
HAL Id: hal-00755352
https://hal.science/hal-00755352

Submitted on 21 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A middleware architecture for autonomic software
deployment

Mohamed El Amine Matougui, Sébastien Leriche

To cite this version:
Mohamed El Amine Matougui, Sébastien Leriche. A middleware architecture for autonomic software
deployment. ICSNC ’12 : The Seventh International Conference on Systems and Networks Commu-
nications, Nov 2012, Lisbon, Portugal. pp.13-20. �hal-00755352�

https://hal.science/hal-00755352
https://hal.archives-ouvertes.fr


A middleware Architecture for Autonomic Software Deployment

Mohammed El Amine Matougui and Sebastien Leriche

Institut Telecom ; Telecom SudParis

UMR 5157 CNRS SAMOVAR,

F-91011 Evry Cedex, France

Email: {mohammed el amine.matougui, sebastien.leriche}@it-sudparis.eu

Abstract—Autonomic software deployment in open net-
worked environments such as mobile and ad hoc networks
is an open issue. Some solutions to software deployment exist
but they are usable only within static topologies of devices.
We propose a middleware architecture providing a constraint-
based language guiding the deployment process at a high level
and an autonomous agent-based system for establishing and
maintaining a software deployment according to a deployment
plan. Constraints solver generates the deployment plan from
the initial specification and a network discovery service is
used to automatically detect the target hosts. This middleware
architecture considers the challenges of deploying distributed
software over mobile and ad hoc networks with minimal human
oversight.

Keywords-autonomic deployment; ubiquitous computing;
mobile agents; middleware

I. INTRODUCTION

Software deployment is defined as a complex process

that includes a number of inter-related activities. Currently

there is no consensus around deployment activities. The

deployment life cycle includes all activities between the

software release and the software removal from deployment

sites [1]. A generic deployment process covers the instal-

lation of software into the execution environment and the

activation of the software, it also contains some post instal-

lation activities such as deactivation, updating, monitoring,

reconfiguring (adapting) and uninstalling of the software [2].

Several large-scale deployment platforms exist such as

Software Dock [3], DeployWare [4], D&C [5], JADE [6] or

more recently KALIMUCHO [7]. These deployment tools

are beginning to reach their limits; they use techniques

that do not suit the complexity of the issues encountered

in ubiquitous infrastructures. Instead, they are only valid

within fixed network topology and do not take into account

neither QoS variations nor the machine or links failures

characterizing these environments. In addition, users of

these deployment tools are required to manage manually

the deployment activities, which represent a very significant

human intervention in the deployment process. Indeed, for

large distributed component-based applications with many

constraints and requirements, it is hard to accomplish the

deployment process manually. Clearly, there is a need

for new infrastructures and techniques that automate the

deployment process and offer dynamic reconfiguration of

software systems with a minimum of human intervention.

To address these issues, we propose in this paper a

new middleware for autonomic software deployment that is

composed of (1) a domain-specific constraint language and

a constraint solver for expressing deployment constraints

and planning how the software will be deployed onto the

target hosts (calculating a deployment plan), (2) a network

discovery service and a bootstrap for the discovery of

the deployment target hosts, (3) a deployment support for

executing the deployment activities, and (4) an adaptable

mobile agent system that runs and supervises the deployment

process.

This paper is organized as follows: Section 2 intro-

duces a motivating example and discusses the need for

autonomic software deployment and the requirements of

ubiquitous and mobile or ad-hoc environments. Section 3

presents an overview of our approach for autonomic software

deployment. In Section 4, we present the technologies in-

volved in our prototype and some experimental results. In

Section 5, we discuss some related work. Finally, in Section

6 we conclude the paper and give an overview of our future

work.

II. MOTIVATING EXAMPLE

In order to highlight specificities and problems encoun-

tered for software deployment in mobile and ad hoc net-

works infrastructures we present a deployment scenario, in

which we deploy an activity as a monitoring application for

a set of hosts (unknown at the design time) connected to a

wireless network.

We consider a distributed software for providing statistical

information on all hosts connected to the local area network

(WiFi network). The context information in this experiment

are respectively available memory size, OS type, processors

usage and available disk space in each deployment target

host.

At the beginning of the deployment process, the number

of participants in this experiment is unpredictable; it can

range from a dozen to a hundred of participants. Hosts in-

volved in the deployment process are equipped with various

hardware and software environments ranging from personal



computer and smartphone to ultra-mobile devices such as

tablets or PDA.

