
∣
2N ∣
∣
∣
∣B̃n,1/2 − B̃n,ǫ

∣
∣
∣
∣
∞,n

∣
∣
∣
∣X −XΣ

∣
∣
∣
∣
∞,n

+
∣
∣
∣
∣DXΣ

(

G̃n, 12

)2N

(X −XΣ)
∣
∣
∣
∣
∞,n

≤
(

Λn + 3 sup
z∈K

|f ′ (z) |2N
n∑

k=1

|1− 2ǫk|
)

||X −XΣ||∞,n.

Taking ǫ′ smaller if necessary we get the desired inequality.

Finally, for n enough large the map
(

G̃n,ǫ

)2N

is transversally contracting on Ωn = Cη2N
and thus syn-

chronizes. There exists an integer M such that for every X in Ωn, all the iterated
(

G̃n,ǫ

)2NM+s

(X) with s

in {0, · · · , 2N − 1}, belong to this set. And by euclidean division, for every m ≥ 1 exists an integer q such
that m = 2N (q −M) + 2NM + s, with s in {0, · · · , 2N − 1}. So we conclude:

∀X ∈ Ωn, max
1≤i,j≤2n

∣
∣

(

G̃n,ǫ

)m

(X)(i) −
(

G̃n,ǫ

)m

(X)(j)
∣
∣ −→
m→∞

0.

�

Remark 3.9. The crucial point of this lemma lies in the non dependance of the size η2N of the neighborhood
Ωn on which our system synchronizes: this size stays constant as the dimension n goes to infinity, which will
ensure us the existence of a non trivial neighborhood of synchronization in the infinite dimensional case.
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3.3. Remarks concerning the definition of Gn,ǫ. To finish this first part, let us underly there are mainly
two possibilities for the definition of our dynamical system Gn,ǫ, that represent the hierarchical structure we
have constructed. Besides the one we have chosen Gn,ǫ = An

n,ǫn ◦ · · · ◦ An
1,ǫ1 ◦ Fn in Section 3.1, we could

have set:

Gn,ǫ = An
n,ǫn ◦ Fn ◦ · · · ◦An

1,ǫ1 ◦ Fn,

and develop the same approach concerning the local synchronization in presence of broken links. The result
of lemma (3.8) is also true with this definition, but this time the size of the synchronization neighborhood
depends on n, for is added a term Fn at each increasing of the dimension.

4. Generalization to a Cantor set.

Consider again a set of 2n particles, coupled together according to the hierarchical structure established
in Section 3.1. As we have gathered them two-by-two at each step, it is natural to number them by a code
with only two letters, say 0 and 1, representing their path to the top of the graph associated to this process:
we use 0 if the subsystem is at the left of the one to which it is linked, and 1 if it is at its right. This
numbering is one-to-one since every particle admits one and only one such path. As mentioned above, in
this finite case we could have synchronized our particles with a different matrix coupling.

This is no more the case if we let n tends to infinity. In this limiting case, our set of particles forms a
Cantor set, thus (infinite) uncountable, indexed by the set X = {0, 1}N of sequences in 0 and 1, and the
previous numbering describe all the possible sequences of this set. Instead of having a vector as initial
condition (representing the values at each position k in 1, · · · , 2n), we now have a set h (X) for a function h
from X to R. But because of this uncountability, there is no straight way to synchronize all our particles as
in [5], [14], [9], for there is no way to write explicitly a series in all the images h (c) for c in X.
It is here that the hierarchical structure permits to overpass naturally this difficulty.

The matrices
(

An
k,ǫk

)

1≤k≤n
of Part 3 become the following operators (Lk,ǫk)k∈N∗ acting on the space of

real-valued functions on X:

Lk,ǫk (h) = (1− ǫk) h + ǫkJk (h) ,

where the function Jk (h) is defined by:

∀c ∈ X, Jk (h) (c) = h
(
c⋆,k
)
,

the sequence c⋆,k being obtained from c by only replacing the letter ck with 1−ck. Obviously, these operators
Jk play the same role as the matrices Ck in the finite case (see the proof of Theorem (3.2)).
We look at the infinite composition of our new operators Lk,ǫk , i.e at the limit:

lim
n→∞

Ln,ǫn ◦ · · · ◦ L1,ǫ1 (h) ,

for a given function h on X. Assuming for the moment such a limit exists (see below), it defines an operator
Uǫ (where ǫ is the sequence (ǫk)k≥1) from which we construct, as in Part 3 with Gn, a dynamical system

leading to the synchronization. Applied to a function h on X, this operator acts on all the terms h (c), as
desired.

