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Absorbing boundary conditions for the two-dimensional

Schrödinger equation with an exterior potential.

Part I: construction and a priori estimates ∗

Xavier Antoine† Christophe Besse‡ Pauline Klein§

Abstract

The aim of this paper is to construct some classes of absorbing boundary conditions for the
two-dimensional Schrödinger equation with a time and space varying exterior potential and for
general convex smooth boundaries. The construction is based on asymptotics of the inhomogeneous
pseudodifferential operators defining the related Dirichlet-to-Neumann operator. Furthermore, a
priori estimates are developed for the truncated problems with various increasing order boundary
conditions. The effective numerical approximation will be treated in a second paper.
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6.3 Interpretation of the ABCs and Padé approach . . . . . . . . . . . . . . . . . . . . . . 23

7 A priori estimates 26

7.1 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.2 A priori estimates for ABCM

2,T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

7.3 A priori estimates for ABCM
1,T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

8 Conclusion 33

1 Introduction

The aim of this paper is to propose some Absorbing Boundary Conditions (ABCs) for the two-
dimensional linear time-dependent Schrödinger equation [1] with a potential V

{
i∂tu+∆u+ V (x, y, t)u = 0, (x, y) ∈ R

2, t > 0

u(x, y, 0) = u0(x, y), (x, y) ∈ R
2,

(1)

where u0 ∈ L2(R2) is compactly supported in the future bounded spatial computational domain Ω,
with fictitious boundary Σ. The potential function is C∞, space and time dependent and real-valued.
We assume that the smoothness of V is at least satisfied outside ΣT := Σ×]0;T [, T being the final
time of computation. The computational domain is ΩT = Ω×]0;T [. Under suitable conditions, the
initial boundary value problem (1) is well-posed [12, 13]. Moreover, in the free-space the L2-norm of
the solution is conserved

∀t > 0, ‖u(t)‖2L2(R2) =

∫

R2

|u(x, y, t)|2dxdy = ‖u0‖2L2(R2) (2)

where ‖·‖2L2(R2) is the L
2(R2)-norm. Finally, n is the outwardly directed unit normal vector to Σ.
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The main difficulty here in designing ABCs is that we include a general potential V := V (x, y, t). In
practical applications, being able to handle correctly potential effects is an important, active and not
completely understood topic in physics [23, 15, 14, 21, 22]. Here, we assume that the potential makes
the wave outgoing to the bounded domain Ω. In the one-dimensional case, a sufficient condition is that
V is an acceleration or a repulsive potential [5]. Examples of potentials which cannot be considered are
the confining potentials. In the two-dimensional case, a definition of admissible (repulsive) potential
does not exist. For this reason, we assume that the outgoing wave assumption holds without giving
a mathematical definition. This point is probably interesting and important to discuss but also out
of the scope of the paper. Our contribution focuses on the effective construction of ABCs and some
of their properties. Their discretization and numerical comparison will be included in a companion
paper [6].

In the one-dimensional case, ABCs for some special time independent potentials can be obtained
via explicit calculations of the Dirichlet-to-Neumann (DtN) operator by using special functions (for
example Airy’s functions) [20, 19] or particular techniques (Floquet’s theory for sinusoidal potentials
[29]). Handling general potentials can be achieved by using pseudodifferential operator theory and
symbolic asymptotic expansions of the DtN map. In [5], we introduced two strategies to build robust
and accurate ABCs making use of the Engquist & Majda [16, 17] approach adapted to the Schrödinger
equation [5, 7, 3, 1, 8, 25, 26, 18, 11]. In the present paper, we develop the extension of the theory to
the two-dimensional case for general smooth convex boundaries Σ. As we will see, the two strategies
of the one-dimensional case can be extended to the two-dimensional case. However, since the principal
symbol of the DtN operator is more complicated, further (high frequency) asymptotic expansions are
required and lead in fact to four families of ABCs, two for each strategy. After designing these ABCs,
we also investigate the obtention of a priori estimates, which from the semi discrete point of view
would correspond to prove stability of the discretization schemes. Let us note that the technique of
Perfectly Matched Layer (PML) [10] can also be used to bound the computational domain for spatially
dependent potentials. We refer to [28] for more details.

The paper is structured as follows. In the second Section, we review some results known for special
two-dimensional problems and explain what can be extended from the one- to the two-dimensional
case. In Section 3, we introduce a local parameterization of the boundary and discuss the possible
links between the two strategies. Next, specific pseudodifferential operators results are summarized
and the E-quasi hyperbolic, elliptic and glancing zones are defined. In Section 4, we explain in details
the two strategies. The first one (strategy I) is called the gauge change and the second one (strategy
II) is the direct method. We unify the notations and then develop the symbolic system which gives
the asymptotic expansion of the total symbol of the DtN map. We then discuss the choice of the
principal symbol of the DtN map which plays a key role in the accuracy of the ABCs. Section 5 deals
with the gauge change strategy (strategy I) where we detail the calculations and the construction of
ABCs. Section 6 does the same developments but for the direct strategy (strategy II). We state a
priori estimates in Section 7 and conclude in Section 8.
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2 What we already know and what remains true compared to the

one-dimensional case

2.1 The half-space case and a null potential

Let us consider the positive half-space {x > 0}. We set Ω := {x < 0} with boundary Σ = {x = 0}.
Let us assume that the potential V is equal to zero in the right half-space. Then we can prove that
the (exact) Transparent Boundary Condition (TBC) for the problem

i∂tu+ ∂2xu+ ∂2yu+ V u = 0, (x, y) ∈ R
2, t > 0,

is given by the Dirichlet-to-Neumann (DtN) map

∂nu− i
√
i∂t +∆Σ u = 0, (x, y) ∈ ΣT . (3)

This TBC can be obtained by Fourier transform in time t and space y. Then, the resulting differential
equation in x is solved explicitly leading to the linear combination of two traveling waves. It is next
sufficient to kill the incoming wave and to derive according to x (normal derivative ∂n := ∂x) to get
(3) in the (y, t) Fourier space. An inverse Fourier transform then gives the result. In our case, the
Laplace-Beltrami operator ∆Σ is ∂2y . The transparent operator is given by a square-root Schrödinger
operator on the boundary Σ. This operator is nonlocal in time and space. We will see later that this
operator can be localized (for example by a Taylor expansion) or globally localized in time and space
(through rational approximants [6]).

2.2 The time dependent potential case

In the one-dimensional case and when the potential is only time dependent V (x, t) = V (t) outside
Ω, a gauge change leads to work with a free potential Schrödinger equation. If u is solution to:
i∂tu+ ∂2xu+ V (t)u = 0, and v is defined by

v(x, t) = u(x, t)e−i
∫
t

0
V (s)ds,

then v is solution to: i∂tv + ∂2xv = 0, for which the TBC is known. In the two-dimensional case, this
property remains true. If V (x, y, t) = V (t) and u is solution to

i∂tu+ ∂2xu+ ∂2yu+ V (t)u = 0,

then, by defining

v(x, y, t) = u(x, y, t)e−i
∫
t

0
V (s)ds, (4)

v is solution to the free potential equation: i∂tv + ∂2xv + ∂2yv = 0. This result is independent of the
coordinates system (x, y).
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3 Specific aspects of the two-dimensional case

3.1 Choice of the boundary and local parameterization

Let us consider a rectangular domain Ω parameterized in cartesian coordinates (x, y) with corners
(x1, y1), (x1, y2), (x2, y2) and (x2, y1). For the vertical right boundary Σr = {(x, y) ∈ R

2/x = x2, y ∈
[y1; y2]}, we use the pseudodifferential operator calculus associated with the partial Fourier transform
in (y, t) to get the DtN operator according to ∂x by considering the right half-space. Then, we obtain a
TBC on Σd. The problem is that this boundary condition is singular at (x2, y2) and does not smoothly
match with the boundary condition that one would get on Σh := [x1;x2]×{y2} by considering a partial
Fourier transform in (x, t). This means that additional continuity conditions at the corners must be
developed (see e.g. [27] for the wave equation). To the best of our knowledge, this question has
not been treated yet for the Schrödinger equation. Furthermore, to have an outgoing solution to the
computational domain Ω, a convex (regular) boundary Σ must be considered. Therefore, we try to
write a boundary condition on a smooth (closed) convex boundary Σ parameterized by its curvilinear
abscissa s ∈ [a; b]. The assumption about the convexity implies that the local curvature at s, κ = κ(s),
is positive.

Let Ω be a convex domain with smooth boundary Σ. We do not detail here all the calculations
and refer to [3] for more explanations concerning the change of variables. For a point M of Σ with
coordinates (x, y), we designate by τ the tangential vector to Σ at M and n the outwardly directed
unit normal vector. In the local coordinates system associated with M , a point M ′ close to the
boundary is connected to its coordinates r and s. Since Ω is convex, the projection of the point M ′

onto the boundary Σ is unique, giving hence its curvilinear abscissa s. The radial coordinate r is the
distance from point M ′ to its projection according to the outgoing unitary normal vector. Hence, Σ
can be denoted by Σ0, if Σr designates the parallel surface to Σ at distance r. Since Σ is convex,
we can restrict ourselves to positive values of r, bounded from above by a small parameter ε, and so
r ∈ [0; ε]. The laplacian in local coordinates (r, s) writes down [4, 2]

∆r = ∂2r + κr∂r + h−1∂s(h
−1∂s), (5)

with the scaling factor h: h = 1+rκ and κr the curvature atM
′ on the parallel surface Σr: κr = h−1κ.

For the sake of conciseness, we denote by ũ the function u written in the local system

u(x, y, t) = ũ(r, s, t), (x, y) ∈ R
2, (r, s) ∈ [0; ε]× [a; b], t > 0, (6)

and Vr the locally rewritten potential function

V (x, y, t) = Vr(r, s, t), (x, y) ∈ R
2, (r, s) ∈ [0; ε]× [a; b], t > 0. (7)

The Schrödinger equation for system (1) is then

i∂tũ+ ∂2r ũ+ κr∂rũ+ h−1∂s(h
−1∂s)ũ+ Vrũ = 0, (r, s, t) ∈ [0; ε]× [a; b]×]0;T ], (8)

where r and s parameterize the domain Ω and t > 0. In the sequel, we identify u to ũ.
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Figure 1: Local generalized coordinates system.

