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Abstract— In this paper we describe a cognitive architecture
for humanoids interacting with objects and caregivers in a de-
velopmental robotics scenario. The architecture is foundational
to the MACSi project: it is designed to support experiments
to make a humanoid robot gradually enlarge its repertoire
of known objects and skills combining autonomous learning,
social guidance and intrinsic motivation. This complex learning
process requires the capability to learn affordances first. Here,
we present the general framework for achieving these goals,
focusing on the elementary action, perception and interaction
modules. Preliminary experiments performed on the humanoid
robot iCub are also discussed.

I. INTRODUCTION

Pre-programming behaviors exploiting a priori knowl-
edge, as it has been done so far for industrial robots, is
not a viable modus operandi for personal and service robots
coming into everyday life [1]. It is imperative to give robots
the ability to acquire new skills to cope with the evolving
environment, different partners and a possibly wide variety
of tools. Epigenetic or developmental robotics addresses this
problem by taking inspiration from the cognitive develop-
ment of children [2]. Indeed, one striking characteristic of
children is the nearly open-ended diversity of the skills they
are capable of learning, driven both by internal motives and
by social guidance. In a similar manner, the robot may be en-
dowed with learning capabilities and a set of basic primitives
for motion, perception and interaction. Then it may gradually
enlarge its knowledge of the environment (e.g. objects) and
repertoire of skills, through learning and exploration [3].
The robot may therefore find problem-specific solutions
autonomously or with a minimal intervention from humans,
adapting its behavior on the fly to experienced circumstances.
The human acting as a “caregiver” may have a catalytic effect
on the learning process, from the bootstrapping to the whole
exploratory phase.

A fruitful approach to the acquisition of new skills is the
learning of affordances. Without going into the intricacies of
this notion borrowed from developmental psychology [4], an
affordance is intuitively the ability of an object to produce a
certain effect or realize a certain goal as a consequence of an
action performed with it. Indeed, affordances are generally
built as Action-Object-Effect (AOE) complexes, and modeled
as inter-relations between the elements, such that one can
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Fig. 1. The humanoid robot iCub and the experimental context.

be predicted given the other two. Their knowledge may,
for example, help in choosing an object for a specific task
(find O, given A and E), or predict the outcome of a task
(infer E, given A and O). In robotics, affordances are used to
improve object recognition, categorization, evaluate possible
actions and learn new skills [5]–[10]. A typical scenario for
affordance learning consists in having the robot surrounded
by several objects at reachable distance (for example on a
table, see Fig. 1). The robot is then instructed by a caregiver
to manipulate those objects so as to identify the outcome of
different actions on the objects.

The design of such complex experiments, where humanoid
robots interact with caregivers and tools, necessarily requires
a considerable effort. The puzzle has several pieces, like
the edification of the basic perceptual and motor primitives
of the robot, the choice of an informative representation
of the robot state, the correct interpretation of the human
intent, etc. To provide modularity, these functionalities are
then implemented in several software modules, which are
typically integrated and executed concurrently on the robotic
platform.

Several Cognitive Architectures (CAs) have been recently
proposed to answer these needs. For example in [11] the CA
is focused on interaction and emotional status, whereas in
[12] it focuses on cooperation and shared plans execution.
In particular, the latter is an interesting modular and scalable
solution, where all perceptual, motor and learning modules
are abstracted from the hardware and exchange data accord-
ing to predefined protocols.

Here, we take inspiration from this work, but we pro-
pose a novel architecture which is specifically focused on
affordance learning experiments in a developmental robotics
context. The realization of such a framework is indeed



one of the goals of the MACSi project1. We propose a
general architecture, intrinsically modular and scalable at the
functional level, which benefits from modularity, re-usability
and hardware abstraction. The main feature of our solution
with respect to the others is that it is natively designed for
learning experiments where social guidance [13] is gradually
superseded by autonomous behaviors driven by artificial
curiosity and motivation [14]. This entails the adaptation and
extension of existing learning and control techniques to a
challenging context where, rather than a single goal, there is
a gradually increasing repertoire of goals.

In this paper, we present the general framework for reach-
ing these goals and illustrate the preliminary experiments
performed on the humanoid robot iCub as a first step towards
the learning of object affordances. Due to the lack of space,
we shall strictly focus on the action-perception aspects of the
architecture and defer to future papers the description of the
curiosity mechanisms and the affordance learning techniques.

Fig. 2. A functional description of the elementary modules of the cognitive
architecture. Grey blocks are not yet described in this paper.