In this context the diagonal writes I = {h : X → R, h is constant}. Geometrically, given an initial
condition h, the new dynamical system will tend to flatten its associated graph {(c, h (c)) : c ∈ X}. We are
now able to apply the same reasoning as in Part 3, the main issue being the existence of the operator Uǫ.

4.1. Global synchronization.
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4.1.a. Existence of the limit operator Uǫ. We equip X with the metric:

d(c, c′) =

∞∑

n=0

|cn − c′n|
2n

.

The metric space (X, d) is compact, totally disconnected (i.e its greatest connected component is a point),
and without isolated point. We recall that the metric spaces presenting these three characteristics are all
homeomorphic. They are called Cantor spaces. It is important to tell that all our results below are true
for any other Cantor space than (X, d) (which is not always the case), as they do not depend on the metric
chosen (see the point (2) of Remark 4.3 below).

Given a tuple (a1, · · · , an) in {0, 1}n, consider the set Ca1,··· ,an
= {c ∈ X : (c1, · · · , cn) = (a1, · · · , an)}.

It is easy to verify this set is closed and open for the topology defined by d. For every n ≥ 1, we will denote
by (Cn,k)1≤k≤2n all the 2n such sets, no matter the way they are ordered. Each Cn,k has diameter 1/2n−1

and we have:

∀n ≥ 1, X = ⊔2n

k=1Cn,k.

The fundamental property is that the set C of all those sets:

C = {C1,1,C1,2, · · · ,Cn,k, · · · },
forms a countable basis of open sets of the topological space X.
As explained above we are lead to consider the functions from X to R, that will be our new points in the
phase space. In fact our results will only concern the space C (X,R) of continuous functions, which we recall
is complete for the infinity norm || · ||∞. The reason is the synchronization is expressed with this norm. The
sum of the series

∑

n≥0 cn/2
n is an example of such a function. We have:

Proposition 4.1. The set of constant functions on the closed-open sets C is dense in the set (C (X,R) , || · ||∞).

Proof. Any function constant on the closed-open sets of order n for some n ≥ 1, is clearly continuous on X.
Then given an element h of C (X,R), define the sequence of functions (hn)n≥1 by:

∀c ∈ X, hn (c) = h (c1, · · · , cn,1) ,
where 1 denotes the constant sequence equals to one. For every n ≥ 1, the function hn is constant on the
(Cn,k)1≤k≤2n , and by the uniform continuity of h on the compact X, converges to this function for the infinity
norm. �

Lemma 4.2. For every sequence ǫ = (ǫn)n≥1 of real numbers in [0, 1], and every continuous function h on
X, the following limit:

Uǫ (h) := lim
n→∞

Ln,ǫn ◦ · · · ◦ L1,ǫ1 (h) ,

exists as a function of (C (X,R) , || · ||∞).

Proof. For h in (C (X,R) , || · ||∞), let’s consider the sequence (hn)n≥1 defined as in the proof of Proposition

4.1, that converges to h. Introducing the notation Kn (h) = Ln,ǫn ◦ · · · ◦ L1,ǫ1 (h) we then have, for every
integers p, q:

||Kp+q (h)−Kp (h) ||∞ ≤ ||Kp+q (h)−Kp+q (hp) ||∞ + ||Kp+q (hp)−Kp (hp) ||∞ + ||Kp (hp)−Kp (h) ||∞
Clearly, the operator norm of each operator Ln,ǫn is one. It then suffices to remark we have,

∀n > p, Ln,ǫn (hp) = hp,

to conclude the first member of the inequality is smaller than 2||h− hp||∞. The considered sequence is thus
a Cauchy one. �

Remark 4.3. (1) Nothing tells us the sequence Ln,ǫn ◦ · · · ◦ L1,ǫ1 converges for the operator norm, i.e
in the set of linear maps on C (X,R), for the speed of convergence of the term ||h − hp||∞ depends
on the function h.
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(2) The existence of Uǫ does not require the convergence of the sequence ǫ. Nor does it involve the metric
d taken on X, and especially the diameter of the closed-open sets Cn,k, of which size could decrease
much more slowly on other Cantor spaces.

