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Towards accurate artificial boundary conditions for nonlinear PDEs through examples

The aim of this paper is to give a comprehensive review of current developments related to the derivation of artificial boundary conditions for nonlinear partial differential equations. The essential tools to build such boundary conditions are based on pseudodifferential and paradifferential calculus. We present various derivations and compare them. Some numerical results illustrate their respective accuracy and analyze the potential of each technique.

Introduction

The subject of designing artificial boundary conditions for linear scalar and systems of Partial Differential Equations (PDEs) has been studied since more than thirty years now. Essentially, the goal of these boundary conditions is to truncate an infinite domain into a finite one for computational considerations. To this end, a fictitious boundary Γ is introduced delimiting therefore a finite domain Ω. All the difficulty is then to build an accurate, robust and easy-to-implement approximate boundary condition on this fictitious boundary. These boundary conditions can be found in the literature under different names (which in fact have different subtle meanings) like artificial boundary conditions, absorbing boundary conditions, non-reflecting or transparent boundary conditions and sometimes Dirichlet-to-Neumann operators. Among the major contributions written on the topic and without being exhaustive, let us quote e.g. the papers by Engquist and Majda [START_REF] Engquist | Absorbing boundary conditions for the numerical simulation of waves[END_REF][START_REF] Engquist | Radiation boundary conditions for acoustic and elastic wave calculations[END_REF], Bayliss and Turkel [START_REF] Bayliss | Radiation boundary-conditions for wave-like equations[END_REF], Mur [15] or also Bérenger [START_REF] Bérenger | A perfectly matched layer for the absorption of electromagnetic-waves[END_REF]. A few review papers have also been published to establish the current state-of-the-art on the subject (see e.g. [START_REF] Antoine | A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations[END_REF][START_REF] Givoli | Nonreflecting boundary conditions[END_REF][START_REF] Hagstrom | Radiation boundary conditions for the numerical simulation of waves[END_REF][START_REF] Tsynkov | Numerical solution of problems on unbounded domains. A review[END_REF]).

While many improvements have been achieved over the past years, most of them are developed for linear equations. Practically, most available methods for linear equations do not apply to nonlinear equations since they often rely on the explicit computation of the transparent boundary condition by using the Fourier or Laplace transforms (note however that in the particular case of integrable equations, one may use the inverse scattering transform to explicitly compute the transparent boundary condition, see e.g. [START_REF] Zheng | Exact nonreflecting boundary conditions for one-dimensional cubic nonlinear Schrödinger equations[END_REF]). Now, Nonlinear problems have recently received some increasing special care because of their importance in applications like e.g. in wave propagation, quantum mechanics, fluid mechanics,... The aim of this paper is to give a comprehensive introduction to possible solutions to handle such nonlinear situations. They are mainly based on pseudodifferential [START_REF] Taylor | Pseudodifferential Operators[END_REF] and paradifferential operators techniques [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF].

The paper is organized as follows. In Section 2, we analyze in detail the way of constructing approximate artificial boundary conditions for a general one-dimensional wave equation with variable coefficients using pseudodifferential calculus. Then, we test numerically these absorbing boundary conditions on a model problem showing that they yield accurate computations at least for small times. In a third Section, we consider a general one-dimensional nonlinear Schrödinger equation. We present several ways to extend the method of Section 2 to this nonlinear equation depending on the kind of nonlinearity involved in the equation. The various types of absorbing boundary conditions are obtained using either the pseudodifferential or the paradifferential calculus. In a fourth Section, some numerical comparisons are developed to test the accuracy of the various absorbing boundary conditions. The last Section draws a conclusion and suggests some future directions of research.

2 Artificial boundary conditions for linear variable coefficients equations: the case of the wave equation

The case of the constant coefficients wave equation

Before directly going to the case of the wave equation with variable coefficients, let us first consider the simple wave equation

(∂ 2 t -∂ 2 x )u = 0, (1) 
with initial data u(0, x) = u 0 (x) and ∂ t u(0, x) = u 1 (x), where the field u = u(t, x) is defined on the whole space (t, x) ∈ [0; +∞[×R. For simulation purposes, it is standard to introduce a bounded spatial computational domain setting now (t, x) ∈ [0; +∞[×[x ℓ ; x r ], where x ℓ (respectively x r ) is a left (respectively right) fictitious endpoint introduced to get a bounded domain Ω = [x ℓ ; x r ]. Let us assume that the initial data of our problem, that is u 0 and u 1 , are compactly supported in Ω.

Then, we can define the extension of u (which is still denoted by u) for negative times by fixing its value to zero so that u is a solution to (1) for all times t as long as x ∈ Ω c , where

Ω c = R -Ω.
Let us denote by ût (τ, x) = F t (u)(τ, x) the partial time-Fourier transform of u, where τ ∈ R.