Each host connected to the wireless network is a po-

tential deployment target host. The software to deploy

is composed of eight components, each component being

a deployment unit. The Display-Results component,

allows the display of the statistical information computed

during this experiment. This component must run on a

Linux platform, and requires 40MB of RAM and at least

20% of the CPU. The components Average-Memory,

Average-Disk and Average-CPU-Occupation cal-

culate respectively the average of the available memory, the

average disk space available and the average occupation rate

of processors.

The desired deployment plan for this application is as

follows: one Linux host with enough memory and CPU

will get all the components. Each of the other available

host will get only the components (OS-Type, RAM-Size,

Disk-Size and CPU-Occupation).

To run this plan, the deployment system must face into

many problems and specificities. First the discovery of avail-

able hosts in the target environment by a network discovery

service. We need this step because in this ’unpredictable

topology’ scenario, we do not know in advance (at the design

time) the list of involved hosts of the deployment process.

Second the multiple administrators problem. Indeed, the

deployment target environment is a set of independent hosts

where each host has its own administrator. Therefore, we

must obtain the access rights on each host to be able to

deploy any software.

Then, the deployment system must cover all deployment

activities (from installing to uninstalling the software). The

installation activity includes the software dependencies solv-

ing, transferring the components on the target sites and the

physical installation of the components. At this step, the

deployment system must provide a mechanism for dynamic

reconfiguration of the deployment process to support the

failure of hosts, the disconnections and the new connections

of hosts. For example, if the selected host to have the

DisplayResults component installed has a failure (or

do not have enough RAM at the time of the deployment),

the deployment system must dynamically find another host

satisfying the constraints and go on with the deployment

process. From this scenario we conclude that the deployment

platform that can addresses the specificities and problems

of these environments (P2P and ubiquitous) must (Rx are

requirements):

• R1- Be able to detect, manage and access the target

hosts with a minimum user interaction.

• R2- Be able to deal with hardware and software het-

erogeneity.

• R3- Provide a simple and intuitive language to describe

the software dependencies, the software properties and

the deployment constraints.

• R4- Be able to compute at least one deployment plan

that satisfies the deployment constraints.

• R5- Perform the deployment activities with minimum

human intervention.

• R6- Provide autonomic mechanisms to reconfigure the

deployment process at runtime to handle variations of

the topology and hosts or network failures, accordingly

to the deployment constraints.

• R7- Be usable in large-scale infrastructures.

III. J-ASD OVERVIEW

In this section, we present our middleware platform

called j-ASD for autonomic software deployment, which

addresses the above Rx requirements. The proposed software

architecture is shown in Figure 1.

��������

	ABC�D��AEF

�������

��EB���AE�B�B��D��

	�������E�����E�

�
�
B�
�D
AE
F
�

B�
�
�
�

	�������E��

���AEAB������	
�B
C
�
A�
�A
�
E
�

B�
��

	�������E����EB���AE�B�

	�BC�A��A�E

	
��
��
�
�
�E
��
B�
�
�

���BAC�����B�B

�
�
�
�B
��
�
�
�

B�
��
�
�
�
��������������A���

�F�E�B�B�B����

	�������E��B������

���

�����	A

BC�D��EA
F���E�	�F� ���AE�F��F

��E	����DA

��������	E

Figure 1. Architecture of j-ASD

The middleware architecture is composed of 5 different

parts.

A domain-specific constraint language (DSL) for express-

ing the deployment constraints and some information on

the software, a language parser and constraints solver are

necessary for calculating a deployment plan.

A network discovery service to automatically detect target

hosts in the network. By using this service, our deployment

system should enable software deployment in open environ-

ments such as ubiquitous computing environments.

A bootstrap software, which prepares the execution en-

vironment in the target hosts of the deployment system.

The bootstrap should resolve the multiple administrators

problem, and install and activate all dependencies for our

deployment system.

A deployment support equipped with a runtime environ-

ment able to run in heterogeneous infrastructures, and which

can perform all or a part of the deployment activities.

Finally, we use an adaptable mobile agent system that

performs and supervises the deployment process.



A. Language for Deployment Constraints

In order to automate the software deployment processes

it is necessary to have some deployment knowledge about

the software system. This knowledge, is called description

of the deployment constraints. In the existing deployment

platforms there are several formalisms to express this knowl-

edge [3], they allow declaration of deployment constraints,

software dependencies and software preferences. These

methods include the use of ADL (architecture description

language), the use of XML deployment descriptors (D&C

and CORBA) and the use of a dedicated language (DSL)

for describing deployment constraints.