II. COGNITIVE ARCHITECTURE

The CA is an integrated system which orchestrates all
the cognitive, perceptive, learning and control modules. In
general, the cognitive process is split into different stages,
for example the robot “status” is built after visual and
proprioceptive information, the motor actions are built in
response to estimated states and goals, and so on. Here, we
maintain a certain action-perception distinction, but finally
a global cognitive process fuses the information of the
two (see Fig. 2). This way, perceptual and motor skills
of the robot can be increased in a modular fashion, and
“improved” exploiting different learning mechanisms. The
CA designed for MACSi is thus a growing framework with
several cognitive functionalities. In the following we outline
its elementary modules, and describe in more details the main
ones used in the experiments described in Section IV.

1www.macsi.isir.upmc.fr

A. Scene perception
Segmenting the perceptual spaces into discrete objects

representations such as the robot’s own body, humans or
manipulable objects, has been the subject of a lot of re-
search in the computer vision community. However, the
developmental approach we seek in MACSi imposes specific
constraints: the approach should be generic and apply to
many potential “objects” present in the environment (e.g.
robot body, human hands, colored or textured objects) and
it should perform online and incremental learning of new
objects in an open-ended scenario. These constraints imply
that such a system will probably be less efficient than
algorithms specially tailored for specific tasks in specific
environments. But, on the other hand, it will give a generic
visual learning capacity that can be applied to novel tasks
involving both the robot and the caregiver. In the proposed
CA, perceptual information is extracted from several sensory
sources. The main source is a rgbd-sensor camera whose data
are processed using the approach presented in [15] to perform
an efficient online incremental learning and recognition of
various elements of the environment.

Fig. 3. Procedure for processing visual images.

The processing pipeline (Fig. 3, see details in [15]) starts
by segmenting proto-objects [16] using coherent motion of
KLT-points [17] and refining their boundaries from contours
found in the depth information from the rgbd-sensor. The vi-
sual appearance of proto-objects is characterized using com-
plementary features (SURF and color of superpixels [18]) in
order to model efficiently both colored and textured objects.
These low-level features are grouped into local geometric
structures whose occurrence frequencies are used to describe
the appearance of views. Views are then grouped using
maximum likelihood recognition or tracking to create models
of objects from different viewing directions. Beside this
unsupervised segmentation approach, the robot cameras are
also used to detect the presence of people. In particular,
the “active” caregiver, i.e. the human partner who gives
feedbacks and instructions to the robot, is tracked through a
multimodal approach. The rgbd-sensor is used to estimate
the position of the humans in front of the robot. This



information is then combined with the direction of sound
sources: sound coming from the same direction of a person
is assumed to be his voice, so the talking human will be
marked as the active caregiver. The robot’s decision system
can use this information to focus its attention on the active
caregiver, stimulating in this way eye contact sensations by
simply gazing at his head. At the same time, the robot’s
cameras (moved with the eyes by the gazing system) are
used to detect the human partner in its field of view. Since
caregivers usually focus their attention on the robot, they
naturally engage in eye-to-eye contact with the robot during
interaction, so that faces perceived from the robot camera
will naturally point to the robot [19], [20]. This will be ex-
ploited in future works to recognize the identity of the human
partners, by the employment of standard facial features, such
as Eigen Faces, and machine learning techniques, as Support
Vector Machine. Fig. 4 shows the processing of information
retrieved from the sensors (rgbd-sensor, robot cameras, etc.)
“shared” across different middlewares (YARP and ROS).

B. Egosphere, decision making, HRI

The perceptive modules communicate to the egosphere,
which implements the episodic knowledge of the robot.
Specifically, it memorizes the objects in the scene and their
main features and properties retrieved by the vision modules,
such as the 3D position and orientation. Information about
people and their location is integrated as well. The con-
nection between the persistent and the episodic knowledge
is not made explicit here (it will be covered in further
works), because it is not relevant at this current stage for
the preliminary experiments.

A planning module is then in charge of the decision-
making process. A combination of social guidance, artificial
curiosity and autonomous behaviors are entailed at this level.

In the experiments described in Section IV, social guid-
ance is restricted to the mere execution of commands re-
ceived from the caregiver. In future plans, it will account for
more complex interactions such as action recognition and
negotiation of shared plans. Notably, a feedback from the
partner will be used by the robot to improve its learning
experience, as it will be described later on. As for now, it
is only exploited so as to improve the engagement of the
caregiver.

