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SYMMETRIC EXCITED STATES FOR A MEAN-FIELD MODEL
FOR A NUCLEON

LOIC LE TREUST! AND SIMONA ROTA NODARI?

ABSTRACT. In this paper, we consider a stationary model for a nucleon inter-
acting with the w and o mesons in the atomic nucleus. The model is relativis-
tic, and we study it in a nuclear physics nonrelativistic limit. By a shooting
method, we prove the existence of infinitely many solutions with a given an-
gular momentum. These solutions are ordered by the number of nodes of each
component.
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1. INTRODUCTION

This article is concerned with the existence of excited states for a stationary
relativistic mean-field model for atomic nuclei in the nuclear physics nonrelativistic
limit. To our knowledge, this model was first studied by Esteban and Rota Nodari;
in two recent papers [4, 5], the authors showed the existence of so-called ground
states (see [4] for more details about the definition of ground states).

As the authors formally derived in [5], the equations of the model are given, in
the case of a single nucleon, by

io - Vx + |[xI*¢ — alp|*o + bp = 0,
—io-Vo+ (1-]¢’) x =0,

with a and b two positive parameters linked to the coupling constants and the
nucleon’s and mesons’ masses. This system is the nuclear physics nonrelativistic

(1.1)
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2 L. LE TREUST AND S. ROTA NODARI

limit of the o-w relativistic mean-field model ([7, 8]) in the case of a single nucleon.
We remind that o is the vector of Pauli matrices (01, 02, 03), and ¢, x : R® — C2.
As in [5], we look for solutions of (1.1) in the particular form

(1.2)

(ﬂx)) o) ((1)>
- cos v
if(r) ( sin ﬁeid’)

where f and g are real valued radial functions and (r, 9, ¢) are the spherical coor-
dinates of z. The system (1.1) then turns to a nonautonomous planar differential
system which is

2
f2f=9(f? — ag® +b),
g =f1-g).
In order to avoid solutions with singularities at the origin, we impose f(0) = 0,

and, since we are interested in finite energy solutions of (1.1), we seek solutions of
(1.3) that are localized i.e. solutions which fulfill

(1.4) (f(r), g(r)) — (0,0) as r — +oo.

In [5, Proposition 2.1], Esteban and Rota Nodari showed that there is no non-
trivial solution of (1.3) such that (1.4) is satisfied unless a —2b > 0. Hence, in what
follows, we assume a — 2b > 0.

For every given x, there exists a local solution (fy,g.) of

(1.3)

F4 2 =gl ag® + ),
(15) g =710-9,

f(0) =0, g(0) = .
The problem is to find x, such that the corresponding solution is global (i.e. defined
for all » > 0), and satisfies (1.4).

In [5, Proposition 2.1], Esteban and Rota Nodari proved that if (f,, g.) is a solu-
tion of (1.5) satisfying (1.4) then g2(r) < 1, for all r in [0, +00). So, in particular,
x = g,(0) must be chosen such that 22 < 1. This creates additional difficulties to
deal with.

Since the system of equations (1.3) is symmetric with respect to 0, we study
the problem (1.5) with « € [0,1). Moreover, let us remark that if = 0 then
(fz,92)(r) =(0,0) for all » > 0 is the unique solution of (1.5).

In [5], the authors proved the existence of a global localized solution (f,g,) of
(1.5) such that f,(r) < 0 < g,(r) for all r € (0,400). In this paper, we generalize
this results by showing the existence of global localized solutions with any given
number of nodes. Our main result is the following.

Theorem 1.1. Assume a > 2b > 0. There exists an increasing sequence {Ty}r>o0
in (0,1) with the following properties. For every k >0,

(1) the solution (fu,,gz,) of (1.5) is a global solution;

(2) both fr, and g, have exactly k zeros on (0,+00);

(3) (frs9z,) converges exponentially to (0,0) as r — +o00.
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This theorem is the first result of existence of excited state solutions for the
model studied in [5, 4] for which Esteban and Rota Nodari proved the existence of
a ground state solution.

Our theorem is similar to the result obtained by Balabane, Cazenave, Douady
and Merle ([1]) for a nonlinear Dirac equation. Our proof is based on a shooting
method inspired by the one used by Balabane, Dolbeault and Ounaies ([2]).

In [1], the authors proved the existence of infinitely many stationary states for a
nonlinear Dirac equation. More precisely, they showed the existence of a bounded
increasing sequence of positive initial data {xy }, such that the associated solutions
are global and each component has k nodes.

In [2], thanks to some estimations on the energy decay and the rotation speed,
the authors proved the existence of infinitely many solutions for a sublinear elliptic
equation. As in [1], they showed the existence of an increasing sequence of initial
data {zy }r such that the associated solutions are radial, compactly supported and
have exactly k nodes.

As we remarked above, the first difficulty to deal with here is that, to obtain a
localized solution, the initial condition z must be chosen in (0,1). Moreover, we
are looking for solutions such that each component has exactly k zeros on (0, 4+00).

Usually in a shooting method, the localized solution with k& nodes is obtained
taking the solution whose initial data x is the supremum of a well-chosen open
subset of {x : g, has k zeros}. Hence, the main difficulty of our shooting method
is to prove that for any k£ € N, there exists € > 0 such that

{z €(0,1): g, has k zeros} C (0,1 —¢).

To do this, we have to give some accurate estimations on the behavior of the solution
when the initial condition x becomes close to 1. The presence of four rest points
(£va — b, 1) in the Hamiltonian system

16) fr=9(f* — ag® +b)

g =f1-g*
associated with the system (1.3), makes this study difficult. Indeed, we would like
to control the solutions (fy,g.) thanks to the continuity of the flow comparing
(fz,9z) to (f1,91) whenever x is close enough to 1. The problem is that (fi,¢91)
tends to the rest point (—v/a — b, 1) of the system (1.6). Thus, (f,,g.) stay in a
neighborhood of (—v/a — b, 1) a very long time if z is sufficiently close to 1. Since
(f1,91) does not wind around (0, 0), it is hopeless to get estimations on the speed
of rotations of (fy, g,) around (0,0) as in [2]. Hence, we introduce another strategy
to prove that (fz,g,) winds around (0, 0).