Our approach is similar to the Deladas DSL [8], discussed

in the related work (Section 5). We agree with the idea of an

administrator, which describes a deployment goal in terms

of available resources and constraints on their deployment.

But we need much more expressiveness, particularly to deal

with unpredictable aspects of the topology. For example, we

want to express that one component should be deployed on

each available host in the network. For this purpose, we have

developed j-ASD DSL, a dedicated specific language with a

simplified and intuitive syntax and grammar for describing

deployment constraints.

By using the j-ASD DSL, the deployment administrator

will be able to describe the software and the deployment

constraints. The software is defined by a set of information

about the software such as the software name, the software

version, the software URL and the components, which form

the software. The software is also defined by the software

dependencies, the hardware and software constraints on the

target hosts and finally the deployment constraints. Data

types supported by j-ASD DSL are String and integer. The

software can be composed of one or more components; each

component is defined by the component name or ID, the

component version, the component URL (the location of

its implementation) and the component dependencies. Hard-

ware and software constraints are respectively, operating

system constraint OsPref, processor constraint CPUPref,

memory constraint RAMPref, display constraint HDPref

and network speed constraint NetSpeedPref. This list of

constraints should be extended by adding other types of con-

straints and preferences like as the battery usage constraint

for improving QoS offered by the j-ASD middleware.

As illustrated in Fig. 2, the deployment administrator

describes a software named ExtractFromScenario_1,

it includes two components called ramSize and display.

In the same way, the component ramSize and display

are defined by the component name, the component version

and the component URL. The component can be located in a

local repository or in a remote repository (in a web server for

example). In this example, both components are located in

an http server. The hostConstraint part is a high-level

constraint specification of the display constraint on the target

Software {

Name=ExtractFromScenario_1

Version=1

Components=ramSize display

}

Component {

Name=ramSize

Version=1

Url="http://x.fr/RAM-Size.jar"

}

Component {

Name=display

Version=1

Url="http://x.fr/Display.jar"

}

HostConstraint {

Name=Display-Constraint

CPULoad < 80%

RAM >= 40 MB

OSNameContains "Linux"

}

Deployment {

ramSize @ all

display @ 1 with Display-

Constraint

}

Figure 2. DSL code sample for Scenario 1

hosts. The hostConstraint name is Display-Constraint

and expresses that in the deployment hosts:

• The processor constraint (CPULoad) in the deployment

device must be less than 80%.

• The memory constraint (available memory) in the

deployment device must be greater than or equal to

40 MB.

• The operating system constraint expresses that the

operating system installed in the device must be Linux.

Finally, the deployment constraints are high-level constraint

specifications, which express that the component ramSize

will be deployed in each host available at the deployment

time. The second constraint expresses that the component

display will be deployed in one device that satisfies all

constraints described in Display-Constraint.

B. Network discovery service

We use a discovery network service to allow end-users

who do not necessarily know the deployment sites (devices)

at the beginning of the deployment process to automatically

detect these sites by invoking the service. In this context, we

must distinguish two cases. The first case is the software

deployment in local network (domestic network) or fixed

networked devices in which the user wants to deploy the

software across all (or in a subset) connected available

sites in the network. The second case involves the software

deployment in large-scale infrastructures like ubiquitous

system and Grid. In both cases, the user does not necessarily

know the deployment target host. Therefore, the deployment

system must provide mechanisms to manage the network

and allows the detection of each connected device in the

network, then get the permissions (access rights) to each

device by the bootstrap software. After the initial discovery

of hosts, the network discovery service returns a host list to

the deployment system. This list is used by the deployment

system to produce a deployment plan.

In fixed network infrastructures, such as local area net-

works, several protocols such as Universal Plug-and-Play

(UPnP) [9] and bonjour [10] have been successful solution.



However, these protocols do not operate effectively in large-

scale environments. For these further specific discovery

protocols have been created to specific domain like SLP

[11], SIP [12] and XMPP [13]. For reducing interpretability

issues, we have studied and chosen the UPnP and XMPP

protocols to build our discovery network service. The UPnP

protocols are used to deal with the first case of discover-

ing (local network discovery) and a some parts of XMPP

protocols are used to deal with the second case (large-scale

network discovery) as discussed later in this section.

C. Bootstrap

As seen in the motivating example section, we need to

deal with the multiple administrators problem. We do not

want to bypass the principles of security in distributed

systems, thus we must rely on each administrator to get

the rights for running our deployment environment on each

device. This could be achieved through a dedicated program

voluntarily installed by the host administrator, and placed

at its disposal through other ways. For example, it can be

pushed on Bluetooth, or its url can be sent via e-mail,

SMS or even embedded into a QR Code R©. This very light

bootstrap code is a script that asks the user the access rights

to the host (such as permissions in a trusted architecture)

and sets up the required runtime for the middleware.