Applying F t to (1) for (t, x) ∈ R × Ω c leads to the Helmholtz-type constant coefficients equation

(∂ 2 x + τ 2 )û t (τ, x) = 0, (2) 
where the wavenumber is τ . The solution of this equation can be written as the superposition of two waves

ût (τ, x) = A + e iτ x + A -e -iτ x , (3) 
where A ± are two smooth functions depending on τ . Computing the derivative ∂ x ût , we obtain

(∂ x -iτ )û t = -2iτ e -iτ x A -, (4) 
and

(∂ x + iτ )û t = 2iτ e iτ x A + , (5) 
and we obviously check that: (∂ x + iτ )(∂ x -iτ )û t = 0. We also have the following operator factorization

∂ 2 t -∂ 2 x = -(∂ x + ∂ t )(∂ x -∂ t ). (6) 
Equation (4) (respectively ( 5)) gives a characterization of the right (respectively left) traveling solution to (1) by setting: A -= 0 (respectively A + = 0). Therefore, the following boundary condition (4)

(∂ n -iτ )û t = 0, at Γ, (7) 
acts as a filter in the time-Fourier domain and translates the property that there is no reflection back into the computational domain Ω, where n is the unit normal vector to Γ = {x ℓ ; x r }, outwardly directed to Ω. This is a constraint which forces the wave to be outgoing to Ω. In the time-space domain, the corresponding boundary condition writes down

(∂ n -∂ t )u = 0, at [0; +∞[×Γ. ( 8 
)
Since there is no reflection, this boundary condition is usually called Transparent or Non-Reflecting Boundary Condition (TBC). Let us remark at this point that another interpretation of writing a transparent boundary condition is that we require

u ∈ Ker(∂ n -b), setting b(x, t, ∂ t ) = ∂ t .

The case of the variable coefficients wave equation

Let us consider that α, β and γ are three C ∞ functions. Writing a TBC for a variable coefficient model wave equation

(∂ 2 t + β(t, x)∂ t -∂ 2 x + γ(t, x)∂ x + α(t, x))u = 0, (9) 
is much more complicate than in the constant coefficients case. Indeed, in such a situation i) directly applying a time-Fourier transform to the equation ( 9) leads to a convolution equation which is extremely difficult to write down explicitly, ii) and even if it is possible to write an inhomogeneous Helmholtz-type equation, solving this equation for general functions associated with α, β and γ cannot be expected.

Building an accurate boundary condition which approximates the TBC can however be expected since the pioneering work of Engquist & Majda [START_REF] Engquist | Absorbing boundary conditions for the numerical simulation of waves[END_REF][START_REF] Engquist | Radiation boundary conditions for acoustic and elastic wave calculations[END_REF] in the middle of the seventies using the theory of reflection of singularities at the boundary [START_REF] Majda | Reflection of singularities at the boundary[END_REF] and pseudodifferential calculus (see for example [START_REF] Taylor | Pseudodifferential Operators[END_REF]).

Let us develop the main ideas. Like in the previous situation with constant coefficients, we assume that u as been extended by zero for negative times t and that the initial data u 0 and u 1 are compactly supported in Ω. Then, Engquist and Majda prove that there exist two classical pseudodifferential operator a and b of OPS 1 such that we get the following Nirenberg-like factorization

[16]

-∂ 2 x + ∂ 2 t + β(t, x)∂ t + γ(t, x)∂ x + α(t, x) = -(∂ x -a(x, t, D t ))(∂ x -b(x, t, D t )) + R, ( 10 
)
where R is a smoothing operator of OPS -∞ . This approximate factorization can be considered as the extension to the variable coefficients case of the exact form [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF]. Actually, the smoothing operator R accounts for the fact that the factorization is now true only at high frequencies.

The two pseudodifferential operators a(x, t, D t ) and b(x, t, D t ), with D t = -i∂ t , have respective associated symbols a(x, t, τ ) and b(x, t, τ ) of S 1 admitting the following asymptotic expansions in homogeneous symbols

a(x, t, τ ) ∼ j≥0 a 1-j (x, t, τ ) and b(x, t, τ ) ∼ j≥0 b 1-j (x, t, τ ), (11) 
with classical homogeneous symbols a 1-j and b 1-j of order 1 -j. This means that we have e.g. a 1-j (x, t, λτ ) = λ 1-j a 1-j (x, t, τ ), ∀λ > 0. Developing the factorization (10), we get

-∂ 2 x + γ(t, x)∂ x + ∂ 2 t + β(t, x)∂ t + α(t, x) = -∂ 2 x + (a + b)∂ x -ab + Op(∂ x b) + R (12) since ∂ x (bu) = Op(∂ x b)u + b∂ x u.
In the above equation, we designate by Op(σ) the pseudodifferential operator with symbol σ. If it is possible to compute a and b then, it can be proved that the TBC for equation ( 9) is given by

(∂ n -b(x, t, D t ))u = 0, at [0; +∞[×Γ. ( 13 
)
Indeed, the results in [START_REF] Majda | Reflection of singularities at the boundary[END_REF] imply that [START_REF] Hagstrom | On the accurate long-time solution of the wave equation in exterior domains: asymptotic expansions and corrected boundary conditions[END_REF] annihilates the wave reflected back in the computational domain. Generally speaking, this TBC, which extends [START_REF] Engquist | Long-time behavior of absorbing boundary conditions[END_REF], cannot be directly implemented since b is given by an infinite expansion, but it can however be approximated by a k-th order artificial boundary condition by truncating the series [START_REF] Givoli | Nonreflecting boundary conditions[END_REF] to the first k symbolic terms and considering