First of all, we prove that (f;,g.) exits the neighborhoods of (—va —b,1) at
finite time, possibly very large. Next, we want to control the position of (fs,g.)
when this occurs. To do this, we introduce the so-called Hamiltonian regularization.
More precisely, we replace the system (1.3) by the Hamiltonian ones (1.6) in a
neighborhood of the points (£+v/a — b, £1) (see Figure 1). Then, we can use the
qualitative properties of the solutions of the Hamiltonian system (1.6) to know the
position of the solution when it exits the neighborhood of (—v/a — b,1). Finally, we
iterate the reasoning to prove that if = is sufficiently close to 1, then g, has more
than k zeros.
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The idea of the Hamiltonian regularization is inspired by the proof of Le Treust
in [6]. In this paper, the author proved the existence of infinitely many compactly
supported nodal solutions of a Dirac equation with singular nonlinearity. The main
problem encountered is that the nonlinearity is singular and the main theorems
of ODE fail to show local existence and uniqueness. To overcome this, Le Treust
used a regularization by a Hamiltonian system whenever the problems occur. The
advantage of such a regularization is that it gives a better control of the regularized
solutions while keeping true some qualitative properties of the solutions of the non-
autonomous system of equation.

In section 2, we introduce the regularized system and we prove the existence of
nodal localized solutions of the regularized problem assuming some key lemmas. In
the next section, we prove these lemmas. In section 4, we show that the localized
nodal solutions of the original system (1.3) can be obtained as limits of nodal
localized solutions of the regularized system. Finally, in the appendix, we give
some useful properties of the Hamiltonian energy associated to the system.

2. THE REGULARIZED PROBLEM AND THE SHOOTING METHOD

—0A

= (Va- )

—f=x(Va—b-n)

I Hamiltonian System

[ JH<0

FIGURE 1. Regularized System

2.1. Construction of the regularized problem. Let

@:(nafag>€ <07Va_b_\/§> X[_Va_bvVa_b]XR’_)@n(fag)e[Oal]
be a smooth function on

(o,m@%(m,m)x@
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such that for all (f,g) € R?, alln € (0,vVa—b— /%)

eolfa) =l ={ § A2 Vet

Consider the system of equations

o g 2D g g2 ag ),
g/ = f(l - 92)7
and the Cauchy problem
g 2D (g ag? v,
(22) g =10-g,

£(0) =0, g(0) = .
We denote by (fz,n: gaz,y) the solutions to problem (2.2).

Remark 2.1. When 1 > 0, in the neighborhood of the four points (++v/a — b, +1),
the system of equations (2.1) becomes the following autonomous one

fro=9(f*—ag® +b),
1.6
(16) { g =f-g%.
This system is a Hamiltonian system associated with the energy
1 a b
(2.3) H(f,9) = 50— 9" + 79" = 59°

Remark 2.2. The behavior of the solutions of (1.6) is easier to understand than the
one of the solutions of (1.3). This is actually the reason why we introduce such a
Hamiltonian regularization in the neighborhood of the saddle points (+v/a — b, 1)
of H.

2.2. Properties of the regularized system. We fix n € (0,va — b — \/g)
We begin by studying the existence and the uniqueness of the solutions of (2.1).

Lemma 2.3. Let + € R. For any a,b > 0, there is 7, > 0 and (fr,9zn) €
C* ([0,7,],R?) unique solution of (2.1) satisfying fzn(0) =0, gz,(0) = z. More-
over, (fz.n,gz,n) can be extended on a maximal interval [0, R, ;) with either R, , =
+00 or Ry < +oo and lim, g, , |fen| + |92, = +oo. Furthermore, (fun,gzn)
depends continuously on x and n, uniformly on [0, R] for any R < R .

Proof. As in [3], it is enough to write
fr) = % /T s29(s)(f2(s) — ag?(s) +b) + 25(1 — 0y (f(5), 9(5))) f (s) ds ,

o(r) =+ / " F(s)(1 - g(s)) ds

and note that the right hand side of (2.1) is a Lipschitz continuous function of
(f,9)- The lemma follows from a classical contraction mapping argument. O

Next, we define A = {(fo,g0) € R?|2f2 —agd — (a —2b) <0, g3 < 1}, the set of
admissible points.
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Remark. If g3 < 1, (fo,g0) € A if and only if H(fy,g0) < H(0,1) = 222 (see
Figure 1).

A key property of the solutions of the system (2.1) is the behavior of the energy
H along the trajectories of the solutions as stated in the following lemma.

Lemma 2.4. Let v € R and a,b > 0. Then for any r € [0, R, ) we have
d 2y (f: 2 Yz, )
S H ([ o)) = — 22zl g2 g2 ),
Remark 2.5. Let us remark that this property which is true for the non-regularized

system (1.3) is also true for the regularized one thanks to our choice of regulariza-
tion.

Proof. The proof is a straightforward calculation. O

Next, we prove a result that ensures that for all € (0, 1) the solutions (fz 1, gz,1)
are global and live in A.

Lemma 2.6. Let a,b > 0 such that a —2b > 0 and let (fz,5, gz.n) be the solution
of (2.1) satisfying fr,(0) = 0, gz y(0) = x. If2® < 1, then g3 (r) < 1 and
%7,7(7“) <a—"b forallrel0,R;,) and R, , = +00. Moz‘eover, (fom> 9am)(r) € A,
for allr € [0,+00) and if 2% < 1, then (fr, Gun)(r) € A for all v € [0, +00).
Lemma 2.6 can be proved as in [5] using the monotonicity properties of the
energy. For the reader’s convenience, we rewrite the proof here.

a4 _ b2
aT 5T, the

facts that F(z) <0 in {—1/?,1/?] and |/2 < 1 to show that F(z) < F(1) for

all x such that 22 < 1.

Let g,.,(0) = x such that 2? < 1 and suppose, by contradiction, that there exists
ro such that g2, (ro) = 1 and g2, (r) < 1 for all r € [0,70). As a consequence of
Lemma 2.4, the energy H(fq.n, gz,n)(r) is non-increasing on [0, rp), that means

H(O,) > H(fa g2.0)(r0) , or equivalently, F(z) > F(1),
The above inequality contradicts the properties of F. As a conclusion, gg’n(r) <1

for all r € [0, Ry ;).
Then, applying Lemma 2.4, we obtain that the energy is non-increasing. Thus,

H(famsgo)(r) < H(0,2) < 220

and by the remark following the definition of the set A, (fu.y,gun)(r) € A and
%7,7(7“) <a-—b,forallre0,R,,). In particular, R, , = +00. The case x = £1 is
straightforward. O

Proof. First of all, we use the monotonicity of the function F(x) =

, Vre0,Rey),

Remark 2.7. As a consequence of Lemma 2.4 and Lemma 2.6, if 2 < 1, the energy
H(fz,mgr,n)(r) is non-increasing on [0, +00).