D. Constraints solver

Once the user has completed the constraints descrip-

tion, the deployment system takes as inputs the constraints

description program. The network discovery service is

launched for detecting initial target hosts. The network

discovery service returns a list of available hosts and some

information about the context and resources of each one.

After syntax and lexical checking of the j-ASD DSL

program, the constraints solver try to compute an initial

deployment plan. For this, the program is compiled into a

lower-level constraint satisfaction problem (CSP), which can

be solved by an existing constraint solver like as JSolver

[14] and Choco [15]. A CSP is expressed by declaring

a set of variables whose values are drawn from a set of

discrete domains, satisfying a set of given constraints. A

lower-level constraint is simply a logical relation among

several unknowns (or variables), each taking a value in a

given domain. The constraints transformation is required

because the wide gap between the level of abstraction

used to model CSP programs in existing libraries and the

abstractions used by a deployment administrator to express

deployment constraints in j-ASD DSL. Our CSP problem is

modeled by constructing a set of integer variables (location

variables) and constraints on those variables. We model the

CSP program as follow:

1) A finite set C of software components.

2) A set H of target devices (hosts).

3) A set of location variables (loc) such as:

loc (Ci, Hj) = 1, if the software component Ci can be

installed in the device Hj and loc (Ci, Hj) = 0, if the

component Ci can not be installed in Hj.

4) A set P of host constraints or host preferences (e.g.,

CPULoad and the available memory).

5) A set of deployment constraints over the location

variables (loc (Ci, Hj)).

The CSP problem that we must solve in order to build an

initial deployment plan is the problem of component place-

ment on the detected device in the network in accordance

with the deployment constraints.

For example, the deployment constraints described in

Fig. 2 are translated as follows:

The first constraint means that the component ramSize

should be deployed in all available devices, which means

formally:

ramSize ∈ C, ∀Hj ∈ H, loc (ramSize, Hj) = 1

The second constraint means that the component display

should be deployed in one device that respecting all con-

straints defined in Display-Constraint. This means formally:

display ∈ C, Hi ∈ H, such as: if ((RAM > 40MB)
and (OSName = ”Linux”) and (CPULoad < 80%) then

loc (display, Hi) = 1 else loc (display, Hj) = 0

By using this formal translation and other we automat-

ically generate a CSP program. Then in the second step

the generated CSP program is dynamically loaded into the

solving tool. The solver is then invoked to resolve the

generated CSP problem and returns the first solution found.

The result of solving of the generated CSP program is a

set of integer and boolean variables, which are mapped

as a deployment plan by the mobiles agents system. The

deployment plan determines where different components of

the software will be installed and executed in the target

environment. If the solver cannot find a consistent solution,

the constraints solver will be restarted to try to find another

deployment plan. If the constraints solver still unable to find

a consistent solution, a failure is notified to the deployment

administrator.

E. Deployment support

The deployment support should provide an execution

environment and support services for components. It should

allow installing, uninstalling, starting, stopping, and updat-

ing the components at runtime without restarting the entire

system. It should also allow the system to deploy software

on several heterogeneous devices like personal computer,

laptop, PDA, tablet, smartphone, mobile phone, cars and

ultra-mobile PC. Several frameworks and platforms such

as OSGi [16] or D&C [17] provide a part or all desired

functionalities (life cycle deployment activities). For our

prototype, we choose the OSGi platform to deploy Java-

based components, as discussed later.



F. Mobile Agent system

The use of mobile agents to perform an autonomic

deployment process in large-scale infrastructures is not a

new approach. Some works have used this technique for

deploying software in static environment (for example [3]),

but they have never used this technique in ubiquitous and

P2P environments.

A software agent can be defined as a program that

works on behalf of its owner [18]. It is an autonomous

computing entity with private knowledge and behavior. A

mobile agent is a software program able to move at run-

time with its code, data, and computational state [19]. An

adaptable mobile agent (AMA) [20] can change some of

its operating and functional mechanisms at runtime. The

agent itself controls mobility and adaptation. In order to fit

wide-area networks, agents communicate in asynchronous

mode. A Mobile Agent System is defined as a computational

framework that implements the mobile agent paradigm [21].

This framework provides services and primitives that help

in the implementation, communication, and migration of

software agents.

