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Spectral and Condition Number Estimates of the Acoustic
Single-Layer Operator for Low-Frequency Multiple Scattering in
Dense Media*

Xavier Antoinef Bertrand Thierry?

Abstract

The aim of this paper is to derive spectral and condition number estimates of the single-layer
operator for low-frequency multiple scattering problems. This work extends to dense media the
analysis initiated in [6]. Estimates are obtained first in the case of circular cylinders by Fourier
analysis and are next formally adapted to disks, ellipses and rectangles in the framework of
boundary element methods. Numerical simulations validating the approach are also given.

1 Introduction

Integral equation techniques [12, 27| are an attractive and widely used tool to numerically solve
acoustic, electromagnetic and elastic scattering problems. In particular, they can be used for mul-
tiple scattering configurations [25, 28] which have many applications in physics and mechanics
[8, 14, 15, 16, 17, 20, 21, 24, 26]. A classical way to solve an integral equation is to use an iterative
Krylov subspace solver (like e.g. the GMRES [29]) coupled to a Matrix-Vector acceleration scheme
like the Fast Multipole Method [13, 18, 28]. A well-known property is that the convergence rate
of the iterative solver is related to the condition number and spectral distribution of the integral
equation. For this reason, understanding the spectral properties helps in building suitable precon-
ditioners for integral equations. Spectral estimates have already been obtained for single scattering
configurations. We refer to [4, 5, 6, 22, 23] for complete studies involving circular cylinders, con-
vex and non convex structures [7, 10] as well as open surfaces or waveguides [2, 3, 11]. Multiple
scattering problems are more complex in the sense that interactions between obstacles must be con-
sidered in the analysis. In a first part [6], we derived low-frequency spectral and condition number
estimates of the single-layer potential for many distant obstacles (disks, ellipses and rectangles).
The aim of this second part is to complete the previous results when the scatterers are close (dense
media).

The plan of the paper is the following. In Section 2, we briefly introduce the single-layer operator
and its spectral formulation. We also recall the analytical formula of the single-layer operator when
the obstacle is a collection of circular cylinders. Section 3 explains how to obtain eigenvalues
and condition number estimates of the single-layer operator for disks. Section 4 provides some
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extensions of the results to circular, elliptical and rectangular cylinders in the framework of linear
boundary element methods. Finally, Section 5 gives a conclusion and some perspectives.

2 The single-layer operator for multiple scattering by disks

We consider a homogeneous acoustic medium filling the whole space R? and containing a bounded
open set 2 with boundary T := 92 such that the propagation domain R?\ is connected. Through-
out Sections 2 and 3, the set €2 is assumed to be a collection of M strictly disjoint (no sticky case)
disks €2, with associated radii a,, and centers O, for p=1,..., M. For two scatterers €2, and €2,
1 <p#q <M, weset by, =040, byy = ||byg|| and a,g = Angle(O—xi, b,,). For any real positive
wave number k and smooth density p € H~1/2 (I"), the single-layer integral operator is defined by

vxerT, Lp(x) = AG(X,Y)P(Y)dF(Y),

where the Green’s function G(-,-) is given by: ¥x,y € R?, x # y, G(x,y) = %Hél)(k:Hx —y||) with
Hél) is the zeroth order Hankel function of the first kind and ||x|| = (22 4 23)/2. The operator
L is known [27] to be invertible from H~'/2(I") to H'/?(I") except for the set Fp(f2) of Dirichlet
irregular frequencies, that is the wave numbers k for which the interior homogeneous Dirichlet
boundary value problem

(A+KkHu=0 inQ

u=0 on I
admits non trivial solution. Throughout this paper, we assume that k ¢ Fp(Q).

By introducing one Fourier basis per circular obstacle, we obtain [30] the following expression
of the single-layer integral operator L as an infinite block matrix L defined by

TR PR PR
[ popee L om
L= ,

LML M2 | MM

where each s infinite submatrix LP? = (L%,) . nez has for coefficients, for m,n € Z,

_ Bun g I (k) H() (k) ifp =g,

LPd = (1)
i\ /QpQq )

TJm(kap)Snm(bpq)Jn(k:aq) otherwise.

Symbol 6,,, denotes the Kronecker’s delta function, equal to 1 if m = n and 0 otherwise. The

quantity Spm(bpq) is given by: Spm(bpg) = Hfll_)m(kbpq)ei(

n—m)apq

,for pg=1,...,M,p # q and
m,n € Z. Let us remark that the infinite block LPP located on the diagonal is a diagonal matrix
whereas the off-diagonal block P4 p # ¢, is a full matrix. Moreover, in the particular case
of circular scatterers, we have Fp := {k>0/3(p,m) € {1,...,M} x N/Jp(ka,) =0} and thus,
following (1), k € Fp(Q) if and only if L5, = 0 for some p = 1,..., M and m € N (recall that



HT(,%)(:L") # 0 Va € R). For the finite dimensional approximation, we keep only 2N, + 1 modes per
obstacle €2,, p =1,..., M, such that —N, < m < N,,. The resulting truncated matrix L. is then

LLl L1’2 o Ll’M
L2’1 L2’2 o L2’1

L= ,
LML M2 MM

where each (2N, 4+ 1) x (2N, + 1) block LP? has for coefficient: L%, := IE?,’fn, for =N, <m < N,
and —N, <n < N,

3 Low frequency condition number estimates of the single-layer
potential for close obstacles: the case of circular cylinders

In this Section, we assume that we have a dense media: the obstacles are small and close. In other
words, setting a = min,—1 . aap and b = miny, g—1,... A p-£q bpg, We consider that both ka and kb
tend towards 0 at the same speed. To analyze this regime, we potentially have two methods. The
first one comnsists in choosing a fixed wave number k£ and applying a dilation to the geometrical
configuration. The second one (that we follow here) is to fix the geometry and to let k tends
towards 0. As a result, the radii a,, the centers of the obstacles O, as well as the distances
between the centers by, are supposed to be constant. Following [6], we consider the limit matrix
approach when k tends towards zero to derive some estimates of the eigenvalues pmin and pmas
of the matrix IL, respectively with smallest and largest modulus. In particular, we show that pmin
can still be approximated by the eigenvalue with smallest modulus related to single scattering. As
a by-product, these approximations allow us to derive condition number estimates.

