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Abstract—We present a mobile robot whose goal is to au-
tonomously explore an unknown indoor environment and to build
a semantic map containing high-level information similar to those
extracted by humans. This information includes the rooms, their
connectivity, the objects they contain and the material of the walls
and ground. This robot was developed in order to participate
in a French exploration and mapping contest called CAROTTE
whose goal is to produce easily interpretable maps of an unknown
environment. In particular we present our object detection
approach based on a color+depth camera that fuse 3D, color and
texture information through a neural network for robust object
recognition. We also present the material recognition approach
based on machine learning applied to vision. We demonstrate the
performances of these modules on image databases and provide
examples on the full system working in real environments.

I. INTRODUCTION

The problem of Simultaneous Localization and Mapping
(SLAM) of an unknown environment by a mobile robot
has been the subject of intense research for more than 20
years. Today, very robust solutions exist for SLAM in planar
environments using 2D scanning laser sensors to the point
where several effective commercial or open source software
packages are available. Research on SLAM is now more
focused on 3D SLAM using range sensing, vision or a
combination of these two modalities, in particular thanks to the
recent development of low cost depth sensing cameras. Fusing
this information with color imaging leads to RGBD sensors
that have a huge potential for SLAM, object recognition and
human-robot interaction.

Beside approaches that are mainly directed toward low level
robot localization and mapping, several approaches have been
proposed to introduce higher-level semantic information into
maps. This includes the classification of space into different
categories such as rooms, corridors [1], roads, buildings [2]
and the addition of objects in a hierarchical map representa-
tion. For example, [3] propose an approach to object search
that takes advantage of the organization of space into rooms,
furnitures and objects laid in or on the furnitures.

This paper presents a mobile robot whose goal is to perform

Fig. 1. View of our robot in the arena during the CAROTTE competition.

autonomous semantic mapping of indoor environments. This
robot has been developed during the PACOM1 project in order
to participate in the ”CAROTTE” challenge organised by the
french Armament Procurement Agency (DGA) and Research
Funding Agency (ANR). This challenge proceeds over three
years with an increase in the difficulty over the years. The
competition between 5 selected teams takes place in an arena
of approximately 120 m2 wherein objects and obstacles are
placed (Figure 1). The environment contains several rooms,
with variable ground types and difficulties (fitted carpet, tiling,
grid, gravel, ...). Several types of objects are present in multiple
instances, either isolated or in groups, which must be detected,
located, and identified or characterized by the robot. Chairs,
computers, boxes, books and plants are examples of the objects
used in the competition. The complete description of the
environment can be found on the challenge website2.

The robot described in this paper has participated in the
second CAROTTE competition and is an evolution of our
previous work [4]. Most notably, we have modified the robot
structure and included a RGBD camera that is used mainly

1http://cogrob.ensta-paristech.fr/pacom/
2http://www.defi-carotte.fr



for object detection. We also added the capability to recognize
the ground and wall material using vision and improved the
obstacle detection in order to deal with 3D obstacles and gravel
areas that our robot cannot cross.

The remainder of the paper presents a short state of the
art on object and texture recognition, before presenting an
overview of the robot architecture and detailing our approaches
to object recognition, ground and wall analysis and robust
multi-cue obstacle avoidance. We finally present the semantic
maps built by our system before analyzing its current short-
comings and its future improvements.

II. RELATED WORK

Visual object recognition is traditionally conducted in the
context of two-dimensional images [5], [6], [7], [8], [9]. With
the recent advent of off-the-shelf 3D sensors the recognition
based on 3D information has flourished considerably [10],
[11], [12]. In the 2D domain, several popular methods ignore
geometric information altogether, using mainly histograms
over colors [5] or significant sub-patterns [8], [13], whereas
others emphasize hierarchical geometric relations [14] or
explicit object parts [15]. Some geometry-based approaches
such as histograms-of-gradients [16], [17] are currently very
popular since they can be used in real-time on standard
hardware. SIFT or SURF descriptors [6], [7] are often used
to approximate histograms of gradients since their execution
speed is even higher. Object recognition based on 3D features
and descriptors is a relatively new but fast-growing area [10],
[11], [12] where typical problems of 2D recognition, such as
rotation and translation invariance, are less restrictive.