(∂ n - k-1 j=0 b 1-j (x, t, D t ))u = 0, at [0; +∞[×Γ. ( 14 
)
The computation of the terms {b 1-j } k-1 j=0 is therefore needed. To this end, we identify the operators on both sides of equality [START_REF] Hagstrom | Radiation boundary conditions for the numerical simulation of waves[END_REF] and we obtain at the symbolic level the system

a + b = γ -a#b + ∂ x b = -τ 2 + iβτ + α, (15) 
which can also be rewritten as

b#b -γb + ∂ x b = -τ 2 + iβτ + α, (16) 
by eliminating a. In the above notations, a#b designates the symbol of the composition operator ab which admits the following expansion (see for example [START_REF] Taylor | Pseudodifferential Operators[END_REF]):

b#b ∼ ∞ m=0 (-i) m m! ∂ m τ b ∂ m t b. ( 17 
)
Since b is developable in terms of homogeneous symbols using relation [START_REF] Givoli | Nonreflecting boundary conditions[END_REF], we can extract each term b 1-j from ( 16) by identifying the decaying order terms starting from 2 to 2 -j using [START_REF] Szeftel | Calcul pseudodifférentiel et paradifférentiel pour l'étude de conditions aux limites absorbantes et de propriétés qualitatives d'équations aux dérivées partielles non linéaires[END_REF].

Beginning with b 1 , we get that

b 1 (x, t, τ ) = iτ, (18) 
fixing also the uniqueness of the expansion [START_REF] Givoli | Nonreflecting boundary conditions[END_REF]. Computing the two next terms gives

     b 0 = β + γ 2 , b -1 = (γ 2 -β 2 ) + 4α -2(∂ x + ∂ t )(γ + β) 8iτ , (19) 
at the right point x r . It directly gives the following proposition.

Proposition 1. Let u be the solution to the generalized wave equation ( 9) with C ∞ variable coefficients α, β and γ. Then, the artificial boundary conditions of order k, for k = 1, 2, 3, are respectively given at the right endpoint x r by

∂ x u -∂ t u = 0, at [0; +∞[×{x r }, ∂ x u -∂ t u - β + γ 2 u = 0, at [0; +∞[×{x r }, ∂ x u -∂ t u - β + γ 2 u - (γ 2 -β 2 ) + 4α -2(∂ x + ∂ t )(γ + β) 8 I t u = 0, at [0; +∞[×{x r }, (20) 
where I t is defined by I t u(t) = t 0 u(s)ds. Similar formulas can be derived at x ℓ .

Short-time vs long-time behavior

Let us now consider that we wish to compute a numerical solution to the problem

             (∂ 2 t + β(t, x)∂ t -∂ 2 x + γ(t, x)∂ x + α(t, x))u = 0, (t, x) ∈]0; T [×Ω, u(0, x) = u 0 (x), x ∈ Ω, ∂ t u(0, x) = u 1 (x), x ∈ Ω, (∂ n - k-1 j=0 b p 1-j (x, t, D t ))u = 0, at [0; T ] × {x p }, (21) 
for a maximal time of computation T and where the k-th artificial boundary condition is defined by operators {b p 1-j } k-1 j=0 , for p = ℓ, r, at the left or right fictitious point x p (see e.g. Proposition 1). Introducing N intervals of discretization in time, we denote by ∆t the time step defined by ∆t = T /N . We next seek to compute an approximate solution u n (x) ≈ u(t n , x) to system [START_REF] Taylor | Pseudodifferential Operators[END_REF], with t n = n∆t, for n ∈ {1, ..., N }. We have seen before that the derivation of the artificial boundary conditions at the continuous level is made under the high frequency assumption |τ | ≫ 1.

Since we consider discrete times t n , for n = 1, ..., N , discrete time frequencies τ n = π/t n are then associated and lie in the interval [π/T ; π/∆t]. Hence, the artificial boundary conditions which work well for high frequencies will be accurate if T ≪ 1. This means that an artificial boundary condition is accurate as long as it is used for small times of computation. They may fail for large computational times which is a known problem of artificial boundary conditions techniques (see e.g. [8] [13]).

As an illustration, we compare in Figure 1 the performances of the artificial boundary conditions of order 1, 2 and 3 in the case of the wave equation (∂

2 t + ∂ t -∂ 2 
x )u = 0. We give the relative error in the L 2 (Ω)-norm for times between 0 and 10. As predicted by the theory, we notice indeed an improvement for small times by increasing the order. The second order condition is more efficient than the first order condition for all computed times but the third order condition is more efficient than the second order condition only for t ≤ 5.2. 

i∂ t u + ∂ 2 x u + α(u)∂ x u + β(u)u = 0, (t, x) ∈ [0; +∞[×R, u(0, x) = u 0 (x), x ∈ R, (22) 
where we assume again that the initial condition u 0 has compact support in Ω and that α and β are two C ∞ functions.

Let us now consider the following associated variable coefficients linear Schrödinger equation

i∂ t u + ∂ 2 x u + A(t, x)∂ x u + B(t, x)u = 0, (t, x) ∈ [0; +∞[×R, u(0, x) = u 0 (x), x ∈ R. ( 23 
)
Extending the previous strategy presented for the variable coefficients wave equation in section 2.2 to equation [START_REF] Zheng | Exact nonreflecting boundary conditions for one-dimensional cubic nonlinear Schrödinger equations[END_REF], one can prove that there exist two pseudodifferential operators a(x, t, D t ) and b(x, t, D t ) such that we have