3.1 The limit matrix approach

We extend the approach introduced in [6] to distant obstacles. We develop an asymptotic analysis
of the coefficients of . when k tends towards 0. By using these approximations, we build a limit
matrix L0 such that: L = L% + O (k:Q ln(k:)) and approximate the spectrum of L by the one of L°.
Let us recall that each diagonal block PP, for p = 1,..., M, is a diagonal matrix with coeffi-
cients LEE,,
LPP = ”2“” T (kay)H D (kay),  form=—N,, ..., N,.

m,m

To simplify, let I := {(p,m) € Z such that 1 < p < M and — N, < m < N,} be the set of every
indices p and m. From Lemma 1 in [6], we have the following result.

Lemma 1. When k — 0 and for every (p,m) € I, the following result holds

(]1.,0)’5;8 + 0 ((k:)2 ln(k)) form =0,
LEP = (2)
(LO)5E, + O ((K)?) form # 0,



setting 8
—ay [ln <ap) + 7} + o form =0,
L2, = ? (3)
form #£ 0,

2|ml|
where v = 0.5772. .. is the Fuler constant.

Following [6], for p = 1,..., M, we build the diagonal matrix (L°)P?, of size (2N,+1) x (2N,+1),
defined by

LN, N, O 0o ... 0
0 0
0 bp _— N : P *. :
(L7)PP = : o (LOEE : , (4)
0 0
0 .0 0 (LY N,

where the coefficients (LY)h,, are given by Eq. (3). When k — 0, relation (2) implies that
LPP = (LO)PP + O (k*In(k)), for p=1,..., M. Let us remark that the limit matrix (L°)P? is the
same as for distant obstacles. This is expected since the difference lies in the parameters kb,q (bpq
is the distance between 2, and Q,) which only appears in the off-diagonal blocks P4, for p # q.

The asymptotic behaviors of the off-diagonal blocks coefficients L%In differ according to the
indices m and n. We split each block P4, for p # ¢, into 5 zones, labeled from 0 to 4, as reported
on Figure 1. We next develop an asymptotic analysis of the coefficients L%, when k& — 0 with
respect to each zone. The results are summarized in the following Lemma.

n
214 (414741111111
3124|441 ]1]1{1]1]1
313 (244111 |1]1]1|1

m33321111111
313131321 /1(1]1|1|1
Ti1{1f1jrj0oj1{1f1j1|1
/1111|123 |3|3|3
1(1|11 /1114|123 |3|3
1(1)11 /111414123 |3
1(1|1 /1 (1|1 (41414123
1(1 )11 (1|1 (4|44 |4|2

Figure 1: Decomposition of "¢ into five different zones, for p # q.

Lemma 2. Let (p,m) € I and (¢,n) € I, with p # q. When k tends towards 0, the coefficients
5%, of the matriz I have the following asymptotic behavior



e Zone 0: (m=n=20)

. ml o N\l
i(_l)m\/apaq <O“P> <aq> ez(n—m)apq+0 (k‘2 ln(k:)) zf\m|—|—|n|:1,

L2 — 2 |m|ln|! bpq bpq‘ | in
k) m n
i(—=1)™ Gt (jm| + |n| — 1) <ap) <aq> en=mava 1 ) (kz) otherwise.
2 im|![n]! bpq bpq

e Zone 2: (n=m,m #0 and n # 0)
LEg, = O (k2|m| ln(k)) .
e Zone 3: (0>m >n) or (0 <m < n))
Ly, = O (k2).
e Zone 4: (0 >n>m) or (0 <n <m))
L0, = O (/8'”') .

Proof. We prove the results zone by zone.
e Zone 0, m =n = 0. In this zone, the coefficients L};%, write down

m./anQ,
Li = i7" Jo(kay) H') (kbyg) Jo(kay). (5)

Let us recall that, when & — 0, the first kind Hankel’s function of order zero has the following
expansion (see relations (9.1.8) and (9.1.13) in [1])

H (kbyy) =1+ z% [m <kl;m> + 'y] +0 (K (k) (6)

and the Bessel’s function of order m € N is such that (Eq. (9.1.10) in [1])

I (kay) = ! (’%>m+o(km+2). (7)

Tml 2

By injecting (7) and (6) into (5), we obtain

Lpg =iV (140 (k7)) [1 vl [m <’“’;W) + ’y] Lo ln(k))} 140 ()],

which leads to the expected relation

kb
LE% = —fapay [m <2’“’> + v] +il ;paq +0 (k*In(k)) .



e Zone 1 (mn <0 and (m,n) # (0,0)). Let us introduce the sign function, denoted by sgn, such
that for any n € Z, sgn(n) = 1 if n > 0 and sgn(n) = —1 if n < 0. Using some properties of the
special functions, we can write the coefficients IL7;%, under the following form

T/Aplq

5 e nfm)aqu|m|(k.ap)H(1)

LES, = (sen(m))™ (sen(n))" (ssn(n —m))" " byg) o (kg

(8)
Let us note that the indices of the Bessel’s and Hankel’s functions are now positive. For the
coefficients of zone 1, the indices m and n satisfy mn < 0. Since |n — m| = |n| + |m|, sgn(m) =
—sgn(n) and sgn(n —m) = sgn(n), we have

(sgn(m))™ (sgn(n))" (sgn(n — m))"~"™ = (—sgn(n))™ (sgn(n))" (sgn(n))" " = (-1)™.

