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The quantum spin Hall insulator is characterized by the presence of gapless helical edge states where

the spin of the charge carriers is locked to their direction of motion. In order to probe the properties of the

edge modes, we propose a design of a tunable quantum impurity realized by a local gate under an external

magnetic field. Using the integrability of the impurity model, the conductance is computed for arbitrary

interactions, temperatures and voltages, including the effect of Fermi liquid leads. The result can be used

to infer the strength of interactions from transport experiments.
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The quantum spin Hall effect (QSHE) is a property of
certain two-dimensional electron systems with strong spin-
orbit coupling [1,2]. The bulk of the system is electrically
insulating, while a conducting ‘‘helical edge’’ exists at the
boundary in which electrons of opposite spin move in
opposite directions [3–5]. Due to this reduction of the
number of degrees of freedom, the QSHE edge is expected
to realize the physics of a spinless Luttinger liquid (LL), as
opposed to a conventional one-dimensional wire that rep-
resents a spinful LL [6]. The LL is the generic state of
metallic interacting electrons in one dimension [7], while
metallic electrons in higher dimensions typically form a
Fermi liquid.

The QSHE is realized in (Hg,Cd)Te quantum wells [8,9]
where measurements of the conductance indicate the exis-
tence of helical edge modes. The simplest measurement to
perform on such a system would be a two-terminal con-
ductance measurement. Such a measurement can confirm
that the current is carried by helical one-dimensional edge
channels, but it can neither provide information on the
interaction strength within those channels, nor verify the
expected LL behavior. This is the case because, when a
clean interacting wire is placed between Fermi liquid con-
tacts (modeled as a noninteracting wires), the measured
conductance is insensitive to the interactions [10,11].

As it turns out, there is a way in which the two terminal
conductance can provide information on the interaction
strengthwithin the edgemodes. A commonway of studying
one-dimensional systems, both theoretically and experi-
mentally, is by exploring impurity effects on measurable
quantities such as their conductance. In general, the prob-
lem becomes quite involved when interactions are present,
and one usually has to rely on the asymptotic behavior of
such quantities (at high or low temperatures, for example) to
extract information on the interaction strength. However, in
some unique cases certain properties of the edge model
make it possible to obtain exact solutions. The QSHE

edge is an example of such a system, since the model of a
spinless LL with an impurity is ‘‘integrable’’ [12].
In order to utilize the powerful tool of integrability to

describe actual measurements on a QSHE edge, backscat-
tering must be induced within a single edge (the model
describing backscattering between the two edges of the
QSHE system is not integrable). In principle, this can be
done by means of a magnetic impurity that locally breaks
time-reversal symmetry. However, it is much more desir-
able to find a way to engineer an impurity with a tunable
strength, in order to induce the crossover between weak
and strong backscattering.
In this work we consider combining the effects of an

externally applied magnetic field and a local gate voltage to
form an artificial impurity on the QSHE edge. The mag-
netic field direction is carefully chosen such that it breaks
time-reversal symmetry yet leaves the edge modes gapless.
These edge modes, now unprotected, become sensitive to
the local perturbation generated by the gate in the form of
an induced Rashba spin-orbit coupling. The strength of the
impurity is set both by the magnetic field and the gate
voltage. With controlled means for introducing an impu-
rity, the integrality of the edge model [12–14] allows us to
extract the shape of the nonequilibrium, finite temperature
conductance curve, which strongly depends on the value of
the Luttinger parameter. Hence measuring the conductance
throughout the crossover from weak to strong backscatter-
ing could provide information on the interaction strength
within the edge channels.
The setup we have in mind (see Fig. 1) is similar in spirit

to a quantum point contact in fractional quantum Hall
effect (FQHE) devices [15]. There, backscattering between
modes with opposite chirality is enhanced with the aid of
two gates depleting the electron density and bringing the
two edges of the sample closer together. However, for the
QSHE device we consider, such backscattering takes place
on the same edge. Hence, we do not require that the two
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edges of the sample be brought together, and a single gate
is sufficient. Recently, leading corrections to the linear
conductance induced by a generic magnetic impurity in a
fractional topological insulator were calculated [16].
There, unlike the integer case we study, an edge with
repulsive interaction can be stable to magnetic perturba-
tions. Also, backscattering induced by magnetic patches
was suggested as a way to study the noninteracting edge
[17] or to form a quantum dot for studying tunneling
effects [18]. In Ref. [19], the effect of a weak magnetic
field on backscattering from an embedded impurity was
explored perturbatively using the Keldysh technique.