Ground and wall type classification is required in the
competition and is also necessary to avoid gravel areas that
our robot cannot cross. We chose to use vision for this task,
reducing the problem to that of visual texture classification.
Many methods for texture classification have been proposed
relying on filter banks. These filters encode the local spatial
variation that characterize a texture (e.g., [18], [19]) and are
used as pre-processing for a classification algorithm such
as Support Vector Machine of Nearest Neighbour. However
computing such filter may be computationally expensive and
other approaches have been shown to give better performances
by directly processing image patches [20]. In particular, the
approach proposed by [21] relies on randomized trees applied
directly to random image sub-windows without any pre-
processing and provides very good performances at a small
computational cost.

III. SYSTEM OVERVIEW

A. System Architecture

Our robot (Figure 2) is based on a pioneer 3 dx from Mobile
Robots Inc. The robot was fitted with a SICK laser range
finder, a ring of sonar sensors, a Pan-Tilt-Zoom color camera
and a Microsoft Kinect camera as RGBD sensor. Three on-
board computers linked through an Ethernet router run all the
software modules involved in semantic mapping.

Fig. 2. The robot developed for the PACOM project.

Fig. 3. The software architecture of our robot showing the repartition of the
software modules on the 3 onboard computers.

The software architecture uses the Urbi framework3; an
open-source middleware for programming complex robotic
systems developed and supported by Gostai. Urbi is composed
of a distributed component architecture (UObject), and an
innovative orchestrator language (urbiScript) to coordinate all
components. This language incorporates high-level features
that facilitate the development of parallel and event-based
applications. For the project, we thus developed a set of UOb-
jects in C++ carrying out the various necessary functionalities
(Figure 3). The whole mission of the robot is implemented
in urbiScript which uses these UObjects’ functionalities and
coordinates their activation.

The 2D mapper using the SICK laser range finder and
path planning UObjects are based on the Karto software
library from SRI International4. The robot is controlled via
the servoing UObject that implements a simple PID controller
for trajectory following. The multi-objective exploration algo-
rithm (described in detail in [22]) is in charge of choosing
exploration points in order to discover the whole environment

3http://www.urbiforge.org/
4http://www.kartorobotics.com/



Fig. 4. Object detection and recognition process overview. Left: detection of floor points (shown in red) in the 3D sensor data, followed by segmentation of
object clusters indicated by different point colors. Middle: 2D object bounding boxes computed by 3D to 2D projection of object clusters. Right: composite
object detection method on the basis of the 3D object clusters and 2D object masks.

through the laser sensor and to search for objects everywhere
in known space through the Kinect camera. The object recog-
nition, texture classification and semantic mapping modules
will be described in the next sections.

B. Object detection

Object detection in our system is realized by several pro-
cessing steps making use of both RGB and depth information:
floor detection, object segmentation and object recognition, see
Fig. 4. We make use of the PCL library for 3D point clouds
processing [23].

a) Floor detection and removal: Detection and subse-
quent removal of floor points is performed on point cloud
data obtained from the Kinect sensor. This is an essential step
as the floor prevents correct segmentation by connecting all
objects standing on it. As a full RANSAC step for detecting
planar surfaces would be too time-consuming for live opera-
tion, a simpler approach is applied which makes strong use
of heuristics yet is able to localize floor points with great
reliability. To this end, an initial calibration step conducts a
full RANSAC analysis to detect planar surfaces in a test setting
where a large floor area is visible. The model parameters of
the largest planar surface are retained as the ”theoretical floor
plane”. In the course of online processing, every new point
cloud obtained from the sensor is downsampled (”voxelized”
with a 2 cm step) to reduce noise, and local surface normals
are computed. To identify floor points, we impose a constraint
of elevation (no more than 20 cm over the theoretical floor
plane) and normal (no more than 4 degrees deviation from
the theoretical floor normal). If a sufficient number of points
is found in this way, the ”actual floor plane” model is then
estimated from them, otherwise the actual floor plane model is
set to the theoretical floor plane parameters. The latter case can
occur if the floor is not visible due to occlusions or adjacent
walls. Finally, all 3D points are removed whose distance to the
actual floor plane is smaller than 2 cm, or larger than 2 m in
order to remove elements perceived outside of the competition
arena.

