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Abstract

This paper proposes, focusing on random forests, the increasingly used statistical method for classification and regression problems
introduced by Leo Breiman in 2001, to investigate two classical issues of variable selection. The first one is to find important
variables for interpretation and the second one is more restrictive and try to design a good prediction model. The main contribution
is twofold: to provide some insights about the behavior of the variable importance index based on random forests and to propose
a strategy involving a ranking of explanatory variables using the random forests score of importance and a stepwise ascending
variable introduction strategy.
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1. Introduction

This paper is primarily interested in random forests for vari-
able selection. Mainly methodological the main contribution
is twofold: to provide some insights about the behavior of the
variable importance index based on random forests and to use
it to propose a two-steps algorithm for two classical problems
of variable selection starting from variable importance ranking.
The first problem is to find important variables for interpretation
and the second one is more restrictive and try to design a good
prediction model. The general strategy involves a ranking of
explanatory variables using the random forests score of impor-
tance and a stepwise ascending variable introduction strategy.
Let us mention that we propose an heuristic strategy which does
not depend on specific model hypotheses but based on data-
driven thresholds to take decisions.

Before entering into details, let us shortly present in the
sequel of this introduction the three main topics addressedin
this paper: random forests, variable importance and variable
selection.

Random forests
Random forests (RF henceforth) is a popular and very ef-

ficient algorithm, based on model aggregation ideas, for both
classification and regression problems, introduced by Breiman
(2001). It belongs to the family of ensemble methods, appear-
ing in machine learning at the end of nineties (see for exam-
ple Dietterich (1999) and Dietterich (2000)). Let us briefly
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recall the statistical framework by considering a learningset
L = {(X1,Y1), . . . , (Xn,Yn)} made ofn i.i.d. observations of a
random vector (X,Y). VectorX = (X1, ...,Xp) contains predic-
tors or explanatory variables, sayX ∈ R

p, andY ∈ Y where
Y is either a class label or a numerical response. For classifi-
cation problems, a classifiert is a mappingt : R

p → Y while
for regression problems, we suppose thatY = s(X) + ε with
E[ε|X] = 0 ands the so-called regression function. For more
background on statistical learning, see e.g. Hastie et al. (2001).
Random forests is a model building strategy providing estima-
tors of either the Bayes classifier, which is the mapping min-
imizing the classification errorP(Y , t(X)), or the regression
function.

The principle of random forests is to combine many binary
decision trees built using several bootstrap samples coming
from the learning sampleL and choosing randomly at each
node a subset of explanatory variablesX. More precisely, with
respect to the well-known CART model building strategy (see
Breiman et al. (1984)) performing a growing step followed bya
pruning one, two differences can be noted. First, at each node,
a given number (denoted bymtry) of input variables are ran-
domly chosen and the best split is calculated only within this
subset. Second, no pruning step is performed so all the treesof
the forest are maximal trees.

In addition to CART, bagging, another well-known related
tree-based method, is to be mentioned (see Breiman (1996)).
Indeed random forests withmtry = p reduce simply to un-
pruned bagging. The associated R1 packages are respectively
randomForest (intensively used in the sequel of the paper),
rpart andipred for CART and bagging respectively (cited

1see http://www.r-project.org/
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here for the sake of completeness).
RF algorithm becomes more and more popular and appears

to be very powerful in a lot of different applications (see for ex-
ample Dı́az-Uriarte et al. (2006) for gene expression data anal-
ysis) even if it is not clearly elucidated from a mathematical
point of view (see the recent paper by Biau et al. (2008) about
purely random forests and Bühlmann et al. (2002) about bag-
ging). Nevertheless, Breiman (2001) sketches an explanation
of the good performance of random forests related to the good
quality of each tree (at least from the bias point of view) to-
gether with the small correlation among the trees of the forest,
where the correlation between trees is defined as the ordinary
correlation of predictions on so-called out-of-bag (OOB hence-
forth) samples. The OOB sample which is the set of observa-
tions which are not used for building the current tree, is used
to estimate the prediction error and then to evaluate variable
importance.

The R package about random forests is based on the seminal
contribution of Breiman et al. (2005) and is described in Liaw
et al. (2002). In this paper, we focus on therandomForestpro-
cedure. The two main parameters aremtry, the number of input
variables randomly chosen at each split andntree, the number
of trees in the forest. Some details about numerical and sensi-
tivity experiments can be found in Genuer et al. (2008)).