Note that although both the QSHE and the FQHE edges
realize a spinless LL, the Luttinger parameter for the
QSHE can in principle obtain any value, while for the
FQHE it is restricted to quantized values. Another crucial
difference between the two systems is embodied in
the effect of Fermi liquid contacts discussed earlier. For the
FQHE, contacts are expected to have no effect on the con-
ductance, due to the spatial separation of modes of opposite
chirality. This has been observed in experiments [20–22].
Therefore, the QSHE case has the potential to provide the
first experimental test of integrability at nonquantized
values of the Luttinger parameter and in the process verify
the effects associated with Fermi-liquid contacts.

We start by considering the noninteracting case, solving
the scattering problem of two gapless regions separated by
a finite strip in which an energy gap is present. We find the
reflection strength and show that it can display resonant
behavior for some values of the parameters. We then con-
sider interactions and use a method known as the thermo-
dynamic Bethe ansatz to obtain the nonequilibrium finite
temperature conductance for various values of the
Luttinger parameter [13].

The low energy physics of the noninteracting edge in the
presence of a magnetic field B and a position dependent
Rashba spin-orbit coupling �ðxÞ is described by the
Hamiltonian

H ¼ �i@vF�z@x þ�B

ge
2

~B � ~�� i@

2
f�; @xg�y; (1)

where vF is the Fermi velocity, the �’s are the Pauli
matrices, f:; :g denotes an anticommutator, ge is the elec-
tron Landé g-factor and �B is the Bohr magneton. To
simplify notation, in the following we take @ ¼ 1 and
define M ¼ �BgeB=2. For M ¼ � ¼ 0 the spectrum of
this Hamiltonian is gapless, E ¼ �vFp. When a magnetic
field is turned on, the energy spectrum becomes gapped,
unless the magnetic field is parallel to the spin quantization
axis of the electron. In that case the effect of the field is
merely to shift the Dirac point and E ¼ �ðvFpþMÞ. In
the absence of a magnetic field, a finite constant spin-orbit
interaction�ðxÞ ¼ �0 renormalizes the electron velocity to

v� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
0 þ v2

F

q
, and rotates the electron spin quantization

axis by an angle cos� ¼ vF=v� about the x axis [23]. Note
that the spins of the counter-propagating modes remain
anti-parallel in the presence of the Rashba term as required
by time-reversal symmetry.
Let us now consider a system in which the magnetic field

is uniform and points along the spin quantization axis,
while a finite constant Rashba coupling exists only within
a finite strip of width d, �ðxÞ ¼ �0�ðxÞ�ðd� xÞ. Outside
the strip, the energy spectrum is gapless, while within the
strip the external magnetic field is no longer aligned with
the spin polarization axis, and the energy spectrum
becomes gapped

E ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv�pþ vFM=v�Þ2 þ �2

0M
2=v2

�

q
; (2)

with the energy gap Eg ¼ j2�0M=v�j. In the presence

of the external field, the two otherwise decoupled spinors
now mix in the region combining both the field and the
spin-orbit coupling. The result is a square scattering bar-
rier, from which incoming waves can be reflected. In
the limit of a narrow constriction, this region acts as a
localized impurity in our helical quantum wire, whose
strength is controlled by M and �0. In reality this can be
realized by varying the voltage of a nearby electrostatic
gate which enhances the Rashba coupling in the vicinity of
the gate, while the Rashba coupling far from the gate is
negligible [24].
We solve the scattering problem by defining the scatter-

ing state in each region to be

�ðxÞ ¼

8>><
>>:
c Re

ipRx þ rc Le
ipLx x < 0

aþcþeipþx þ a�c�eip�x 0< x< d

tc Re
ipRx x > d;

where c R ¼ ð1; 0Þ, c L ¼ ð0; 1Þ and c�¼ði�p�;vFp�þ
M�EÞ. The momenta pR=L ¼ ð�E�MÞ=vF correspond

to the right (R) and left (L) movers outside the strip, while
p� are the two momenta inside the strip, corresponding to
the solutions of (2) at a given energy. The nontrivial part of
the solution for r and t, the reflection and transmission
amplitudes is to find the correct matching condition for the
wave function � at x ¼ 0, d.