∂ 2 x + i∂ t + A∂ x + B = (∂ x -a(x, t, D t ))(∂ x -b(x, t, D t )) + R, (24) 
where again R ∈ OPS -∞ . The operators a and b are elements of OPS 1/2 admitting the following expansion in homogeneous symbols

a(x, t, τ ) ∼ ∞ j=0 a (1-j)/2 (x, t, τ ) and b(x, t, τ ) ∼ ∞ j=0 b (1-j)/2 (x, t, τ ), ( 25 
)
where a (1-j)/2 and b (1-j)/2 are homogeneous symbols of order (1 -j)/2. This means that ∀λ > 0, we have:

a (1-j)/2 (x, t, λτ ) = λ (1-j)/2 a (1-j)/2 (x, t, τ ), b (1-j)/2 (x, t, λτ ) = λ (1-j)/2 b (1-j)/2 (x, t, τ ). ( 26 
)
If one considers e.g. the right fictitious point x r , then by fixing b 1/2 (x, t, τ ) = -√ τ , where √ τ is defined by:

√ τ = √ τ if τ ≥ 0, -i √ -τ if τ < 0, (27) 
it can be shown (see [START_REF] Szeftel | Calcul pseudodifférentiel et paradifférentiel pour l'étude de conditions aux limites absorbantes et de propriétés qualitatives d'équations aux dérivées partielles non linéaires[END_REF][START_REF] Szeftel | Absorbing boundary conditions for nonlinear Schrödinger equations[END_REF]) that the TBC is given by

(∂ n -b(x, t, D t ))u = 0, at [0; +∞[×{x r }, (28) 
and that an approximate artificial boundary condition of order k is

(∂ n - k-1 j=0 b (1-j)/2 (x, t, D t ))u = 0, at [0; +∞[×{x r }, (29) 
with the convention that the artificial boundary condition of order zero corresponds to the Neumann boundary condition. The required inhomogeneous symbols can be obtained by adapting relation ( 16)

b#b + Ab + ∂ x b = τ -B, (30) 
using the suitable substitutions. Then, using the Leibniz symbolic rule we get the four first symbols

b 1/2 = - √ τ , b 0 = - A 2 , b -1/2 = - 1 2 √ τ ( A 2 4 -B + ∂ x A 2 ), b -1 = - 1 8τ (A∂ x A + ∂ 2 x A -2∂ x B + i∂ t A). (31) 
To explain the different strategies which can be considered, we propose now to investigate first the case α = 0 and next to detail the situation when β = 0, where α and β are the functions in [START_REF] Tsynkov | Numerical solution of problems on unbounded domains. A review[END_REF].

3.2 Case I: α = 0

Potential strategy

The point of view adopted in this strategy considers that α(u) and β(u) act as potential functions independent of u. More specifically, they have respectively corresponding functions A and B in Equation ( 23). If we assume that A = 0, then, the symbols in (31) simplify as

b 1/2 = - √ τ , b 0 = 0, b -1/2 = B 2 √ τ , b -1 = ∂ x B 4τ . ( 32 
)
Using the definition (29), we obtain the following artificial boundary conditions of order k at

[0; +∞[×{x r }    ∂ n u + e -i π 4 ∂ 1/2 t u = 0, for k = 1, 2, ∂ n u + e -i π 4 ∂ 1/2 t u -e i π 4 B 2 I 1/2 t u = 0, for k = 3, (33) 
and finally

∂ n u + e -i π 4 ∂ 1/2 t u -e i π 4 B 2 I 1/2 t u -i ∂ n B 4 I t u = 0, for k = 4. ( 34 
)
In the above equations, the fractional half-order derivative operator ∂

1/2 t , with symbol √ -iτ , is
given by

∂ 1/2 t f (t) = 1 √ π ∂ t t 0 f (s) √ t -s ds, (35) 
and the half-order integration operator I 1/2 t (with symbol (-iτ ) -1/2 ) is defined by

I 1/2 t f (t) = 1 √ π t 0 f (s) √ t -s ds. ( 36 
)
Following our strategy, we replace B by the nonlinearity β(u) which gives the three following artificial boundary conditions of order k

           ∂ n u + e -i π 4 ∂ 1/2 t u = 0, for k = 1, 2, ∂ n u + e -i π 4 ∂ 1/2 t u -e i π 4 β(u) 2 I 1/2 t u = 0, for k = 3, ∂ n u + e -i π 4 ∂ 1/2 t u -e i π 4 β(u) 2 I 1/2 t u -i ∂ n β(u) 4 I t u = 0, for k = 4. ( 37 
)
These conditions will be denoted by ABC β 1,k in the sequel of the paper.

Gauge change strategy

Let us remark that the artificial boundary condition (34) is not a transparent boundary condition even when B is a constant potential. Now, in the case of a time-dependent potential B(x, t) = B(t), one can get the transparent boundary condition by using the gauge change

v(x, t) = e -iB(t) u(x, t), (38) 
where B(t) = I t B(t), and noticing that v is now solution to the free Schrödinger equation

i∂ t v + ∂ 2 x v = 0. ( 39 
)
Then, the transparent boundary condition

∂ n v + e -i π 4 ∂ 1/2 t v = 0 ( 40 
)
holds for v and, coming back to the initial unknown u, we obtain the transparent boundary condition for u