In addition, let us mention we will concentrate on the
prediction performance of RF focusing on out-of-bag (OOB)
error (see Breiman (2001)). We use this kind of prediction
error estimate for three reasons: the main is that we are mainly
interested in comparing models instead of assessing models,
the second is that it gives fair estimation compared to the usual
alternative test set error even if it is considered as a little bit
optimistic and the last one, is that it is a default output of the
randomForest procedure, so it is used by almost all users.

Variable importance
The quantification of the variable importance (VI henceforth)

is an important issue in many applied problems complement-
ing variable selection by interpretation issues. In the linear re-
gression framework it is examined for example by Grömping
(2007), making a distinction between various variance decom-
position based indicators: ”dispersion importance”, ”level im-
portance” or ”theoretical importance” quantifying explained
variance or changes in the response for a given change of each
regressor. Various ways to define and compute using R such
indicators are available (see Grömping (2006)).

In the random forests framework, the most widely used score
of importance of a given variable is the increasing in mean of
the error of a tree (MSE for regression and misclassification
rate for classification) in the forest when the observed values
of this variable are randomly permuted in the OOB samples
(let us mention that it could be slightly negative). Often, such
random forests VI is called permutation importance indicesin
opposition to total decrease of node impurity measures already
introduced in the seminal book about CART by Breiman et al.
(1984).

Even if only little investigation is available about RF
variable importance, some interesting facts are collected

for classification problems when this index is based on the
average loss of entropy criterion, like the Gini entropy used
for growing classification trees. Let us cite two remarks. The
first one is that the RF Gini importance is not fair in favor
of predictor variables with many categories (see Strobl et
al. (2007)) while the RF permutation importance is a more
reliable indicator. So we restrict our attention to this last one.
The second one is that it seems that permutation importance
overestimates the variable importance of highly correlated
variables and a conditional variant is proposed by Strobl et
al. (2008). Let us mention that, in this paper, we do not
diagnose such a critical phenomenon for variable selection.
The recent paper by Archer et al. (2008), focusing more
specifically on the VI topic is also of interest. We address two
crucial questions about the variable importance behavior:the
importance of a group of variables and its behavior in presence
of highly correlated variables. This is the first goal of thispaper.

Variable selection
Many variable selection procedures are based on the cooper-

ation of variable importance for ranking and model estimation
to generate, evaluate and compare a family of models. Follow-
ing Kohavi et al. (1997) and Guyon et al. (2003)), it is usual
to distinguish three types of variable selection methods: ”fil-
ter” for which the score of variable importance does not de-
pend on a given model design method; ”wrapper” which in-
clude the prediction performance in the score calculation;and
finally ”embedded” which intricate more closely variable selec-
tion and model estimation.

Let us briefly mention some of them, in the classification
case, which are potentially competing tools, of course the
wrapper methods based on VI coming from CART, and from
random forests. Then some examples of embedded methods:
Poggi et al. (2006) propose a method based on CART scores
and using stepwise ascending procedure with elimination step;
Guyon et al. (2002) and Rakotomanonjy (2003), propose meth-
ods based on SVM scores and using descending elimination.
More recently, Ben Ishak et al. (2008) propose a stepwise
variant while Park et al. (2007) propose a ”LARS” type
strategy (see Efron et al. (2004)) for classification problems.
Finally let us mention a mixed approach, see Fan et al. (2008)
in regression, ascending in order to avoid to select redundant
variables or, for the casen << p, descending first using a
screening procedure to reach a classical situationn ∼ p, and
then ascending using LASSO or SCAD, see Fan et al. (2001).
We propose in this paper, a two-steps procedure, the second
one depends on the objective (interpretation or prediction)
while the first one is common. The key point is that it is
entirely based on random forests, so fully non parametric and
then free from the usual linar framework.

A typical situation
Let us close this section by introducing a typical situation

which can be useful to capture the main ideas of this paper.
Let us consider a high dimensional (n << p) classification
problem for which the predictor variables are associated toa
pixel in an image or a 3D location in the brain like in fMRI
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brain activity classification problems. In such situations, of
course it is clear that there is a lot of useless variables and
that there exist a lot a highly correlated groups of predictors
corresponding to brain regions. We emphasize that two distinct
objectives about variable selection can be identified: (1) to find
important variables highly related to the response variable for
interpretation purpose; (2) to find a small number of variables
sufficient for a good prediction of the response variable. Key
tools combine variable importance thresholding, variable
ranking and stepwise introduction of variables. Turning back to
our typical example, an example of the first kind of problem is
the determination of entire regions in the brain or a full parcel
in an image while an instance of the second one is to exhibit a
sufficient subset of the most discriminant variables within the
previously highlighted groups.