Then, we state the following perturbation result.

Lemma 2.8. Let (f,9) € A. Let (f,g) be the solution of (1.6) with initial data
(f,g). Let (f™,g") € A and p,, be such that
(f".g") = (f,9).

lim p, =400 and lim
n—-4oo n—-4o0o
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Let (£}, gy) be a solution of
200 ("5 9"
() 4+ ZEATLI) (532 — al)? )
pntT
(g") = f"(1-(g")?*)
such that f(0) = f, g"(0) = §". Then
(1) (fy,gy) is defined on [0, +00),
(2) (fi}gy) converges to (f,g) uniformly on bounded intervals.
The proof of this lemma is a straightforward modification of the proof of [5,
Lemma 3.2].

Next, we introduce the following definition to count the number of times that
the solutions cross the set {g = 0}.

Definition 2.9. We say that a continuous function g defined on an interval [
changes sign at ro € I if g(r9) = 0 and there exists ¢ > 0 such that [ro—e, ro+¢] C I,
g(ro —€)g(ro +¢) < 0 and g(ro —r)g(ro +7) <0

for all r € (0, ¢).

Remark 2.10. Let (fz,,, gz,n) be a nontrivial solution of (2.2) with € (0,1). Then,

9a,n changes sign at 0 < r¢g < 4o0 if and only if g,,, vanishes at 0 < ry < 4-o0.
Indeed, since (fz,,9zn) is a nontrivial solution and ro < 400, fz,(ro) # 0.

Hence, g, , (r0) = fan(r0)(1 = gan(r0)?) # 0 and g, , changes sign at ro.

Finally, we state the following lemma which gives us an important qualitative
property of the solutions of the system (2.1).

Lemma 2.11. Let ¢ € (0,1). If (fa:92,n) i a solution of (2.2) such that g, ,
changes sign a finite number of times and

lim H(fm,naga:,n)(r) 2 07

r—+00
then, for all T > 0,
(2.4) [fem (1) 4 192 (r)] < Cexp(=Kapr)
with K, p = min {g, 2‘%”} and C' a positive constant.
In particular, we get
(2.5) Tl}r_{loo(fz,mgw,n)(r) = (0,0).
Proof. First of all, we remark that if lim g¢g,(r) = J, then |6] # 1. Moreover,

r——4o00
if § # 0 then (fs,,,gz,n) tends either to (0, \/g) or to (0, —\/g) as r goes to +oo.
Indeed, suppose by contradiction that § = +1, then

lim H(fm,na gm,n)(’r) = H(O’ 1)’

r——4o00

which contradicts the monotonicity of H (Lemma 2.4) since H(0,z) < H(0,1) and
x € (0,1). Hence, —1 < ¢ < 1. Next, suppose 6 # 0 and let {r,}, be a sequence

such that lim 7, = +oo and lim f,,(r,) = k for some k € R. Let (u,v)
n—-+oo n—-+4oo

be the solution of (1.6) with initial data (k,0). It follows from Lemma 2.8 that
(fon(Tn=++), goy(rn+-)) converges uniformly to (u,v) on bounded intervals. Since,
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lim g, ,(r, +7) =0 for any r > 0, we have v(r) = ¢ € (—1,0) U (0,1) for any

n—-+oo
r > 0. Hence, from the second equation of (1.6), we obtain u(r) = 0 for all r > 0.
This means that (u, v) is an equilibrium point of (1.6), and, since § € (—1,0)U(0, 1),

this implies k =0 and § = + g As a conclusion, f,, converges as r goes to 400,

. _ b
TEIJPOC(fm,nagm,TI)(r) - (07:|:\/:) and

. b
TEIEOO H(fz,nvgw,ﬂ)<r) =H <O’ \/;> <0

Next, we claim that, if g, , changes sign a finite number of times and
i H(fe g ge)(r) 20,

then there exists R < +oo such that

® or guy(r) >0 and f,,(r) <0 forall v > R,
e or g, ,(r) <0and f,,(r) >0 for all » > R.

Indeed, by Remark 2.10, if g, , changes sign a finite number of times, then g, ,
vanishes a finite number of times and there exists R < +oco such that g, ,(r) > 0
Or ggn(r) < 0 for all > R. Thanks to the symmetries of the problem, we can
suppose w.l.o.g. that g, ,(r) > 0 for all r > R.

Hence, it remains to prove that there exists R < R < +oc such that f, ,(r) <0
for all r > R. We proceed as follows : first we prove that we cannot have f, ,(r) > 0
for all » > R and second we show that f, , vanishes at most once in [R, +00).
Step 1. Suppose, by contradiction, that f, ,(r) > 0 for all » > R. This implies that
9a,n(r) is increasing for all r > R and TEIJPOO Gzm(r) =0 with 0 <6 < 1.

Hence, as we proved above, we have lim (fsz.,02.,)() = (0, b) and
r—+400

. b
rgr—‘,r-loo H(fm,m gai,n)(r) - H <07 \/;

which contradicts the fact that lim H(fz, gen)(r) >

(see Remark 2.12 for an
r—+00

alternative proof).

As a consequence, there exists R < R < +oo such that f;w](R) = 0. Let us
remark moreover that for such a R, we have f:;w(R) <0.
Step 2. Suppose next, by contradiction, that there exist a positive constant R’ such
that R < R < R’ < +00, fon(R') =0and f,,(r) <0on (R, R'). Since f,, has to

be nonnegative in a neighborhood of R’, we can conclude that 0 < g, ,(R') < \/g .
Hence,
lim H(fx,mg:c,n)(r) < H(Oagx,n(R,)) <0

r—4o0
which contradicts the fact that lirf H(fems 9an)(r) > 0.
T—>+00

As a conclusion, there exists R < 400 such that g, ,(r) >0 and f;,(r) <0 for
all r > R. This implies that g, ,(r) is decreasing for all > R and Eg_fl Gop(r) =10
T o0

with 0 < 6 < 1. We claim that § = 0. Indeed, suppose by contradiction, § # 0. As
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above, we obtain liI+n (f.n Gom) (1) = (0, Z) and
r—+00

i b
i H(fag, gan)(r) = H <o7 f

which contradicts the fact that ligl H(fems 9om)(r) > 0 (see Remark 2.12 for an
r—r+00

alternative proof).
Hence, liﬂr_l gam(r) =0and g7, (r) < £ for r large enough. Considering (2.1),
r—400 ’ a