We use an adaptable mobile agent system that runs and

supervises the deployment process. For this purpose, we

have created the deployment agents and the supervisor

agents (global and local supervisor agents).

The Supervisor agents role is performing and control-

ling the deployment process, it can also reconfigure the

deployed software in order to react to the environment

changes (host or link failures for example) in which the

software is installed. Our answer to scalability issues is to

have two kinds of supervisor agents: the global supervisor

agent (GSA) and the local supervisor agent (LSA). There

is only one global supervisor agent in our system, running

initially on the host where the deployment process has been

started. This agent can decide itself to move if required

by the changing environment. Local Supervisor Agent is

deployed by the GSA on one host for each local sub-

network (/24 sub-networks for scalability reasons). The LSA

role is to create the deployment agents into each device

in the sub-network for installing, uninstalling, activating,

deactivating and updating the software and supervise the

deployment process in the each target host in the sub-

network. The LSA have the ability to migrate to another

host without consulting the GSA in case of a local failure

detection (network link failure for example). This gives the

opportunity for a dynamic reconfiguration of the deployment

process at runtime.

The global supervisor agent is created at the beginning of

the deployment process. It performs the initial deployment

plan calculated by the constraints solver. It controls the

deployment process by creating local supervisor agents

and then coordinating with. GSA exchange asynchronous

messages with the LSA to know the status of deployment

activities. Global supervisor agent provides some user in-

terfaces to the deployment administrator. These interfaces

allow users to check at any time the deployment process

status and enables interventions in the deployment process

at the request of the user.

A deployment agent is responsible for executing the

deployment activities. Deployment agents are created and

started in all target deployment devices, performing multiple

operations such as: downloading the software packages

(from a web server located in a cloud computing for exam-

ple) into the target devices, resolving software dependencies,

installing the software in the target hosts and notify the

end of the install activity by an asynchronous message.

The deployment agent allows starting the installed software

at the request of the supervisor agents (local or global).

It can also stop all or a part of deployed software and

allows the software update and uninstall on the request of

the supervisor agent or the end-user request by the GUI.

After installing the software, each deployment agent checks

locally the correctness of the installation process and sends

a message of success or failure of the installation activity to

the local supervisor agent. Once the message is received,

the local supervisor agent notifies the information to the

global supervisor agent by sending a successful or a failure

installation message.

The GSA sends an activation message for all LSA once

it has received all messages of successful installation. Then,

the LSA behavior is creating and sending an activation

message to the deployment agents in the sub-network. If

GSA has not received any messages from an LSA, the

GSA considers that there is a failure; it sends a deactivation

message to each LSA and a suicide message to the LSA

that does not respond. The next step is creating a new local

supervisor agent in another chosen host to replace LSA that

not responding then restarting all stopped LSA.

IV. PROTOTYPE

To validate our approach, we developed a fully work-

ing prototype. Deployment constraints are expressed with

our own DSL, called j-ASD DSL. It has been designed

with the Xtext [22] Eclipse plugin, giving us a ready to

use environment (plugins) inside the Eclipse platform to

drive our middleware. The plugin uses CHOCO [15], an

open source Java library for solving constraint satisfaction

problems (CSP), to build the initial deployment plan. The

j-ASD DSL is compiled into a single lower-level constraint

satisfaction problem (Choco program), which is then solved

by Choco. The generated solution is a set of integer and

Boolean variables, which are mapped as a deployment plan

by the mobile agent system.

We have chosen the JavAct [23] framework as a mobile

agent platform [24], the OSGi Framework as a deployment

support, UPnP and XMPP to discover available hosts (local

and large-scale form).



The OSGi [16] specification comprises a framework that

provides an execution platform for Java-based components,

called bundles. A bundle is the physical unit of deployment.

Concretely, a bundle is a Java JAR file that contains a man-

ifest and some combination of Java class files, native code,

and any associated resources. OSGi allows installing, unin-

stalling, starting, stopping, and updating bundles at runtime

without restarting the entire system and includes a generic

mechanism for automatic dependencies management. Using

OSGi as a deployment support allows us to deploy software

on several heterogeneous infrastructures. The reuse of the

deployment activities provided by the OSGi framework like

installing and uninstalling bundles allows us to focus on

other aspects of the deployment process. Currently, our

deployment units are OSGi bundles. Deployment of other

deployment units will be envisaged later. We use the OSGi

Framework Equinox [25].