Now as in Part 3, we set Gǫ = Uǫ ◦ F where the map F is defined by F (h) = f ◦ h for every real-valued
function h defined on X.

4.1.b. Global synchronization result on C (X,K). In this context, the global synchronization result is proved
by the same technique as in [5]. We equip X with the Borel σ-algebra and consider the probability measure
µ verifying:

∀n ≥ 1, ∀k ∈ {1, · · · , 2n}, µ (Cn,k) =
1

2n
.

Since C generates the topology of X, and for every n ≥ 1 the (Cn,k)1≤k≤2n form a partition of X, it is very

easy to construct such a probability measure.

Proposition 4.4. For every n ≥ 1, the map c 7→ c⋆,n preserves the measure µ. Consequently for every
measurable function h from X to R, we have:

∫

X

h (c) dµ (c) =

∫

X

h (c⋆,n) dµ (c) .

Proof. The map c 7→ c⋆,n is an involution. Let’s take an element Cp,k in C . If we have p < n then
(Cp,k)

⋆,n
= Cp,k, otherwise the measure of these two sets is the same by definition of µ. This yields the

result by σ-additivity. �

From this measure µ, we recover a scalar product 〈 , 〉 on the space of measurable real-valued functions
on X, defined by:

〈h , g〉 =
∫

X

hg dµ.

We denote by ⊥ the orthogonality for this scalar product. Proposition 4.4 gives us the following:

Lemma 4.5. For every k ≥ 1, let us define the subset Jk of C (X,R) by:

Jk = {h ∈ C (X,R) : Jk (h) = h}.
Then the diagonal I is equal to the intersection of all the Jk, and we have the following relation:

Jk
⊥ = {h ∈ C (X,R) : Jk (h) = −h}.

Proof. The first assertion is clear. For the second one, if a function h is in Jk
⊥, then we have:

∫

X

h (c)
(
h (c) + h

(
c⋆,k
))

dµ (c) = 0,

and thus by Proposition 4.4,
∫

X

(
h (c) + h

(
c⋆,k
))2

dµ (c) = 0,

which gives the equality h
(
c⋆,k
)
= −h (c) for almost every sequence c. But as the measure µ is an exterior

one this holds for every c in X. �

Theorem 4.6. Let ǫ = (ǫk)k≥1 be a sequence of real numbers in [0, 1], defining the operator Uǫ as in Lemma
4.2. Assume the following condition holds:

∃a > 1, ∃α > 0, ∀k ≥ 1, |1− 2ǫk| sup
z∈K

∣
∣f ′(z)

∣
∣ ≤ 1

(ak)
α .

Then the dynamical system Gǫ = Uǫ ◦ F globally synchronizes on the set C (X,K) of continuous functions
having values in K.
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Proof. Let us fix an integer k ≥ 1 and take a continuous function h on X, having values in K. As in the
finite dimensional case, the operators (Jk)k≥1 commute with the operators (Ln,ǫn)n≥1 and with F. So we

have:
∣
∣
∣
∣Gǫ (h)− Jk (Gǫ (h))

∣
∣
∣
∣
∞

=
∣
∣
∣
∣Uǫ (f ◦ h− Jk (f ◦ h))

∣
∣
∣
∣
∞

≤ sup
z∈K

∣
∣f ′(z)

∣
∣ · ||Uǫ

∣
∣Jk

⊥
||∞||h− Jk (h) ||∞.

Then we observe the equality
∣
∣
∣
∣Uǫ
∣
∣Jk

⊥

∣
∣
∣
∣
∞

= |1 − 2ǫk| (the inequality would have sufficed for our proof).