∂ n u + e -i π 4 e iB(t) ∂ 1/2 t (e -iB(t) u(x, t)) = 0. (41)
This boundary condition is clearly not exact if B also depends on x. Nevertheless, we can use a similar change of gauge, that is v(x, t) = e -iB(t,x) u(x, t),

with B(t, x) = I t B(t, x). Then, v is sought as the solution to the variable coefficients Schrödinger equation

i∂ t v + ∂ 2 x v + (2i∂ x B)∂ x v + (i∂ 2 x B -(∂ x B) 2 )v = 0, ( 43 
)
which is of the general form [START_REF] Zheng | Exact nonreflecting boundary conditions for one-dimensional cubic nonlinear Schrödinger equations[END_REF] with initial condition v(x, 0) = u 0 (x). We can therefore apply the previous general derivation of artificial boundary conditions of Section 3.1 to this equation of unknown v for suitably defined variable coefficients. As a consequence, if b (1-j)/2 j≥0 designates the symbolic asymptotic expansion of the transparent boundary condition associated with v solution to (43), then an artificial boundary condition of order k is given for u as

∂ n u - k-1 j=0 e iB b (1-j)/2 (x, t, D t )(e -iB u) -i∂ n Bu = 0, at [0; +∞[×{x r }. (44) 
More precisely, using (31), the computation of the first four symbols gives

b 1 = - √ τ , b 0 = -i∂ n B, b -1/2 = 0, b -1 = ∂ n B 4τ . (45) 
Finally, we obtain [START_REF] Antoine | Artificial boundary conditions for one-dimensional cubic nonlinear Schrödinger equations[END_REF] the second-and fourth-order artificial boundary conditions given respectively by

∂ n u + e -i π 4 e iB ∂ 1/2 t (e -iB u) = 0, at [0; +∞[×{x r }. (46) 
and

∂ n u + e -i π 4 e iB ∂ 1/2 t (e -iB u) -i ∂ n B 4 e iB I t (e -iB u) = 0, at [0; +∞[×{x r }. (47) 
Replacing B by β(u), the associated nonlinear artificial boundary conditions are then given by

∂ n u + e -i π 4 e iB(u) ∂ 1/2 t (e -iB(u) u) = 0, at [0; +∞[×{x r }. (48) 
and

∂ n u + e -i π 4 e iB(u) ∂ 1/2 t (e -iB(u) u) -i ∂ n β(u) 4 e iB(u) I t (e -iB(u) u) = 0, at [0; +∞[×{x r }, (49) 
setting B(u)(x, t) = I t (β(u))(x, t). These conditions will be referred to as ABC β 2,j in the sequel, for j = 2, 4.

Let us develop the connection existing between the artificial boundary conditions ABC β m,j , for m = 1, 2 and j = 2, 4. To this end, let us recall the following Leibniz formula for computing the fractional derivative of the product of two functions

∂ p t (f g) = ∞ k=0 Γ s (p + 1) k!Γ s (p -k + 1) ∂ k t f ∂ p-k t g, (50) 
for p > 0. The real-valued function f is supposed to be C ∞ and g is a continuous function. The notation Γ s designates the Gamma special function. For p = 1/2, we obtain

∂ 1/2 t (f g) = f ∂ 1/2 t g + 1 2 ∂ t f I 1/2 t g + R, ( 51 
)
where R is an error operator in OPS -3/2 . Using a similar formula for the integral operator gives

I t (f g) = f I t g + S (with S ∈ OPS -2
). Using these two relations to approximate the half-order operator in (47) by setting f = e -iB and g = u, we see that (47) exactly corresponds to (34) up to an operator in OPS -3/2 . This error may be not negligible since is involves time derivatives of the potential, and, in the nonlinear case, of β(u). This difference can therefore be significant between the two kinds of artificial boundary conditions. This will be more deeply investigated during the numerical simulations.

3.3 Case II: β = 0

Potential strategy

Let us now consider the second case where β = 0. Then, the potential strategy consists in replacing

B = 0 in (31) leading to b 1/2 = - √ τ , b 0 = - A 2 , b -1/2 = - 1 2 √ τ ( A 2 4 + ∂ x A 2 ), b -1 = - 1 8τ (A∂ x A + ∂ 2 x A + i∂ t A). ( 52 
)
This gives the following artificial boundary conditions

         ∂ x u + e -i π 4 ∂ 1/2 t u = 0, ∂ x u + e -i π 4 ∂ 1/2 t u + A 2 u = 0, ∂ x u + e -i π 4 ∂ 1/2 t u + A 2 u + e i π 4 2 ( A 2 4 + ∂ x A 2 )I 1/2 t u = 0, (53) 
and 

∂ x u + e -i π 4 ∂ 1/2 t u + A 2 u + e i π 4 2 ( A 2 4 + ∂ x A 2 )I 1/2 t u + i 8 (A∂ x A + ∂ 2 x A + i∂ t A)I t u = 0, ( 54 
                         ∂ x u + e -i π 4 ∂ 1/2 t u = 0, for k = 1, ∂ x u + e -i π 4 ∂ 1/2 t u + α(u) 2 u = 0, for k = 2, ∂ x u + e -i π 4 ∂ 1/2 t u + α(u) 2 u + e i π 4 2 ( α(u) 2 4 + ∂ x α(u) 2 )I 1/2 t u = 0, for k = 3, ∂ x u + e -i π 4 ∂ 1/2 t u + α(u) 2 u + e i π 4 2 ( α(u) 2 4 + ∂ x α(u) 2 )I 1/2 t u + i 8 (α(u)∂ x α(u) + ∂ 2 x α(u) + i∂ t α(u))I t u = 0, for k = 4. ( 55 
)
The set of above j-th order artificial boundary conditions will be called ABC α 1,j is the sequel, for j = 1, ..., 4.