C. Action primitives

The perceptive and cognitive modules are interfaced to
the robot through a pool of action modules, which act as
intermediate controllers for speech, emotion interfaces and
motor joints. An action interface module exposes a set of
high level commands to control the robot. Modules can
command simple or complex actions to the robot via a simple
communication protocol, specifying the type of action (e.g.
take, grasp) and a variable list of parameters (the object
name, the person involved in the action, the location of
the object, the type of grasp, and so on). Differently from
[12], we do not define which are the motor primitives, but
provide a set of pre-built actions, which can be simple (as the

motor primitives grasp, touch, look) but also more complex.
The idea is that the notion of motion primitive will become
“recursive” when the learning process will start exploring
autonomously and will make use of its whole repertoire of
built and learnt actions to learn new ones. Pre-built actions
are: (simple) speak, look, grasp, reach, take, rotate, push,
put-on, lift, point (complex) put object on top of another, lift
an object and make it fall, manipulate an object to see all
its sides, put the object somewhere, rotate an object.

If unpredictable events occur during the execution of an
action or a task, for example an unsuccessful grasp or a
potentially harmful contact with the environment, one or
more autonomous reflexes are triggered. These reflexes are
pre-coded sequences of actions that may interrupt or change
the execution of the current action or task.

A reward mechanism is also implemented. A positive
reward is generated when actions are successful, for example
when the robot executes a particular action correctly, or when
it recognizes an object. A negative one is generated in case
of unsuccess, for example when a grasp fails because the
object slips. Rewards are not used at this stage, but will be
fundamental to harness future learning experiments.

(a)

(b) (c)

Fig. 4. Human localization. (4(a)): integration of YARP and ROS modules:
two colors are used to distinguish modules and drivers for one middleware
or the other. (4(b)): localization of three different sound sources (people
talking) in front of the robot; (4(c)) detecting faces as seen from by the
robot eyes during interaction.

III. EXPERIMENTAL SETUP

We hereby detail the robotics setup for the experiments of
Section IV.

1) Robotic platform: Experiments are carried out with
iCub, a 53 DOF full-body humanoid robot shaped as a 3



(a) (b)

Fig. 5. Calibration of the rgbd-sensor with respect to the robot reference
frame.

years old child [21]. The whole upper-body has been used
in our experiments: head (6 DOF), torso (3 DOF), arms (7
DOF each) and hands (9 DOF each), for a total of 41 DOF.
The iCub hand allows a considerable dexterity though being
small. Thanks to the tendons elasticity, fingers are naturally
compliant during contact with objects. A Cartesian controller
is used to control the head gaze and steer the robot hand to
desired position and orientation in the Cartesian 3D space.
An optimization routine takes into account the redundancy
of arm and torso [22]. To ensure compliance during motions,
impedance control is activated at the main joints (torso and
arms). Joint torques and external forces due to contacts
are estimated exploiting the proximal Force/Torque sensors
placed in the middle of the arms (because the robot is not
equipped with joint torque sensors). Precisely, the estimation
is performed by iDyn, a C++ library for inverse dynamics
which is part of the iCub open-source software project [23].
Several excentric sensors are used: an rgbd-sensor placed
over the table to segment objects; a microphone array and
a further rgbd-sensor placed behind the robot are used to
detect and locate the human caregivers interacting with the
robot. Sound (human voices, but also the sound produced by
objects during manipulation) is processed by HARK library
[24], while rgbd-data are elaborated by OpenNI2.

2) Software architecture: The CA enjoys a de facto par-
allel execution model. Each component of the architecture
provides certain functionalities, seen as services, through a
well-defined interface. Communication between modules is
usually developed in a relatively fixed topology, sometimes
fixed by the modules themselves. All software modules are
abstracted from the hardware level thanks to the YARP
[25] middleware, which provides an interface to the devices
and the robotic platform. Modules running on different
middlewares such as ROS3 can coexist and exchange data
with the ones of YARP thanks to a custom developed bridge.

3) Calibration: A calibration procedure is required to
match the external sensors data within the robot reference
frame, so as to link the perception and the action modules
coherently. The rgbd-sensor used to segment and detect the
objects on the table is placed in front of the robot, as
shown in Fig. 5(a). Its 3D system reference frame is centered
on the device sensor. A transformation matrix between the

2www.openni.org
3www.ros.org

rgbd-sensor and the robot is computed exploiting a third
reference frame, usually located on the table and determined
as the origin of a chessboard, as shown in Fig. 5(b). The
chessboard dimensions being known, the table frame is
computed exploiting the chessboard image retrieved by the
rgbd-sensor. The position of the chessboard is then retrieved
in the robot’s coordinates by putting the hand of the robot
on a predefined location (i.e. the “origin” of the chessboard).
The total transformation matrix is then computed: T robot

sensor =
T robot
table T table

sensor. A similar procedure is used to calibrate other
external sensors (e.g. sound arrays).