We have also developed mobile agents behaviors and

algorithms for installing, starting, stopping, uninstalling and

updating the deployment units. The current implementation

allows the deployment of applications composed by one or

more OSGi bundles on the OSGi runtime environments. The

prototype allows us to create and send our specialized mobile

agents to the targeted hosts in the network, to execute and

supervise the deployment activities in the most installable

environment like ubiquitous systems. These agents give us

the possibility of reconfiguration and dynamic adaptation to

the execution context of the deployed software. An example

of adaptation is the decision to migrate to another target

device if the current one does not have enough resources

like memory or bandwidth.

In addition, we have built a network service for the

discovery of the target hosts. We wanted some open

sources/protocol technologies, to reduce interoperability is-

sues. We found that UPnP [9], the XMPP [13] protocol,

the SIP [12] protocol, or the SLP [11] protocol could be

a basis for our discovery network service. At the end, we

chose the UPnP [9] and XMPP [13] protocols with the

Cyberlink [26] and Smack [27] open-source implementa-

tions integrated behind a lightweight facade design pattern.

The XMPP and SIP protocols address multimedia session

management and presence signalization. The idea is to use

the UPnP technology for discovering target hosts in local

networks (LAN), and the XMPP protocol for discovering the

deployment hosts within a large-scale deployment (WAN).

At the time of writing, the prototype is functional. We

are now working on the experimental evaluation and the

validation of the deployment process in a real environment.

We conducted several tests on wired and wireless network.

Each experiment was performed five times to produce the

time required to compute de deployment plan, the necessary

time to detect the deployment hosts and the time needed to

deploy the components into the target hosts.

The first experiment we have conducted concerns the

time needed for computing the initial deployment plan. The

performance data was obtained on a duel core Intel Pentium

III Xeon 2.4 GHz laptop with 4GB RAM running Windows

XP professional edition. The time needed for computing

the initial deployment plan of 20 components into 200

hosts with 20 constraints is below 1 minute. We tried 20

components into 5000 hosts with 15 constraints; computing

time can be up to 20 minutes. As shown in Fig. 3, the

average time needed to for computing the initial deployment

plan for the presented example in Section 2, for 10 and 3200

hosts is respectively 16 and 292 milliseconds.

�������������	A�B	�CDE��F�E������E������C�	����E�C���

�

���

����

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� �	 		 A� �		 ��� ��� ��� �A�

������� ������B	����

�
D�

��
A�

	�
��
	�
E�

BCDEF����C����D�

Figure 3. Time to compute the deployment plan results

The second experimentations series concerns the average

time of discovering the devices and the average installation

time. The install activity includes, the mobile agent creation,

the bundles downloading in the target hosts, the bundles

installation and the notification of the success of the bundle

installation. This experimentation has been conducted on a

fully connected 100 Mb/s Ethernet network of workstations

(Intel(R) Xeon(R), 2.80GHz, 4029MB) and WiFi network of

Samsung PC tablets (Intel(R) processor 800MHz, 0,99GB).

The time needed to detect 60 devices is 15 seconds in

the wired network and 16 seconds to detect 10 devices

connected in the Wireless network.

As depicted in Fig. 4, the average installation time for

the software presented in Section 2 (software composed

from eight components) in 60 hosts is less than 13 seconds.

For more details, you can download the full results of

experiments (in French) from [28].

V. RELATED WORK

There are typically many constraints in the deployment

of large-scale applications into distributed environments. For

this purpose, software deployment process is given special

attention both in academia and in industry and there is a

large number of tools, procedures, techniques, and papers

addressing different aspects of the software deployment

process from different perspectives. In this section, we



���������	A�B�CD	E��A	E��AF�E��E��C�������D����A��A���	�A

������

������

	A��

�����
�AA���A

�

A���

����

B���

	���

�����

�A���

�����

� A� �� B� 	�

���	�A�D����

��
�	
��
��
	E
�
�
A	
E�

�
AF
�
E��
E�
�
C�
�
�
��

CDEF����F��D

�����E��F�������DD

Figure 4. Installation time results

present some of the research literature related to software

deployment.

Fractal Deployment Framework (FDF) [4] is a compo-

nent based software framework to facilitate the deployment

of distributed applications on networked systems. FDF is

composed of a high-level deployment description language,

a library of deployment components, and a set of end-user

tools. The high level FDF deployment description language

allows end-users to describe their deployment configurations

(the list of software to deploy and the target hosts). The

main limitation of this tool is the static and manual attributes

of the deployment. Although the static deployment plan is

eligible in stable environment like Grid, this deployment is

not usable in an environment characterized by a dynamic

network topology like ubiquitous environments. Another

limitation is that at runtime this tool does not provide

mechanisms for dynamic reconfiguration, which allows the

treatment of the hosts and the network failures.