230 (f-,mg,) b 2(17[)
£, > _wfm + 590 Gon < 5 fean

Thus, for r large enough,

(goc,n - fa:,n)/ + Ka,b(gx,n - f%n) <0,

with K, = min {2, 22=2} . Integrating the above equation, we obtain

[fon ()] + 192 (r)] < C exp(=Kqpr)

for all » > 0 with C > 0.
With exactly the same arguments, we treat the case g, ,(r) < Oforallr > R. O

Remark 2.12. The proof is very similar to the one of [5, Lemma 3.4]. With the
same arguments of [5, Proof of Lemma 3.4], we can prove that if € (0,1) and
(f2.m> 92,n) is a solution of (2.2) such that

b
Tginoo(fwm’gxﬁ?)(r) = (O’i\/;> ’

then f, , has infinitely many zeros.
This property is equivalent to the fact that (fz,,, g»,,) cannot tend to (07 iﬁ) ,

while being in one of the half-planes {f > 0} or {f < 0}.
This remark allows us to prove in an alternative way that if g, ,(r) > 0 for all
r > R, then f, , has to vanish at least once in (R, +00) without using the fact that
lim H(fzn, 9en)(r) >0 (Step 1 of the proof of Lemma 2.11).

400 =
Moreover, it proves also that if g, ,(r) > 0 and f; ,(r) < 0 for all 7 > R, then
hIJP (fems 9z.n)(r) = (0,0) without using lir+n H(fz.n,92,)(r) > 0 (end of the
r—400 r—+o0

proof of Lemma 2.11).

2.3. The shooting method. Following [2], we define I_; = ) and, for k € N and
n € (0,Va—b— /%) fixed,

A ={z €(0,1): TLigrnooH(fzm,gzm)(r) < 0, gz, changes sign k times on R1},

Iy ={x €(0,1): Um (fr,7gzn)(r) = (0,0),gs, changes sign k times on R}

li
r—4o0
(see Figure 2).

Remark 2.13. By Lemma 2.6, we get that (fs.,, gz,n)(r) € A for all  whenever z €
[0,1]. Remark 2.7 ensures then that EI_P H(fems 9on)(r) exists for all z € [0, 1].
T o0
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g g
X1 T2
f f
g
T3
@ ..
f

FIGURE 2. x1 € Ay, z9 € I1, x3 € A2

Remark 2.14. We want to find non trivial localized solutions of equations (2.1) with
a given number of nodes that is to say, = € (0,1) such that
lim (fm,mgz,n)(r) = (Ov O)

r——4o0

and g, changes sign k times on R*. To do this, we show by a shooting method
that

I #0
for all k € Nand all n € (0,Va—b—/%).

The core of the shooting method is the following lemma which gives the main
properties of the sets Ay and Ij. It is very similar to the properties stated in the
proof of [2, Theorem 1] except that the sets Ay and Ij are always bounded since
they are included in (0,1). The good equivalent property which is adapted to our
case is given by point (ii) of the next lemma.

Lemma 2.15. For all k in N and alln € (0,v/a —b— \/g) we have

(i) Ay is an open set,

(i) there is € € (0,1) such that A UI; C (0,1 —¢),
(iii) if © € I, there exists € > 0 such that (x —e,x+¢) C Ap Ul U Agyq
(iv) if Ay is not empty, we have sup Ay, € Ij,_1 U Iy,
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(v) if I, is not empty, we have sup Iy € I,

The proof of this lemma is given in Section 3. We are now able to prove the
following proposition.

Proposition 2.16. There exists an increasing sequence {Tg x>0 C (0,1) such that
x € Iy, for all k € N.

The proof is essentially the same as in [2]. We write it down here for sake of
completeness.

Proof. We prove by induction that for all k € N,

Ay #0,
sup Ip_1 < sup Ag.

If this property is true for all k, then Ay is not empty, sup A € I by point (iv) of
Lemma 2.15 and sup Ay < sup [ < sup Ax4+1. Hence, if we choose xj = sup A we
get the proposition.

(1) Let k = 0. We have that for all z € (0, /%)
H(0,z) < 0.

Thus, Lemma 2.6 and remark 2.7 ensure that
/2b
0,4/—)CA
( ) a ) 0

—oo =sup/_; < sup Ag.

and

(2) Let us assume now that for some k € N, we have

Ak 7& (Z)a
sup Ir_1 < sup Ag.

By point (iv) of Lemma 2.15, we get sup Ay € I which implies I}, # § and
sup Ay, < sup ;. Since I # ), by point (v), we obtain that sup I € I
and, since sup Ay < sup I, point (iii) ensures that there is € > 0 such that

(sup Iy, sup I +€) C Agy1.
As a conclusion, we have

A1 # 0,
sup I, <sup Ag41.

3. PROOF OF LEMMA 2.15

In this section, we fix n € (0,va —b— \/g) and we prove Lemma 2.15.
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3.1. Proof of point (ii) of Lemma 2.15.

Remark 3.1. This proof is the most technical point of the paper and contains the
main novelties of our work. The introduction of the Hamiltonian regularization of
subsection 2.1 allow us to control the behavior of the solution in the neighborhood
of the stationary points (+/a — b, 1) of the autonomous system of equations (1.6).

We show by induction that for all k, there is € € (0, 1) such that if x € (1 —¢,1)
then g, , has at least k£ + 1 changes of sign on R*. This implies

U 4iuLic(1-¢
0<i<k

and point (ii) follows.

Remark 3.2. The idea of the proof is that we can control the solutions (fz,,, gz»)
thanks to the continuity of the flow on the parameter x (see Lemma 2.3) compar-
ing (fens 9z,n) t0 (fin,91,,) on an interval of the type [0, R] for R > 0. Moreover,
(fi.n,91.n) tends to a stationary point (—va —b,1) of the system (1.6). Thus,
(fem» 9z.n) stay in a neighborhood of (—v/a —b,1) a very long time if = is suffi-
ciently close to 1. We also know thanks to Lemma 2.11 that (fs.,,gz,,) exits this
neighborhood at finite time, possibly very large. The problem is that we have to
control the position of (fzn,9gzn) when this occurs. To do this, we replace the
system (1.3) by the Hamiltonian ones (1.6) in this neighborhood. Then, we can use
the conservation of the energy H along the trajectory of (fz ., gsz,,y) to know the
position of (fg., gz,n) when it exits the neighborhood of (—va —b,1).