Indeed, for a function h in Jk
⊥, we have:

Lk,ǫk ◦ · · · ◦ L1,ǫ1 (h) = (1− 2ǫk)Lk−1,ǫk−1
◦ · · · ◦ L1,ǫ1 (h) ,

which imposes, as the infinity norm of each Ln,ǫn is one:

||Uǫ
∣
∣Jk

⊥
|| ≤ |1− 2ǫk|.

The equality is reached for the function c 7→ ck − (1− ck). This leads us to the following, for every elements
c, c′ of X:

∀m ≥ 1 : |Gm
ǫ (h) (c)−Gm

ǫ (h) (c′) | ≤
+∞∑

k=1

(

|1− 2ǫk| sup
z∈K

|f ′(z)|
)m

||h− Jk (h) ||∞,

≤ 1

amα

+∞∑

k=1

1

kmα
||h− Jk (h) ||∞,

which gives the result. �

Remark 4.7. (1) The sequence ǫ is asked to converge slowly to 1/2, since we do not know how fast is
the convergence to zero of the term ||h − Jk (h) ||∞. This convergence depends in a certain sense,
on the metric taken on the Cantor space. For instance, if we take a Lipschitz function h on our
set (X, d) as initial condition, it just suffices to ask the terms |1 − 2ǫk| supz∈K |f ′(z)| are all strictly
smaller than one, because the diameters of the closed-open sets decrease enough strongly to 0.

(2) There again, the result also works for a Lipschitz function f on an interval, in which case it is true
on C (X,R).

4.2. Local synchronization in presence of broken links. Now, in this last subsection we ask the same
question as in Subsection 3.2: assume in our Cantor set of particles, there are infinitely many ones that are
not coupled. Can we still synchronize the entire set of particles?
As said previously, the work has been yet prepared by Lemma 3.6 and 3.8: it just suffices to let the dimension
n goes to infinity in our estimations, using the fact that the set of constant functions on the closed-open sets
Cn,k form a 2n-dimensional space, that we identify with R

2n .

In order to make this passing to the limit, we have to define again our sequence of structure operators,
acting at each step n on this space of constant functions on the Cn,k. We begin by the operators having only
strong links, setting for every n ≥ 1 and every function h in C (X,R):

∀k ∈ {1, · · · , n} : In
k,ǫk

(h) (c) = (1− ǫk) h (c1, · · · , cn,1) + ǫkh
(

(c1, · · · , cn,1)⋆,k
)

.

As in Part 3, we decide that the number of broken links for each diagram of size 2n be at most E (
√
n), and

that they stay at the smallest N scales of the hierarchical structure, for a fixed N ≥ 1. In this purpose, for
every n ≥ N + 1 and every function h in C (X,R), we consider the composition:

In
1,ǫ1 ◦ · · · ◦ I

n
n−N,ǫn−N

◦ Ĩn
n−N+1,ǫn−N+1

◦ · · · ◦ Ĩn
n,ǫn (h) ,

where the operators
(

Ĩn
k,ǫk

)

n−N+1≤k≤n
contain the broken links (note the order of composition has been

reversed compared to the definition of Part 3, see Remark 4.9). It is always possible to define them. For
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instance, let us fix an integer n enough great so that we have E (
√
n) = N , and set:

Ĩn
n−N+1,ǫn−N+1

(h) (c) =

{

h (c1, · · · , cn,1) if (c1, · · · , cn−N ) =
(
a1

(1), · · · , an−N
(1)
)

In
n−N+1,ǫn−N+1

(h) (c) otherwise

...

Ĩn
n−1,ǫn−1

(h) (c) =

{

h (c1, · · · , cn,1) if (c1, · · · , cn−2) =
(
a1

(N−1), · · · , an−2
(N−1)

)

In
n−1,ǫn−1

(h) (c) otherwise

Ĩn
n,ǫn (h) (c) =

{

h (c1, · · · , cn,1) if (c1, · · · , cn−1) =
(
a1

(N), · · · , an−1
(N)
)

In
n,ǫn (h) (c) otherwise,

where the elements
(
a1

(N−i), · · · , an−i−1
(N−i)

)
designate some distinct tuples of 0’s and 1’s. In this config-

uration, each of the N scales admits one broken link. Then two cases appear. If we have E (
√
n) = N , i.e if

no broken link is added, we set:

Ĩn+1
n−N+2,ǫn−N+2

(h) (c) =

{

h (c1, · · · , cn+1,1) if (c1, · · · , cn−N+1) =
(

0, a1
(1), · · · , an−N

(1)
)

In+1
n−N+2,ǫn−N+2

(h) (c) otherwise,

...