The Software Dock [3] is a research project, which

provides a framework for software configuration and

deployment. It has created a distributed, agent-based

deployment framework, which supports cooperation among

software producers themselves and between software pro-

ducers and software consumers. The deployment framework

uses client-server architecture in combination with an event

system. However Software Dock, does not allow the de-

scription of the software architecture and propose a static

centralized deployment process, which does not suit our

requirements of dynamic adaptation and scalability.

R-OSGi [29] is a middleware platform that extends the

standard OSGi specification to support distributed module

management. R-OSGi provides a deployment tool to help

developers to distribute an application by dragging and

dropping between a visualization of the modules of the

application and a representation of the distributed node

available. The developer of R-OSGi application has full

control on how the application is distributed. Creating a

configuration and controlling the deployment process in the

context of large-scale systems is a very complicated task,

which represent for us a heavy human intervention in the

deployment activities. In addition, R-OSGi is only intended

to create static deployments and cannot be used within open

environments that are characterized by dynamic network

topology such as shown in our scenario.

A. Dearle et al. [8], [30] propose a middleware framework

for deployment and subsequent autonomic management of

component-based applications. The deployment constraints

of distributed applications are specified using the Deladas

(DEclarative LAnguage for Describing Autonomic Systems)

language. An initial deployment goal is specified by us-

ing the Deladas language, and then in order to produce

a concrete deployment of the application, the automatic

deployment and management engine ADME attempts to

generate a configuration that describes which components

are deployed in which nodes by using a constraints solver.

This approach has the similar motivations to our approach; in

fact, one of the motivations is the costs reduction involved

in human-managed system maintenance by the automatic

generation of the deployment plan and with the mechanisms

for reconfiguring the deployment at runtime. However, this

centralized solution can not work in a change-prone envi-

ronment (unpredictable topology), and needs a full restart of

the deployment process for each error found at runtime. Our

solution, involving decentralized decisions of deployment

adaptation by mobile agents which allows to make light and

local reconfiguration that are realistic (and scalable) in large

scale and error-prone topologies.

VI. CONCLUSION

Our contribution in this paper can be summarized as

follows. We described a scenario where other software

deployment tools will fail; we discussed the need for

autonomic software deployment in large-scale and change-

prone infrastructures (Ubiquitous systems, P2P systems)

and the requirements for such a platform. We presented

j-ASD, our middleware dedicated to autonomic software

deployment, and some elements of the prototype that vali-

date our approach.

The j-ASD middleware addresses the requirements and

specificities of those environments. (1) We have chosen

the OSGi Framework as a deployment support to allow

Java-based components deployment on several types of

heterogeneous hardware. (2) The network discovery system

and the bootstrap software allow the management and the

access to the target devices with a minimum user interaction.

(3) j-ASD DSL is an intuitive and a declarative way to

specifies the deployment constraints (high-level constraints),

the j-ASD DSL is compiled into a lower-level constraint sat-

isfaction problem (CSP), which are resolved automatically

by Choco solver. (4) The generated solution is dynamically

mapped as an initial deployment plan by the mobile agents

system. (5) Thanks to the characteristics of mobile agents



(autonomous behavior and ability to migrate), we can per-

form adaptations and dynamic reconfigurations at runtime

without any user intervention.

We are currently pursuing our work on the evaluation of

the last version of the j-ASD prototype toward large scale

distributed systems and investigating on smarter algorithms

to deal with the need for adaptation in more complex failure

situations after the initial deployment.

REFERENCES

[1] A. Dearle, “Software deployment, past, present and future,”
in FOSE, 2007, pp. 269–284.

[2] A. Carzaniga, A. Fuggetta, R. S. Hall, D. Heimbigner,
A. van der Hoek, and A. L. Wolf, “A characterization
framework for software deployment technologies,” Dept. of
Computer Science, University of Colorado, Tech. Rep., 1998.

[3] R. S. Hall, D. Heimbigner, and A. L. Wolf, “A cooperative
approach to support software deployment using the software
dock,” in Proceedings of the 21st international conference
on Software engineering, ser. ICSE ’99. ACM, 1999, pp.
174–183.

[4] A. Flissi, J. Dubus, N. Dolet, and P. Merle, “Deploying on
the grid with deployware,” in CCGRID, 2008, pp. 177–184.