Linearization strategy

We linearize equation ( 22) with β = 0 around a mean state u and call v its linearization. We obtain

i∂ t v + ∂ 2 x v + α(u)∂ x v + α ′ (u)∂ x uv = 0, ( 56 
)
which is of the form [START_REF] Zheng | Exact nonreflecting boundary conditions for one-dimensional cubic nonlinear Schrödinger equations[END_REF] with A = α(u) and B = α ′ (u)∂ x u. Equations (31) give

b 1/2 = - √ τ , b 0 = - α(u) 2 , b -1/2 = - 1 2 √ τ α(u) 2 4 - α ′ (u)∂ x u 2 , b -1 = - 1 8τ (α(u)∂ x α(u) -∂ 2 x α(u) + i∂ t α(u)). (57) 
This yields absorbing boundary conditions for the linearized problem. To go back to the original problem, we now need to "unlinearize" these boundary conditions.

The first order absorbing boundary condition for v does not involve u and we immediately obtain for u

∂ x u + e -i π 4 ∂ 1/2 t u = 0, for k = 1. ( 58 
)
The second order absorbing boundary condition for v reads

∂ x v + e -i π 4 ∂ 1/2 t v + 1 2 α(u)v = 0, ( 59 
)
where α(u)v is the linearization of γ(u), where γ is the primitive of α vanishing at 0. Thus, the unlinearization of (59) is:

∂ x u + e -i π 4 ∂ 1/2 t u + 1 2 γ(u) = 0, for k = 2. ( 60 
)
The unlinearization of the third and fourth order absorbing boundary conditions of v are far more challenging. We have to unlinearize:

∂ x v + e -i π 4 ∂ 1/2 t v + 1 2 α(u)v + e i π 4 α(u) 2 8 I 1/2 t (v) - e i π 4 α ′ (u)∂ x u 4 I 1/2 t (v) = 0, (61) 
and

∂ x v + e -i π 4 ∂ 1/2 t v + 1 2 α(u)v + e i π 4 α(u) 2 8 I 1/2 t (v) - e i π 4 α ′ (u)∂ x u 4 I 1/2 t (v) + i(α(u)∂ x α(u) -∂ 2 x α(u) + i∂ t α(u)) 8 I t (62) 
To achieve this goal, we rely on the paradifferential operators of J. M. Bony [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF] which are generalization of pseudodifferential operators well-suited to nonlinear problems. We refer to [START_REF] Szeftel | Calcul pseudodifférentiel et paradifférentiel pour l'étude de conditions aux limites absorbantes et de propriétés qualitatives d'équations aux dérivées partielles non linéaires[END_REF] [20] for details about these operators and about the rigorous unlinearization of ( 61) and (62). We finally obtain the following nonlinear artificial boundary conditions of order k for u at [0; +∞[×{x r }:

                         ∂ x u + e -i π 4 ∂ 1/2 t u = 0, for k = 1, ∂ x u + e -i π 4 ∂ 1/2 t u + γ(u) 2 = 0, for k = 2, ∂ x u + e -i π 4 ∂ 1/2 t u + γ(u) 4 - e i π 4 4 I 1/2 t (α(u)∂ x u) = 0, for k = 3, ∂ x u + e -i π 4 ∂ 1/2 t u - e i π 4 2 I 1/2 t (α(u)∂ x u) + i 8 I t -α ′ (u)(∂ x u) 2 + α(u) 2 ∂ x u = 0, for k = 4, ( 63 
)
where γ is the primitive of α vanishing at 0. From now, these j-th order artificial boundary conditions will be referred to as ABC α 2,j , for j = 1, ..., 4.

Remark 1. The unlinearization step of the linearization strategy has been successful not only in the case of ( 22) with β = 0, but also in the case of the semilinear wave equation with various nonlinearities (see [START_REF] Szeftel | A nonlinear approach to absorbing boundary conditions for the semilinear wave equation[END_REF]). However, the unlinearization step of the linearization strategy is not always successful, as shown by the case of the cubic nonlinear Schrödinger equation (see [START_REF] Szeftel | Absorbing boundary conditions for nonlinear Schrödinger equations[END_REF]).

Numerical examples

We consider the model Schrödinger equation [START_REF] Tsynkov | Numerical solution of problems on unbounded domains. A review[END_REF] for the two specific cases I (α = 0) and II (β = 0) of section 3. More specifically, we choose to present results in Case I for the nonlinearity β(u) = |u| 2 , which corresponds to the well-known one-dimensional cubic nonlinear Schrödinger equation, and in Case II for α(u) = u. We therefore will focus on systems (64) and (65) respectively given by

i∂ t u + ∂ 2 x u + |u| 2 u = 0, (t, x) ∈ [0; +∞[×R, u(0, x) = u 0 (x), x ∈ R, (64) 
and

i∂ t u + ∂ 2 x u + u∂ x u = 0, (t, x) ∈ [0; +∞[×R, u(0, x) = u 0 (x), x ∈ R. (65) 
In both cases, we have to our disposal explicit solutions. Concerning system (64), we consider the so-called soliton solution computed by using the inverse scattering theory and given by

u ex,α=0 (x, t) = √ 2a sech( √ a(x -ct)) exp(i c 2 (x -ct)) exp(i(a + c 2 4 )t). (66) 
Concerning system (65), adapting the Cole-Hopf transform [START_REF] Szeftel | Absorbing boundary conditions for nonlinear Schrödinger equations[END_REF] , we have the explicit solution