Outline
The paper is organized as follows. After this introduction,

Section 2 proposes to study the behavior of the RF variable im-
portance, especially in the presence of groups of highly corre-
lated explanatory variables. Section 3 investigates the two clas-
sical issues of variable selection using the permutation based
random forests score of importance. Section 4 examines some
experimental results, by focusing mainly on high dimensional
classification datasets and, in order to illustrate the general
value of the strategy it is applied to a standard (n >> p) regres-
sion dataset. Finally Section 5 opens discussion about future
work.

2. Variable importance

The quantification of the variable importance (abbreviated
VI) is a crucial issue not only for ranking the variables before a
stepwise estimation model but also to interpret data and under-
stand underlying phenomenons in many applied problems.

In this section, we examine the RF variable importance be-
havior according to three different issues. The first one deals
with the sensitivity to the sample sizen and the number of vari-
ablesp. The second examines the sensitivity to method pa-
rametersmtry andntree. The third one deals with the variable
importance in presence of groups of highly correlated variables.

As a result, a good choice of parameters of RF can help to
better discriminate between important and useless variables. In
addition, it can increase the stability of VI scores.

To illustrate this discussion, let us examine a simulated
dataset for the casen << p, introduced by Weston et al. (2003)
and called “toys data” in the sequel. It is an equiprobable two-
class problem,Y ∈ {−1, 1}, with 6 true variables, the others be-
ing some noise. This example is interesting since it constructs
two near independent groups of 3 significant variables (highly,
moderately and weakly correlated with responseY) and an ad-
ditional group of noise variables, uncorrelated withY. A for-
ward reference to the plots on the left side of Figure 1 allow
to see the variable importance picture and to note that the im-
portance of the variables 1 to 3 is much higher than the one of
variables 4 to 6. More precisely, the model is defined through
the conditional distribution of theXi for Y = y:

• for 70% of data,Xi ∼ yN(i, 1) for i = 1, 2, 3 andXi ∼
yN(0, 1) for i = 4, 5, 6.

• for the 30% left,Xi ∼ yN(0, 1) for i = 1, 2, 3 andXi ∼
yN(i − 3, 1) for i = 4, 5, 6.

• the other variables are noise,Xi ∼ N(0, 1) for i = 7, . . . , p.

After simulation, the obtained variables are finally standard-
ized.

Let us consider the toys data and compute the variable im-
portance.

Remark 2.1. Let us mention that variable importance is com-
puted conditionally to a given realization even for simulated
datasets. This choice which is criticizable if the objective is to
reach a good estimation of an underlying constant, is consistent
with the idea of staying as close as possible to the experimental
situation dealing with a given dataset. In addition, the number
of permutations of the observed values in the OOB sample, used
to compute the score of importance is set to the default value1.

2.1. Sensitivity to n and p

Figure 1 illustrates the behavior of variable importance for
several values ofn and p. Parametersntreeandmtry are set
to their default values (ntree = 500 andmtry =

√
p for the

classification case). Boxplots are based on 50 runs of the RF al-
gorithm and for visibility, we plot the variable importanceonly
for a few variables.
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Figure 1: Variable importance sensitivity ton andp (toys data)

On each row, the first plot is the reference one for which we
observe a convenient picture of the relative importance of the
initial variables. Then, whenp increases tremendously, we try
to check if: (1) the situation between the two groups remains
readable; (2) the situation within each group is stable; (3)the
importance of the additional dummy variables is close to 0.

The situationn = 500 (graphs at the top of the figure) corre-
sponds to an “easy” case, where a lot of data are available and
n = 100 (graphs at the bottom) to a harder one. For each value
of n, three values ofp are considered: 6, 200 and 500. When
p = 6 only the 6 true variables are present. Then two very
difficult situations are considered:p = 200 with a lot of noisy
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variables andp = 500 is even harder. Graphs are truncated after
the 16th variable for readability (importance of noisy variables
left are of the same order of magnitude as the last plotted).

Let us comment on graphs on the first row (n = 500). When
p = 6 we obtain concentrated boxplots and the order is clear,
variables 2 and 6 having nearly the same importance. When
p increases, the order of magnitude of importance decreases
(note that the y-axis scale is different forp = 6 and forp , 6).
The order within the two groups of variables (1− 3 and 4− 6)
remains the same, while the overall order is modified (variable
6 is now less important than variable 2). In addition, variable
importance is more unstable for huge values ofp. But what is
remarkable is that all noisy variables have a zero VI. So one can
easily recover variables of interest.