3.2 Discussion on the equivalence between the two strategies

In the one-dimensional case, when V is only x dependent and by applying a partial Fourier transform,
we have the equivalence between the two (gauge change and direct) strategies according to the identity
(see Lemma 2, page 320, in [5])

Op (a(τ − V (x)))u = eitVOp (a(τ))
(
e−itV u(x, t)

)

In two dimensions, if one considers the solution to the Schrödinger equation in the half-space {x > 0},
we apply a Fourier transform with respect to y and t. To have a similar property, we have to assume
that V only depends on one spatial variable V (x, y, t) = V (x), which is unrealistic for practical
applications.

If one works in the local coordinates system with r and s, it seems reasonable to consider the de-
pendence properties according to the computational domain geometry. For example, a radial variable
in a circular domain is characterized by a null tangential variation. In the local system, the potential
writes down V (r, s, t) and we work with the Fourier transform in s and t. To get an equivalence
property, we would have to assume that V is s and t independent, which means that the potential is
symmetrically radial and time independent and can be considered as quite realistic now. Then, we
have the following result.

Lemma 1. If a is a symbol in Sm, independent of t and s, and V (r, s, t) = V (r), then we have the
equality

Op (a(τ − V (r), ξ))u(r, s, t) = eitVOp (a(τ, ξ))
(
e−itV u(r, s, t)

)
, (9)

where ξ designates the Fourier covariable with respect to s.

Proof. By definition, the pseudodifferential operator associated with the symbol a(τ−V (r), ξ) is given
by a partial inverse Fourier transform

Op (a(τ − V (r), ξ))u = F
−1
(s,t)

(
a(τ − V (r), ξ)û(r, ξ, τ)

)

=

∫

R

∫

R

a(τ − V (r), ξ) (F(s,t)u)(r, ξ, τ)e
itτeisξdτdξ.
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By using the following time variable change ρ = τ − V (r) one gets

Op (a(τ − V (r), ξ))u =

∫

R

∫

R

a(ρ, ξ) (F(s,t)u)(r, ξ, ρ+ V (r)) eitρeitV (r)eisξdρdξ.

From the translation properties of the Fourier transform we can simplify the expression

Op (a(τ − V (r), ξ))u = eitV (r)

∫

R

∫

R

a(ρ, ξ)F(s,t)((r, s, t) 7→ e−itV (r)u(r, s, t))(r, ξ, ρ) eitρeisξdρdξ.

Then, we identify the operator with symbol a(ρ, ξ) applied to the function (r, s, t) 7→ e−itV (r)u(r, s, t),
i.e.

Op (a(τ − V (r), ξ))u = eitV (r)Op (a(τ), ξ)
(
e−itV (r)u(r, s, t)

)
,

which proves (9).

3.3 Pseudodifferential operators for the two-dimensional case and associated sym-

bolic calculus

The functions that we consider in this chapter depend not only on two variables, the local spatial
coordinates r and s, but also on the time t. In this framework, the two-dimensional pseudodifferential
operator calculus is realized through the partial Fourier transform (s, t) of a function f(r, s, t). We
denote by ξ (respectively τ) the covariable of s (respectively t). We have

F(s,t) (f(r, s, t)) (r, ξ, τ) =
1

4π2

∫

R

∫

R

f(r, s, t)e−itτe−isξdtds (10)

and we set F = F(s,t) in this section. A pseudodifferential operator P (r, s, t, ∂s, ∂t) with symbol
p(r, s, t, ξ, τ) is defined by

P (r, s, t, ∂s, ∂t)u(r, s, t) = F
−1
(s,t)

(
p(r, s, t, ξ, τ)û(r, ξ, τ)

)
, (11)

that is

P (r, s, t, ∂s, ∂t)u(r, s, t) =

∫

R

∫

R

p(r, s, t, ξ, τ)û(r, ξ, τ)eitτeisξdτdξ (12)

where û = Fu.
The inhomogeneous pseudodifferential operator calculus that we use in the paper was introduced

in [18] and applied e.g. in [3]. For the sake of conciseness, we only give the useful material needed
here. Let m be a real number and O an open subset of R2. Then (see in [24]), the symbol class
Sm(O×R

+) denotes the linear space of C∞ functions a(r, s, t, τ, ξ) in O×R
+ ×R

2 such that for each
K ⊆ O and for all integer indices k, αr, αs, l and β, there exists a constant Ck,αr,αs,l,β(K) such that

|∂kt ∂αr

r ∂αs

s ∂lτ∂
β
ξ a(r, s, , t, τ, ξ)| ≤ Ck,αr,αs,l,β(K)(1 + τ2 + ξ4)m−β−2,

for all (r, s) ∈ K, t ∈ R
+ and (τ, ξ) ∈ R

2.
Let E = (1, 2). The homogeneity of a pseudodifferential operator can be deduced from the ho-

mogeneity of its symbol with respect to (ξ2, τ). Therefore, ξ2 and τ are considered as homogeneous
[18, 11]. This leads to the following definition.
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Definition 1. A function f(r, s, t, ξ, τ) is said to be E-quasi homogeneous of order m if and only if
for all µ > 0 and for large (ξ2, τ) we have

f(r, s, t, µξ, µ2τ) = µm f(r, s, t, ξ, τ). (13)

For example, the operator with symbol λ =
√

−τ − ξ2 is first order E-quasi homogeneous (with
respect to (ξ2, τ)).

From now on, a E-quasi homogeneous pseudodifferential operator of order m ∈ Z, denoted by
A ∈ OPSmE , is defined as an operator with a total symbol a(r, s, t, ξ, τ) admitting an asymptotic
expansion in E-quasi homogeneous symbols

a(r, s, t, ξ, τ) ∼
+∞∑

j=0

am−j(r, s, t, ξ, τ), (14)

where the functions am−j , j ∈ N, are E-quasi homogeneous of degree m − j. The meaning of ∼ in
(14) is here

∀m̃ ∈ N, a−
m̃∑

j=0

pm−j ∈ S
m−(m̃+1)
E . (15)

A symbol a satisfying the property (14) is denoted by a ∈ Sm
E and the associated operators A = Op(a)

by A ∈ OPSmE . Finally, we introduce OPS−∞
E as the intersection between all the classes OPSmE , m ∈ Z.

For P and Q two pseudodifferential operators with respective symbols p and q, and m ∈ Z, we set

P = Q mod OPSmE (16)

or equivalently
p = q mod Sm

E (17)

if the difference between the two symbols fulfills: p − q ∈ Sm
E . Finally, the composition formula for

two operators A and B with respective symbols σ(A) and σ(B) writes

σ(AB) =

+∞∑

|α|=0

(−i)|α|
α!

∂α(ξ,τ)σ(A) ∂
α
(s,t)σ(B). (18)

Furthermore, if σ(A) ∈ Sm
E and σ(B) ∈ Sn

E , then we have σ(AB) ∈ Sm+n
E . In (18), α is a multi-index

(α1, α2). We use the classical notations for multi-indices. In particular, its length |α| is defined by:
|α| = α1 + α2. The factorial is defined by: α! = α1!α2!, and we introduce the derivative according to
(ξ, τ): ∂α(ξ,τ)λ = ∂α1

ξ ∂α2
τ λ(r, s, t, ξ, τ). These classes of operators allows to define an associated symbolic

calculus [18, 11]. Finally, we have: σ(∂s) = iξ and σ(∂2s ) = −ξ2.

3.4 E-quasi hyperbolic, elliptic and glancing zones

Let us recall that the ABCs will be built in the high frequency regime. More precisely, we consider
the following definition with E = (1, 2) [7].
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Definition 2. We define the E-quasi hyperbolic zone as the set H of points (s, t, ξ, τ) such that

H = {(s, t, ξ, τ),−τ − ξ2 > 0} (19)

The construction of the ABCs is then realized under the microlocal assumption that the points
(s, t, ξ, τ) lie in H. This hypothesis characterizes the propagative part of the wave. Two other regions
can be also defined: the E-quasi elliptic zone E given by

E = {(s, t, ξ, τ),−τ − ξ2 < 0}, (20)

which gives the evanescent (exponentially decaying) part of the wave and the E-quasi glancing zone
which is the complementary set G of E ∪H. This last region is reduced to {0} if u is not tangentially
incident to Σ. We always assume here that the frequencies are defined in H. This assumption is not
always valid but is true if we suppose that the evanescent part is reduced to {0}.

4 Two possible strategies

To build the asymptotic expansion of the DtN operator on Σ, we factorize the Schrödinger operator
with Nirenberg’s techniques [24] in the generalized system (r, s) given by (8). This allows us, as in
the one-dimensional case, to obtain the DtN pseudodifferential operators Λ− and Λ+ characterizing
respectively the incoming and outgoing wave. Two strategies can then be followed according to the
fact that the gauge change is applied or not. In each case, we are going to explicit the underlying
Schrödinger operator on which a factorization is made.

4.1 Strategy I: gauge change method

The first strategy that we consider consists in applying the gauge change before building the boundary
condition. Let us recall that the change of unknown (4) leads to the TBC for a potential V = V (t)
and a half-space. Let us introduce the phase function V

V(r, s, t) =
∫ t

0
Vr(r, s, σ)dσ, (21)

and do the change of unknown
v(r, s, t) = e−iV(r,s,t)ũ(r, s, t). (22)

Then, the new function v is solution to the variable coefficients Schrödinger equation

i∂tv + ∂2rv +
(
κr + 2i(∂rV)

)
∂rv + h−1∂s(h

−1∂s) + 2i(∂sV)∂sv +Gv = 0, (23)

where G is the zero order operator given by

G = iκr(∂rV) + i∂2rV − (∂rV)2 + i∂2sV − (∂sV)2 + ih−1(∂sh
−1)(∂sV). (24)

Hence, after the gauge change, function v is solution to

L(r, s, t, ∂s, ∂t)v = 0, on ΩT ,

with L defined by

L = i∂t + ∂2r +
(
κr + 2i(∂rV)

)
∂r + h−1∂s(h

−1∂s) + 2i(∂sV)∂s +G. (25)

9



4.2 Strategy II: direct method

The second strategy consists in directly working on the operator involved in (8), that is

L = i∂t + ∂2r + κr∂r + h−1∂s(h
−1∂s) + Vr. (26)

Unlike the gauge change method, a term related to the potential will be handled in the principal
symbol Λ+.