By using (8), the coefficients L5;%, in this zone can be written

i

ApQqg -
Lpd, = (_1)m¢L2M e g (kap) HY ) (Rbpg) T (Rag). (9)

Let us recall the asymptotic expansions of the first kind Hankel’s functions of order m > 0 when
kE — 0 (see relations (9.1.9) and (9.1.11) in [1])

H) (kbpg) = (m;”' (kl;m) Ok, (10)

where the functions f,, are defined by: fi(k) = kIn(k) and f,,(k) = k=™ for m > 2. Next, we use
the expansions (7) and (10) of the Bessel’s and Hankel’s functions into the expression (9) to get

|m|
L2 — i1y e [1 <k‘> o (kmu)]

2 Im|l \ 2
L (kaqg " n|+2
i (5e) w0 (o)

1) —|m|—In|
(Im| + |n| —1)! (k?bpq) +0 (f|m|+|n\(k‘))
T 2
Let us note that we can use the asymptotic relation (10) of the Hankel’s functions of order |m|+|n|.
Indeed, for the coefficients in this zone, the indices (m, n) satisfy mn < 0 and (m,n) # (0,0), which
in particular implies that |m|+|n| # 0. Hence we study the Hankel’s functions with non null index.
We then develop the previous relation to obtain

1P — i(—1ym Y20 in-myay, (Ml + Inl = DV (kay ml Ckag\M 2\
m 2 [m|!|n|! 2 2 Kbpg
n m|+2—|m|—|n m n
+O<k| [+lm]+2|m| ||)+0(k\ [+ lfImIHnl(k))-

After some simplifications, we have

LPd = i(—1)™ Apaq (jm| + o] — D! (" ap ! Gq " =M L O (1?)
e 2 [m|![n|! bpq bpq

+ O (Kb () (1)



From the definition of the functions f,|4,|, we have

E g () = {

By injecting these relations into (11), we obtain the expected relation.
e Zone 2, (n =m,m # 0 and n # 0). To prove the relations in the zones 2, 3 and 4, we only need
to analyze the modulus of the coefficient L};%,

Lo | = Y22 7 (kay) y\H

m,mn

k*In(k) if |m|+ |n| =1,

k2 otherwise.

(kbpa) | | (Ratg)|. (12)

In—m|

For zone 2, we have |[n —m| = 0, with m # 0 and n # 0 and then

1Pd | — m | Jjmy (Kap) “H (Kbpg) “Jlnl kag)] -

m,n

By using the asymptotics (7) and (6) we obtain

Im|
Tapaq | (kap | +2
7 () o (i)

L2 -

[1 + é [m (kl;pq> + v] +0 (K ln(k:))]

kag I |m|+2
<2) +0 (k2 1
This directly proves that L%, = O (k‘2|m| ln(k')).

e Zone 3: since (0 > m >n) or (0 < m < n), we have |n —m| = |n| — |m| and

a
= Y| g (hay)| | L)

(L5 =

kbpq)‘ }Jln\(k’aq)} :

n|—|m]|

By using (7) and (10) one gets
T\/pGyg ap Il m
[ [ () "o ()]
[(|n| ml -1 (kz;pq>‘”'+'m' 1o ( f|n|_m(k))] [rnlr' <k2 )'"' o (WQ)] ‘

and obtain: LD)%, = O (k:2|m|).

p,q
Lo,

e Zone 4: since (0 >n >m) or (0 <n < m), we have: |n —m| = |m|— |n|. Let us point out that,
by changing the role of m and n, we recover the results of zone 3. Thus, the proof developed above
can be adapted here to directly obtain L%, = O (k*1). O

For any 1 < p # q < M, let us introduce the limit matrix (IL°)?¢ with coefficients

kby, +/QpQ
apaq [ln( 5 > +V] +1 % if (m,n) = (0,0),
i/pq (jm] + n| = 1)! (@, \I™ " e
(Lo)fnqn — 1\ r—q “p aq ez(n m)opg 0,0
- 2 Im|!|n|! bpq bpq an(d mn )%é()(, )
0 otherwise,




for =N, <m < N, and —N, < n < Ny, Moreover, from Lemma 2, we have the following relation
L7 = (L%)P7 + O (k* In(k)) , for p # q. (14)

Let us now introduce the block matrix IL° containing each submatrix (IL°)»¢ and defined by

(LO)l,l (]LO)L? . (]LU)LM

(]LO)Q,I (LO)2’2 . (LO)Q,I
L0 = ‘ _

(L0;M,1 (L0;M,2 ) (LD)'M,M

By using (4) and (14), the following proposition holds.

Proposition 1. When k tends towards zero, the truncated matriz I of the single-layer operator L
satisfies the relation
L=L°+0 (k*In(k)) . (15)

To visualize the relatively sparse structure of L2, we represent on Figure 2 in grey color the non
zero coefficients (skeleton of ILY) in the case of two circular scatterers.

Figure 2: Non null coefficients of the matrix LY for a configuration with two obstacles. The grey
zones correspond to the non zero coefficients.

From now on, let us respectively denote by (fm ) (pm)er and ((,uo)ﬁl)(p’m)e] the eigenvalues of L
and L. For (p,m) € I, we moreover assume that

b~ (10), (16)

which is coherent with (15). To motivate our approach, we compare the eigenvalues of L and
LY on Figures 3(b)-3(d), for kK = 0.1 and 30 randomly distributed disks of radius 0.1 in [0, 4]?