In the second row (n = 100), we note a greater instability
since the number of observations is only moderate, but the vari-
able ranking remains quite the same. What differs is that in
the difficult situations (p = 200, 500) importance of some noisy
variables increases, and for example variable 4 cannot be high-
lighted from noise (even variable 5 in the bottom right graph).
This is due to the decreasing behavior of VI withp growing,
coming from the fact that whenp = 500 the algorithm ran-
domly choose only 22 variables at each split (with themtry
default value). The probability of choosing one of the 6 true
variables is really small and the less a variable is chosen, the
less it can be considered as important. We will see the benefits
of increasingmtry in the next paragraph.

In addition, let us remark that the variability of VI is largefor
true variables with respect to useless ones. This remark canbe
used to build some kind of test for VI (see Strobl et al. (2007))
but of course ranking is better suited for variable selection.

We now study how this VI index behaves when changing val-
ues of the main method parameters.

2.2. Sensitivity to mtry and ntree

The choice ofmtry and ntree can be important for the VI
computation. Let us fixn = 100 andp = 200. In Figure 2 we
plot variable importance obtained using three values ofmtry
(14 the default, 100 and 200) and two values ofntree(500 the
default, and 2000).
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Figure 2: Variable importance sensitivity tomtryandntree(toys data)

The effect of taking a larger value formtry is obvious. Indeed
the magnitude of VI is more than doubled starting frommtry=
14 tomtry= 100, and it again increases whithmtry= 200. The
effect ofntree is less visible, but takingntree= 2000 leads to
better stability. What is interesting in the bottom right graph
is that we get the same order for all true variables in every run
of the procedure. In top left situation the mean OOB error rate
is about 5% and in the bottom right one it is 3%. The gain in
error may not be considered as large, but what we get in VI is
interesting.

2.3. Sensitivity to highly correlated predictors

Let us now address an important issue: how does variable
importance behave in presence of several highly correlatedvari-
ables? We take as basic framework the previous context with
n = 100, p = 200, ntree = 2000 andmtry = 100. Then we
add to the dataset highly correlated replications of some ofthe
6 true variables. The replicates are inserted between the true
variables and the useless ones.
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Figure 3: Variable importance of a group of correlated variables (augmented
toys data)

The first graph of Figure 3 is the reference one: the situa-
tion is the same as previously. Then for the three other cases,
we simulate 1, 10 and 20 variables with a correlation of 0.9
with variable 3 (the most important one). These replications
are plotted between the two vertical lines.

The magnitude of importance of the group 1, 2, 3 is steadily
decreasing when adding more replications of variable 3. On the
other hand, the importance of the group 4, 5, 6 is unchanged.
Notice that the importance is not divided by the number of repli-
cations. Indeed in our example, even with 20 replications the
maximum importance of the group containing variable 3 (that
is variable 1, 2, 3 and all replications of variable 3) is only three
times lower than the initial importance of variable 3. Finally,
note that even if some variables in this group have low impor-
tance, they cannot be confused with noise.

Let us briefly comment on similar experiments (see Figure
4) but perturbing the basic situation not only by introducing
highly correlated versions of the third variable but also ofthe
sixth, leading to replicate the most important of each group.
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Figure 4: Variable importance of two groups of correlated variables (augmented
toys data)

Again, the first graph is the reference one. Then we simu-
late 1, 5 and 10 variables of correlation about 0.9 with variable
3 and the same with variable 6. Replications of variable 3 are
plotted between the first vertical line and the dashed line, and
replications of variable 6 between the dashed line and the sec-
ond vertical line.

The magnitude of importance of each group (1, 2, 3 and
4, 5, 6 respectively) is steadily decreasing when adding more
replications. The relative importance between the two groups is
preserved. And the relative importance between the two groups
of replications is of the same order than the one between the
two initial groups.

2.4. Prostate data variable importance

To end this section, we illustrate the behavior of variable im-
portance on a high dimensional real dataset: the microarraydata
called Prostate, for whichn = 102 andp = 6033 (see Singh et
al. (2002) for a detailed presentation). The global pictureis the
following: two hugely important variables, about twenty mod-
erately important variables and the others of small importance.
So, more precisely Figure 5 compares VI obtained for param-
eters set to their default values (graphs of the left column)and
those obtained forntree= 2000 andmtry = p/3 (graphs of the
right column). Graphs are truncated after the 250th variable for
readability (importance of noisy variables left are of the same
order of magnitude as the last plotted).