Remark 1. As in the one-dimensional case, the difference between the two strategies is related to two
points. First, the gauge change (22) is only applied in the first strategy while we directly work on u
in the second method. However, a second difference concerns the choice of the principal symbol. In
the direct method, and unlike the gauge change, zero order terms are included in the principal symbol
to compensate the gauge change effect. Following this strategy, another strategy, called strategy 0,
which is more basic may be considered. This aproach would consist in neither applying the gauge
change nor taking the potential into the principal symbol. However, like the one-dimensional case and
as seen later (see Remark 4, page 23), this strategy corresponds to a high frequency approximation,
for large |τ |, of strategy II via a Taylor expansion. We note that this is however the approach used in
[4, 7].

4.3 Unification of the strategies

In a unified framework, we are now led to build a boundary condition for the Schrödinger equation
with variable coefficients A and B

(
i∂t + ∂2r + (κr +A) ∂r + h−1∂s(h

−1∂s) +B
)
w = 0, on ΩT , (27)

where A and B and the unknown w differ according to strategy I or II. For the gauge change, the
unknown is w = v = e−iVu and

A = 2i(∂rV), B = 2i(∂sV)∂s +G. (28)

For the direct method, the unknown is w = u and the coefficients are

A = 0, B = Vr. (29)

4.4 Symbolic system

The operator L associated with the general equation (27) writes down

L = i∂t + ∂2r + (κr +A) ∂r + h−1∂s(h
−1∂s) +B (30)

where the operators A and B are given by either (28) or (29). We have the following factorization
theorem.

Theorem 1. Let L be the Schrödinger operator with coefficients (30). There exist two first-order ho-
mogeneous classical pseudodifferential operators Λ± = Λ±(r, s, t, ∂s, ∂t) ∈ OPS 1

E, smoothly dependent
with respect to r, and such that

L(r, s, t, ∂s, ∂t) = (∂r + iΛ−)(∂r + iΛ+) +R (31)
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where R = R(r, s, t, ∂s, ∂t) is a smoothing operator in OPS−∞
E . Furthermore, the total symbol λ± =

σ(Λ±) of Λ± admits an asymptotic expansion in E-quasi homogeneous symbols

σ(Λ±) = λ± ∼
+∞∑

j=0

λ±1−j (32)

where λ±1−j ∈ S1−j
E for j ∈ N. These asymptotic expansions are unique once the principal symbols λ±1

are fixed.

Proof. To prove the result, we develop the expression (31) of L and group together the terms in
decaying power of ∂r

L = ∂2r + iΛ−∂r + i∂rΛ
+ − Λ−Λ+ +R.

By using the identity ∂rΛ
+ = Λ+∂r +Op (∂rλ

+), we deduce

L = ∂2r + i(Λ+ + Λ−)∂r + iOp
(
∂rλ

+
)
− Λ−Λ+ +R. (33)

Then, we can compare (30) and (33) and identify the terms of the same order in ∂r in the two
expressions, modulo the smoothing operator R of order −∞. We obtain the system

i(Λ+ + Λ−) = κr +A

iOp
(
∂rλ

+
)
− Λ−Λ+ = i∂t + h−1∂s(h

−1∂s) +B.
(34)

The term h−1∂s(h
−1∂s) can be developed as

h−1∂s(h
−1∂s) = h−1h−1∂2s + h−1∂s(h

−1)∂s (35)

implying that the symbol of this operator is

σ
(
h−1∂s(h

−1∂s)
)
= −h−2ξ2 + ih−1∂s(h

−1)ξ.

Furthermore, the symbol of Λ−Λ+ being given by (18), (34) leads to the symbolic system

i(λ+ + λ−) = κr + a

i∂rλ
+ −

+∞∑

|α|=0

(−i)|α|
α!

∂α(ξ,τ)λ
−∂α(s,t)λ

+ = −τ − h−2ξ2 + ih−1(∂sh
−1)ξ + b

(36)

where a = A and b = B, respectively, designate the symbols of the operators A and B, respectively.
In the gauge change case, we have

a = 2i(∂rV), b = −2(∂sV)ξ + g, (37)

where g = G is the zero order operator defined by (24); for the direct method, the symbols are given
by

a = 0, b = Vr. (38)

We now have to determine the asymptotic expansion in E-quasi homogeneous symbols of the total
symbol λ+. This asymptotic expansion is obtained by identifying in (36) the terms of the same order

11



of homogeneity. Before that, system (36) can be reduced to one unknown, λ+. Indeed, the term a
only depends on r, s and t,but not of ξ, nor τ . We first extract λ− from the first equation

λ− = −λ+ − iκr − ia.

This expression is then injected into the second equation. But, as the terms κr and a do not depend
neither on τ nor on ξ, we have

∂α(ξ,τ)λ
− =





−λ+ − iκr − ia if α = 0

−∂α(ξ,τ)λ+ if |α| > 1.

In the infinite sum of the second equation of (36), the terms can be written as

∂α(ξ,τ)λ
−∂α(s,t)λ

+ =





−λ+λ+ − iκrλ
+ − iaλ+ if α = 0

−∂α(ξ,τ)λ+∂α(s,t)λ+ if |α| > 1.

Hence, the second equation of (36) gives

i∂rλ
+ + iκrλ

+ + iaλ+ +
+∞∑

|α|=0

(−i)|α|
α!

∂α(ξ,τ)λ
+∂α(t,r)λ

+ = −τ − h−2ξ2 + ih−1(∂sh
−1)ξ + b. (39)

This last equation will be the starting point to get the symbols λ+1−j , j ∈ Z, which in each case lead
to an approximate boundary condition.

The factorization (31) indicates that the reflected part of the wave is given by w+ = (∂n + iΛ+)w.
The TBC is then

w+ = (∂n + iΛ̃+)w = 0, on ΣT , (40)

where the pseudodifferential operator Λ̃+ is defined by

Λ̃+ = Λ+
|r=0. (41)

Like Λ+, the operator Λ̃+ can be developed in homogeneous symbols and its expansion is given by

σ
(
Λ̃+
)
∼

+∞∑

j=0

λ̃1−j (42)

where
λ̃1−j =

(
λ+1−j

)
|r=0

. (43)

As a consequence, determining the operator Λ̃+ requires the computation of its boundary symbols:

(λ+1−j)|r=0. We approximate Λ̃+ by truncating its asymptotic expansion (42). Keeping its first M

terms (λ̃1−j)0≤j≤M−1, the approximate boundary condition of order M writes down

∂nwM + i

M−1∑

j=0

Op
(
λ̃1−j

)
wM = 0, on ΣT ,
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where wM is then an approximate solution to (27). In the gauge change case, we then apply the inverse
change of unknown w = e−iVu to express the approximate boundary condition on uM . The question
is now how to compute the first M symbols of the asymptotic expansion of λ+, for each strategy and
finally evaluating the symbols on the boundary for r = 0.

4.5 Adding terms in the principal symbol

We can classify the terms appearing in the right hand side of (39) in three classes: the second order
terms, which must be included in the principal symbol; the potential type terms of order zero which
will be considered in the principal symbol only for strategy II; and some first order terms that may be
included or not into the principal symbol for both strategies. The key argument allowing to determine
if a term may be included in the principal symbol is related to the sign of the imaginary part of λ+1
which guarantees that the wave is outgoing. As in the one-dimensional case, we have the following
lemma.

Lemma 2. The principal symbol λ+1 (s, t, ξ, τ) of Λ
+ must satisfy the following high frequency condition

Im
(
λ+1 (s, t, ξ, τ)

)
≤ 0, for |τ | ≫ 1. (44)

Proof. The idea of the proof is the same as in the one-dimensional case. Let us first consider the case
of a principal symbol of the form: λ+1 = λ+1 (ξ, τ), corresponding to the tangent plane approximation.
The artificial boundary condition at (x, y) of Σ, described by its local coordinates (r, s), is given by

∂rw(r, s, t) + iOp
(
λ+
)
w(r, s, t) = 0, for t ∈ [0;T ].

The first symbol being the leading order term in the asymptotics of λ+, we have the following first
order approximation

∂rw(r, s, t) + iOp
(
λ+1
)
w(r, s, t) = 0, for t ∈ [0;T ].

Applying the partial Fourier transform according to (s, t) to this equation leads by definition of the
symbol of an operator to

∂rŵ(r, ξ, τ) + iλ+1 (ξ, τ)ŵ(r, ξ, τ) = 0, (ξ, τ) ∈ R
2. (45)

Integrating this ordinary differential equation with respect to r gives

ŵ(r, ξ, τ) = Ae−iλ+

1
(ξ,τ)r for (ξ, τ) ∈ R

2.

A L2(Ω) integrability condition for the frequencies in the elliptic zone E defined by (20) gives that
Re(−iλ+1 ) ≤ 0. Since Re(−iλ+1 ) = Im(λ+1 ), we deduce condition (44). If λ+1 = λ+1 (r, s, t, ξ, τ) also
depends on r, s and t, we consider large |τ | and we asymptotically get

λ+1 (r, s, t, ξ, τ) ∼|τ |→∞ λ+1 (r0, s0, t0, ξ, τ),

where the points r0, s0 and t0 are given. Similarly, we obtain on λ+1 (x0, t0, τ) the necessary condition
Im(λ+1 (r0, s0, t0, ξ, τ)) ≤ 0 for large |τ |. We deduce (44).
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As a conclusion, we may include in λ+1

• real valued terms (as for example the potential) without sign restriction;

• complex valued terms as soon as their imaginary part has a fixed sign: a complex valued term
with a positive imaginary sign will lead to choose the negative sign in front of the square-root
defining λ+1 while a negative imaginary part will lead to a plus sign. If the imaginary part of the
complex term has no sign, then we cannot characterize the outgoing wave. This case will not be
considered in the sequel.

5 Strategy I: gauge change

In this strategy, we made the change of unknown (22) and we must solve the equation (39)

i∂rλ
+ + iκrλ

+ − 2(∂rV)λ+ +
+∞∑

|α|=0

(−i)|α|
α!

∂α(ξ,τ)λ
+∂α(t,r)λ

+

= −τ − h−2ξ2 + ih−1(∂sh
−1)ξ − 2(∂sV)ξ + g, (46)

with
g = iκr∂rV + i∂2rV − (∂rV)2 + i∂2sV − (∂sV)2 + ih−1∂sh

−1∂sV.

5.1 Choice of the principal symbol

The first question concerns the choice of the principal symbol which directly impacts the symbolic
calculus. We obtain the principal symbol by identifying the second order terms in the equation (46).