After that, we can control the solutions (fs,¢sn) thanks to the continuity of
the flow comparing (fz,», 9z,y) to a solution (f, g) of (1.6) that remains at all times
on 0A and tends to (—va — b, —1) at infinity. We get that if z is close enough to 1
then g, , changes sign one time. We iterate this reasoning to obtain a solution for
which g, , changes sign more than k times on R¥.

Step 1. Proof by induction

First of all, we take fo =+vVa—b—1n/2 > \/g >4/ “_2% and we define

e <_ f 2f—<—2b>>

a
X2 = (7f07 71)
2 _ _
P <f0,_ 2f<2b>>
X4 = (f07 1) .

The points X; are on 0A, for i = 1,...,4. Furthermore, remind that ¢, (f,g) =0
whenever |f| > fo (see Figure 1).

Definition 3.3. Let k € N and i € {1,...,4} be given. We denote by (HF) the
following property:
for all v and R positive constants given, there exists ¢ > 0 such that for
any x € (1 —¢,1), there exists a positive constant R > R which satisfies

(frn> 9zn)(R) € B(Xi,7)NA
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and such that g, , change k times of sign in [0, R].

In the second step, we show that the properties (HY) is true. Next, in the third
step, we prove that for k € N given we have

(H{f) = (Hy*),

so that
(HY) = (H'?).

As a consequence, we get by induction that the property (H?*) is true for all k € N.
In particular, there is € € (0,1) such that for all x € (1 —¢,1), g,,, changes at least
2k of sign on [0, +00) so that
LUA; C(0,1—¢).
for all i € {0,1,...,2k — 1} and point (ii) of Lemma 2.15 is proved.
Step 2. Initialization: We prove that (HY) is true.
(1) Preliminary results. Let v and R be positive constants given. First of
all, remark that with the notation of Lemma A.1,
X1 = (= fo, G2(H(0,1))).
By continuity of G, there exists ¢ > 0 such that H(0,1) — § > E. and

[(=fo, G2(E)) — Xa|| <

for all E € (H(0,1)—6, H(0,1)) where |.|| is the Euclidean norm of R2. So,
we have to prove that there exists € > 0 such that for any = € (1 —¢,1),
there exists a positive constant R; > R which satisfies

H(0,1) =6 < H(fa,n, Yu,n)(R1) < H(0,1),
fon(R1) = —fo, go.n(R1) = G2(H (fz,1, 9o,n)(R1)) and g, ,, does not change
sign in [0, Ry]. B -
(2) Control of the solutions of (2.2) in an interval [0, R] with R > 0.

We denote (f,g) the solution of Cauchy problem (2.2) with x = 1. It is
easy to see that

H(f,9)(r)=H(0,1), g(r) =1, f(r) > —Va—"0bforall r € [0, +0c0)

and

lim (f,g9)(r) =(—Va—-0,1).

r——4o0

As a consequence, there exists R > R such that for all » > R

(f:9)(r) € AnL{(f,9) = |f] > fo}-

Next, since H is continuous on RZ, there exists 0 < ¢’ < 1 such that for
any

(f,9) € B((f,9)(R), &),
we have

[H(f,9) - H(0,1)] <4
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where B((f,g)(R),¢') is the Euclidean ball of R? centered in (f,g)(R) of
radius ¢’. Moreover, if we choose ¢’ sufficiently small, we can assume that
lu| > fo for all

(u,v) € B((f,9)(R),0").
Finally, by Lemma 2.3, there exists ¢ € (0, 1) such that for all z € (1—¢, 1),

I (fo,n: 9z,n) — (f5 g)“oo,[o,ﬁ] <

where |||, (o 7 i the uniform norm of C([0, R], R?) so that g, is positive
in [0, R).
(3) Control of the solutions of (2.2) in AN {(f,g9) € R?: |f| > fo}. We
define
Ry :=inf{r > R:|f.,(r)| < fo}-

By Lemma A.2, we have that

H(faf,mgx,n)(r) > 0,

for all r € [R,R1). Moreover by Lemma A.1, since (fgr,9z.)(1r) € AN
{(f,9) eR?: |f] > fo},

Gen(r) 2| 23 +) 1

for all r € [R, R1). Hence, by Lemma 2.11, we get that R; is well-defined,
R < Ry < +00 and gz, does not change sign in [0, Ry]. Furthermore,
fon(R1) = —fo and, since (fz.5), gu,n) is solution of the Hamiltonian system
of equation (1.6) on [R, R;], we obtain

H(fam: 9om)(R1) = H(fan, gon)(R) € (H(0,1) — 6, H(0,1)).

Hence, it remains to show that g, ,(R1) = Go(H(fz,n, Gzn)(R1))-
Let

R = inf{r >0: ‘fx,n(r)' > f0}7

then fmn(f%) = —fo = fz,n(R1). Moreover, in []:Z, R1], (fz.n, Ya,n) is solution
of the Hamiltonian system (1.6); this implies

H(fxma ga:,n)(R> = H(fxma ga:,n)(Rl)'

Finally, g, is decreasing on [R, Ry]; in particular

Grn(R1) < gun(R).

Hence, by Lemma A.1, we deduce

gw,n(é) =Gy (H(f:mm gxm)(Rl))’
gw,n(Rl) = GQ(H(fx,na ga:,n)(Rl))'

Thanks to the remark we did in the preliminary results, we proved Step 2.

Step 3. Iteration: Let k € N and suppose that property (HF) is true. We
show that this implies property (Hé“'“). The proof of this fact is similar to the one
of Step 2 except that now (f,g) is a solution of autonomous system (1.6).
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(1)

Preliminary results. Let v and R be positive constants given. First of
all, remark that with the notation of Lemma A.1,

Xo = (= fo, —G1(H(0,1))).
By continuity of G, there exists ¢ > 0 such that H(0,1) —§ > E. and

[(=fo, =G1(E)) — Xaf <~

for all E € (H(0,1) —6,H(0,1)). So, we have to prove that there exists
e > 0 such that for any z € (1 — g,1), there exists a positive constant
R’ > R which satisfies

H(0,1) = 6 < H(fu, go)(R') < H(0,1),
fac,n(R/) = _f07 gw,n(R/) = _Gl(H(fw,mgwﬂ])(R/)) and gw,n Changes Sign
k41 times in [0, R'].
Control of the solutions of (2.2) when the solutions exit a neigh-

borhood of X;. We denote by (f,g) the solution of the following au-
tonomous system