Let us comment on Figure 5. For the two most important
variables (first row), the magnitude of importance obtainedwith
ntree = 2000 andmtry = p/3 is much larger than to the one
obtained with default values. In the second row, the increase of
magnitude is still noticeable from the third to the 9th most im-
portant variables and from the 10th to the 20th most important
variables, VI is quite the same for the two parameter choices.
In the third row, we get VI closer to zero for the variables with
ntree= 2000 andmtry = p/3 than with default values. In ad-
dition, note that for the less important variables, boxplots are
larger for default values, especially for unimportant variables
(from the 200th to the 250th).

1 2
0

0.05

0.1

variable

im
po

rt
an

ce

1 2
0

0.05

0.1

3 4 5 6 7 8 9 10 12 14 16 18 20
0

5

10

15
x 10

−3

im
po

rt
an

ce

variable
3 4 5 6 7 8 9 10 12 14 16 18 20

0

5

10

15
x 10

−3

200 210 220 230 240 250

−5

0

5

10

x 10
−4

im
po

rt
an

ce

variable
200 210 220 230 240 250

−5

0

5

10

x 10
−4

Figure 5: Variable importance for Prostate data (usingntree= 2000 andmtry=
p/3, on the right and using default values on the left)

3. Variable selection

We distinguish two variable selection objectives:

1. to find important variables highly related to the response
variable for interpretation purpose;

2. to find a small number of variables sufficient to a good
prediction of the response variable.

The first is to magnify all the important variables, even with
high redundancy, for interpretation purpose and the secondis
to find a sufficient parsimonious set of important variables for
prediction.

As mentioned at the end of the introduction, we are guided
in this paper by a typical situation matching two characteristics.
The first one is high dimensionality, or at least when the number
of true variables is much less thanp, and the second one is the
presence of groups of highly correlated predictors. They are
also specifically addressed in two earlier works by Dı́az-Uriarte
et al. (2006) and Ben Ishak et al. (2008). Let us briefly recall
these contributions.

Dı́az-Uriarte, Alvarez de Andrés propose a strategy basedon
recursive elimination of variables. More precisely, they first
compute RF variable importance. Then, at each step, they elim-
inate the 20% of the variables having the smallest importance
and build a new forest with the remaining variables. They fi-
nally select the set of variables leading to the smallest OOBer-
ror rate. The proportion of variables to eliminate is an arbitrary
parameter of their method and does not depend on the data.

Ben Ishak, Ghattas choose an ascendant strategy based on a
sequential introduction of variables. First, they computesome
SVM-based variable importance. Then, they build a sequence
of SVM models invoking at the beginning thek most important
variables, by step of 1. Whenk becomes too large, the addi-
tional variables are invoked by packets. They finally selectthe
set of variables leading to the model of smallest error rate.The
way to introduce variables is not data-driven since it is fixed be-
fore running the procedure. They also compare their procedure
with a similar one using RF instead of SVM.
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3.1. Procedure

We propose the following two-steps procedure, the first one
is common while the second one depends on the objective:

Step 1. Preliminary elimination and ranking:

• Compute the RF scores of importance, cancel the
variables of small importance;

• Order them remaining variables in decreasing or-
der of importance.

Step 2. Variable selection:

• For interpretation: construct the nested collection
of RF models involving thek first variables, for
k = 1 tomand select the variables involved in the
model leading to the smallest OOB error;

• For prediction: starting from the ordered vari-
ables retained for interpretation, construct an as-
cending sequence of RF models, by invoking and
testing the variables stepwise. The variables of
the last model are selected.

Of course, this is a sketch of procedure and more details are
needed to be effective. The next paragraph answer this point but
we emphasize that we propose an heuristic strategy which does
not depend on specific model hypotheses but based on data-
driven thresholds to take decisions.

Remark 3.1. Since we want to treat in an unified way all the
situations, we will use for finding prediction variables thesome-
what crude strategy previously defined. Nevertheless, starting
from the set of variables selected for interpretation (say of size
K), a better strategy could be to examine all, or at least a large
part, of the2K possible models and to select the variables of
the model minimizing the OOB error. But this strategy becomes
quickly unrealistic for high dimensional problems so we prefer
to experiment a strategy designed for small n and large K which
is not conservative and even possibly leads to select fewer vari-
ables.

3.2. Starting example

To both illustrate and give more details about this procedure,
we apply it on a simulated learning set of sizen = 100 from
the classification toys data model withp = 200. The results are
summarized in Figure 6. The true variables (1 to 6) are respec-
tively represented by (⊲,△, ◦, ⋆,⊳,�). We compute, thanks to
the learning set, 50 forests withntree= 2000 andmtry = 100,
which are values of the main parameters previously considered
as well adapted for VI calculations (see Section 2.2).