In the left hand side, the second order term is:
(
λ+1
)2
. However, different solution exist for the right

hand side. Strictly, the second order term is: −τ − h−2ξ2, leading to the principal symbol

λ+1 = ±
√

−τ − h−2ξ2.

The characterization of the outgoing wave leads to choose the correct sign. However, an inhomogeneous
point of view allows to handle in the principal symbol λ+1 any lower order term, like for example in
the one-dimensional case where we fixed the principal symbol to λ+1/2 = −

√
−τ + V . Initially, many

possibilities can be adopted for the principal symbol if we include or not the terms ih−1(∂sh
−1)ξ

and/or −2(∂sV)ξ and/or g. To guarantee that λ+1 corresponds to an outgoing wave characterization,
we must check that condition (44) holds. This implies that complex valued terms with unsigned
imaginary part cannot be considered in the square-root. This is typically the case of the first and
third terms. The term −2∂sVξ can be included since it is real valued. Finally, two admissible solution
may be considered

λ+1 = −
√

−τ − h−2ξ2 (47)

and
λ+1 = −

√
−τ − h−2ξ2 − 2∂sVξ. (48)
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The main difference between symbol (48) and all the other symbols is that its evaluation at r = 0
always include a term involving ξ

λ̃1 = −
√

−τ − ξ2 − 2(∂sV)ξ.

This term is multiplied by the tangential variation of the phase function V which has an a priori
relatively small amplitude since the radial variations of the potential are generally larger. The extreme
case is the radial potential V (r, t) since ∂sV = 0. Hence, the information contained in the term 2(∂sV)ξ
can be considered as relatively limited and will not be included inside the principal symbol. It will
however appear in λ+0 when identifying the first order terms in the equation. This precisely corresponds
to the choice (47) as principal symbol.

Concerning the gauge change, only the asymptotics given by (47) will be considered. Two ap-
proaches are then derived for each strategy, one based on a Taylor expansion for high frequencies |τ |,
and the other one based on square roots of operators which will then be numerically approximated
by Padé functions. Even if the Padé approximation itself is practically treated in [6], we will always
refer to as Padé approach for strategy II.

5.2 Symbols computation

The principal symbol λ+1 being fixed by (47), we successively compute the next symbols following the
symbolic calculus rules for the two-dimensional situation. To obtain λ+0 , we consider the first order
terms in (46)

i∂rλ
+
1 + iκrλ

+
1 − 2(∂rV)λ+1 + 2λ+1 λ

+
0 − i∂ξλ

+
1 ∂sλ

+
1 = ih−1∂sh

−1ξ

giving λ+0

λ+0 = − i

2
κr + ∂rV +

1

2λ+1

(
−i∂rλ+1 + i∂ξλ

+
1 ∂sλ

+
1 + ih−1∂sh

−1ξ − 2∂sVξ
)
,

and then

λ+0 = − i

2
κr + ∂rV − i

2

h−1(∂sh
−1)ξ√

−τ − h−2ξ2
+

(∂sV) ξ√
−τ − h−2ξ2

− i

2

h−3(∂rh)ξ
2

−τ − h−2ξ2
+
i

2

h−5(∂sh)ξ
3

√
−τ − h−2ξ2

3 . (49)

Next, we compute λ+−1 and λ+−2. Since the calculations are too cumbersome, we do not give the

expressions of these symbols. We only report λ̃j , which are the evaluations of λ+j at r = 0

λ̃1 = −
√
−τ − ξ2, (50)

λ̃0 = − i

2
κ+ ∂nV +

(∂sV)ξ√
−τ − ξ2

− i

2

κξ2

−τ − ξ2
(51)

λ̃−1 = −1

8

κ2√
−τ − ξ2

− 1

2

(∂sκ)ξ√
−τ − ξ2

− 1

2

i∂2sV − (∂sV)2√
−τ − ξ2

− 1

2

(i∂2sV − (∂sV)2)ξ2√
−τ − ξ2

3 ,

− 3

4

ξ2κ2
√
−τ − ξ2

3 − i
κ(∂sV)ξ3
(−τ − ξ2)2

− 1

2

(∂sκ)ξ
3

(−τ − ξ2)2
− 5

8

κ2ξ4
√

−τ − ξ2
5 , (52)

λ̃−2 =
i

8

κ3

−τ − ξ2
+
i

8

∂2sκ

−τ − ξ2
− i

4

∂nV

−τ − ξ2
− 1

2

(∂sκ)(∂sV)
−τ − ξ2

+ . . . . (53)
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Remark 2. Since many terms appear in λ̃−2, we do not consider all of them. All the terms in λ̃−2 are
E-quasi homogeneous of order −2 but can also be written either as the ratio between a zero order
term and a symbol of order 2, or as the ratio between a first order symbol and a symbol of order 3
and so on. The common point is that the terms in τ only appear in the denominator. In the Taylor
expansion of the symbols, the asymptotics will be made according to large values of |τ | in the E-quasi
hyperbolic zone H. For the fourth order condition (the highest order considered in the present paper),
we will only keep terms in at least τ−1 and higher. Since the terms in the expression of λ̃−2 have a

denominator of the form
√
−τ − ξ2

3
, (−τ − ξ2)2, . . . , leading to terms of the order of τ−3/2, τ−2, . . .

in the Taylor expansion, they will not be considered in the fourth order condition. Finally, the terms
which are not given will not be considered in the writing of the boundary conditions until the fifth
order for the Taylor approach. They are not necessary either in the Padé approximation since this
approximation is more accurate. For this reason, only artificial boundary conditions taking λ̃1 and λ̃0
will be considered in the Padé approach.

Considering the symbols (50)–(53), we get the boundary conditions of order M , M ∈ {1, 2, 3, 4},
for v, given by

∂nv + i
M−1∑

j=0

Op
(
λ̃1−j

)
v = 0, on ΣT .

In terms of unknown u, we have the ABC of order M

∂nu− i∂nVu+ ieiV
M−1∑

j=0

Op
(
λ̃1−j

) (
e−iVu

)
= 0, on ΣT , (54)

where V is the phase function. The next step consists in interpreting the operators Op
(
λ̃j

)
in such

a way that (54) is written in terms of explicit operators. This is done for both the Taylor and Padé
approaches.

5.3 Interpretation of the ABCs for the Taylor approach

In this approach which is also considered in [4, 7], we make a high frequency asymptotic expansion of
the symbols for |τ | ≫ ξ2 in the E-quasi hyperbolic zone H. Let us introduce

λ̃1−j =
(
λ̃1−j

)
(α)

+O
(
τα−1/2

)
, (55)

where
(
λ̃1−j

)
(α)

designates the truncation of the Taylor expansion of λ̃1−j by limiting to terms of

order at least equal to α. From a general point of view, the order M condition is given by

∂nu− i∂nVu+ ieiV
+∞∑

j=0

Op

((
λ̃1−j

)
(1−M/2)

)(
e−iVu

)
= 0, on ΣT .

However, this sum is in fact finite since the terms of order 1 − M/2 are only contained in λ̃j , for
1 ≤ j ≤ 2−M . The order M boundary condition writes down

∂nu− i∂nVu+ ieiV
M−1∑

j=0

Op

((
λ̃1−j

)
(1−M/2)

)(
e−iVu

)
= 0, on ΣT . (56)
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In the sequel, we denote this ABC by ABCM
1,T , the index 1 refereeing to as the first strategy and

the index T to the Taylor approach. By using the symbols λ̃1, λ̃0, λ̃−1 and λ̃−2, we can write four
boundary conditions, from the first order condition

∂nu− i∂nVu+ ieiVOp

((
λ̃1

)
(1/2)

)(
e−iVu

)
= 0, on ΣT ,

to the fourth order one

∂nu− i∂nVu+ ieiVOp

((
λ̃1

)
(−1)

+
(
λ̃0

)
(−1)

+
(
λ̃−1

)
(−1)

+
(
λ̃−2

)
(−1)

)(
e−iVu

)
= 0, on ΣT .

Since we have

λ̃1 = −
√
−τ + ξ2

2
√
−τ +O

(
1

τ3/2

)
,

λ̃0 = − i

2
κ+ ∂nV +

∂sVξ√
−τ +

i

2

κξ2

τ
+O

(
1

τ2

)
,

λ̃−1 = −κ
2

8

1√
−τ − 1

2

i∂2sV − (∂sV)2√
−τ +

1

2

∂sκξ

τ
+O

(
1

τ3/2

)
,

λ̃−2 =
i

4

∂nV

τ
− i

8

∂2sκ

τ
− i

8

κ3

τ
+

1

2

∂sκ∂sV
τ

+O

(
1

τ3/2

)
,

the truncated symbols are given by

(
λ̃1

)
(−1)

= −
√
−τ + ξ2

2
√
−τ ,

(
λ̃0

)
(−1)

= − i

2
κ+ ∂nV +

∂sVξ√
−τ +

i

2

κξ2

τ
,

(
λ̃−1

)
(−1)

= −κ
2

8

1√
−τ − 1

2

i∂2sV − (∂sV)2√
−τ +

1

2

∂sκξ

τ
,

(
λ̃−2

)
(−1)

=
i

4

∂nV

τ
− i

8

∂2sκ

τ
− i

8

κ3

τ
+

1

2

∂sκ∂sV
τ

.

Let us now write the fourth order condition (the lowest order ones can be deduced directly) for
the function v

∂nv − iOp
(√

−τ
)
v +

κ

2
v + i∂nVv − iOp

((
κ2

8
− ξ2

2
− ∂sVξ +

1

2
(i∂2sV − (∂sV)2)

)
1√
−τ

)
v

+Op

((
−κξ

2

2
+
i∂sκξ

2
+
κ3

8
+
∂2sκ

8
− ∂nV

4
+
i∂sκ∂sV

2

)
1

τ

)
v = 0 (57)
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Since v = e−iVu (and eiV∂nv = ∂nu− i∂nVu) we obtain

∂nu− ieiVOp
(√

−τ
) (
e−iVu

)
+
κ

2
u

− ieiVOp

((
κ2

8
− ξ2

2
− ∂sVξ +

1

2
(i∂2sV − (∂sV)2)

)
1√
−τ

)(
e−iVu

)

+ eiVOp

((
−κξ

2

2
+
i∂sκξ

2
+
κ3

8
+
∂2sκ

8
− ∂nV

4
+
i∂sκ∂sV

2

)
1

τ

)(
e−iVu

)
= 0 (58)

It remains now to interpret the operators given by their symbols. Hereabove, the surface laplacien ∆Σ

is a constant coefficients surface operator on Σ since ∆Σ = (∆r)|r=0 (the surface laplacian corresponds
to the evaluation on the boundary of the laplacian written in local coordinates). Since we are working
in a two-dimensional setting and that we can use a global parameterization of the boundary, only
∆Σ = ∂2s remains. This would not hold for the three-dimensional case. We finally have

Op
(
−ξ2

)
= ∆Σ, Op (−ξ) = i∂s, Op

(
−κξ2 + i∂sκξ

)
= κ∂2s + ∂sκ∂s = ∂s (κ∂s) .