b) Point cloud segmentation: After the removal of the
floor, the remaining 3D points can easily be grouped into

disjunct segments by a simple volume growing process of
disjunct clusters, adding new points to clusters if their distance
to the closest cluster points is less than 4 cm. As a post-
processing step, we merge clusters if they contain points less
than 4 cm distant when projected on the actual floor plane.
This step is performed because there are complex objects
such as chairs that get segmented into several clusters one
above another when the object parts connecting the clusters are
occluded. Each of the final point cloud segments is assumed
to correspond to an object, and a tight 2D mask is computed
for all objects by reprojection of 3D points to the image
plane. These masks are an important prerequisite for efficient
appearance-based object recognition based on the RGB image.

c) Wall detection: Each segmented 3D point cluster is
checked for potentially being a wall using heuristics similar
to the identification of floor points: if a sufficient percentage
of points (90%) has a surface normal perpendicular to that of
the actual floor plane, we assume this cluster is actually part
of a wall. It is important to note that this method does not
always work reliably, since large objects such as cupboards
fulfil similar conditions, thus leading to missed detections
in certain viewing conditions of these objects. The detected
walls are subsequently categorized according to the method
described in section III-C.

d) Object recognition: The remaining object clusters
should then be identified. In order to obtain robust recognition,
we combined three state-of-the-art recognition methods using
a feed-forward neural network. Individual methods are local
color histograms [24], SURF keypoints [7] and 3D surflet [10].
Especially the last method is novel for our system because it is
intrinsically based on point cloud data. The two other methods
have been used in our previous system [4], but are applied
here only to the area resulting of the 3D points projection,
thus eliminating almost all background for object recognition.

For each of these feature spaces, we use a bag of visual
words approach [13]. This approach make it possible to
represent the object appearance as a fixed size occurrence
histogram of features taken from a dictionary. These his-
tograms are compared to histograms that have been memorized
for different point of view of the learned objects through



Fig. 5. Performance evaluation for object recognition using individual and
combined methods. Figures A-C show results for color histograms, SURF and
3D surflet features. Figure D gives performance for the approach combining all
three methods using a feed-forward neural network. Please note the frequent
confusion of red and green chair objects for the SURF and surflet histograms
methods (B and C), both of which are ”colorblind”. In contrast, the combined
method (D) achieves disambiguation due to the inclusion of local color
histograms.

a voting method [24]. As a result, we efficiently obtain a
similarity score for the current object with all learned objects
for each feature space individually (Fig. 4, Right). These
similarity scores are then used as the input of a feed-forward
neural network with one hidden layer (trained using back-
propagation) that produces an overall similarity score as an
output.

e) Experimental results: To rigidly evaluate our object
recognition system, we created a small database of 6 objects
seen from all viewpoints. We used 20 training views per object
and 25 independently collected test view. Results for object
recognition are given in Fig. 5. As can be clearly perceived,
the recognition results strongly increase if the integration of
several methods is used. Particularly instructive is the case
of the red and green chairs: neither SURF nor surflet features
have the possibility to discriminate identical chairs of different
colours. Color histograms, however, can do this although their
overall performance is inferior. The integration step combines
the strength of each single method to give a much higher
overall level of performance.

C. Ground and wall classification

The goal of this module is to classify the surfaces according
to their type such as wood, carpet, gravel or concrete. This
method is applied to the color image from the PTZ camera
pointing to the floor just in front of the robot. It is also applied
to regions of the image which the Kinect camera detected as
walls. When images contain multiple surface types, only the
type covering the largest area is estimated.