Let us detail the main stages of the procedure together with
the results obtained on toys data:

• Variable ranking.

First we rank the variables by sorting the VI (averaged
from the 50 runs) in descending order.

The result is drawn on the top left graph for the 50 most
important variables (the other noisy variables having an
importance very close to zero too). Note that true variables
are significantly more important than the noisy ones.
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Figure 6: Variable selection procedures for interpretation and prediction for
toys data

• Variable elimination.

We keep this order in mind and plot the corresponding
standard deviations of VI. We use this graph to estimate
some threshold for importance, and we keep only the vari-
ables of importance exceeding this level. More precisely,
we select the threshold as the minimum prediction value
given by a CART model fitting this curve (see Figure 7).
This rule is, in general conservative and leads to retain
more variables than necessary in order to make a careful
choice later.
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Figure 7: Selecting the threshold for variable eliminationusing CART. Bold
line refers to the CART estimation of the dotted line and the horizontal dashed
line indicates the threshold (the bottom graph being a zoom of the top one)

The standard deviations of VI can be found in the top right
graph. We can see that true variables standard deviation is
large compared to the noisy variables one, which is close
to zero. The threshold leads to retain 33 variables.

• Variable selection procedure for interpretation.

Then, we compute OOB error rates of random forests (us-
ing default parameters) of the nested models starting from
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the one with only the most important variable, and ending
with the one involving all important variables kept previ-
ously. The variables of the model leading to the smallest
OOB error are selected.

Note that in the bottom left graph the error decreases
quickly and reaches its minimum when the first 4 true vari-
ables are included in the model. Then it remains constant.
We select the model containing 4 of the 6 true variables.
More precisely, we select the variables involved in the first
modelalmostleading to the smallest OOB error. The ac-
tual minimum is reached with 24 variables.

The expected behavior is non-decreasing as soon as all the
”true” variables have been selected. It is then difficult to
treat in a unified way nearly constant of or slightly increas-
ing. In fact, we propose to use an heuristic rule similar to
the 1 SE rule of Breiman et al. (1984) used for selection in
the cost-complexity pruning procedure.

• Variable selection procedure for prediction.

We perform a sequential variable introduction with test-
ing: a variable is added only if the error gain exceeds a
threshold. The idea is that the error decrease must be sig-
nificantly greater than the average variation obtained by
adding noisy variables.

The bottom right graph shows the result of this step, the
final model for prediction purpose involves only variables
3, 6 and 5. The threshold is set to the mean of the absolute
values of the first order differentiated OOB errors between
the model withpinterp = 4 variables (the first model after
the one we selected for interpretation, see the bottom left
graph) and the one with all thepelim = 33 variables :

1
pelim − pinterp

pelim−1∑

j=pinterp

|OOB( j + 1)−OOB( j) | .

It should be noted that if one wants to estimate the prediction
error, since ranking and selection are made on the same set of
observations, of course an error evaluation on a test set or using
a cross validation scheme should be preferred. It is taken into
account in the next section when our results are compared to
others.

To evaluate fairly the different prediction errors, we prefer
here to simulate a test set of the same size than the learning set.
The test error rate with all (200) variables is about 6% while
the one with the 4 variables selected for interpretation is about
4.5%, a little bit smaller. The model with prediction variables 3,
6 and 5 reaches an error of 1%. Repeating the global procedure
10 times on the same data always gave the same interpretation
set of variables and the same prediction set, in the same order.

3.3. Highly correlated variables

Let us now apply the procedure on toys data with replicated
variables: a first group of variables highly correlated withvari-
able 3 and a second one replicated from variable 6 (the most

number of interpretation prediction
replications set set

1 3 73 2 6 5 3 6 5
5 3 2 73 103 6 113 5 126 3 6 5
10 3 143 83 2 153 6 5 103 133 206 3 6 5 103

Table 1: Variable selection procedure in presence of highlycorrelated variables
(augmented toys data) where the expressioni j means that variablei is a repli-
cation of variablej

important variable of each group). The situations of interest are
the same as those considered to produce Figure 4.

Let us comment on Table 1, where the expressioni j means
that variablei is a replication of variablej.

Interpretation sets do not contain all variables of interest.
Particularly we hardly keep replications of variable 6. Therea-
son is that even before adding noisy variables to the model the
error rate of nested models do increase (or remain constant):
when several highly correlated variables are added, the bias re-
mains the same while the variance increases. However the pre-
diction sets are satisfactory: we always highlight variables 3
and 6 and at most one correlated variable with each of them.