(a) (b) (c)

Fig. 6. Experiment IV-A: active caregiver tracking. Two caregivers interact
with the robot and catch its attention by speaking and showing objects.
(6(a)): depth map from the rbgd-sensor. (6(b)): multimodal people tracking,
fusing people 3D localization with sound source direction; the “active”
caregiver is marked by a circle. (6(c)): the face of the “active” caregiver
detected from the embodied robot camera (eye).

IV. EXPERIMENTS

In the following, we describe the preliminary experiments
involving action, perception and interaction. From simple to
more complex scenarii, the last experiments are the basis for
learning affordances.

A. Basic human-robot interaction

This experiment is used to test the HRI modules, precisely
the perceptual system dedicated to the sound localization and
people detection. Two caregivers are in front of the robot:
their 3D location is tracked exploiting standard skeleton
algorithms and the rgbd-data. As one of the people speaks,
the produced sound is detected by the external sensor. The
robot then turns its head so as to gaze at the person at once.
At this point, the images from the robot eyes (i.e. cameras)
are scanned by a face detector to match the sound. Fig. 6
shows the multimodal approach. If the caregiver speaks and
moves at the same time, the robot tracks the human gazing at
his head. If people talk alternatively, as during a conversation,
the robot gazes at the “active” one (i.e. the speaking one).

B. Learning objects

This experiment is used to test the ability of the perceptual
system to detect and recognize different objects. An overview
of the experiment is shown in Fig. 7. In a preliminary phase,
several objects are shown in sequence to the robot, with
the purpose to build an episodic knowledge of the objects
(see Figures 7(a)-7(c)). Here, we assume that the objects are
totally new to the robot, and there is no prior information
about the scene or its items. When the human caregiver
introduces a new object in the visual field, its features are
detected and a number is assigned both to the object and



(a) (b) (c) (d) (e)

Fig. 7. Experiment IV-B: detecting and learning objects. Several objects are shown to the robot, for example a blue car 7(a), a yellow car 7(b), an octopus
7(c), a chicken 7(d). Two people interact with the robot, showing the objects on the table, rotating the objects so that the robot can take different views
of the items. The name of the object is associated in this preliminary learning phase. In a secondary phase 7(e), one of the human partners asks the robot
to recognize the object in a complex scene, where multiple objects are present. The images in the first row show a snapshot of the scene as seen by the
rgbd-sensor and the identification of the proto-objects. Each object is labeled by two numbers, corresponding to its “id” and its “view”. The images in the
second row show the segmentation of the scene after the depth image.

Fig. 8. Experiment IV-B: recognizing objects. The robot is shown two different objects, then it is asked to recognize and point at one of them when both
are present on the table.

Fig. 9. Experiment IV-C: exploiting action for perception. The robot recognizes an object, grasps it and rotates it in its hand to take more views of it,
and unveil hidden parts.

Fig. 10. Experiment IV-C: a task combining perception and action. The robot recognizes an object, grasps it and puts it in a box.

the “view” of the object. The human then moves the object
around the scene, rotating it so that the vision system can
associate more “views” to it (see Fig. 7(d)). A name is also
assigned to the object (e.g. octopus) by the caregiver. In
a secondary phase, the caregiver shows the robot a set of
objects, and asks the robot to point a particular object. The
robot recognizes the object and moves its hand to point the
object to the caregiver. The robot then asks for a feedback:

in case of success, a reward is generated, which feeds the
“intelligence” modules (e.g. curiosity, autonomous behavior
and learning). An example, illustrated in Fig. 8:

H: This is an octopus. (caregiver shows the octopus, moves
it on the table)

H: (caregiver adds the car on the table) This is a blue car.
(caregiver removes the octopus, then moves the car on
the table)



Fig. 11. Experiment IV-D: towards learning affordances. The robot pushes an object to detect its motion and learn the effect of its action (e.g. the blue
car rolls).

H: (caregiver places both octopus and car on the table)
Where is the octopus?

R: I found the octopus. This is the octopus. (robot points
at the octopus) Serena, was it good?

H: Yes. (positive reward for the success in recognizing the
object)

R: I am happy I did good.
In case of error (e.g. failure in the recognition of the object)
the robot is given a negative feedback:
R: I found the octopus. This is the octopus. (robot points

at a wrong location) Serena, was it good?
H: No. (negative feedback)
R: I am sorry.