Ĩn+1
n+1,ǫn+1

(h) (c) =

{

h (c1, · · · , cn+1,1) if (c1, · · · , cn) =
(
0, a1

(N), · · · , an−1
(N)
)

In+1
n+1,ǫn+1

(h) (c) otherwise.

If on the contrary we have E
(√

n+ 1
)
= N + 1, then we keep the same definition, and we add a condition

holding on the closed-open set of sequences beginning by 1, for instance the following:

Ĩn+1
n+1,ǫn+1

(h) (c) = h (c1, · · · , cn+1,1) if (c1, · · · , cn) = (1, · · · , 1).

We define similarly all the operators
(

Ĩp
k,ǫk

)

p−N+1≤k≤p
for any p greater than n.

Now, as in the global synchronization case, the following limit

lim
n→∞

In
1,ǫ1 ◦ · · · ◦ I

n
n−N,ǫn−N

◦ Ĩn
n−N+1,ǫn−N+1

◦ · · · ◦ Ĩn
n,ǫn (h)

exists. This limit is the desired limit operator since it acts on (all) the sequences of 0 and 1.

Lemma 4.8. Let ǫ = (ǫk)k≥1 a sequence in [0, 1]
N

∗

. For every function h in C (X,R), we set:

Wǫ (h) = lim
n→∞

In
1,ǫ1 ◦ · · · ◦ I

n
n−N,ǫn−N

◦ Ĩn
n−N+1,ǫn−N+1

◦ · · · ◦ Ĩn
n,ǫn (h) ,

where the operators
(

Ĩn
k,ǫk

)

n−N+1≤k≤n
contain E (

√
n) broken links of which positions are arbitrary. Then,

Wǫ is a well-defined operator on C (X,R).

Proof. The demonstration is the same as the one of Lemma 4.2. Let’s take a continuous function h, and the
associated sequence (hn)n≥1 defined as in the proof of Proposition 4.1, that converges to h. Denoting again

Kn (h) = In
1,ǫ1 ◦ · · · ◦ In

n−N,ǫn−N
◦ Ĩn

n−N+1,ǫn−N+1
◦ · · · ◦ Ĩn

n,ǫn (h), we have for any integers p, q ≥ 1:

||Kp+q (h)−Kp (h) ||∞ ≤ 2||h− hp||∞ + ||Kp+q (hp)−Kp (hp) ||∞.
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Taking q greater if necessary, we can assume the inequality: p+ q −N ≥ p. Then, as hp is constant on the
closed-open sets Cp,k of size p, we have:

||Kp+q (hp)−Kp (hp) ||∞ ≤ ||Ip
1,ǫ1

◦ · · · ◦ Ip
p,ǫp (hp)− Ip

1,ǫ1
◦ · · · ◦ Ip

p−N,ǫp−N
◦ Ĩp

p−N+1,ǫp−N+1
◦ · · · ◦ Ĩp

p,ǫp (hp) ||∞
≤ ||Ip

p−N+1,ǫp−N+1
◦ · · · ◦ Ip

p,ǫp (hp)− Ĩp
p−N+1,ǫp−N+1

◦ · · · ◦ Ĩp
p,ǫp (hp) ||∞

≤
N∑

k=1

ǫp−N+k||hp − Jp−N+k (hp) ||∞,

the last inequality coming from the commutativity of the operators Jl with the operators Ip
k,ǫk

, for any
integers k, l. The last term tends to zero as p goes to infinity, and this independently on q. Thus we still
have a Cauchy sequence. �

Remark 4.9. We have reversed the direction of iteration compared with the finite-dimensional case (see the

definition of B̃n,ǫ). This comes from the fact in the hierarchical structure constructed in Part 3, the smallest
scale (which is the one linking two successive elements X(i), X(i+1)) corresponds to the matrix Tǫ1 , and thus
remains fixed as the iteration goes on, whereas the smallest scale on the closed-open sets of size n is given by
the operator Jn. The lector could be easily convinced by himself this reversing is compulsory for the existence
of our limit operator Wǫ.