Even if all the variables of interest do not appear in the in-
terpretation set, they always appear in the first positions of our
ranking according to importance. More precisely the 16 most
important variables in the case of 5 replications are: (3 2 73 103

6 113 5 126 83 136 166 1 156 146 93 4), and the 26 most impor-
tant variables in the case of 10 replications are: (3 143 83 2 153

6 5 103 133 206 216 113 123 186 1 246 73 266 236 163 256 226

176 196 4 93). Note that the order of the true variables (3 2 6 5
1 4) remains the same in all situations.

4. Experimental results

In this section we experiment the proposed procedure on four
high dimensional classification datasets and then finally weex-
amine the results on a standard regression problem to illustrate
the versatility of the procedure.

4.1. Prostate data

We apply the variable selection procedure on Prostate data
(for whichn = 102 andp = 6033, see Singh et al. (2002)). The
graphs of Figure 8 are obtained as those of Figure 6, except that
for the RF procedure, we usentree = 2000,mtry = p/3 and
for the bottom left graph, we only plot the 100 most important
variables for visibility. The procedure leads to the same picture
as previously, except for the OOB rate along the nested models
which is less regular. The first point is to notice that the elim-
ination step leads to keep only 270 variables. The key point
is that the procedure selects 9 variables for interpretation, and
6 variables for prediction. The number of selected variables is
then very much smaller thanp = 6033.

In addition, to examine the variability of the interpretation
and prediction sets the global procedure is repeated five times
on the entire Prostate dataset. The five prediction sets are very
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Figure 8: Variable selection procedures for interpretation and prediction for
Prostate data

close to each other. The number of prediction variables fluctu-
ates between 6 and 10, and 5 variables appear in all sets. Among
the five interpretation sets, 2 are identical and made of 9 vari-
ables and the 3 other are made of 25 variables. The 9 variables
of the smallest sets are present in all sets and the biggest sets
(of size 25) have 23 variables in common.

So, although the sets of variables are not identical for each
run of the procedure, the most important variables are included
in all of the sets.

4.2. Four high dimensional classification datasets

Let us consider the four well known high dimensional real
datasets called Colon (n = 62, p = 2000), see Alon et al.
(1999), Leukemia (n = 38, p = 3051), see Golub et al. (1999),
Lymphoma (n = 62, p = 4026), see Alizahed (2000) and
Prostate (n = 102, p = 6033), see Singh et al. (2002). We
apply the global variable selection procedure on these fourwell
known high dimensional real datasets, and we want to get an
estimation of prediction error rates. Since these datasetsare of
small size and in order to be comparable with the previous re-
sults, we use a 5-fold cross-validation to estimate the error rate.
So we split the sample in 5 stratified parts, each part is succes-
sively used as a test set, and the remaining of the data is usedas
a learning set. Note that the set of variables selected vary from
one fold to another. So, we give in Table 2 the misclassification
error rate, given by the 5-fold cross-validation, for interpreta-
tion and prediction sets of variables respectively. The num-
ber into brackets is the average number of selected variables.
In addition, one can find the original error which stands for
the misclassification rate given by the 5-fold cross-validation
achieved with random forests using all variables. This error is
calculated using the same partition in 5 parts and again we use
ntree= 2000 andmtry= p/3 for all datasets.

The number of interpretation variables is hugely smaller than
p, at most tens to be compared to thousands. The number of
prediction variables is very small (always smaller than 12)and
the reduction can be very important with respect to the interpre-
tation set size. The errors for the two variable selection proce-

Dataset interpretation prediction original
Colon 0.16 (35) 0.20 (8) 0.14

Leukemia 0 (1) 0 (1) 0.02
Lymphoma 0.08 (77) 0.09 (12) 0.10

Prostate 0.085 (33) 0.075 (8) 0.07

Table 2: Variable selection procedure for four high dimensional real datasets.
CV-error rate and into brackets the average number of selected variables

dures are of the same order of magnitude as the original error
(but a little bit larger).

We compare these results with the results obtained by Ben
Ishak et al. (2008) (see tables 9 and 11 in Ben Ishak et al.
(2008)) which have compared their method with 5 competitors
(mentioned in the introduction) for classification problems on
these four datasets. Error rates are comparable. With the pre-
diction procedure, as already noted in the introductory remark,
we always select fewer variables than their procedures (except
for their method GLMpath which select less than 3 variables for
all datasets).

Let us notice that the results for the dataset Prostate differ
from Section 4.1 to Section 4.2. This difference can mainly be
explained by the use of 5-fold cross-validation in Section 4.2.
Indeed the fact thatn is very small (n = 62) makes the method
quite unstable with respect to resampling.