(see the example of Figure 3(a)). For p,q = 1,..., M, with p # ¢, N, = 5 and the intercenter
distance by, is such that: 0.33 < by, < 4.59. The eigenvalues are computed by the Matlab function
eig. We observe that the approximation of the eigenvalues (uﬁl)(nm)e ; of L by the eigenvalues
((uo)fn)(p’m)e ; of L0 is satisfactory. Let us denote by pimar and ul, .. the eigenvalues with largest
modulus of respectively L and L°. On Figure 3(b), we observe that they are very close which is
numerically confirmed since: fimez =~ 5.393 + 4.623i and 2, ~ 5.494 + 4.695i. This implies that:
|ttmaz| ~ 7.103 and |u0,,,| ~ 7.227. Furthermore, the eigenvalues with smallest modulus of L. and
LY, respectively denoted by pmin and ul,,. . are also very close (see Figure 3(d)). The numerical
values confirm this result: i, >~ 0.01 4 1074, and N?nm ~ (.01 + 10~ 13;.
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Figure 3: Comparison of the eigenvalues of . and L° for 30 randomly and identical distributed
disks of radius a, = 0.1 in [0,4]?, N, = 5 for each obstacle (k = 0.1 and 0.33 < b,, < 4.59).

This example confirms that our approach seems reasonable. Further simulations have been
performed and show that the eigenvalues of L.? are close to the ones associated with L. To simplify
the computations, we assume that, for any p = 1,..., M, we have: a, = a and N, = N. Let us
recall that, with these assumptions, for p = 1,..., M, the diagonal blocks (L°)P? are independent



of p. Moreover, we have (L)0F, = (L°)"P = (LOY%L, = (L%)%? for (p,m) € I and

—m,—m —m,—m>

q=1,...,M. These terms are now denoted by ]im

ka Ta
~ 0 —a|In{ — |+~ +i—, ifm=0,
Vp=1,...,M,Vm=0,...,N, L= L%, =14 , 2 2
— otherwise.
2m

3.2 Estimates of the eigenvalue with smallest modulus

Let us now estimate the eigenvalue with smallest modulus H?nm of 0. Like for the case of dis-
tant obstacles [6], an approach based on the Gershgorin-Hadamard discs has been developed but
provides inaccurate estimates of the eigenvalue with smallest modulus. In addition, the obtained
approximation for the largest eigenvalue is not precise, most particularly for many obstacles.

Like in [6], we show that the eigenvalue of L? (and next L) with smallest modulus can be
approximated correctly by the associated single scattering eigenvalue: Ly = a/(2N), with multi-
plicity 2M. To prove this result, we build an approximate eigenvector of L? for the approximate
eigenvalue L,,,|, for large |m|. Let us introduce the vector X®™) for (p,m) € I, given by

Xgpvm)

(p,m)
xom) _ | X2

x )

Each block Xgp’m) = (Xq(fjﬁm))n:_Nw,N, forq=1,..., M, has size 2N + 1 and its components are
defined by the following relations

1 ifn=m
X(pvm) — ’ fOI‘ =p, 17
b {O otherwise, =P (a7
and
Xéf’ﬁm) =0, for ¢ # p. (18)

Hence, the blocks Xgp’m) are zero for q # p, and XI(,pM) = (ngf)ﬁm))n:_N7,,,7N has only one nonzero
component localized at n = m (and equal to 1). Let us remark that X®™) is also normalized for
both the infinity and euclidian norms. We introduce now Y ®™) as the vector resulting from the
matrix-vector product between L? and X®™)

Y%P,m; (LO)l,pX%p,m;
Y(p’m) _ LOX(p’m) _ sz, _ (LO)Q,poZE
i (LO)Mrx )

Let us focus on the vectorial block Y[(,p ) From (4), we have

o) J O =Ly ifn=m,
0 otherwise.

10



Moreover, relation (17) implies that Yj(op m) IE|m|X1(Dp ™) Let us now analyze the vectors Y(p m

(Lo)q’sz(?p’m), forg=1,...,M and q # p. By using the particular structure of XI(;p’ m) (see (17)),
the coefficients Kfﬁ’m) satisfy

yem) = (LO)ap | for —N <n<N.
If || - |l2 denotes the usual 2-norm, we then have the following equality
R , M N )
HLOX@’m) Ty X ) H =3 3 e (19)
2 9=1 n=—N
a#p

Our goal is to prove that X(®™) is an approximate eigenvector of L2, with approximate eigenvalue
L}y, for [m] sufficiently large. To this end, we need to find an upper bound for

~ 2
HLOXmm) — L‘m‘X(p,m) H2 .

Indeed, this term measures the error related to the approximation of an eigenvector of L. by X (pm)
with approximate eigenvalue L;,,,|. We first have

2
N

M
) _ T, x| 7
HLOXP Ly X P H2§ SN ol | - (20)

9=1 n=—N

Let us now state the following Lemma.

Lemma 3. Let (p,m) € I and q=1,...,M, such that p # q and m # 0. The following inequality

holds -
Z‘ o< () 2y

Proof. Let us consider three integers p,q = 1,...,M and m = —N,..., N such that p # ¢ and
m # 0. From definition (13) of the coefficients (Lo)fnqn, we have

Z Loy, | = <I;J>|m§:0(|m’;m“— 1)! <a>|n|.

b
- 'pq

Since |m|! = |m|(|m — 1]!), we can write
N

> =i () 2 e (5n)

n=—N

ni_N womnl =5 ()" S (Y () )

n=

Then one gets

11



where

<|m| +|n| = 1) _ (m[+[n[=1)!