{um
It is clear that
H(f,9)(r) = H(0,1),
—1<g(r)<1, f(r) > —va—bforall r€|0,+00),

and

lim (f,9)(r) =(—vVa—10b,-1).

r——400

Hence, there is R > 0 such that for all r > R
(f,9)(r) e An{(f,9): [f| > fo}-

Next, since H is continuous on R?, there exists 6’ > 0 such that for any

(f.9) € B((f.9)(R),d"),
we have

|H(f,5) - H(0,1)| < 4.
Moreover, if we choose §’ > 0 sufficiently small, we can assume that |u| > fy
for all

(u,v) € B((f,9)(R),d").
By Lemma 2.8, there exist R > 0 and 4 > 0 such that if p > R and
I(f,9) = Xall <5
then
1(f7 5.0 97.5..)C+P) = (Dl o <9

Since by hypo‘Ehesis, there are € € (0,1) and for any « € (1—¢, 1) a constant
R; > max(R, R) such that

(fw,nvgm,n)(Rl) S B(X],’S/) nA

and g, changes sign exactly k times on [0, R1], we get

1(Fo.m gzn) C + B1) = (£,9) o0 o) < 0
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In particular,

|(faums Go) (Br + R) = (£,9)(R)] < &

and g, , changes sign exactly k + 1 times on [0, Ry + R).
(3) Control of the solutions of (2.2) in AN{(f,g) € R?: |f| > fo}. Let

Ry :=inf{r > R+ Ry : | fom(r)| < fo}

With the same arguments used in the proof of property (HY), we prove
that

(fm,nagz,n)(RQ) € B(X27 PY) N A
and g, , changes sign exactly k + 1 times on [0, Ry]. We proved that

(HY) = (Hy').
Thanks to the symmetry of the system, we also get
(H3) = (Hi ™).
The proof of the remaining implications
(H3) = (H3)
(H) = (HY)
uses the same ideas.

3.2. Proof of the remaining points of Lemma 2.15. In this part, we assume
that 1 € (0,va —b — /%) is fixed.

First of all, we remark that point (i) follows directly from Lemma 2.3.

For the remaining points, we need the following preliminary lemma.

Lemma 3.4. There exists cog > 0 universal constant such that if
(i) H(fz,mgzm)(R) < %0
(ii) go(R) € (0, ,/ij’) and fzn(R) <0

or gon(R) € <— 2ab,O> and fyn(R) >0,

(1) gz changes sign k times on [0, R];
forz e (0,1), R>0,n€ (0,v/a—b—/%) and k € N, then x belongs to A U I} U

A1,
[ so
0= 9a(a —b) 8la "’

Proof. We define
We can assume thanks to the symmetries of the system that

H(fzn gzn)(R) < %)7 gz (R) € (‘\/?v 0> and  fy,(R) >0

for some x € (0,1) and R > 0. First of all, we remark that if there exists R such

that H(fz., 9z,n)(R) <0, then
On(fems Gen)(R) =1
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by Lemma A.2. Hence, by Lemma 2.4 and Remark 2.7, we deduce

H(f:r,m gxm)(r) <0
for all 7 > R. Since

{(f.9): 9=0}NH ™ (—00,0) =0,

gz,n does not change sign anymore on (R, +00). Moreover, if g, , has no changes
of sign in (R, +00) then either

lim H(fm,mgz,n)(r) < 0’

r—+00
and x € Ay, or
lim H(fm,T]?g:E,?])(r) Z 07

r——4o00
and z € I by Lemma 2.11.
We assume, by contradiction, that © ¢ Ay U I U Agyq then g, , changes sign at
least once in (R, +00). Next, we denote

R:=inf{r > R: f,,(r) <0} € (R,+o0].

Since g, is increasing for all r € [R, R], gy, changes sign at most once before
(fom» Gun) exits {(f,g) : f > 0}. Moreover, we claim that R < R < 4oc0. Indeed,
if R = 400, g, changes sign k or k + 1 times on R*. Then, we have either

lim H(fxm)giv,n)(r) < O’

7——+00
and x € A U Agyq or
im H(fs,9zn)(r) >0,

r—+00
and z € Iy U Iy by Lemma 2.11. Moreover, if © € I;;1, Lemma 2.11 ensures
that g, decays exponentially to 0 this contradicts the fact that g, , is positive and
increasing between

inf{r > R: g,,(r) >0} € (RR)

and R. Nevertheless, we assumed that x ¢ Ay U I U Ay hence R < +00. As a
consequence, we get

fwﬂl(ﬁ) =0
and, since © ¢ Ag1,
H(fem 9em)(r) > 0.

for all » < R. Moreover, we have

— 2b
G (R) >4 —

a
since H(0,2) <0 for all z € [—/22, /2],

Next, we denote

— 1 /2b
R :=sup{r € (R, R), gs,(r) < 5\/ ;}

2 /2
R":=inf{r > R: gy ,(r) > 3V ;},

and
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and we remark that this quantities are well-defined. For all r € (R, R"”), we get

d 2
%H(fw,mgw,n)(ﬂ = _;wa,n(l - gim)

=2 (HUuga2)(0) = G + 52000 )
and
(3.1) dif" (r*H(fu,ns Go) (1)) = r?’gz’n(r) (agi,,,(r) —2b) <0

since g2 (1) < 2 for all r € [R, R"]. Moreover, we have
2b 2
sent € [ 12212

1 /20 R"

62 g\ Z = wa®) =g (B) = [ Las)(1 - g (5))ds
\/7 (R// R/) .
Integrating inequality (3.1), we have, thanks to inequality (3.2),

(33) (R//)4H(fa:,n>gl,n)( ) (R/)4H(fx,n7gw,n)(R/) S —C1 ((RH)4 - (R/)4)
< _Cl(RI/ _ R/)(R//3 =+ R//QR/ + R//R/2 + R/S)

2b
—4 = 3 _ _ 3
C1 ( 9a(a—b)>R C()R

since
W o [ o so?
07" 9a(a—b) ~ \/ 9a(a—b) 8la”

Then, we obtain by inequalities (3.1) and (3.3)
(RH)4H(fz,mgz D) (R) < —coR’ + (R /)4H(fr,na o) (R)

< R* (_E + H(fx,nvgw,n)(R)>
<0.

for all » € [R', R"] and

IN

2002
8la ?

for ¢; =

This is impossible since

H(fom, ga.n)(R") >0

3.2.1. Proof of point (iii) of Lemma 2.15.

Lemma 3.5. Let k € N and n € (0,va — —\/g If x € Iy, then there ise > 0
such that

(rt—e,x4¢e) CA UL UAky.
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Proof. By Lemma 2.11, there exists C, K > 0 such that

(Ifz.nl +192.9)(r) < Cexp(=Kr)

for all » and H(fy,gz,n) converges exponentially to 0. We easily get that there
is R such that the assumptions of Lemma 3.4 are fulfilled for x at R. Then, by
Lemma 2.3, there is ¢ > 0 such that for all y € (z —,2 + ¢), gy, changes sign k
times on [0, R),

H(fym> 9ym)(R) < %
and
20
fyn(R) <0, gyn(R) € (0, \/:) or fyn(R) >0, gyn(R) € (- ;70)
Thus, by Lemma 3.4, we have that

(rt—e,x4+¢e) C AL UL, UAky;.