4.3. Ozone data

Before ending the paper, let us consider a standard regression
dataset. Since it is far from matching the two main character-
istics which have guided the algorithm principle , it allowsus
to check that it still work well. We apply the entire procedure
to the easy to interpret ozone dataset (it can be retrieved from
the R packagemlbench and detailed information can be found
in the corresponding description file). It consists ofn = 366
observations of the daily maximum one-hour-average ozone to-
gether withp = 12 meteorologic explanatory variables. Let us
first examine, in Figure 9 the VI obtained with RF procedure
usingmtry= p/3 = 4 andntree= 2000.
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Figure 9: Variable importance for ozone data

From the left to the right, the 12 explanatory variables are
1-Month, 2-Day of month, 3-Day of week, 5-Pressure height,
6-Wind speed, 7-Humidity, 8-Temperature (Sandburg), 9-
Temperature (El Monte), 10-Inversion base height, 11-Pressure
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gradient, 12-Inversion base temperature, 13-Visibility.Let us
mention that the variables are numbered exactly as inmlbench,
so the 4th variable is the response one.

Three very sensible groups of variables appear from the most
to the least important. First, the two temperatures (8 and 9),
the inversion base temperature (12) known to be the best ozone
predictors, and the month (1), which is an important predictor
since ozone concentration exhibits an heavy seasonal compo-
nent. A second group of clearly less important meteorologi-
cal variables: pressure height (5), humidity (7), inversion base
height (10), pressure gradient (11) and visibility (13). Finally
three unimportant variables: day of month (2), day of week (3)
of course and more surprisingly wind speed (6). This last fact
is classical: wind enter in the model only when ozone pollution
arises, otherwise wind and pollution are weakly correlated(see
for example Cheze et al. (2003) highlighting this phenomenon
using partial estimators).

Let us now examine the results of the selection procedures.
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Figure 10: Variable selection procedures for interpretation and prediction for
ozone data

After the first elimination step, the 2 variables of negative
importance are canceled, as expected.

Therefore we keep 10 variables for interpretation step and
then the model with 7 variables is then selected and it contains
all the most important variables: (9 8 12 1 11 7 5).

For the prediction procedure, the model is the same except
one more variable is eliminated: humidity (7) .

In addition, when different values formtry are considered,
the most important 4 variables (9 8 12 1) highlighted by the VI
index, are selected and appear in the same order. The variable 5
also always appears but another one can appear after of before.

5. Discussion

Of course, one of the main open issue about random forests
is to elucidate from a mathematical point of view its exception-
ally attractive performance. In fact, only a small number ofref-
erences deal with this very difficult challenge and, in addition
to bagging theoretical examination by Bühlmann et al. (2002),

only purely random forests, a simple version of random forests,
is considered. Purely random forests have been introduced by
Cutler et al. (2001) for classification problems and then studied
by Breiman (2004), but the results are somewhat preliminary.
More recently Biau et al. (2008) obtained the first well stated
consistency type results.

From a practical perspective, surprisingly, this simplified and
essentially not data-driven strategy seems to perform well, at
least for prediction purpose (see Cutler et al. (2001)) and,of
course, can be handled theoretically in a easier way. Neverthe-
less, it should be interesting to check that the same conclusions
hold for variable importance and variable selection tasks.

In addition, it could be interesting to examine some variants
of random forests which, at the contrary, try to take into ac-
count more information. Let us give for example two ideas.
The first is about pruning: why pruning is not used for indi-
vidual trees? Of course, from the computational point of view
the answer is obvious and for prediction performance, averag-
ing eliminate the negative effects of individual overfitting. But
from the two other previously mentioned statistical problems,
prediction and variable selection, it remains unclear. Thesec-
ond remark is about the random feature selection step. The
most widely used version of RF selects randomlymtry input
variables according to the discrete uniform distribution.Two
variants can be suggested: the first is to select random inputs
according to a distribution coming from a preliminary ranking
given by a pilot estimator; the second one is to adaptively up-
date this distribution taking profit of the ranking based on the
current forest which is then more and more accurate.

Finally, let us mention an application currently in progress
for fMRI brain activity classification (see Genuer et al. (2010)).
This is a typical situation wheren << p, with a lot of highly
correlated variables and where the two objectives have to be
addressed: find the most activated (whole) regions of the brain,
and build a predictive model involving only a few voxels of the
brain. An interesting aspect for us will be the feedback given
by specialists, needed to interpret the set of variables found by
our algorithm. In addition a lot of well known methods have
already been used for these data, so fair comparisons will be
easy.
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