Im| =1 (Im| = D)!nft

Since a < bpq, the series indexed by n appearing in the right-hand side of the equality (22) is
converging when N tends towards infinity. More precisely, we have

N n —|m m
i 3 () () = o) ()
Novoo e\ |m| -1 bpq bpq bpy — a

Furthermore, since each term of the series is positive, the following inequality is fulfilled for any

By using the upper bound in (22), we finally obtain

This Lemma leads to a fine upper bound of the euclidian norm

HLOXmm) _ f[:‘m‘x(p,m) H2 7

and shows that X®™) can be used as an approximate eigenvector of LY. We summarize these
results in the following proposition.

Proposition 2. Let (p,m) € I with m # 0. The vector X®m™) defined by relations (17) and (18)
is an approzimate eigenvector of L0 with approxzimate eigenvalue Ljm|, in the sense that the relative
error between LOX®™) qnd £|m|X(p’m) satisfies the following upper bound

HLOX(P’m) _ ]ﬁlmlx(nm) H

Lim < % <bpqa— a) ! ' (23)

q=1
a#p

Proof. By applying Lemma 3 to the first inequality (20) for

LOX (Pm) _ IE‘m‘X(p’m) H we obtain
2

2

M |m|
~ 2 a a
Lox@m) _ 1,  x(m) H < E
H m| 27 | & 2im| \by —a

qFp

Since all the terms with index ¢ appearing in the sum are positive, we can take the square-root of
the inequality to get

M Iml
LOx®m) _ T X(Z?M)H < @ a )
H Im] 2 = 2|m]| qz bpg — @



~ a
Finally, we use L, = 57— and obtain

2|m|
o Lo, g o ym
Lim| S \b o
a#p

O]

For (p,m) € I with m # 0 and |m| sufficiently large, this proposition shows that X Pm) jg
an approximate eigenvector of LY with approximate eigenvalue Ljp|- Moreover, the 2M vectors
(X(p’m))pzlw, M and (X(pv_m))p:17._.7 M are approximate eigenvectors associated with the same ap-
proximate eigenvalue Iﬁ|m|. Hence, for |m| large enough, the quantity I/L:|m| is an approximate eigen-
value of 1O with multiplicity 2M. TheAsequence (ﬁ:m)mZI = (5% )m>1 decays and tends Atowards
0 when m tends to infinity. The term Ly is then the smallest approximate eigenvalue (ILy,)m>1.
Furthermore, I/[:N tends to 0 when NN tends to infinity. This is the reason why we estimate M?m’m
and next Umin, by IEN with a multiplicity equal to 2M, that is

Hmin = M?nm = EN' (24)

Let us remark that }EN is also the approximation of the smallest eigenvalue in the framework of
single scattering as well as multiple scattering for distant scatterers [6]. This approximation is
more accurate as IV is large and that the coupling between the obstacles is weak, that is when the
obstacles are not too close. Indeed, the larger the distance by, is, the smaller the left hand side
of the inequality (23) is. Similarly, the right hand side term of (23) (with |m| = N) is smaller
as N is larger. Let us now come back to the example in Figure 3. The parameters were: 30
randomly distributed disks of radius 0.1 in [0,4]?, N = 5, k = 0.1 and 0.33 < by, < 4.59. The
numerical computation of the smallest eigenvalues of L and L0 provide ftmin ~ 0.01 + 107137 and
N?nm ~ 0.01 + 107 4. Our estimate gives Ly = 0.01, with a small relative error on min €qual to

’Umin - EN’
07

10 ~ 0.08%.

| tmin

3.3 Estimates of the eigenvalue with largest modulus

Unlike the previous case, we cannot construct an approximate eigenvector of LY to provide an
estimate of the largest eigenvalue u¥  of LO. By analyzing the expression (13) of the coefficients
of the limit matrix L°, none of them depends on k, except the coefficients associated with the
indices m = n = 0 which have a logarithmic growth with respect to k (zone 0 in Lemma 2). When
the wavenumber k is small enough, the information related to the largest eigenvalue is a priori
contained in these coefficients.

As in [6], we propose to extract the matrix L! from L° and related to the zero order modes.
From relation (13), this M x M matrix L' is defined, for p,q = 1,..., M, by

ka Ta .
—a [ln <2> —|—’y} —|—17, if p=gq,
(LY = (LO)g5 = (25)
’ A P (L ) L
9 Y 9 p7q.

13



Let us denote by ¥ . respectively ul .. the eigenvalue with largest modulus of IL°, respectively
L'. We then estimate the largest eigenvalue of L. by the one of L', that is: 9, ~ pl ... Next,
from (16), we also estimate fimar by fh,..- We compared three approaches to estimate pl,..
Two consist in bounding the spectral radius of L', and so the modulus of i}, by computing the
Frobenius norm of ! or by applying the Gershgorin’s discs theorem to L. In both cases, the result
was less accurate than for the third approach. Moreover, the expression of the estimate obtained
by this last method is simpler. This is the reason why we only present this approach here.

The principle of our approach is to obtain a mean distance d related to the inter center distances
bpq- Let us introduce ]Léqv as the matrix of size M x M defined by

ka Ta
—a |In > + v —i—z?, for p =g,

kd
—a [ln <2) + 7] + i%, for p # q,

vp7q:]‘7"‘7M7 (Ll )p7q:

where d > 0 is an “equivalent” distance related to the distances by, (the coefficients (]Léqv)p’q are
obtained by replacing b,, by d in (25)). We suppose that d satisfies the inequality

> i : 2
42O (26)
Let us remark that the matrix ]Léqv is defined through two parameters by
lo v L ... L
L o &L ... L
Léqv — ll ll lo ce ll ,
L. b b
with L
a Ta
l() = (Léqv)o’o = —a [ln <2> + ’Y:| + 27,
L (27)
h=(Li)" =—a [111 <2> +7] + z%

The main property of this matrix is that we explicitly know its eigenvalues, and most particularly
its largest one, accordingly to the next Lemma.