Remarkably, the robot always refers to the caregiver by
his/her name, and asks his/her feedback at the end of its
actions. This is done to enhance the engagement of the
caregiver during the interaction and learning experiments.

C. Combining action and perception

This experiment is used to integrate action and perception
modules. In a first phase, objects are learnt such as described
in Experiment IV-B. In a second phase, the caregiver asks
the robot to perform some simple actions to manipulate the
objects on the table. Such actions can be simple atomic
actions (e.g. reach the object, grasp the object) or more
complex actions (e.g. take the object and put it in the box,
take the object and look at it closer). The purpose is to
make the robot interact, manipulate and perform different
actions on different (partially) known objects, to increase
the knowledge of the objects (e.g. explore all sides). Indeed,
it is worth noticing that manipulating objects may also
affect their recognition: after an action is performed, the
object’s properties generally change (e.g. its view, position
or orientation). Simple manipulations can also improve the
learning capabilities of the perceptual modules: for example,
if the object is grasped and rotated by the robot, it may allow
the object recognition module to learn about its hidden parts.
A simple example, as shown in Fig. 9, is the following:
H: Take a look at the yellow car.
R: I found the yellow car. I take the yellow car and look

at it closer. (robot reaches the car, grasps it, lifts it and
brings it closer to its head)

R: Interesting object. (the robot rotates the car in its hand)
Here it is. (the robot puts the car back where he took
it)

When simple (or more complex) actions are chained so as
to realize a desired effect or accomplish a task, errors are
associated to each simple action and a final reward is given
or not depending on the success of the task. For example,
the caregiver may want the robot to clean the table, and
command the robot to put all the objects on the table inside
a box. In this case, as shown in Fig. 10, a possible experiment
could be:
H: Take the yellow car and put it in the box.
R: I take the yellow car and put it in the box. (robot reaches

the car, grasps it, lifts it, reaches the top of the box,
opens its hand and makes the car fall into the box)
Serena, was it good?

H: Yes. (positive reward for the success of completing the
task)

The error/reward mechanism is not yet used at this stage, but
will be crucial for future experiments involving autonomous
learning and discovery of actions and affordances.

D. Towards learning affordances

This experiment is a first step towards learning of objects
and affordances. The purpose of this experiment is to exploit
the robot actions to improve its knowledge of objects and
understanding of the effects of its actions on the objects. In
a first preliminary phase objects are learnt such as described
in Experiment IV-B. In a secondary phase, the caregiver
suggests the robot a certain set of actions to interact with the
objects on the table and perform simple manipulation tasks.
Such actions are generally complex actions (e.g. push the
object towards the left, take the object and make it fall, put
the object on top of another one) which have the purpose
to change the “properties” of the object in the egosphere
representation: for example, we may want to change its
position on the table, discover if it bounces when falling,
if it rolls when pushed, and so on. An example, illustrated
in Fig. 11 is the following:
H: Where is the blue car?
R: I found the blue car. Here it is. (robot points at the car)

Am I right?
H: Yes. (positive reward for the success in recognizing the

object)
R: I am happy I did good.
H: Push the blue car.
R: I push the blue car and see what happens. (robot pushes

the car) Serena, was it good?



H: Yes. (positive reward for the success of pushing the
object)

The learning process is guided by the caregiver, instructing
the robot how to manipulate the object: in the future, it will
be gradually replaced by artificial curiosity and autonomous
robot behavior.

E. Video and code

A video demonstrating the experiments is attached to the
paper. The software for the architecture and the experiments
is available under GPL license, together with the full video,
at http://macsi.isir.upmc.fr.

V. CONCLUSIONS

In this paper, we presented the architecture we are using
in MACSi to design experiments in developmental robotics
scenarii, where the robot interacts with caregivers to learn
objects and their affordances, and eventually to take decisions
autonomously. The main feature of our solution is that it
is natively designed for learning experiments, where social
guidance is combined and gradually replaced by artificial
curiosity and autonomous exploration. We performed several
experiments to assess the efficiency of the proposed solution,
setting a solid base for future research in affordance recogni-
tion. We focused on the perception and interaction modules;
for lack of space, we did not introduced how objects, actions
and caregivers are formally represented in the architecture.
The internal representation and the techniques for active
learning of affordances will be object of forthcoming papers.
The next step in the evolution of the CA will be to integrate
intrinsic motivation in the decision making process [14], to
gradually diminish the role of the caregiver and make the
robot take its own decisions autonomously, driven by its
artificial curiosity.
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