Furthermore, symbols in τ lead to

Op
(
−i

√
−τ
)
= e−iπ/4∂

1/2
t , Op

( −i√
−τ

)
= −eiπ/4I1/2t , Op

(
1

τ

)
= iIt.

The fourth order ABC is then

∂nu+ e−iπ/4eiV∂1/2t

(
e−iVu

)
+
κ

2
u

− eiπ/4eiV
(
κ2

8
+

∆Σ

2
+ i∂sV∂s +

1

2
(i∂2sV − (∂sV)2)

)
I
1/2
t

(
e−iVu

)

+ ieiV
(
∂s(κ∂s)

2
+
κ3 + ∂2sκ

8
− ∂nV

4
+
i∂sκ∂sV

2

)
It
(
e−iVu

)
= 0

In the sequel, we will try to obtain a priori estimates. For this reason and as in the one-dimensional
case, a symetrized version of the ABC is preferred. This leads us to symmetrize the term which
depends on the potential ∂nV/4 by writing ∂nV = sg(∂nV )

√
|∂nV |

√
|∂nV |. The fourth order ABC,

denoted by ABC4
1,T , is then given by

∂nu+ e−iπ/4eiV∂1/2t

(
e−iVu

)
+
κ

2
u

− eiπ/4eiV
(
κ2

8
+

∆Σ

2
+ i∂sV∂s +

1

2
(i∂2sV − (∂sV)2)

)
I
1/2
t

(
e−iVu

)

+ ieiV
(
∂s(κ∂s)

2
+
κ3 + ∂2sκ

8
+
i∂sκ∂sV

2

)
It
(
e−iVu

)

− i
sg(∂nV )

4

√
|∂nV | eiVIt

(√
|∂nV | e−iVu

)
= 0. (59)

We can clearly extract lower orders ABCs from this construction. These ABCs will be discretized by

using discrete convolutions associated with the operators ∂
1/2
t , I

1/2
t and It [5, 6, 7, 4]. The results are

summarized in Proposition 1.
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Proposition 1. In strategy I and following Taylor expansions, the ABCs of order M are given by

∂nu+ ΛM
1,Tu = 0, on ΣT , (60)

where the operators ΛM
1,T are defined on ΣT by

Λ2
1,Tu = e−iπ/4eiV∂1/2t

(
e−iVu

)
+
κ

2
u, (61)

Λ3
1,Tu = Λ2

1,Tu− eiπ/4eiV
(
κ2

8
+

∆Σ

2
+ i∂sV∂s +

1

2
(i∂2sV − (∂sV)2)

)
I
1/2
t

(
e−iVu

)
, (62)

Λ4
1,Tu = Λ3

1,Tu+ ieiV
(
∂s(κ∂s)

2
+
κ3 + ∂2sκ

8
+
i∂sκ∂sV

2

)
It
(
e−iVu

)

− i
sg(∂nV )

4

√
|∂nV | eiVIt

(√
|∂nV | e−iVu

)
, (63)

and where the phase function V is given by

V(x, y, t) =
∫ t

0
V (x, y, σ) dσ.

These ABCs are denoted by ABCM
1,T in the sequel.

5.4 Interpretation of the ABCs for the Padé approach

We can also write the boundary conditions by keeping the symbols and approximating them by Padé
approximants in view of an efficient numerical implementation. We will define the ABC of order M
as the boundary condition simply obtained by retaining the first M symbols

∂nu− i∂nV + ieiV
M−1∑

j=0

Op
(
λ̃1−j

) (
e−iVu

)
= 0, on ΣT .

The boundary condition is denoted by ABCM
1,P . Since the exact symbols contain more information

than for the Taylor approach, we will (arbitrarily) keep less terms leading to lower order boundary
conditions. The second order boundary condition which considers the two first symbols λ̃1 and λ̃0
writes down

∂nv − iOp
(√

−τ − ξ2
)
v +

κ

2
v − ∂nVv + iOp

(
∂sVξ√
−τ − ξ2

)
v +

1

2
Op

(
κξ2

−τ − ξ2

)
v = 0. (64)

Going back to u by the change of unknown, we obtain

∂nu− ieiVOp
(√

−τ − ξ2
) (
e−iVu

)
+
κ

2
u

+ eiVOp

(
i∂sVξ√
−τ − ξ2

)
(
e−iVu

)
+

1

2
eiVOp

(
κξ2

−τ − ξ2

)(
e−iVu

)
= 0 (65)
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We have the following link between the symbols and the operators

Op
(√

−τ − ξ2
)
=
√
i∂t +∆Σ,

Op

(
iξ√

−τ − ξ2

)
= ∂s (i∂t +∆Σ)

−1/2 = (i∂t +∆Σ)
−1/2 ∂s,

Op

(
ξ2

−τ − ξ2

)
= −∆Σ (i∂t +∆Σ)

−1 = − (i∂t +∆Σ)
−1∆Σ. (66)

Here, since the operators to identify are independent of s and t, these substitutions are exact unlike
what we will observe in the second strategy. Hence, we have the second order boundary condition

∂nu− ieiV
√
i∂t +∆Σ

(
e−iVu

)
+
κ

2
u+ ∂sVeiV∂s (i∂t +∆Σ)

−1/2 (e−iVu
)

− κ

2
eiV (i∂t +∆Σ)

−1∆Σ

(
e−iVu

)
= 0. (67)

The first order boundary condition is deduced by truncation. We do not give the higher order boundary
conditions which would not be useful for computational purpose. The following proposition summa-
rizes the results.

Proposition 2. For strategy I and following a Padé approximation, the ABCs of order M are given
by

∂nu+ ΛM
1,Pu = 0, on ΣT (68)

where the operators ΛM
1,P are defined on ΣT by

Λ1
1,Pu = −ieiV

√
i∂t +∆Σ

(
e−iVu

)
, (69)

Λ2
1,Pu = Λ1

1,Pu+
κ

2
u+ ∂sVeiV∂s (i∂t +∆Σ)

−1/2 (e−iVu
)
− κ

2
eiV (i∂t +∆Σ)

−1∆Σ

(
e−iVu

)
. (70)

We specify these boundary conditions by ABCM
1,P .

Remark 3. Looking at (66), two equivalent interpretations are possible for λ+−2: ∆Σ (i∂t +∆Σ)
−1

or (i∂t +∆Σ)
−1∆Σ. We choose the second solution for implementation issues in a finite element

framework [6].

6 Strategy II: direct method

In this strategy, we directly work on the equation (8) and we must solve the equation in λ+ given by
(39)

i∂rλ
+ + iκrλ

+ +
+∞∑

|α|=0

(−i)|α|
α!

∂α(ξ,τ)λ
+∂α(t,r)λ

+ = −τ − h−2ξ2 + ih−1(∂sh
−1)ξ + Vr. (71)
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6.1 Computation of the symbols

Let us begin by fixing the principal symbol. This can be achieved by extracting the second order
terms in (71). Like the gauge change, we must determine which second order terms in the right hand
side of (71) must be retained. The direct method consists in including the potential in the principal
symbol to compensate the gauge change effect. We exclude the case λ+1 = ±

√
−τ − h−2ξ2 (which

corresponds to the zero order strategy in Remark 1 leading to less accurate ABCs). Considering the
term ih−1∂sh

−1ξ is excluded since we have no sign control. Finally, the principal symbol is

λ+1 = ∓
√

−τ − h−2ξ2 + Vr. (72)

The sign of λ+1 is chosen to fix the outgoing wave. The term −τ − h−2ξ2 + Vr is real valued and its
square-root is a complex number with a null or positive imaginary part. Therefore, the minus sign
must be considered to get a negative imaginary part for λ+1 . The principal symbol is then

λ+1 = −
√
−τ − h−2ξ2 + Vr. (73)

The computation of λ+0 is obtained by considering the first order terms in (71). These are solutions
to

i∂rλ
+
1 + iκrλ

+
1 + 2λ+1 λ

+
0 = ih−1(∂sh

−1)ξ.

However, since λ+1 is non homogeneous, ∂rλ
+
1 is the sum of two terms with different homogeneities,

respectively 1 and −1,

∂rλ
+
1 =

∂r(h
−1)ξ2

2
√
−τ − h−2ξ2 + Vr

− ∂rVr

2
√

−τ − h−2ξ2 + Vr
.

We use the notation:
(
∂rλ

+
1

)
1
to designate the part of ∂rλ

+
1 which is of order 1, and similarly for the

order −1. With these notations, the equation for the first order terms writes

i
(
∂rλ

+
1

)
1
+ iκrλ

+
1 + 2λ+1 λ

+
0 = ih−1(∂sh

−1)ξ.

The term of order −1
(
∂rλ

+
1

)
−1

will be considered when the terms of order −1 will be collected in the

computation of λ+−2. Hence, all the terms of each equation must be carefully studied to know their
correct order. Finally, we have

λ+0 = − i

2
κr +

i

4

(∂rh
−2)ξ2

−τ − h−2ξ2 + ih−1(∂sh−1)ξ + Vr
− i

4

h−2(∂sh
−2)ξ3

√
−τ − h−2ξ2 + ih−1(∂sh−1)ξ + Vr

3 .