Lemma 4. The eigenvalues of Léq are given by

v

Mma

, with multiplicity 1,

ol =1lg+ (M -1l =—a [m <k2a> + (M —1)In (";dﬂ —aM~y +i

d
o pi=1Ilp—Il;=aln (a)’ with multiplicity (M — 1).
Moreover, for kd < 1, we have the following inequality

IR (28)

14



Proof. The characteristic polynomial of Ll , is given by: P(X) = det(LLl,, — XT), where I is the
M x M identity matrix,

lo—X I I ce I

l1 lo—X l1 . l1

det(Ll,, — XT) = det hh L b-X ... L
ll ces ll ll lo - X

By substracting the first row to rows 2,3,..., M, and next adding to the first column the other
M — 1 columns, we easily obtain the expression

det(LL,, — XI) = ()M [X — (I + (M — D)I)] [X — (Ip — 1)}V L.

eqv
We then deduce the eigenvalues of L!

ka Mma

pr=Il+(M—-1)h =—a [ln(2> +(M—1)ln(]€2d>} —aMy +i=o—,

with multiplicity 1, and pd =1y — I3 = aln (g), with multiplicity M — 1.

Let us now state the inequality (28). We first remark that the eigenvalue pd is real. From
relation (27) and since d > a, u} is positive. It remains to prove that the real part of ul is larger
than p. Let first remark that us = R(lp) — R(I1) since ul is real. We next compare the real part
of pt with pl:

R(u1) — pp = (M = 2)R(1). (29)

Since M —2 > 0, R(ud) — pd and R(11) have the same sign. Let us prove that R(l;) is positive. The
real part of Iy is: R(l;) = —a[In (%) —7]. Let us recall that: —In(0.5) ~ 0.69 > v ~ 0.58. We
assume that we have kd < 1 (since k tends towards 0). Since In is an increasing function, we get:
—In (%) >~ >0, that is R(l;) = a[-In (%) —v] = 0. By using (29), we have R(u}) — u3 > 0,
and next ‘MHE‘MH O

This Lemma shows that the eigenvalue u}{lﬁv of L}

oqv With largest modulus has a multiplicity
equal to 1 and is given by

k kd M
pheay = g + (M — 1)l = —a [ln (;) +(M~1)In (2)] —aMy+i QM- (30)

We now estimate fimaz by pred, that is

Imaz = —a [ln <k’2a> +(M—-1)In <k2d>] —aM*y—}—iM;a.

We propose to choose d as: d = W. The term b,;n, respectively bp,q., represents the
smallest, respectively largest, possible distance b,, between the centers of two obstacles. When the
obstacles are contained in a rectangular box of sides £ and L, we fix byin and bz as: bmin = 2a
and byar = V02 + L? — 2a. Finally, d is defined as the average of b, and bygs

bmin+bmaz . V€2 +L2
2 2

d=

(31)
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Let us remark that d can also be seen as the half diagonal of the box with sidelenghts £ and L. Let
us come back again to the example presented in Figure 3. The numerical computation of the largest
eigenvalue fiyq, Of L Was fimar =~ 5.39 + 4.624, with |pymee| ~ 7.1. By using relation (31) for d, one
gets d = 21/2. The proposed formula (30) then gives LESY ~ 447 + 4.713, with \u,l,;‘ff}v\ ~ 6.5. The
relative error when estimating fimaz by pmed’ is then equal to

‘Mmax - N}ﬁ?z(gcv
100 imaa] = 13.04%, (32)
and, in term of the modulus, to
“,Umam‘ - ’M'}ﬁ%g?v
00 = 8.4%, (33)

’Mmax ‘

which means that our approach is consistent. Moreover, let us point out that, unlike the dilute
medium case [6], we propose here an estimate of the eigenvalue 4, and not only of its modulus.
We launched 100 tests respecting the same parameters set (k = 0.1, N = 5, 30 randomly distributed
disks of radius 0.1 in [0, 4]? with by, > 0.1). We observe on Figures 4(a) and 4(b) that the error
essentially affects the real part of 4, while the estimate of the imaginary part is acceptable. The
average relative error on the modulus of fi,q; for these 100 realizations is about 15.6%.

3.4 Condition number estimate

Like in the dilute medium case [6], the condition number condz(LL) of the matrix L is estimated by
the quantity

Hmazx

(34)

Hmin
Thus, an approximate condition number cond,,,(L) is obtained by replacing fimin and fmes by
their respective estimates (24) and (30) in Equation (34)

k kd M
conds (L) ~ condgpy(L) = 2N ‘— [m (;) +ln (2” — M+ z;’ . (35)

Let us consider again the example of Figure 3. Then, the numerical condition number of L is:

condy(L) ~ 713 while the estimate (35) yields condg,(L) ~ 650, leading to a relative error

|conda (L) — condgp, (L)|
|condy (L)

Essentially, this error is related to the estimate of the largest eigenvalue. We report on Figure 5
the results for 100 launches. This gives a mean relative error equal to 11%, which is satisfactory.