u ex,β=0 (x, t) = 2 0 exp i (x -y) 2 4t u 0 (y) exp( y 0 u 0 (s) 2 ds)dy × √ iπt - x 0 exp(i y 2 4t )dy + 2 0 exp(i (x -y) 2 4t ) exp( y 0 u 0 (s) 2 ds)dy + exp( 2 0 u 0 (s) 2 ds)( √ iπt - 2-x 0 exp(i y 2 4t )dy) -1 , (67) 
which has a compact support in [0, 2] at time t = 0. Durán and Sanz-Serna [START_REF] Durán | The numerical integration of relative equilibrium solutions. The nonlinear Schrödinger equation[END_REF] and are given by

i u n+1 -u n δt + ∂ 2 x u n+1 + u n 2 + u n+1 + u n 2 2 u n+1 + u n 2 = 0 (68) and i u n+1 -u n δt + ∂ 2 x u n+1 + u n 2 + u n+1 + u n 2 ∂ x u n+1 + u n 2 = 0 (69)
respectively for Cases I and II. We denote here by u n the approximate value of u at time t n . In order to reduce the computational time, we set 2v n+1 = u n+1 + u n , and the schemes read for n ≥ 0

2i v n+1 -u n δt + ∂ 2 x v n+1 + |v n+1 | 2 v n+1 = 0, (70) 
and

2i v n+1 -u n δt + ∂ 2 x v n+1 + v n+1 ∂ x v n+1 = 0, (71) 
imposing in both cases that v 0 = 0. Clearly, a general form of the previous schemes is 

2i v n+1 -u n δt + ∂ 2 x v n+1 + v n+1 f (v n+1 ) = 0, (72) 
                         ∂ x u -e -i π 4 ∂ 1/2 t u = 0, for k = 1, ∂ x u -e -i π 4 ∂ 1/2 t u + α(u) 2 u = 0, for k = 2, ∂ x u -e -i π 4 ∂ 1/2 t u + α(u) 2 u - e i π 4 2 ( α(u) 2 4 + ∂ x α(u) 2 )I 1/2 t u = 0, for k = 3, ∂ x u -e -i π 4 ∂ 1/2 t u + α(u) 2 u - e i π 4 2 ( α(u) 2 4 + ∂ x α(u) 2 )I 1/2 t u + i 8 (α(u)∂ x α(u) + ∂ 2 x α(u) + i∂ t α(u))I t u = 0, for k = 4. ( 73 
)
Concerning the linearization strategy, we get on [0; +∞[×{x l }:

                         ∂ x u -e -i π 4 ∂ 1/2 t u = 0, for k = 1, ∂ x u -e -i π 4 ∂ 1/2 t u + γ(u) 2 = 0, for k = 2, ∂ x u -e -i π 4 ∂ 1/2 t u + γ(u) 4 + e i π 4 4 I 1/2 t (α(u)∂ x u) = 0, for k = 3, ∂ x u -e -i π 4 ∂ 1/2 t u + e i π 4 2 I 1/2 t (α(u)∂ x u) + i 8 I t -α ′ (u)(∂ x u) 2 + α(u) 2 ∂ x u = 0, for k = 4, ( 74 
)
where γ is the primitive of α vanishing at 0.

The boundary conditions are of memory-type and involve half-order fractional derivatives and integrals. To preserve the second-order approximation and the unconditional stability of the Crank-Nicolson schemes, the operators ∂ 1/2 t and I

1/2 t are approximated through quadrature rules which are well suited to the Crank-Nicolson schemes. Namely, we choose the quadrature formulas derived in [START_REF] Antoine | Unconditionally stable discretization schemes of non-reflecting boundary conditions for the one-dimensional Schrödinger equation[END_REF], which read for the sequence of complex values {f n } n∈N approximating {f (t n )} n∈N ,

I 1/2 t f (t n ) ≈ √ 2δt 2 n k=0 α k f n-k and ∂ 1/2 t f (t n ) ≈ 2 √ 2δt n k=0 β k f n-k , (75) 
where (α k ) k∈N and (β k ) k∈N designate the sequences defined by

   (α 0 , α 1 , α 2 , α 3 , α 4 , α 5 , • • • ) = 1, 1, 1 2 , 1 2 , 1 • 3 2 • 4 , 1 • 3 2 • 4 , • • • , β k = (-1) k α k , ∀k ≥ 0.
The composition of the approximation of I 1/2 t with itself gives the approximation of I t by the trapezoidal rule, which is coherent with the underlying Crank Nicolson scheme. Using these quadratures formulas, the numerical versions of the boundary conditions (37), ( 48), ( 49), ( 55) and

(63) are discrete convolutions which may be represented by the following formulation

∂ n v n+1 + e -i π 4 2 δt v n+1 + g(v n+1 , v n , v n-1 , • • • , v 0 ) = 0,
where g is a function giving information on the construction of the approximation. For example, the approximation of ABC β 1,3 is given by

∂ n v n+1 + e -i π 4 2 δt n+1 k=0 β k v n+1-k - e i π 4 2 |v n+1 | √ 2δt 2 n+1 k=0 α k |v n+1-k |v n+1-k = 0.
The other approximations of ABC α,β j,k , j = 1, 2, k = 1, 2, 3 can be found in [START_REF] Antoine | Artificial boundary conditions for one-dimensional cubic nonlinear Schrödinger equations[END_REF] and [START_REF] Szeftel | Absorbing boundary conditions for nonlinear Schrödinger equations[END_REF]. The complete Crank Nicolson scheme with fixed point procedure therefore takes the form given in Table 1.