From this lemma we define the new dynamical system G̃ǫ = Wǫ ◦ F and finally get the second result of
our paper:

Theorem 4.10. Let us fix N ≥ 1 and ǫ = (ǫk)k≥1 a sequence of real numbers in [0, 1] defining the operator

Wǫ on C (X,R) by the relation: Wǫ (h) = limn→∞ In
1,ǫ1 ◦ · · · ◦ In

n−N,ǫn−N
◦ Ĩn

n−N+1,ǫn−N+1
◦ · · · ◦ Ĩn

n,ǫn (h),

where the operators
(

Ĩn
k,ǫk

)

n−N+1≤k≤n
contain E (

√
n) broken links of which positions are arbitrary. Assume

the sequence ǫ satisfies the following:

6 sup
z∈K

|f ′ (z) |2N
+∞∑

k=1

|1− 2ǫk| < 1.

Then the dynamical system G̃ǫ = Wǫ ◦ F synchronizes on a non trivial neighborhood ΩN of the diagonal
I ∩ C (X,K) in C (X,R).

Proof. (1) We first make the same Taylor approximations as in the proof of Lemma (3.8).
As above for the convenience of the notations, we set:

Kn = In
1,ǫ1 ◦ · · · ◦ I

n
n−N,ǫn−N

◦ Ĩn
n−N+1,ǫn−N+1

◦ · · · ◦ Ĩn
n,ǫn .

Let us fix a real ǫ′ > 0. By Lemma 3.8, there exists a real η2N > 0 such that for every n ≥ N + 1,
and every X,Y in K2n we have:

||X − Y ||∞,n ≤ η2N ⇒ ||DX

(

Ĝn,ǫ

)2N

−DY

(

Ĝn,ǫ

)2N

||∞,n ≤ ǫ′

where the function Ĝn,ǫ = B̂n,ǫ ◦ Fn is defined by:

B̂n,ǫ = An
n,ǫ1 ◦ · · · ◦A

n
N+1,ǫn−N

◦ Ãn
N,ǫn−N+1

◦ · · · ◦ Ãn
1,ǫn ,

that is to say B̂n,ǫ is obtained from the matrix B̃n,ǫ by reversing the order of the ǫk in accordance

with Remark 4.9. The positions of the identical blocks in B̂n,ǫ are taken similarly as in the operator
Kn.
Now let h a function belonging to C (X,K) and (hn)n≥1 its associated sequence of Proposition 4.1.

For every n ≥ 1, denote by (hn,k)1≤k≤2n the 2n distinct values taken by the function hn on X. As

the closed-open sets form a partition of X, we have:

∫

X

hn (c) dµ (c) =
1

2n

2n∑

k=1

hn,k,
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and since X is compact, we remark the following:

∫

X

hn (c) dµ (c) −→
n→∞

∫

X

h (c) dµ (c) .

We define the vector Hn = (hn,1, · · · , hn,2n) in R
2n and its associated sum-vector in I2n :

Hn,Σ =

(∫

X

hndµ, · · · ,
∫

X

hndµ

)

.

Now take an integer n ≥ N + 1. For any function gn constant on the closed-open sets of size n,
we have Wǫ (gn) = Kn (gn). Renumbering the coordinates of the vector Hn if necessary, it comes:

||
(

G̃ǫ

)2N

(hn)−
(

G̃ǫ

)2N
(∫

X

hndµ

)

||∞ = || (Kn ◦ F)2N (hn)− (Kn ◦ F)2N
(∫

X

hndµ

)

||∞

= ||
(

Ĝn,ǫ

)2N

(Hn)−
(

Ĝn,ǫ

)2N

(Hn,Σ) ||∞,n,

and so by Lemma 3.8 the term on the left is smaller than:

(ǫ′ + Λn) ||Hn −Hn,Σ||∞,n + ||DHn,Σ

(

Ĝn,ǫ

)2N

−DHn,Σ

(

Ĝn,1/2

)2N

||∞,n||Hn −Hn,Σ||∞,n,

providing that our function h satisfies: |h (c)−h (c′) | ≤ η2N for every c, c′ in X. Now as in the proof
of Lemma 4.9 we notice that:

||DHn,Σ

(

Ĝn,ǫ

)2N

−DHn,Σ

(

Ĝn,1/2

)2N

||∞,n ≤ 3 sup
z∈K

|f ′(z)|2N ||B̂n,1/2 − B̂n,ǫ||∞,n

≤ 3 sup
z∈K

|f ′(z)|2N
n∑

k=1

|1− 2ǫk|.