100

~ 9%. (36)

4 Connections with the boundary element approximation and ex-
tension to other geometries

We approximate the single-layer potential by a linear boundary element method. For more details
we refer to [6] where a similar approach is developed for distant obstacles. The boundary I" (which is

16
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Figure 4: Comparisons between ., and its estimate u}ﬁﬁv for 100 configurations of M = 30
obstacles with radius a = 0.1 randomly placed in [0, 4]?, with k = 0.1, N =5 and b > 0.3(= 3a).
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Relative error on the condition number
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Figure 5: Comparison between the exact and approximate condition numbers of L, for 100 con-
figurations of M = 30 disks with radius @ = 0.1 randomly distributed in [0,4]® (k = 0.1, N = 5,
b>0.3(=3a)).

the union of the M boundaries I',)) is approximated by polygonal curves I'y,, where h designates the
smallest element size of the Ny j, segments composing I';,. The boundary element space V}, is the
space of piecewise linear elements on each segment of I'y. Let us introduce [Ly] € My, , Ny, (C)
as the single-layer matrix and [Mj] € Mn,,, , Ny, (C). as the global mass matrix for linear finite
clement. Finally, we denote by ul . | respectively ul,., the eigenvalue of [My]™'[Ly] with the
smallest, respectively largest, modulus.

4.1 The circular cylinder case

As in [6], we begin by considering the case of circular cylinders and then formally extend the results
to rectangular and elliptical shaped objects. We consider M disks €2, with the same radius a and
we uniformly mesh each circle I', by fixing the meshsize to h. Following [6], we formally substitute
N by mah~! —1/2 in the estimate (24), respectively (30), of pimin, respectively fimqz. When k tends
towards 0, we therefore obtain pum, =~ prir (a, h) and pimay = peb? (a, k), with

a

min(:h) = 5

Homin
(37)
k kd M

ol (a,k) = —a [ln <2a) +(M—-1)In <2>] —aM~y+i 277@)
where d represents a mean distance between obstacles. When the obstacles are contained in the
rectangular box [0, ¢] x [0, L], we use the previous expression (31): d = 7Ve22+L2. In addition, when
k tends towards zero, the condition number of the matrix [Mjy] ™! [L4] is approximated by

cond(k, a,T) := conda([Mp] " [L4]) =~ condap,(k, a, h),

with

k kd M
condgpy(k, a, h) = a(2mrah™' — 1) ‘— In (;) — (M —-1)In (2) — M~y + z;’ : (38)
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We propose to numerically validate the above approximations for the preceeding example: M = 30
small disks of radius a = 0.1 are placed inside the box [0,4]%. The smallest inter centers distance b
is equal to 0.3(= 3a) and k = 0.1. Moreover, each obstacle is meshed with Nj, = 50 elements. We
numerically compute the eigenvalues and the condition number of [Mj,] ™! [Ly] for 100 configurations
as well as their corresponding estimates. Let us begin by comparing the numerical (,uf;u-n and
,uﬁwz) and estimated eigenvalues on Figures 6 and 7. According to Figure 6, the relative error on
the smallest eigenvalue p” . is about 2.4%, which is very satisfactory and similar to the distant
obstacles case [6]. Concerning the largest eigenvalue, on Figure 7, the relative error is about 15%,
the main deterioration being on the real part of u” .. Moreover, the mean relative error on the
modulus of ” . is about 10%. By comparison, we get similar errors with the spectral method. We
compare now on Figure 8 the variations of the condition number of [Mj] ™! [L] with its estimate
(38). We obtain a mean relative error of 13% which is about the same as for the spectral method

(11%).
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Figure 6: Comparison of the smallest eigenvalue u! . of the matrix [Mj] ' [L] and its estimate
(37). The obstacles are small disks of radius a = 0.1 discretized by using N = 50 segments.
For each of the 100 configurations, we randomly place M = 30 disks in [0,4]2, with k = 0.1 and
b > 0.3(= 3a).

4.2 Extension to other geometries

We now formally adapt the estimates (37) first to elliptical and then to rectangular cylinders.
We proceed as [6]: we formally replace the radius a and the meshsize h in the estimates (37) by
respectively an equivalent radius aeqv and an equivalent step heqyv. For an ellipse with semi-axis a,,
along the direction 1 and a,, along 2, we proposed to choose an equivalent mesh parameter heqy
equal to the smallest discretization meshsize. Moreover the three equivalent radii were considered
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Figure 8: Comparison between the condition number of the matrix [My] " [Ls] and its estimate
(38). The obstacles are small disks of radius a = 0.1 discretized by using N}, = 50 segments. For
each of the 100 configurations, M = 30 disks are randomly placed in [0,4]%, with & = 0.1 and
b>0.3(= 3a).

[6]
/42 2
1 _ Qg + Ay 2 2aw1ax2 et 3 Az, + azz

a, = Qa = Q, =
eqv 9 ’ eqv aa, + e, eqv \@

We propose to validate these approximations for small ellipses with semi-axes a;, = 0.1 and a,, =
0.025. We keep the same parameters as before (30 obstacles randomly placed in [0,4]%, with
k =0.1 and b > 0.3(= 3ay, ), where b is the smallest distance between the centers of two ellipses).
We numerically compute the smallest and largest eigenvalues of [My] ™" [Ly] as well as its condition
number for 100 configurations. Figures 9 and 10 compare the eigenvalues ngm and pl . with
their estimates while Figure 11 reports the condition number and its estimate. Let us remark
that the numerical simulations show that choosing agqv leads to an inaccurate approximation of the
eigenvalues. For the sake of clarity, we only present the results obtained for the two other equivalent
radii aéqv and aquv. We begin by comparing the estimates of u’ . and p? .. on Figures 9 and 10.
Like for the single scattering situation [6], choosing an equivalent radius has almost no effect on the
estimate of u", . Furthermore, the relative error on u! . is of the order of 18%, for each radius
(see Figure 9(b)). This important error can be explained by the fact that pu? is strongly mesh
dependent, and most particularly relatively to the smallest mesh size (strong curvature effects).
Hence, the estimate of the smallest eigenvalue can clearly degenerate. Concerning the eigenvalue
with largest modulus anax» it is directly impacted by the choice of the equivalent radius. Indeed,