For this classification, we use the randomized trees approach
proposed by [21]. This method is based on ensembles of
extremely randomized decision trees that are used to predict
the category associated to random sub-windows extracted from

Fig. 6. Confusion matrix obtained for ground classification with 6 ground
types. The error rates obtained for the ground types of gravel, parquet, wood,
tiling, carpet and lino are, respectively, 9%,6%,2%,4% and 6%.

Fig. 7. Texture recognition examples. Top row: ground type recognized
through PTZ camera. Bottom row : wall recognized through the Kinect
camera. Wall bounding boxes (in green) have been constructed from 3D point
clouds segmentation.

images. As an input for the method, we use image sub-
windows of size 4x4 pixels represented as 48-dimensional
vectors using the HSV color space. A majority vote using
the categories associated with several sub-windows taken from
a given image is then used to predict the image category.
In order to filter out uncertain detections, the result of the
classification is taken into account only if the difference in
number of votes between the best and second best category
is higher than a given threshold. This method requires few
example images of each category for training. The use of
the HSV color space makes it possible to robustly recognize
colors independently of the illumination conditions by simply
including color variations for each category in the training set.

Among the ground categories, gravel has to be treated
differently because our robot is not able to roll on such a
surface. As a consequence, gravel has to be localized more
precisely in the image so as to be avoided. For this, we use the
same classification algorithm, but apply it to regularly spaced
32x32 windows instead of the whole image. The bounding box
of the windows containing gravel is projected onto the ground
plane and transmitted to the obstacle avoidance module.

Figure 6 shows an example of the confusion matrix obtained
with 6 ground types. The results are quite good and will



be further enhanced by subsequent filtering during semantic
mapping. Figure 7 shows examples of the ground and wall
categories used during the CAROTTE competition. The figure
also illustrates the bounding box associated with gravel recog-
nition and the bounding boxes of walls detected through the
Kinect camera.

D. Multi-sensor obstacle detection

The environment proposed by the competition is artificial,
but presents several difficulties for obstacles avoidance. In
order to be robust to the presence of glasses, mirrors, 3D
objects and gravel on the ground, we had to integrate multiple
information sources to estimate the free space accessible to
the robot.

The main navigation sensor in our system is the SICK laser
which produces a 2D occupancy grid map containing most
of the obstacles situated 30 cm above the ground. In order
to detect smaller objects, glasses and mirrors that are not
perceived by the laser, we use sonar information when it is not
coherent with laser readings [25]. This information is added
as an obstacle to the occupancy grid map. 3D objects like
tables or benches under which the robot could get stuck are
detected using the Kinect camera. For this, all the point clouds
of the segmented objects up to the robot’s height are projected
onto the ground and their 2D convex envelope is added as
obstacle to the occupancy grid map. Finally, the envelope of
the gravel area detected using vision is also added as obstacle.
The resulting safe space map is then used for path planning.

E. Semantic mapping

All the information produced by the previous modules is
integrated to produce a semantic map. The 2D map is first
segmented into rooms. For this, we detect the main orthogonal
wall directions and search for doors, defined as openings of
a given size along these walls. The connected components
limited by walls and doors are assumed to be rooms, and the
door position makes it possible to produce a topological map
of the environment.

When multiple detections of a given object are encountered,
the estimated positions are integrated using a Kalman Filter
in order to produce precise position estimates. Each object
is associated to the room in which it has been localized.
The ground and wall types detected in each room are also
integrated and only the categories with sufficient detections are
kept for each room in order to filter out false detections. All
this information is used to produce 2D annotated grid maps
and an environment description as an XML file containing
rooms, their connectivity, the objects they contain and the wall
and ground types.