3.2.2. Proof of point (iv) of Lemma 2.15.
Lemma 3.6. Let k € N and n € (0,va—b— \/%). If Ay, is non-empty, then
sup Ay € Iy U 4.
Proof. Thanks to points (i) and (ii) of Lemma 2.15,
x:=sup A € (0,1)\ nLeJN A,

Let {z;} C Ag be such that

lim z; ==.
i—+400

Suppose by contradiction that = ¢ UN (I, U A,), then in particular
ne

H(f:n,m 993717)(7") >0

for all 7 > 0. Moreover, Lemma 2.11 ensures that g,, changes sign an infinite
number of times.
Let R > 0 be such that g, , changes sign more than k + 1 times in [0, R] at

0 <ry <--+<rger. Hence, there is e > 0 such that for all j € {1,...,k + 1}, all
r € (0,¢) we have

gz,n(rj - T)gw,n(rj +7) <0
and

9an(1j = €)Gay(r; +€) <O0.
Then, by Lemma 2.3, there is M > 0 such that if ¢ > M then

Join (1) = €)9win (1) +€) < Gon(rj — €)gay(rj +€)/2 <0
forall j € {1,...,k+ 1}. Thus, for all i > M and all j € {1,...,k + 1}, there is a
real number 1} € (r; — ¢, 7, +¢€) such that g, ,(rj) = 0. Then, we get G (%) # 0
so that g,; , changes sign more that £+ 1 times at the points r7. This is impossible
because x; € Ax. Hence, we have that
sup Ay € I,

for some m € N and by point (iii), we get the result. O
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3.2.3. Proof of point (v) of Lemma 2.15.

Lemma 3.7. Let k € N andn € (0,/a —b— \/g) If Iy, is non-empty, then
sup I, € Iy.

Proof. The proof follows the same ideas as the one of Lemma 3.6. We get that
sup I, € I;

for some j € N and by point (iii), we get the result. O

4. PROOF OF THEOREM 1.1
We give now the proof of Theorem 1.1 by taking the limit when 7 tends to 0.
Proof. Let us fix k € N. For all € (0,va —b— /%), there is x,, € (0,1) such that
lim  (fz, 55 9e,n)(r) = (0,0), g, , has k changes of sign on (0, +00)

r—4o00

by Proposition 2.16. We also know that
H(fz,.n9z,m) () >0
for all r € R*. Since for all z € (0, /2)

H(0,z) <0,

{zy}y C [ 2ab71> .

Thus, there is a subsequence {7, }, such that

we deduce that

lim 7, =0

n—-+oo

lim 2, =x¢€ [1/?71} .
n—-+oo
By Lemma 2.3, we get that for all R > 0,e > 0, there exists N > 0 such that if
n > N then
H(fwo,()?glo,o) - (fz'qnynn7gznnann)||00,[07R] <e

where ||.||o,[0,5] is the uniform norm on the set C([0, R], R?). Thus, (fz0,0,9u,,0) i
a solution of equations (1.3) such that

(f20,05 920,0)(0) = (0, z0)
H(f20.009z0,0)(r) > 0, for all r € RT

and Remark 2.7 ensures that xg € ( %b, 1].

To conclude, we have to show now that zg € (1 / %b, 1) since (f1,0,91,0) is not a

localized solution of (1.3).
Assume, by contradiction, that xg = 1; then

H(fxo,()?gCEo,O)(T) = H(07 1)
for all » > 0. We denote Hp := H(0,1)/2 > 0 and we define
Ry :=inf{r >0: H(fs, 5,59z, 1.)() < Ho} € (0,+00).
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We have
H(fm,,n,nna grnnmn)(Rn) = H.
We claim that {R,}, tends to +o0. Indeed, if there is a subsequence also denoted
{Ry}» and a real number R > 0 such that R,, € [0, R] then, we get the following
contradiction
HO,1) = Tim H(fey, 1. e,0.)(R) < Ho.

Next, since A is a compact set, there is (fo, go) € A such that up to extraction,

hmoo (fx%,nnvgznn,nn)(Rn) = (fo,90)

n—+
and
H(fo,90) = Ho.
We denote by T' > 0 the period of the solution of the Hamiltonian system of
equations (1.6) of energy equal to Hy. Let us consider now the following Cauchy
problem

r+p

(4.1) Jg = ( g%),
(f,9)(0) =
Its solutions depend continuously on the parameters (X, p,n) on every interval [0, R]

just as in Lemma 2.3. So, (fz, n.> 9z, 1. )( - + Bn) tends uniformly on [0, %}
to a solution (f,g) of

f/ 2‘971(]0 g)f _ ( _ ag + b)
/

fo=9(f* - ag +b),
g =f1-g%,
(f,9)(0) = ( o,go)

Moreover, (f,g) is periodic of period T which implies that g has at least k 4 1
changes of sign on [0, UH'TQ)T} t.e. thereise > 0,and 0 <7y < -+ <7py1 < %
such that
g(ri +1)g(ri —r) <0
for all » € (0,¢) and
g(ri+e)g(ri—e) <0
foralli e {1,...k+1}.
Hence, there is N > 0 such that for all n > N and all i € {1,...k+ 1}, we get
21, 10 (R” + 7+ E)gl'nnﬂn (Rn +7ri—= 6) < g(rl + 8)9(7‘1' - 6)/2 < Ov
which implies that there is 7%, € (r; — e, 7; + ¢) such that
gznn sMn (Rn + ,r:?,) = O