Figure 7 shows that a2, leads to a better approximation of fi;ne, than al More precisely, the

eqv qv*
mean relative error on u  is about 14% for ag’qv compared with 22% for aéqv. On the other hand,

the estimates of the modulus of p”,,, are more precise with a mean relative error of about 5.4%

for ag’qv compared with 19% for aéqv. When the obstacles are distant, we observed the opposite

behavior [6]. Finally, we compare on Figure 11 the condition number of the matrix [Mj] ™" [Ly]

with its estimate. We have only reported the results related to agqv since it leads to the best
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approximation of u” .. The relative error on the condition number is about 9% which is very
satisfactory.
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Figure 9: Comparison of the estimates (37) of the smallest eigenvalues u” ;. of [My])™" [Lp]. The
obstacles are small ellipses with semi axis a,, = 0.1 and a;, = 0.025, obtained for a discretiza-
tion with N = 50 segments. For each of the 100 configurations, M = 30 ellipses are randomly
distributed in [0,4]?, setting k = 0.1 and b > 0.3(= 3ay, ).

We end this numerical study by considering rectangular obstacles with half side lengths ag,

4 4 _ (1HV2) Ve

. +a?
eqv given by [6]: ag, = \1/5 “2. Moreover,

and ag,. We take the equivalent radius a
the equivalent step heqv is always chosen equal to the smallest discretization meshsize heqy =
ming <p<p Mini<j<n, , fp,j- We provide a numerical example considering the previous parameters:
M = 30 randomly placed rectangular cylinders with half side lengths a,, = 0.1 and a,, = 0.025 in
[0,4]2. Moreover, we set k = 0.1 and b > 0.3(= 3a;, ). Numerically, we compute the eigenvalues of
the matrix [My]) ™" [Ly], its condition number as well as their respective estimates for 100 configura-
tions. We begin by comparing on Figure 12, respectively Figure 13, the estimates of the eigenvalues
with smallest, respectively largest, modulus ,uﬁlm, respectively u . The average relative error
on pl . is 2%, compared with 18% in the elliptical case. This can be explained by the property
that, in the rectangular case, the mesh is non uniform but the mesh size is constant on each of the
four rectangle sides (unlike the ellipse). Concerning the eigenvalue with largest modulus ., the
relative error is about 13%, which is of the same order as for disks and ellipses, and about 2.4%
on its modulus, which is very precise. Finally, the condition number estimate is satisfactory since,
from Figure 14, the average relative error is about 14% like for disks.
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Figure 10: Comparison of the estimates (37) of the largest eigenvalues u  of [My]™"[Ls]. The
obstacles are small ellipses with semi axis a,, = 0.1 and a,, = 0.025, obtained for a discretiza-
tion with N = 50 segments. For each of the 100 configurations, M = 30 ellipses are randomly
distributed in [0,4]?, setting k = 0.1 and b > 0.3(= 3ax, ).

23



92007

9000

®

@

[=]

=]
T

8600, |

Condition number

8400

8200

8000

cond, (M I'IL, 1)

cond__(k, 8 ,
- - app eqv’  eqv

20 40

60 80

Number of the configuration

100

(a) Comparison between the exact and approximate
condition numbers

Relative error (%)

Relative error on the condition number with agqv

20 40 60 80 100
Number of the configuration

(b) Relative error on the condition number

Figure 11: Comparison between the condition number of the matrix [M;] ™ [Ls] and its estimate.
The obstacles are ellipses with semi-axis a,, = 0.1 and ag, = 0.025, discretized with N = 50
segments. For each of the 100 configurations, M = 30 ellipses are randomly distributed in [0, 4],
with £ = 0.1 and b > 0.3(= 3ay, ).

oy
min

I

app( 4 )

lu vk a_,
eqv' eqv

— == "min

6.8

6.7+

6.6

Modulus of the eigenvalues

20

40 60
Number of the configuration

80

100

(a) Comparison between the moduli of the smallest

eigenvalue

and its estimate

Relative error (%)

2.1501

2.1501

2.1501

2.1501

2.15

2.15

2.15¢

2.15¢

2.15r

Relative error on uh .
min

20 40 60 80 100
Number of the configuration

(b) Relative error on the modulus of pmin
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Figure 14: Comparison between the condition number of the matrix [My] ™" [Ls] and its estimate.
The obstacles are rectangles with half side lengths a,, = 0.1 and a,, = 0.025, each being discretized
with NV}, = 48 elements (12 by edge). For each of the 100 configurations, M = 30 rectangles are
randomly distributed in [0,4]2, setting k = 0.1 and b > 0.3(= 3a,, ).

5 Conclusion

In this second and last part, we developed and validated low-frequency spectral and condition
number estimates of the single-layer integral operator for dense multiple scattering media. They
have been formally extended to circular, elliptical and rectangular shaped obstacles when a linear
boundary element is considered. These estimates provide explicit dependence of the eigenvalues
with respect to the different problem parameters.

These studies open different directions which should complete this work. First, spectral es-
timates related to the Brakhage-Werner integral equation [4, 5, 9] and Combined Field Integral
Equation [4, 5, 19] can be expected in similar situations since they involve the four basic integral
operators: the single- and double-layer potentials as well as their normal derivatives. A difficult
situation that is not studied here is the case where the distance between the obstacles is of the order
of the characteristic size of the scatterers. We did not succeed yet in deriving similar estimates.
One of the main difficulties is that an asymptotic regime is not available. Finally, considering the
medium/high frequency as well as three-dimensional case are of interest but require further studies.
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