We also compute λ+−1 and λ+−2 which are next evaluated at r = 0 to get the associated operators Λ̃+.
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This gives

λ̃1 = −
√

−τ − ξ2 + V , (74)

λ̃0 = − i

2
κ− i

2

κξ2

−τ − ξ2 + V
, (75)

λ̃−1 = −1

8

κ2√
−τ − ξ2 + V

− 1

2

∂sκξ

−τ − ξ2 + V
− 3

4

κ2ξ2
√

−τ − ξ2 + V
3 − 1

2

∂sκξ
3

(−τ − ξ2 + V )2

− 5

8

κ2ξ4
√
−τ − ξ2 + V

5 , (76)

λ̃−2 =
−i
4

∂nV

−τ − ξ2 + V
+
i

8

∂2sκ

τ − ξ2 + V
+
i

8

κ3

τ − ξ2 + V
+

13i

8

κ∂sκξ√
τ − ξ2 + V

3 +
i∂sV ξ√

τ − ξ2 + V
3

+
13i

8

κ3ξ2

(τ − ξ2 + V )2
+

3i∂2sκξ
2

(τ − ξ2 + V )2
+

19iκ∂sκξ
3

√
τ − ξ2 + V

5 +
5i∂2sκξ

4

(τ − ξ2 + V )3

+
27i

8

κ3ξ4

(τ − ξ2 + V )3
+

25iκ∂sκξ
5

√
τ − ξ2 + V

7 +
15i

8

κ3ξ6

(τ − ξ2 + V )4
. (77)

For the symbols (74)–(77), we get the ABCM
2 of order M , M ∈ {1, 2, 3, 4},

∂nu+ i

M−1∑

j=0

Op
(
λ̃1−j

)
u = 0, on ΣT . (78)

The next step consists in interpreting the operators Op
(
λ̃j

)
in such a way that the ABC (54) is

explicit in terms of operators. As before, we consider both the Taylor and Padé approaches.

6.2 Interpretation of the ABCs for the Taylor approach

In this approach, we consider an asymptotic expansion of the symbols λ̃1, λ̃0, λ̃−1 and λ̃−2 for large |τ |
in the E-quasi hyperbolic zone. Taking the notations (55), we get the symbols asymptotic expansions
to the order −1 in τ

(
λ̃1

)
(−1)

= −
√
−τ +

(
ξ2

2
− V

2

)
1√
−τ , (79)

(
λ̃0

)
(−1)

= − i

2
κ+

i

2

κξ2

τ
, (80)

(
λ̃−1

)
(−1)

= −1

8

κ2√
−τ +

1

2

∂sκξ

τ
, (81)

(
λ̃−2

)
(−1)

=
i

4

∂nV

τ
− i

8

∂2sκ

τ
− i

8

κ3

τ
. (82)

Then, we can write the fourth order ABC in terms of symbols

∂nu+ i

3∑

j=0

Op

((
λ̃1−j

)
(−1)

)
u = 0, on ΣT ,
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which gives

∂nu+ e−iπ/4∂
1/2
t u+

κ

2
u− eiπ/4

(
κ2

8
+

∆Σ

2
+
V

2

)
I
1/2
t u

+ i

(
∂s(κ∂s)

2
+
κ3

8
+
∂2sκ

8
− ∂nV

4

)
Itu = 0

Like for the gauge change method, we try to obtain a symmetrical ABC to get a priori estimates. We

symmetrize the two terms
V

2
and

∂nV

4
, by writing

V = sg(V )
√
|V |
√

|V |
and

∂nV = sg(∂nV )
√
|∂nV |

√
|∂nV |

The resulting ABC is denoted by ABC4
2,T . We directly have some lower order ABCs. The result is

embedded in the following proposition.

Proposition 3. In strategy II (direct method) and by using a Taylor expansion, the ABCs of order
M are given by

∂nu+ ΛM
2,Tu = 0, on ΣT , (83)

where the operators ΛM
2,T are defined on ΣT by

Λ1
2,Tu = e−iπ/4∂

1/2
t u, (84)

Λ2
2,Tu = Λ1

2,Tu+
κ

2
u, (85)

Λ3
2,Tu = Λ2

2,Tu− eiπ/4
(
κ2

8
+

∆Σ

2

)
I
1/2
t u− eiπ/4

sg(V )

2

√
|V | I1/2t

(√
|V |u

)
, (86)

Λ4
2,Tu = Λ3

2,Tu+ i

(
∂s(κ∂s)

2
+
κ3 + ∂2sκ

8

)
It u− i

sg(∂nV )

4

√
|∂nV | It

(√
|∂nV |u

)
. (87)

The boundary conditions are denoted by ABCM
2,T in the sequel.

Remark 4. Let us note the symmetrical form of Λ3
2,T and Λ4

2,T . We also obtain here the ABCs expected
from strategy zero (see subsection 4.2, Remark 1). This shows that strategy II is more general.

6.3 Interpretation of the ABCs and Padé approach

For the Padé approach, the first order ABC is obtained by retaining the first symbol λ̃1

∂nu− iOp
(√

−τ − ξ2 + V
)
u = 0 (88)

and the second order ABC by adding λ̃0

∂nu− iOp
(√

−τ − ξ2 + V
)
u+

κ

2
u+

1

2
Op

(
κξ2

−τ − ξ2 + V

)
u = 0. (89)

Since we consider the symbols globally, we retain less terms in the expansion. For implementation
issues, it is necessary to interpret the operators. We use the following approximations.
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Lemma 3. We have the following equivalences

Op
(√

−τ − ξ2 + V
)
∼
√
i∂t +∆Σ + V mod OPS−1

E (90)

and

Op

(
κξ2

−τ − ξ2 + V

)
∼ −κ (i∂t +∆Σ + V )−1∆Σ mod OPS−3

E . (91)

Proof. Let us consider the first equivalence (90). We set A =
√
i∂t +∆Σ + V which is a first order

operator in (ξ2, τ). Therefore, it admits the asymptotic expansion: σ(A) ∼
∑+∞

j=0 σ1−j , where the
symbols σ1−j are homogeneous of order 1− j, j ∈ Z. We now determine this asymptotics thanks to

A2 = i∂t +∆Σ + V = Op
(
−τ − ξ2 + V

)
. (92)

Furthermore, we have

σ(A2) =
+∞∑

|α|=0

(−i)|α|
α!

∂α(ξ,τ)σ(A)∂
α
(s,t)σ(A). (93)

Using (92) and (93), we compute the symbols σ1−j , j ∈ Z. The identification of the second order terms

leads to −τ−ξ2+V = σ21, and to the principal symbol: σ1 =
√

−τ − ξ2 + V . The identification of the
terms of order 1 gives 0 = σ1σ0 + σ0σ1, and σ0 = 0. Similarly, we have: 0 = 2σ1σ−1 + σ20 − i∂ξσ1∂sσ1
and hence σ−1 = 0. Finally, the terms of order −1 lead to 2σ1σ−2 = i∂ξσ1∂sσ1, which gives

σ−2 = − i

4

(∂sV )ξ
√
−τ − ξ2 + V

3 .

Finally, the asymptotics of A is

σ(
√
i∂t +∆Σ + V ) ∼

√
−τ − ξ2 + V − i

4

ξ∂sV√
−τ − ξ2 + V

3 + . . .

We deduce that
√

−τ − ξ2 + V is the principal symbol of A and we have

σ(
√
i∂t +∆Σ + V ) =

√
−τ − ξ2 + V mod S−1

E

and (90) at the operators level.
We proceed in a similar way to show (91) by introducing B = (i∂t +∆Σ + V )−1. This is an

operator of order −2 with a total symbol such that: σ(B) =
∑+∞

j=0 σ−2−j . Since σ(B−1) = σ(i∂t +

∆Σ + V ) = −τ − ξ2 + V , we have the identity

1 = σ(BB−1) =
+∞∑

|α|=0

(−i)|α|
α!

∂α(ξ,τ)σ(B)∂α(s,t)σ(B
−1).

The terms of order 0 give 1 = σ−2σ(B
−1) = σ−2(−τ − ξ2 + V ) and

σ−2 =
1

−τ − ξ2 + V
.
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We next obtain the equations 0 = σ−3σ(B
−1) and σ−3 = 0, then 0 = σ−4σ(B

−1), and σ−4 = 0.
Finally, the terms of order −3 lead to σ−5σ(B

−1) = i∂ξσ−2∂sσ(B
−1), and

σ−5 =
2i∂sV ξ

(−τ − ξ2 + V )3
.

We deduce the asymptotics of the inverse operator

σ
(
(i∂t +∆Σ + V )−1

)
∼ 1

−τ − ξ2 + V
+

2i∂sV ξ

(−τ − ξ2 + V )3
+ . . . .

We can now compute the asymptotics of −κ (i∂t +∆Σ + V )−1∆Σ. Function κ is independent of ξ
and τ , and so

σ
(
−κ (i∂t +∆Σ + V )−1∆Σ

)
= −κσ

(
(i∂t +∆Σ + V )−1∆Σ

)
.

By the composition formula, we can write that

−κσ
(
(i∂t +∆Σ + V )−1∆Σ

)
= − κ

+∞∑

|α|=0

(−i)|α|
α!

∂α(ξ,τ)σ
(
(i∂t +∆Σ + V )−1

)
∂α(s,t)σ (∆Σ)

= κ ξ2 σ
(
(i∂t +∆Σ + V )−1

)

since all the terms are equal to zero for |α| ≥ 1. Hence, we have

σ
(
−κ (i∂t +∆Σ + V )−1∆Σ

)
∼ κ ξ2

−τ − ξ2 + V
+

2iκ∂sV ξ
3

(−τ − ξ2 + V )3
+ . . . .

The symbol
κξ2

−τ − ξ2 + V
can finally be interpreted as the principal symbol of−κ (i∂t +∆Σ + V )−1∆Σ,

leading to (91).

From Lemma 3, we deduce ABCs for strategy II that we denote by ABCM
2,P , and which are given

in Proposition 4.

Proposition 4. In strategy II and following a Padé approach, the ABCs of order M are given by

∂nu+ ΛM
2,Pu = 0, on ΣT , (94)

where the operators ΛM
2,P are defined on ΣT by

Λ1
2,Pu = −i

√
i∂t +∆Σ + V u, (95)

Λ2
2,Pu = Λ2

2,Pu+
κ

2
u− κ

2
(i∂t +∆Σ + V )−1∆Σu. (96)

The ABCs are denoted by ABCM
2,P .