FIG. 1 (color online). Proposed experimental setup. A top gate
is used to locally tune the strength of the Rashba spin-orbit
coupling. Combined with a magnetic field, a local energy gap in
the edge spectrum generates backscattering.
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For a general profile of �ðxÞ, the Schröedinger equation
Hc ¼ Ec [Eq. (1)] can be solved formally as �ðx1Þ ¼
Tx1;x0�ðx0Þ where the transfer matrix is written as

Tx1;x0 ¼ Pxe
i
R

x1
x0

dx½ðvF�zþ��yÞ=ðv2
Fþ�2Þ�½EþM�zþði=2Þð@x�Þ�y�;

(3)

with Px representing the path ordering operator. For a step
in �, �ðxÞ ¼ �0�ðxÞ, we set x0 ¼ �� and x1 ¼ � and
then take the limit of � ! 0. The contribution of the terms
including the magnetic field and the energy in the exponent
will vanish, and we are left with the matching condition

c ð0þÞ ¼
�
vF

v�

�
1=2

ei�0�xc ð0�Þ; (4)

with tan2�0 ¼ �0=vF.
Using the boundary condition (4) at x ¼ 0, and a similar

one at x ¼ d, we obtain the solutions for r, t. The analytical
form of these solutions is lengthy; therefore, we will not
present it here but rather plot the reflection probability R ¼
jrj2 in Fig. 2. The behavior of R as a function of the field at
a fixed (nonzero) value of �0=vF can be described as
follows: at zero field, R ¼ 0, while for large fields M �
v�E=�0, the reflection is perfect, R ¼ 1. In between, R can
display two types of behaviors. For evanescent waves
inside the barrier, E2 <�2

0M
2=v2

�, R rises monotonically

towards unity, while propagating waves result in an oscil-
lating reflection amplitude, due to Fabry-Pérot type of
interference resonances. The condition for a resonance is
simply ðpþ � p�Þd ¼ 2�n, and depends both on the value
of �0 andM. Such resonances have also been predicted for
a QSHE edge state under a spatially inhomogeneous mag-
netic field [17].

While resonances appearing for the finite barrier would
provide a test for the existence of helical edge modes in the
absence of interactions, it is expected that interactions are
important in 1D systems and can renormalize drastically
the backscattering created by a single impurity [25]. This is

true even for weak repulsive interactions since single elec-
tron backscattering is described by a relevant operator (in
the renormalization group sense), leading to a crossover
from weak to strong backscattering as the temperature is
lowered. The noninteracting solution is still useful in esti-
mating the bare backscattering strength and its dependence
on �0 and M. In our discussion of the noninteracting
problem we considered a region of finite width d as the
scatterer. In order to calculate conductance in the
interacting case we need to consider a point like scatterer.
The bare backscattering strength for such an impurity
could be estimated from our previous calculation by taking
the limit of a very narrow barrier [26]. For weak magnetic
fields and small �0 it is simply given by R� ðM�2k=v

2
FÞ2,

where �2k is the 2k component of the Fourier decomposi-
tion of �ðxÞ.
The Hamiltonian of the interacting QSHE edge in the

bosonization language is

H ¼ v

4�g

Z
dxð@x�RÞ2 þ ð@x�LÞ2; (5)

where �R=L are left and right moving boson fields, g is

the LL parameter and v is the edge velocity renormalized
by interactions [27]. A backscattering term couples to
�L ��R

HB ¼ � cos½�Lð0Þ ��Rð0Þ�: (6)

By defining even and odd nonlocal combinations of the

fields �e=o ¼ 1=
ffiffiffi
2

p ð�Lðx; tÞ ��Rð�x; tÞÞ, the backscat-

tering term couples only to�o, and the Hamiltonian breaks
into two decoupled contributions. The part describing the
odd fields is integrable, since it is identical to the massless
limit of the boundary sine-Gordon (SG) model [12,14].
The even field theory is free and does not interact with
the impurity.
The integrability of the SGmodel was previously used in

Refs. [12,14] to calculate the nonlinear conductance in a
point contact geometry for FQHE states at 	 ¼ 1=m. In
Ref. [28] a similar formula is derived for 	 ¼ 1� 1=m by
exploiting the relation between the Kondo problem in a
magnetic field and the SG model at finite voltage. Here, we
use the same method to compute the differential conduc-
tance curves at m ¼ 3, 4, 5 in order to demonstrate the
behavior of the QSHE edge transport at 1=2< g< 1. A
result for continuously variable g can in principle be
computed using a more involved technique developed
in Ref. [29]. Also, if the repulsive interactions are weak
(g close to 1), a more direct approach based on resummed
perturbation theory [30] can be used, but it is currently
unclear whether interactions are weak in the QSHE edge.
For g ¼ 1� 1=m, the current along the QSHE edge is

given by [28]:

FIG. 2 (color online). Reflection probability R as a function of
the normalized magnetic field M for various Fermi energies E,
and �0=vF ¼ 0:1. The energy unit is E0 ¼ @vF=d.
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IðV;TB;TÞ

¼Tðm�1Þ
2

Z d�

cosh2½�� lnðTB=TÞ�

� ln

�
1þeðm�1ÞV=2T�
þð�Þ

1þe�ðm�1ÞV=2T�
þð�Þ
1þe�ðm�1ÞV=2T�
þð1Þ

1þeðm�1ÞV=2T�
þð1Þ

�
: (7)

Here TB is an energy scale related to the impurity strength

� by TB ¼ C�1=ð1�gÞ [14,28], where C is a nonuniversal
(cutoff dependent) constant, 
þ is the quasi-energy of the
kink solution of the sine-Gordon model, and � the rapidity.
The energy 
þð�Þ of the kinks is computed numerically by
solving a set of coupled integral equations obtained from
the thermodynamic Bethe ansatz. The full details of these
equations are given in Supplemental Material [31].

To account for the effect of noninteracting leads on the
calculation of the conductance, we adapt a result from
Ref. [32], where a self-consistency condition was derived
for the chemical potential of the various excitations inside
the wire, which is not equal to the external applied voltage.
The consequences of this self-consistency condition were
extensively explored in Ref. [32] for g ¼ 1=m. Here we
carry out a similar analysis for g ¼ 1� 1=m. Denoting the
chemical potential for the kinks and anti-kinks by �� ¼
�ðm� 1ÞW=2 and the external voltage by V, the self-
consistency condition for W is [32]

V ¼ � e2

h

�
1� 1

g

�
IðWÞ þW: (8)

The results for the differential conductance G ¼ dI=dV,
with and without the contact correction, are presented
in Fig. 3. The asymptotic behavior of G as a function
of TB=T matches the known predictions [25], namely

G ’ e2=hðT=TBÞ2=g�2 at low temperature, and G ’
e2=hð1� ðTB=TÞ2ð1�gÞÞ at high temperature.

Though we have computed the full curve for particular
values of g, all curves show similar features and a com-
parison with experimental data should confirm the
expected LL behavior and yield a good estimate for the

value of g. Note that when contact corrections are included
the conductance always saturates to e2=h at high voltage or
in the absence of backscattering. Nevertheless, the curve
shape itself highly depends on g, and in particular, the
exponents of the asymptotic behavior remain the same as
without the correction.
The feasibility of our proposal depends both on the

stability of the QSHE edge in presence of a magnetic field
and the spin direction of the modes. The behavior of the
QSHE under a magnetic field has been studied in an
experiment where the conductance was measured for vari-
ous tilt angles of the field with respect to the plane of the
2D electron gas [2,8,33]. The results show that on top of
the contribution from the Zeeman coupling, when the field
is perpendicular to the plane, the conductance drops
rapidly with the field strength due to orbital effects.
Nevertheless, a peak in the conductance of typical width
B ¼ 10 mT exists at T ¼ 30 mK. Orbital effects result in
an effective g-factor values of 20–50, the typical Fermi
velocity is estimated to be vF ¼ 5:5� 105 m=s, and �0 �
5� 104 m=s. Therefore, even under the most restrictive
conditions one can obtain a gap size of Eg � 100–300 mK

in the vicinity of the gate in our setup.
In our analysis we have made the assumption that the

spin quantization axis far from the gated region is fixed
along the edge, and therefore it is possible to align the
magnetic field such that it does not gap out the edge modes
in those regions. In principle, the preferred spin quantiza-
tion axis is determined by the properties of the material, is
not protected, and may tilt along the edge due to fluctua-
tions of the Rashba coupling. However, if the edge is made
smooth enough it is reasonable to assume that such fluc-
tuations have a much smaller effect than the intentional
coupling induced by the gate, and therefore our analysis
remains valid. Overall the size of the sample should be
small enough that dephasing processes introduced by
uncontrolled mechanisms (such as spin dephasing [34])
are negligible in comparison with the effect of the tunable
impurity.
We would like to thank Paul Fendley for useful discus-

sions. The authors acknowledge support from AFOSR

FIG. 3 (color online). Differential conductance for different values of g ¼ 1� 1=m. Left figure: G ¼ dI=dV (with contact
corrections) as a function of TB=T. Right figures: G ¼ dI=dV as a function of V=T for two different values of TB=T. The differential
conductance has been scaled with the value G1 ¼ e2=h and ð1� 1=mÞe2=h with and without contact corrections, respectively. The
curves without contact corrections have been shifted down by 0.3 for clarity.
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