Passing to the limit at infinity, we finally get:

||
(

G̃ǫ

)2N

(h)−
(

G̃ǫ

)2N
(∫

X

hdµ

)

||∞ ≤
(

ǫ′ + 3 sup
z∈K

|f ′(z)|2N
+∞∑

k=1

|1− 2ǫk|
)

||h−
∫

X

h dµ||∞.

(2) From this it comes for every sequences c, c’ in X:

|
(

G̃ǫ

)2N

(h) (c)−
(

G̃ǫ

)2N

(h) (c′) | ≤ 2

(

ǫ′ + 3 sup
z∈K

|f ′(z)|2N
+∞∑

k=1

|1− 2ǫk|
)

sup
x,x′∈X

|h (x)− h (x′) |,

which gives the synchronization of the dynamical system
(

G̃ǫ

)2N

on the neighborhood ΩN of the

diagonal J ∩ C (X,K) in C (X,R), defined by:

ΩN = {h ∈ C (X,K) : sup
x,x′∈X

|h (x)− h (x′) | ≤ η2N}.

Doing again the same trick as in the end of the proof of Lemma 3.8, we finally obtain the synchro-
nization of G̃ǫ on ΩN . QED.

�

4.3. Corollaries of the results in the case pn. In this last subsection, we present the corollaries of our
two theorems on a Cantor set X = {a0, · · · , ap−1}N associated to an alphabet with p ≥ 3 letters, which

is the limiting case corresponding to a finite matching process in groups of size p: given a tuple ǫ(k) =
(
ǫ1

(k), · · · , ǫp−1
(k)
)
defining the kth stage of the hierarchical structure, the coupling between the gathered

elements is now defined by a circulant matrix Rǫ(k) , of which entries are 1−∑p−1
i=0 ǫ

(k)
i , ǫ1

(k), · · · , ǫp−1
(k).
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4.3.a. Corollary of theorem (4.6). For every tuple ǫ(k) =
(
ǫ1

(k), · · · , ǫp−1
(k)
)
in [0, 1]p−1 the new operator

structures Lk,ǫ(k) write:

Lk,ǫ(k) (h) =

(

1−
p−1
∑

i=0

ǫ
(k)
i

)

h +

p−1
∑

i=1

Jk
i (h) ,

where this time the map Jk (h) is defined by the relation:

∀c ∈ X, with ck = ai, Jk (h) (c) = h (c1, · · · , ck−1, ai+1mod p, ck+1, · · · ) .

With this definition, nothing changes in the approach we have done previously, except the fact the
orthogonal of the diagonal Jk in C (X,R) becomes:

Jk
⊥ = {h ∈ C (X,R) :

p−1
∑

i=0

Jk
i (h) = 0}.

We get:

Corollary 4.11. Let ǫ =
(
ǫ(k)
)

k≥1
be a sequence of elements in [0, 1]p−1, defining the operator Uǫ by:

Uǫ (h) = lim
n→∞

Ln,ǫ(n) ◦ · · · ◦ L1,ǫ(1) (h) ,

for every continuous function h on X. Assume the following condition holds:

∃a > 1, ∃α > 0, ∀k ≥ 1, |γ(k)| sup
z∈K

∣
∣f ′(z)

∣
∣ ≤ 1

(ak)
α ,

where γ(k) is the eigenvalue (distinct from one) of Rǫ(k) having the greatest modulus.
Then the dynamical system Gǫ = Uǫ ◦ F globally synchronizes on the set C (X,K) of continuous functions
having values in K.