Remark 5. We saw in paragraph 3.2 that for a time independent radial potential we have the corre-
spondence between the gauge change and direct methods. It can be proved that this is the case for
the ABCs ABCM

1,P and ABCM
2,P by using the Padé approach while not for the Taylor approach where

the symmetry is broken.
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7 A priori estimates

7.1 Principle

We have four families of ABCs related to Strategy I and II, Taylor or Padé approximation. These
ABCs are given in Propositions 1, 2, 3 and 4 for ABCM

1,T , ABC
M
1,P , ABC

M
2,T and ABCM

2,P , respectively.
In [7], for the free-potential equation, ABCs have been built and correspond to strategy II with Taylor
approximation for V = 0. For these ABCs, we have the following result [7].

Proposition 5. Let u0 ∈ L2(Ω) and u solution to




(i∂t +∆u) = 0, in Ω× R
+∗,

∂nu+ TMu = 0, on Σ× R
+∗,

u(x, 0) = u0(x), in Ω,

(97)

where the operators TM are defined on Σ× R
+∗ by

T 1u = e−iπ/4∂
1/2
t u, T 2u = T 1u+

κ

2
u,

T 3u = T 2u− eiπ/4
(
κ2

8
+

∆Σ

2

)
I
1/2
t u,

T 4u = T 3u+ i

(
κ3

8
+

1

2
∂s(κ∂s) +

∂2sκ

8

)
Itu.

Then, u is unique and defined in C
(
[0;T ], L2(Ω)

)
. Moreover, u satisfies the energy inequality

∀t ∈ [0;T ], ‖u(t)‖L2(Ω) ≤ ‖u0‖L2(Ω). (98)

The idea is to generalize this Proposition to the ABCs with potential, that is ABCM
1,T or ABCM

2,T .

For ΛM
1,T and ΛM

2,T , this seems pretty simple to generalize Proposition 5 to Λ2
1,T because of the symmetry

of the operators. This is however more difficult for Λ3
1,T (and Λ4

1,T ) since we have no sign control on

i∂2sV − (∂sV)2.
For the second strategy, the operators are closer to TM since there is no change of variable. The

interesting point is to analyze if the added terms modify or not the result. For Λ1
2,T = T 1 and

Λ2
2,T = T 2, the result is direct since it does not include any potential term. The operators Λ3

2,T and

Λ4
2,T are respectively modified by terms V and ∂nV compared to T 3 and T 4. Our study will mainly

analyze these two additional terms. We will need the following Lemma [9].

Lemma 4. Let ϕ ∈ H1/4
(
[0; t], L2(Σ)

)
and ψ ∈ L2

(
[0; t], L2(Σ)

)
that we extend to zero on R \ [0; t].

Then we have
∫

R×Σ
ϕ(s, t′) ∂1/2t′ ϕ(s, t′)dt′dΣ ∈ eiπ/4R+ ∪ e−iπ/4

R
+, (99)

∫

R×Σ
ψ(s, t′) I1/2t′ ψ(s, t′)dt′dΣ ∈ eiπ/4R+ ∪ e−iπ/4

R
+, (100)

∫

R×Σ
ψ(s, t′) It′ψ(s, t

′)dt′dΣ ∈ iR. (101)
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Proof. Let τ and ξ be respectively the Fourier covariables of t′ and s and let û be the Fourier transform
of u. Let us first remark that for a general pseudodifferential operator P (s, t′, ξ, τ) with symbol
p(s, t′, ξ, τ), we have the identity

∫

R×Σ
ϕ(s, t′)P (s, t′, ∂s, ∂t)ϕ(s, t

′) dt′dΣ =

∫

R×R

p(s, t′, ξ, τ)|ϕ̂(ξ, τ)|2dτdξ. (102)

Indeed, Plancherel’s Theorem implies that
∫

R×Σ
ϕ(s, t′)Pϕ(s, t′) dt′dΣ =

∫

R×R

F (ϕ)(ξ, τ)F
(
P ϕ(s, t′)

)
(ξ, τ) dτdξ.

But, from the definition of the symbol of an operator, we have

F
(
P ϕ(s, t′)

)
(ξ, τ) = σ (P ) ϕ̂(ξ, τ) = p(s, t′, ξ, τ)ϕ̂(ξ, τ),

and so (102)
∫

R×Σ
ϕ(s, t′)Pϕ(s, t′) dt′dΣ =

∫

R×R

ϕ̂(ξ, τ)p(s, t′, ξ, τ)ϕ̂(ξ, τ) dt′dΣ =

∫

R×R

p(s, t′, ξ, τ)|ϕ̂(ξ, τ)|2dτdξ.

We next apply this result to ∂
1/2
t′ with symbol

√
iτ . We must determine the part of the complex plane in

which this symbol lies. For positive τ we have
√
iτ = eiπ/4

√
τ , and for negative τ ,

√
iτ = e−iπ/4

√
−τ ,

leading to the expected property (99). A very similar proof gives the result for I
1/2
t′ et It′ with

respective symbols σ(I
1/2
t′ ) = 1√

iτ
and σ (It′) =

1
iτ .

Lemma 4 is the basic ingredient to derive a priori estimates for ABCM
1,T and ABCM

2,T .

Remark 6. The Padé based ABCs will not be considered here. We cannot apply our proof and more
developments should be considered.

7.2 A priori estimates for ABCM
2,T

Concerning the family of ABCs ABCM
2,T , the following result holds.

Theorem 2. Let u0 ∈ L2(Ω) an initial data with compact support in Ω. Let V ∈ C∞(R2 ×R
+,R) be

a real-valued potential. We denote by u a solution to the initial boundary value problem




i∂tu+∆u+ V u = 0, in ΩT ,

∂nu+ ΛM
2,Tu = 0, on ΣT ,

u(x, 0) = u0(x), in Ω

(103)

where the operators ΛM
2,T , M ∈ {1, 2, 3, 4}, are defined in Proposition 3. Then, u satisfies the inequality

∀t > 0, ‖u(t)‖L2(Ω) ≤ ‖u0‖L2(Ω) (104)

for M = 1 and M = 2. Moreover, this inequality is also satisfied for M = 3 under the assumption
that V is positive on Σ, and for M = 4 under the hypothesis that sg(∂nV ) is constant over Σ for any
time. In particular, this implies the uniqueness of the solution u of the initial boundary value problem
(103).
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Proof. Let T̃ ∈]0;T ]. Let us introduce x = (x, y) ∈ R
2. We begin by extending u to a function ũ

defined over R in the following way

ũ(·, t) =
{
u(·, t) for t ∈ [0; T̃ ]

0 for t ∈]−∞; 0[∪]T̃ ; +∞[.

In the distributions sense, we obtain

∂tũ(x, t) =

{
∂tu(x, t)− u(x, T̃ )δT̃ (t) + u0(x)δ0(t), t ∈ [0; T̃ ]

0, t ∈]−∞; 0[∪]T̃ ; +∞[

∆ũ(x, t) =

{
∆u(x, t), t ∈ [0; T̃ ]

0, t ∈]−∞; 0[∪]T̃ ; +∞[

∂nũ+ ΛM
2,T ũ = 0.

The function ũ satisfies the equation

i∂tũ+∆ũ+ V ũ = −iu(x, T̃ )δT̃ + iu0(x)δ0(t), on Ω× R

Multiplying this equation by −iũ(x, t), we get

ũ∂tũ− iũ∆ũ− iũV ũ = −u(x, T̃ )ũδT̃ (t) + u0(x)ũδ0(t).

We integrate by part over Ω

∫

Ω
ũ∂tũ dΩ− i

∫

Σ
ũ ∂nũ dΣ+ i

∫

Ω
|∇ũ|2dΩ− i

∫

Ω
V |ũ|2dΩ

= −
∫

Ω
u(x, T̃ )ũ δT̃ (t)dΩ+

∫

Ω
u0(x)ũ δ0(t)dΩ (105)

and next take the real part of this expression by assuming that V is a real-valued potential

∫

Ω
∂t
|ũ|2
2
dΩ− Re

(
i

∫

Σ
∂nũũ dΣ

)
= −Re

(∫

Ω
u(x, T̃ )ũδT̃ (t)dΩ

)
+Re

(∫

Ω
u0(x)ũδ0(t)dΩ

)
(106)

We integrate on t ∈ R. The terms in the left hand side give
∫

R

∫

Ω
u(x, T̃ )ũ(x, t)δT̃ (t)dΩdt =

∫

Ω
u(x, T̃ )

∫

R

ũ(x, t)δT̃ (t)dtdΩ =

∫

Ω
u(x, T̃ )ũ(x, T̃ )dΩ = ‖u(T̃ )‖2L2(Ω)

since ũ(x, T̃ ) = u(x, T̃ ), and
∫

R

∫

Ω
u0(x)ũ(x, t)δ0(t)dΩdt =

∫

Ω
u0(x)ũ(x, 0) dΩ = ‖u0‖2L2(Ω),

because ũ(x, 0) = u(x, 0) = u0(x). Furthermore, since ũ is zero at ±∞, we have

∫

Ω

∫

R

∂t
|ũ|2
2
dtdΩ =

∫

Ω

[ |ũ(x, t)|2
2

]+∞

−∞
= 0.
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Finally, after a time integration of (106), we obtain

Re

(
i

∫

Σ×R

ũ ∂nũ dΣdt

)
= ‖u(T̃ )‖2L2(Ω) − ‖u0‖2L2(Ω) (107)

for any T̃ ∈ [0;T ], and where ∂nũ is given by the chosen boundary condition. For the sake of
conciseness, we note u instead of ũ, having in mind that u is equal to zero outside [0; T̃ ].

Let us first begin by ABC2
2,T given by the operator (85). We have to analyze the sign of the real

part of the two following terms
∫

Σ×R

iu ∂nu dΣdt = −ie−iπ/4

∫

Σ×R

u ∂
1/2
t u dΣdt− i

2

∫

Σ×R

κ |u|2 dΣdt. (108)

To this end we use the identity (102). We have

−ie−iπ/4

∫

Σ×R

u ∂
1/2
t u dΣdt = −ie−iπ/4

∫

R×R

|û(ξ, τ)|2σ(∂1/2t )dξdτ.

However, σ(∂
1/2
t ) =

√
iτ which varies in e−iπ/4

R
+ ∪ eiπ/4R+ for τ in R, implies that the real part

of (108) is negative. Since the second term is purely imaginary, (104) is proved for the second order
ABC.