let w 0 = u n s = 0 while w s+1 -w s L 2 (Ω i ) > ε do solve the linear boundary-value problem Ω 2i δt w s+1 ψdx - Ω ∂ x w s+1 ∂ x ψdx - Γ e -i π 4 2 δt w s+1 ψdΓ = - Ω f (w s )w s ψdx + Ω 2i δt u n ψdx + Γ g s ψdΓ, setting g s = g(w s , v n , v n-1 , • • • , v 0 )
and ψ is one of the basis functions of the P1 finite element set. end while v n+1 = w s+1 u n+1 = 2v n+1 -u n Table 1: Fixed-point algorithm for solving the nonlinear Schrödinger equation with nonlinear ABC. We present below some numerical experiments to show the effectiveness of the different boundary conditions. Since we have an exact solution in Cases I and II, we choose to evaluate the schemes on the solutions with initial data (66) and (67) respectively. Concerning Case I, the computational domain is limited to the open set (-10, 10) discretized with 4000 points. The time step is fixed to δt = 10 -3 . In Case II, the finite domain is (0, 2) discretized with 2000 points. The time step δt is equal to 2 • 10 -3 . To analyze the accuracy of the different boundary conditions, we compute the relative error for the L 2 (Ω)-norm u ex -u num 0,Ω (t) u ex 0,Ω (t = 0) , where u num denotes the numerical solution.

For case I, we compare in Figure 3 the ABCs obtained with the potential strategy and the gauge change strategy for various orders. We can see that increasing the order improves the accuracy.

Moreover, the gauge change strategy (ABC β 2,k ) provides better accuracy compared to the potential strategy (ABC β 1,k ). Finally, let us also notice that the long-time behaviour of the various ABCs seems correct. To analyze the accuracy behaviour of the computed solution with respect to the velocity parameter, we plot on Fig. 4 the evolution of the relative error with respect to c for the most accurate ABC: ABC β 2,2 . We see that the relative error increases with lower velocities. This is in agreement with the theory developed in the paper since the boundary conditions are constructed under a high-frequency assumption. In our last experiment, we focus on case II. We compare in Figure 5 the ABCs obtained with the potential strategy and the linearization strategy for various orders. Generally, the linearization strategy leads to the most accurate solutions. Increasing the order of the ABC improves the accuracy for small times (t ≤ 2.5 in the experiments). After this time, the relative errors cross and the best results are obtained for ABC α 2,2 . The potential strategy is accurate and competitive for ABC α 1,3 but only for sufficiently large computational times. This shows that each strategy has his own strengths and weaknesses. Finally, let us mention that ABC α 2,2 has been shown to give optimal results within a large class of ABCs (see [START_REF] Szeftel | Absorbing boundary conditions for nonlinear scalar partial differential equations[END_REF]). 

Conclusion

We presented an analysis of the construction and some numerical validations of ABCs for nonlinear PDEs considering the example of the nonlinear Schrödinger equation. The methods are mainly based on pseudo-and paradifferential operator techniques. We show that each strategy can lead to powerful solutions. However, much work remains to be done. In particular, developing rigorous extensions for higher dimensions, coupled problems and systems is a complete open problem.
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 1 Figure 1: (∂ 2 t + ∂ t -∂ 2 x )u = 0. Relative error in L 2 norm in function of time. abc --order 1, -order 2 and order 3 • -•.

  ) at [0; +∞[×{x r }. Again, replacing A by α(u) yields the nonlinear artificial boundary conditions of order k

  (a) Case I, a = 2, c = 15, θ = 0 (b) Case II
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 2 Figure 2: Exact solutions representations.

  where f designates the map | • | 2 or ∂ x according to the equation. The Crank-Nicolson approximation must be coupled to the boundary conditions (37), (48), (49), (55) and (63). Since the Jacobian of the maps associated to these nonlinear problems is difficult to obtain, we choose to use a classical fixed-point method based on the semi-discrete Crank-Nicolson schemes. The choice of a variational approximation method is thus obvious. Here, we specifically use a P 1 linear Lagrange finite element approximation. The bounded computational domain is the open set Ω =]x l , x r [. The fictitious boundary is limited to the two endpoints Γ = {x l , x r }. At this point, let us note that the boundary conditions for the case β = 0 have been given explicitly only at the right endpoint.The left boundary conditions differ. Concerning the potential strategy, the system of equations (55) is transformed on [0; +∞[×{x l } as:
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 3 Figure 3: Evolution of the relative error for Case I, a = 2, c = 15, θ = 0.
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 4 Figure 4: Evolution of the relative error for the simulation of the soliton solution with respect to the velocity c for ABC β 2,2 .
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 5 Figure 5: Relative error for Case II.

3

  Different approaches for nonlinear equations: the case of nonlinear Schrödinger equations3.1 Nonlinear and linear Schrödinger equationsWe have seen in Section 2 that it is possible to build accurate artificial boundary conditions using techniques based on pseudodifferential calculus in the model case of the linear wave equation with variable coefficients. The aim of the present Section is to develop some applications of the pseudodifferential calculus method and its nonlinear version, the paradifferential calculus strategy, to obtain accurate artificial boundary conditions for nonlinear equations. As a model equation, we consider the time dependent nonlinear Schrödinger equation
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