[5] O. M. Group, “Corba component model 4.0 specification,”
Object Management Group, Specification Version 4.0, April
2006. [Online]. Available: http://www.omg.org/docs/formal/
06-04-01.pdf

[6] C. Taton, S. Bouchenak, N. De Palma, D. Hagimont, and
S. Sicard, “Self-sizing of clustered databases,” in WOWMOM
’06, 2006, pp. 506–512.

[7] C. Louberry, P. Roose, and M. Dalmau, “Kalimucho: Con-
textual Deployment for QoS Management,” in 11th IFIP WG
6.1 International Conference, DAIS 2011, Reykjavik, Iceland,
June 2011, Proceedings, vol. 6723, Jun 2011, pp. pp.43–56.

[8] A. Dearle, G. N. C. Kirby, and A. McCarthy, “A framework
for constraint-based deployment and autonomic management
of distributed applications,” CoRR, vol. abs/1006.4572, 2010.

[9] UPnP Forum, “UPnP Device Architecture, V 1.1,” October
2008. [Online]. Available: http://www.upnp.org/

[10] APPLE, “Bonjour protocol specifications.” 2009.
[Online]. Available: http://developer.apple.com/networking/
bonjour/specs.html

[11] E. Guttman, “Service location protocol: Automatic discovery
of ip network services,” IEEE Internet Computing, 1999.

[12] R. Sparks, “Sip: Basics and beyond,” Queue, pp. 22–33,
March 2007.

[13] P. Saint-Andre, K. Smith, and R. Tronçon, XMPP: The Defini-
tive Guide: Building Real-Time Applications with Jabber
Technologies. O’Reilly Media, Inc., 2009.

[14] A. H. W. Chun, “Constraint programming in java with
jsolver,” 1999.

[15] C. Team, “choco: an open source java constraint programming
library,” Ecole des Mines de Nantes, Research report, 2010.
[Online]. Available: http://www.emn.fr/z-info/choco-solver/
pdf/choco-presentation.pdf

[16] The OSGi Alliance, “OSGi service platform core specifica-
tion, release 3. version 4.2,” 2009.

[17] OMG, “Deployment and configuration adopted submission,
document ptc/03-07-08 ed.” Object Management Group,
Tech. Rep., July 2003.

[18] J. M. Bradshaw, Ed., Software agents. Cambridge, MA,
USA: MIT Press, 1997.

[19] C. G. Harrison, C. G. Harrison, D. M. Chess, D. M. Chess,
A. Kershenbaum, and A. Kershenbaum, “Mobile agents: Are
they a good idea?” 1995.

[20] S. Leriche and J.-P. Arcangeli, “Flexible architectures of
adaptive agents : the agentφ approach,” International journal
of grid computing and multi agent systems (IJGCMAS), pp.
55–75, 2010, 8878.

[21] R. S. S. Filho, “Mobile agents and software deployment,”
ICS280 Configuration Management and Runtime Change
Final Paper, Information and Computer Science Department,
University of California Irvine, Fall, Tech. Rep., 2000.

[22] “Xtext 2.3 Documentation,” 2012. [Online].
Available: http://www.eclipse.org/Xtext/documentation/2.3.0/
Documentation.pdf

[23] S. R. J.-P. Arcangeli, F. Migeon, “JAVACT : a Java
middleware for mobile adaptive agents,” 2011. [Online].
Available: http://www.javact.org

[24] J.-P. Arcangeli, C. Maurel, and F. Migeon, “An api for high-
level software engineering of distributed and mobile appli-
cations,” in Distributed Computing Systems, 2001. FTDCS
2001., 2001.

[25] “Getting Started with Equinox,” 2012. [Online]. Available:
http://www.eclipse.org/equinox/

[26] “CyberLink for Java,” 2012. [Online]. Available: http://www.
cybergarage.org/twiki/bin/view/Main/CyberLinkForJava

[27] “Smack documentation.” [Online]. Available: http://www.
igniterealtime.org/projects/smack/

[28] Y. Wang, M. E. A. Matougui, and S. Leriche, “j-
asd experiments,” Institut Telecom ; Telecom SudParis,
Tech. Rep., 2012. [Online]. Available: http://javact.org/
JASD-rapport.pdf

[29] J. S. Rellermeyer, G. Alonso, and T. Roscoe, “R-OSGi:
distributed applications through software modularization,” in
MIDDLEWARE2007. Berlin, Heidelberg: Springer-Verlag,
2007.

[30] A. Dearle, G. N. C. Kirby, and A. J. McCarthy, “A framework
for constraint-based deployment and autonomic management
of distributed applications,” in ICAC, 2004.