Figure 8 presents a map produced by our system in an 40
m2 indoor environment that contains nine known objects (2
folding seat, drawers, 2 bottles, 1 chair, 1 red ball, 1 potted
plant, 1 paper box). The top part shows the 2D map produced
by the SICK laser, along with the obstacles detected by Kinect
and by the gravel detection algorithm (grey polygons). Green
and blue numbers indicate the positions of the detected ground

Fig. 8. Map produced by our system (see text for details).

and wall type. In this environment, only lino is present and
ground type is correctly identified in all image except one,
recognized as tiling. The wall categories are mostly correct,
with some confusions between the 3 categories that are filtered
out when integrating detections in the rooms. The bottom
part shows the result of the room segmentation and the mean
position of the detected objects inside each room. Seven
objects out of nine present in the environment have been
detected. The two objects have been missed because they do
not appear completely in any image taken during exploration.



The positions of the detected objects are within 20 cm of
their true positions. The error is larger for bigger objects as it
is more difficult to estimate a correct object position from a
partial view of these objects.

IV. CONCLUSION AND FUTURE WORK

Compared to our previous approach to object recognition
using only color vision [4], the RGBD object recognition
strongly improves the object recognition performance: an
object that is correctly segmented using 3D information will be
recognized with very high confidence. However, our current
object segmentation approach is limited to objects that are
isolated, and thus is more restrictive in this aspect than
our previous vision-based approach. Overall, the system is
however more reliable, producing less false alarms.

The new texture classification approach offers very good
performances and produces very few erroneous results. The
main limitation occurs for highly similar ground categories
such as metal and concrete which are mostly uniformly grey
and thus cannot be reliably distinguished. The wire fence wall
type is also difficult to recognize as the environment behind is
sometimes visually dominant in images. However, the global
filtering in the final semantic mapping step is able to filter out
most of these erroneous detections.

Finally, the obstacle avoidance strategy that integrates cues
from multiple sensors has been very difficult to develop as
it depends on most of the other system components. Long
experimental testing has led to a system producing overall
safe robot behaviour thanks to recovery strategies like the
retracing of previous paths that will guide the robot in case
of, e.g., erroneous gravel detections. However a more global
and principled system approach would be necessary to ensure
that such a core system component will behave correctly in
all failure cases.

For the last CAROTTE competition that will take place in
2012, our future work will deal mainly with the improvement
of the object segmentation module. In particular, we would
like to be able to segment objects that are grouped together
and objects that are put on shelves. We are also developing
a 3D mapping method based on the RGBD camera in order
to produce a visually appealing map and to use more global
scene information for object segmentation.
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in video sequences,” in Proceedings of the IEEE Intelligent Vehicles
Symposium (IV2005), June 2005, pp. 625–631.

[17] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in In CVPR, 2005, pp. 886–893.

[18] T. Leung and J. Malik, “Representing and Recognizing the Visual
Appearance of Materials using Three-dimensional Textons,” Int. J.
Comput. Vision, vol. 43, no. 1, pp. 29–44, 2001.

[19] M. Varma and A. Zisserman, “A Statistical Approach to Texture Clas-
sification from Single Images,” Int. J. Comput. Vision, vol. 62, no. 1-2,
pp. 61–81, 2005.

[20] ——, “Texture classification: Are filter banks necessary?” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2003.

[21] R. Marée, P. Geurts, J. Piater, and L. Wehenkel, “Random subwindows
for robust image classification,” in Proceedings of the IEEE International
Conference on Computer Vision and Pattern Recognition (CVPR 2005),
C. Schmid, S. Soatto, and C. Tomasi, Eds., vol. 1. IEEE, June 2005,
pp. 34–40.

[22] I. Jebari, S. Bazeille, and D. Filliat, “Combined vision and frontier-based
exploration strategies for semantic mapping,” in Proceedings of the 3rd
International Asia Conference on Informatics in Control, Automation
and Robotics (CAR 2011), 2011.

[23] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),”
in IEEE International Conference on Robotics and Automation (ICRA),
Shanghai, China, May 9-13 2011.

[24] D. Filliat, “A visual bag of words method for interactive qualitative lo-
calization and mapping,” in Proceedings of the International Conference
on Robotics and Automation (ICRA), 2007.

[25] B. Yamauchi, “A frontier-based approach for autonomous exploration,”
in In Proceedings of the IEEE International Symposium on Computa-
tional Intelligence, Robotics and Automation, 1997, pp. 146–151.