We consider now the fourth order ABC ABC4
2,T given by the operator (87). The boundary condition

can be decomposed in seven terms Aj , 1 ≤ j ≤ 7, as follows

∫

Σ×R

iu∂nu dΣdt =

∫

Σ×R

(
−ie−iπ/4u∂

1/2
t u+ ieiπ/4u

∆Σ

2
I
1/2
t u

)
dΣdt− i

2

∫

Σ×R

κ |u|2 dΣdt

+ ieiπ/4
∫

Σ×R

κ2

8
u I

1/2
t u dΣdt+ ieiπ/4

∫

Σ×R

sg(V )

2

√
|V |u I1/2t

(√
|V |u

)
dΣdt

− 1

2

∫

Σ×R

u ∂s(κ∂s)Itu dtΣdt+

∫

Σ×R

κ3 + ∂2sκ

8
u Itu dΣdt

−
∫

Σ×R

sg(∂nV )

4

√
|∂nV |u It

(√
|∂nV |u

)
dΣdt

=

7∑

j=1

Aj .

(109)
Therefore, we have to study the sign of the real part of each term. We use several times the identity
(102). We have

A1 =

∫

R×R

|û(ξ, τ)|2σ
(
−ie−iπ/4∂

1/2
t + ieiπ/4

∆Σ

2
I
1/2
t

)
dξdτ.

Furthermore, we also can write that

a1(ξ, τ) := σ

(
−ie−iπ/4∂

1/2
t + ieiπ/4

∆Σ

2
I
1/2
t

)
=

−i
2

(
2e−iπ/4

√
iτ + eiπ/4

ξ2√
iτ

)
.
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For τ > 0, we have
√
iτ = eiπ/4

√
τ and so

a1(ξ, τ) =
−i
2

(
2
√
τ +

ξ2√
τ

)
.

The symbol a1(ξ, τ) is then a pure imaginary number in this case. For τ < 0, we write
√
iτ =

e−iπ/4
√
−τ and we have

a1(ξ, τ) =
−i
2

(
−2i

√
−τ + i

ξ2√
−τ

)
= −

√
−τ + 1

2

ξ2√
−τ =

1

2
√
−τ

(
τ + τ + ξ2

)
.

However, we work in the E-quasi hyperbolic zone H in which τ + ξ2 < 0. As a consequence, the
real number a1(ξ, τ) satisfies a1(ξ, τ) <

τ
2
√
−τ

< 0 and its real part is negative. Finally, we have

Re(A1) ≤ 0. The term A2 is purely imaginary. The term A3 fulfills

A3 = ieiπ/4
∫

R×R

|û(ξ, τ)|2a3(ξ, τ)dξdτ,

where

a3(ξ, τ) = σ

(
κ2

8
I
1/2
t

)
=
κ2

8

1√
iτ

∈ eiπ/4R+ ∪ e−iπ/4
R
+.

We deduce that A3 varies in R
− ∪ iR+ and so has a real negative part. Since we assume that V

remains positive over Σ, and then sg(V ) is equal to 1, we can write A4 by applying the Plancherel’s
identity in time

A4 = ieiπ/4
∫

Σ

1

2

∫

R

√
|V |u I1/2t

(√
|V |u

)
dtdΣ,

= ieiπ/4
∫

Σ

1

2

∫

R

∣∣∣Ft(
√

|V |u)
∣∣∣
2
(s, τ)

1√
iτ
dτdΣ.

Here, we apply Lemma 4 but only working on the time integral and taking the time Fourier transform.
The integral over τ varies in eiπ/4R+ ∪ e−iπ/4

R
+, and so A4 ∈ R

− ∪ iR+ and A4 has a negative real
part.

The next three additional terms are related to the fourth order ABC. Under the assumption on
∂nV , we show that they are all purely imaginary. The first one, A5, is treated by a integration by
part over the closed curve Σ and by using the commutativity of It and ∂s

∫

Σ
u ∂s(κ∂sItu) dΣ = −

∫

Σ
∂suκ∂sItu dΣ = −

∫

Σ
∂suκ It(∂su) dΣ

and then

A5 =
1

2

∫

Σ×R

∂suκIt (∂su) dΣdt =
1

2

∫

R×R

∣∣∣∂̂su(ξ, τ)
∣∣∣
2 κ

iτ
dξdτ.

Since κ is a real number, the term A5 is a pure imaginary number. The term A6 is also purely
imaginary since

A6 =

∫

R×R

|û(ξ, τ)|2κ
3 + ∂2sκ

8

1

iτ
dξdτ.
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Finally, for A7 we consider the time integral

A7 = −
∫

Σ

sg(∂nV )

4

∫

R

√
|∂nV |u It

(√
|∂nV |u

)
dtdΣ

= −
∫

Σ

sg(∂nV )

4

∫

R

∣∣∣Ft(
√
|∂nV |u)(s, τ)

∣∣∣
2 1

iτ
dτdΣ

which is purely imaginary. Finally, we have

Re

(
i

∫

Σ×R

ũ ∂nũ dΣdt

)
≤ 0,

and then, for any time T̃ ∈ [0;T ], ‖u(T̃ )‖L2(Ω) ≤ ‖u0‖L2(Ω), ending hence the proof for M = 4.
To get the result for the third order ABC, we do not consider A5, A6 and A7.

7.3 A priori estimates for ABCM
1,T

We have the following results for the family of ABCs ABCM
1,T .

Theorem 3. Let u0 ∈ L2(Ω) an initial data with compact support in Ω. Let V ∈ C∞(R2 ×R
+,R) be

a real-valued potential. We denote by u a solution to the initial boundary value problem





i∂tu+∆u+ V u = 0, in ΩT ,

∂nu+ ΛM
1,Tu = 0, on ΣT ,

u(x, 0) = u0(x), in Ω

(110)

where the operators ΛM
1,T , M ∈ {2, 3, 4} are defined in Proposition 1. Then, u satisfies the energy

inequality
∀t > 0, ‖u(t)‖L2(Ω) ≤ ‖u0‖L2(Ω) (111)

for M = 2. Furthermore, if V a a radial potential: V (r, s, t) = V (r, t), then the energy inequality
(111) is also satisfied for M = 3 and M = 4 if we assume that sg(∂nV ) is time independent over Σ.
In particular, this implies the uniqueness of the solution u of the initial boundary value problem (110).

Proof. We first consider the second-order boundary condition for a general potential V (r, s, t). The
beginning of the proof is the same as in Theorem 3, until the equality (107). We consider now the
boundary condition ABC2

1,T given by the operator (61). We get

∫

Σ×R

iu∂nu dΣdt = −ie−iπ/4

∫

Σ×R

eiVu ∂1/2t

(
e−iVu

)
dΣdt− i

2

∫

Σ×R

κ|u|2dΣdt. (112)

The second term is clearly purely imaginary. The first term can be written as

−ie−iπ/4

∫

Σ×R

eiVu ∂1/2t

(
e−iVu

)
dΣdt = −ie−iπ/4

∫

R×R

∣∣F(s,t)(e
−iVu)(ξ, τ)

∣∣2√iτ dξdτ

and so varies in R
− ∪ iR−, which ends the proof for M = 2.
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Let us assume now that V = V (r, t) is a radial potential. Then the phase function V is also radial.
The operator Λ2

1,T remains unchanged but since ∂sV = 0, the operators Λ3
1,T and Λ4

1,T respectively
write down

Λ3
1,Tu = Λ2

1,Tu− eiπ/4eiV
(
κ2

8
+

∆Σ

2

)
I
1/2
t

(
e−iVu

)
,

Λ4
1,Tu = Λ3

1,Tu+ ieiV
(
∂s(κ∂s)

2
+
κ3 + ∂2sκ

8

)
It
(
e−iVu

)
− i

4
sg(∂nV )

√
|∂nV | eiVIt

(√
|∂nV | e−iVu

)
,

by using the symmetric form of Λ4
1,T . The third order boundary condition considers the additional

terms
∫

Σ×R

iu∂nu dΣdt =

∫

Σ×R

(
−ie−iπ/4eiVu ∂1/2t

(
e−iVu

)
+ ieiπ/4eiVu

∆Σ

2
I
1/2
t

(
e−iVu

))
dΣdt

− i

2

∫

Σ×R

κ|u|2dΣdt+ ieiπ/4
∫

Σ×R

κ2

8
eiVu I1/2t

(
e−iVu

)
dΣdt.

(113)

The first term can be treated in a similar way as ABCM
2,T and the second one is purely imaginary.

Finally, the third term is analyzed as before. Then, we only obtain some terms with a negative or null
real part for the third order ABC. Let us now consider the fourth order ABC for radial potentials.
We must study the sign of the additional terms

−
∫

Σ×R

1

2
eiVu ∂s(κ∂s)It

(
e−iVu

)
dΣdt−

∫

Σ×R

eiVu
κ3 + ∂2sκ

8
It
(
e−iVu

)
dΣdt

+

∫

Σ×R

1

4
sg(∂nV )eiV

√
|∂nV |u It

(
e−iV√|∂nV |u

)
dΣdt

(114)

These three terms can be treated as for ABC4
2,T : the first one by integration by part over Σ, and next

applying the identity (102) after using the assumption over sg(∂nV ) which is time independent. This
ends the proof for M = 4.

Remark 7. Let us remark that the results cannot be extended to M ≥ 3 when the potential is not
radial. Indeed, we then have to study the sign of the real part of the terms

−eiπ/4
∫

R×R

∣∣F (e−iVu)(ξ, τ)
∣∣2 (∂sV)

iξ√
iτ
dξdτ

and

ieiπ/4
∫

R×R

∣∣F (e−iVu)(ξ, τ)
∣∣2 (i∂2sV − (∂sV)2)

1√
iτ
dξdτ.

However, the symbol (∂sV) iξ√
iτ

varies in eiπ/4R ∪ e−iπ/4
R without restricting the lines to half-lines

studies since ξ describes R and has no fixed sign. Consequently the first integral takes values in R× iR
and its real part may be either positive or negative. The same problem arises for the second integral
(i∂2sV − (∂sV)2) which is complex. Therefore, estimates can only be obtained for radial potentials for
ABCs of order 3 or higher in which case these two integrals vanish.
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8 Conclusion

We proposed the construction of absorbing boundary conditions for the two-dimensional Schrödinger
equation with a general potential and for a curved convex fictitious boundary. We essentially obtained
four families of ABCs according to strategy I (gauge change) or II (direct method), with a Taylor
expansion or a Padé approach. The discretization schemes of these ABCs will be introduced and
analyzed in a forthcoming paper [6]. Furthermore, numerical examples will show how these ABCs
compare.
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