As a conclusion, since (fz, .9z, ) is asolution of (2.1), g;nwnn((Rn—i—r;)) #0
and g., ., has at least k + 1 changes of sign at the points ri. This is impossible
because g, n, has exactly k changes of sign. As a consequence zg < 1.
Moreover, with the same arguments used above, we prove that g, o changes sign
a finite number of times ky. Hence, Lemma 2.11 ensures that (fz,.0, gz,0) cOnverge
exponentially to (0,0).
As a consequence, there is R > 0 such that g, 0 changes sign ko times in [0, R],

C|
H(f.ro,(); gmo,O)(R) < ES
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and

fxo,O(R) <0, ng,O(R) € (07 \/?) or f:L’o,O(R) >0, gzo»O(R) € (_ 27b70)'

a

Hence, there is € € (0,1) such that for all z € (o —¢,20+¢) and all n € (0,¢€), gy
changes sign kg of times in [0, R],

H(fruys ) (R) < 3
and
2b 2b
fx,n(R) < 07 g:CJ](R) € (07 E) or fx,'r](R) > Oa gl,'r?(R) € (_ Evo)

By applying Lemma 3.4, we get, for n € (0,¢) fixed,
(xg —e,x0+ &) C Ay U Ty UAgyt1.

Remark that the set Ay and I depends on 7, hence, it is important to fix n before
writing such a property. By definition of {x,,, },, there is N € N such that for all
n>N

Iy, € (l‘o —&,%o +€)7 Nn € (075)'

As a conclusion, for n > N fixed x,, € Ii,. This ensures that k = ko.

Finally, by Remark 2.10, if g,, ¢ changes sign k times on (0, +00) then g, o has
k zeros on (0,+00). To conclude, it remains to prove that f,, o has k zeros on
(0,+00) as well.

Let {r1,...,rx} be the zeros of gz 0 on (0,400). First of all, we prove by
induction that, for all 4 = 1...,k, fy,0 has i — 1 zeros on (0,r;). This property
is true for ¢ = 1. Indeed, suppose by contradiction that f,, 0(7) = 0 for some
7 € (0,71). Hence, using the first equation of (1.3), we get H(fz,.0,9z0,0)(F) < 0.
That is impossible. Next, if the property holds true for i —1, then it holds true for i.
Indeed, suppose that fy, o has i —2 zeros on (0, r;_1); we prove that f;, o has 1 zero
on (r;_1,7;). By contradiction, if f,, o does not change sing on (r;_1, r;), the second
equation of (1.3) implies that g4, 0 is monotone on (r;_1,7;). This contradicts the
fact that g;,0 changes sign at r;_; and r;. Hence, f;,0 has at least 1 zero at
7 € (ri—1,7;). Now suppose that there exists 7 € (7,7;) such that fy, o(7) = 0. One
of the following situations arise: g(r) < 0 and f(r) > 0 on (7, 7) or g(r) > 0 and
f(r) < 0 on (7,7). Using again the first equation of (1.3), in both cases we get
g2,0(7) < g which implies H(fz,.0, 920,0)(F) < 0, a contradiction. Hence, for all
i=1...,k, fz,0 has i —1 zeros on (0,r;). Finally, using the same arguments, we
show that f, 0 has 1 zero on (rg,+00) and we conclude that fy, ¢ has k zeros on
(0, +00).

O

APPENDIX A. GEOMETRIC PROPERTIES OF H.

We remind that A = {(fo, 90) € R?|2f& —ag3d — (a —2b) <0, g < 1} is the set
of admissible points. Let us remark that (f,g) € R? satisfies H(f,g9) = H(0,1) =
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1 . .
7(a —2b) if and only if

0= H(fg) ~ HO1) =5 (21~ ) +
(1_29 ) (fQ—%(QZ—Fl)—I—b)

ie. if and only if g> =1 or f2 — 2(¢* +1) +b=0. A is the connected component
of {(f,g9): H(f,g) # H(0,1)} which contains (0,0). Thanks to the symmetries of
H, we can restrict our study of A to the set {(f,g): f >0, g > 0}.

a

S(g" = 1) —b(g* = 1))

a

Lemma A.1. Let fy € ( “_22b,\/a - b) and E. = H (fo7 ngrb). Then there

exist two monotone continuous functions

Gy : [Ba, H(0,1)] — [\/fg:b@

Ga :[Ee, H(0,1)] = [\/ 201/

such that, for i =1,2 and for all E € [E., H(0,1)],

H(fo,Gi(E)) = E,

{(fo, G1(E)), (fo, G2(E))} = {(fo.9) € A: g > 0} N HH({E}),
and G1(E) > G3(E).

fe+b
a

Proof. First of all, we observe that

AN (R = {(f,9) € [0.Va— 5] x [0,1] : ag® > 2/* — (a — 20)}

a—2b
- (/52 <o)

U{(f,g):fe( a_%,\/a—b] ,g € [ W,ll}

2

Next, let fy € ( a_T%, va— b> fixed, and define the function

28—(a=2) | o
a

G: ,1

g+ H(fo,9g).

Since G'(g) = g(—b + ag® — f2), we deduce that G is continuous, increasing in
[ fg+b, 1] and decreasing in [\/2f§-5:-2b)7 \/fga"rb] . Note that

a
\/2fg_(a_zb) - \/fg+b
a a
since fo < v/a —b. Moreover, we have

G ( W) = G(1) = H(0,1)

a
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and we define E, := G (\/@) =H (fo, fg;b). As a consequence, G is a

f2+b

a

and is denoted by G;. Therefore,

one-to-one function from

,1| onto [E., H(0,1)] whose inverse is continuous

2
[+
a

is a continuous function such that H(fy, G1(F)) = E. Similarly, we denote by G
the inverse of the restriction of the function G to the set [ 2(f2+b)—1,4/ fg;b} .

G::[E.,H(0,1)] —

Hence,
2 2
Gy ¢ [Ee, H(0,1)] — [ 23 4n) -1,
is a continuous function such that H(fy, G2(E)) = E. Moreover, G1(F) > G2(E)
for all E € [E., H(0,1)]. O

Lemma A.2. Let fy € (\/g, va— b) 'f

a I
(f.9) € An{(f,9) € R*: |f| > fo},
then H(f,g) > 0.

Proof. First of all, since fy > \/g > “_22b, we have for

(f.9) € An{(f.9) ER*: [f] > fo}
={(f,9) € [fo,Va—1b] x [-1,1] : ag® > 2f* — (a — 2D)},

that L
% _2f —Ela—Qb) -

<1

On the other hand, if g> <1 and H(f,g) < 0, then ¢g? < %b. As a consequence, we
get H(f,g) > 0. O
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