4.3.b. Corollary of theorem (4.10). Concerning the local synchronization in presence of broken links, this

requires to consider again the spectrum of the structure matrix B̃n, 1
p
= An

n,1/p · · ·An
N+1,1/pÃ

n
N,1/p · · · Ãn

1,1/p:

as previously, we impose that the identical blocks be only present in the matrices Ãn
N,1/p, · · · , Ãn

1,1/p, but

this time we allow them to contain (p− 1)E (
√
n) such identical blocks.

In this case, setting again Ãn
N = Ãn

N,1/p · · · Ãn
1,1/p we have:

Ãn+1
N =








Ãn
N

Γn,1

. . .

Γn,p−1







,

where the matrices (of size pn) Γn,1, · · · ,Γn,p−1 are still products of the same form as Ãn
N , but in which

there are at most p− 1 blocks Ipk in the set of all of them (all these blocks can possibly be present in only
one Γn,i). Denoting by Cn,k the matrix An

n,1/2 · · ·An
N+1,1/2 Γn,k, it comes:

B̃n+1, 1
p
=













1

p
B̃n, 1

p

1

p
Cn,1 · · · 1

p
Cn,p−1

...
...

...

1

p
B̃n, 1

p

1

p
Cn,1 · · · 1

p
Cn,p−1













.
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As in Part 3, we get by induction that B̃n, 1
p
is diagonalizable and satisfies:

S

(

B̃n, 1
p

)

= {1, λn,1, · · · , λn,(p−1)N , 0⊗pn−(p−1)N−1},

the λn,i being some (possibly equal) positive numbers satisfying:

∀ i{1, · · · , (p− 1)N}, λn,i ≤
1

pn−N−1
.

This leads us to the same estimation as in Lemma (3.8), from which we obtain:

Corollary 4.12. Let us fix N ≥ 1 and ǫ =
(
ǫ(k)
)

k≥1
a sequence of elements in [0, 1]

p
defining the operator

Wǫ on C (X,R) by the relation: Wǫ (h) = limn→∞ In
1,ǫ(1)

◦· · ·◦In
n−N,ǫ(n−N) ◦Ĩn

n−N+1,ǫ(n−N+1) ◦· · ·◦ Ĩn
n,ǫ(n) (h),

where the operators
(

Ĩn
k,ǫ(k)

)

n−N+1≤k≤n
contain (p− 1)E (

√
n) broken links of which positions are arbitrary.

Assume the sequence ǫ satisfies the following:

6
√
p sup
z∈K

|f ′ (z) |2N
+∞∑

k=1

|γ(k)| < 1,

where γ(k) is the eigenvalue (distinct from one) of Rǫ(k) having the greatest modulus.

Then the dynamical system G̃ǫ = Wǫ ◦ F synchronizes on a non trivial neighborhood ΩN of the diagonal
I ∩ C (X,K) in C (X,R).

Finally, these corollaries directly extend to functions f defined on a convex compact set K of Rn and
verifying supz∈K

∣
∣
∣
∣Dzf

∣
∣
∣
∣ > 1 for some norm on R

n, since this case just comes to replacing the coupling

matrix B̃n,ǫ by B̃n,ǫ ⊗ Id.

5. Conclusion

From this work we conclude that using the hierarchical structure we have exhibited in this text is the
natural way to synchronize an uncountable set (namely a Cantor set) of dynamical systems. Once again,
such a phenomenon echoes to tiling theory, where hierarchy is often imposed to produce aperiodicity.
Our investigation could be pursued with the same framework as the one we have used in this text.
A first question would be to look at the highest number of broken links we can afford: indeed the boundary
in

√
n, could be surely improved. Another more interesting one, would be to study what happens when the

structure is not repeated at each step, while keeping a hierarchy: for instance, starting at the first scale with
a matching with two elements, we could gather them three by three at the second one, and then change
again the type of matching at the third one, and so on. If we impose that the size of the matching process
varies in a finite set {2, · · · , p}, then some results must be found. In tilings this problem appears strongly,
and corresponds to the case where the shape of the patches changes at each stage, contrary to substitution
tilings. A lot of work still remains to be done in this direction to understand better those general hierarchical
structures.
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