Inviscid instability of a stably stratified boundary layer
Stéphane Le Dizès, Julien Candelier, Christophe Millet

To cite this version:
Stéphane Le Dizès, Julien Candelier, Christophe Millet. Inviscid instability of a stably stratified boundary layer. 23rd International Congress of Theoretical and Applied Mechanics (ICTAM2012), Aug 2012, Pekin, China. pp.FM07-024. hal-00755326

HAL Id: hal-00755326
https://hal.science/hal-00755326
Submitted on 21 Nov 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
INVISCID INSTABILITY OF A STABLY STRATIFIED BOUNDARY LAYER

Stéphane LE DIZÉS1, Julien CANDELIER1,2 & Christophe MILLET2

1 IRPHE, CNRS & Aix-Marseille University, 49 rue F. Joliot-Curie, F-13013 Marseille, France
2 CEA, DAM, DIF, F-91297 Arpajon, France

Summary

The three-dimensional stability of an inflection-free boundary layer flow of length scale \(L \) and maximum velocity \(U_0 \) in a stably stratified fluid of constant Brunt-Väisälä frequency \(N \) is examined in an inviscid Boussinesq framework. The plane of the boundary layer is assumed to be inclined with an angle \(\theta \) with respect to the vertical direction of stratification. The stability analysis is performed using both numerical and theoretical methods for all the values of \(\theta \) and Froude number \(F = U_0/(LN) \). The boundary layer flow is found to be unstable whatever \(F \) as soon as \(\theta \neq 0 \). The growth rate of the most unstable mode is shown to increase with the inclination angle to reach its maximum for a vertical boundary layer \(\theta = \pi/2 \). The mechanism of instability is shown to be associated with internal gravity wave emission. In the strongly stratified limit, frequency and growth rate become independent of the Froude number and proportional to the sine of the inclination angle (as long as \(F/\sin \theta \ll 1 \)).

INTRODUCTION

Tollmien-Schlichting waves are viscous perturbations which are usually responsible for the destabilisation of inflection-free boundary layers such as the Blasius boundary layer. These unstable waves do not exist in an inviscid framework. However, in the presence of stratification, inflection-free boundary layer flows can become unstable with respect to new inviscid instability modes. The goal of the present study is to analyse the characteristics of such instability modes. We also want to understand the effect of the inclination angle between the shear plane and the direction of stratification on the stability properties.

In stratified fluids, most studies have considered configurations where shear and stratification are aligned in the same direction. Moreover, they have mainly been concerned with the effects of stratification on the shear instability in relation with the Richardson criterion for instability [8]. Yet, the presence of a ground has also been shown to create other less unstable modes [5]. Although the presence of an inflection point is not a necessary condition for instability when a solid ground is present [3], inflection-free profiles generally remain stable in an inviscid framework when shear and stratification are aligned in the same direction [4]. Here we demonstrate that when shear and stratification are not aligned, the flow exhibits unstable radiative modes owing to the stratification. These radiative modes, whose unstable character is associated with the wave emission are similar to the acoustic waves of compressible flows [7, 12]. They have also been obtained in shallow water shear flows (e.g. [10]). In a continuously stratified fluid, they have been found in columnar vortices [11, 6] and rotating flows [9]. The instability mechanism is directly related to the mechanism of over-reflection [1, 6].

FRAMEWORK

We consider a 2D boundary layer flow of length scale \(L \) and maximum velocity \(U_0 \) with a hyperbolic tangent profile in a stably stratified fluid of constant Brunt-Väisälä frequency \(N \). The plane of the boundary layer is assumed to be inclined with an angle \(\theta \) with respect to the vertical direction of stratification as indicated in figure 1(a). The stability characteristics of this base flow, which is defined by its Froude number \(F = U_0/(LN) \) and the inclination angle \(\theta \), are determined in an inviscid, incompressible, Boussinesq framework using a temporal normal mode approach. The eigenvalue problem for the complex frequency \(\omega \) is solved using a shooting method. We denote by \(k_x \) and \(k_y \), the wavenumbers in

\[\begin{align*}
\begin{array}{c}
(a) \\
(b)
\end{array}
\end{align*} \]

Figure 1. (a) Sketch of the base flow and definition of the angle \(\theta \). (b) Eigenfunction (pressure amplitude) of the most unstable mode (obtained for \(k_x/(k_yF) \approx 4.9 \) and large \(k_x \) and \(k_y \)) when \(F/\sin \theta \ll 1 \). Absolute value (thick solid line); real part (solid line); imaginary part (dashed line).
the x and y directions, respectively (see figure 1(a)). $\Re(e)$ and $\Im(m)$ are the (real) frequency and the growth rate of the perturbation.

RESULTS

We demonstrate that as soon as $\theta > 0$, that is the boundary surface is not horizontal, the flow is unstable for any Froude number. The most unstable modes are obtained for large values of k_x and k_y with a fixed ratio k_y/k_x. Their characteristics as a function of F are displayed in figure 2 for various θ. For all F, we observe that the flow is the most unstable for a vertical boundary layer ($\theta = \pi/2$). The flow is also the most unstable when the stratification is strong (small F). In this limit, the stability problem can be simplified if $F/\sin \theta$ is also small: the dependence with respect to F and θ becomes trivial as the complex frequency of the most unstable modes can be written as

$$\omega(k_x, k_y, F, \theta) \sim \omega_{max}(k_y F/k_x) \sin \theta. \tag{1}$$

The most unstable mode is obtained for $k_y F/k_x \approx 4.9$, and its spatial structure is represented in figure 1(b). The radiative structure of the eigenmode is clearly visible on this plot. This internal wave emission is responsible for the growth of the mode by the mechanism of over-reflection explained in [1] and [6]. Because the most unstable modes are obtained for large k_x and k_y the instability characteristics only depend on the local shear rate of the flow near the wall. Therefore, they do not depend on the precise form of the boundary layer profile as long as it is not inflexional and with a non-vanishing shear rate at the boundary. In particular, the results apply to the Blasius boundary layer profile as well as other more realistic local boundary layer profiles. A more detailed account of this work can be found in [2].

References

Figure 2. Characteristics of the most unstable mode over all k_y/k_x as a function of F for $\theta = \pi/8, \pi/4, 3\pi/8, \pi/2$. (a) Maximum growth rate $\Im(m)$. (b) Frequency $\Re(e)$. (c) Maximizing ratio k_y/k_x. The dotted lines are the predictions obtained from small and large F analyses.