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CONNECTED COMPONENTS OF THE STRATA OF
THE MODULI SPACE OF MEROMORPHIC

DIFFERENTIALS

CORENTIN BOISSY

Abstract. In this paper, we study the translation surfaces cor-
responding to meromorphic differentials on compact Riemann sur-
faces. We compute the number of connected components of the
corresponding strata of the moduli space. We show that in genus
greater than or equal to two, one has up to three components with
a similar description as the one of Kontsevich and Zorich for the
moduli space of Abelian differentials. In genus one, one can ob-
tain an arbitrarily large number of connected components that are
easily distinghished by a simple topological invariant.
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1. Introduction

A nonzero holomorphic one-form (Abelian differential) on a compact
Riemann surface naturally defines a flat metric with conical singulari-
ties on this surface. Geometry and dynamics on such flat surfaces, in
relation to geometry and dynamics on the corresponding moduli space
of Abelian differentials is a very rich topic and has been widely studied
in the last 30 years. It is related to interval exchange transformations,
billards in polygons, Teichmüller dynamics.

A noncompact translation surface corresponds to a a one form on a
noncompact Riemann surface. The dynamics and geometry on some
special cases of noncompact translation surfaces have been studied
more recently. For instance, dynamics on Zd covers of compact trans-
lation surfaces (see [6, 8, 3]), infinite square tiled surfaces (see [9]), or
general noncompact surfaces (see [1, 2, 15]).

In this paper, we investigate the case of translation surfaces that
come from meromorphic differentials defined on compact Riemann sur-
faces. In this case, we obtain infinite area surfaces, with “finite com-
plexity”. Dynamics of the geodesic flow on a generic direction on such
surface is trivial any infinite orbit converges to the poles. Also, SL2(R)
action doesn’t seem as rich as in the Abelian case (see Appendix A).

However, it turns out that such structures naturaly appear when
studying compactifications of strata of the moduli space of Abelian
differentials. Eskin, Kontsevich and Zorich show in a recent paper [4]
that when a sequence of Abelian differentials (Xi, ωi) converges to a
boundary point in the Deligne-Munford compactification, then subsets
(Yi,j, ωi,j) corresponding to thick components of the Xi, after suitable
rescaling converge to meromorphic differentials (see [4], Theorem 10).
Smillie, in a work to appear, constructs a geometric compactification
of the strata of the moduli space of Abelian differentials, by using
only flat geometry, and where flat structures defined by meromorphic
differentials are needed.
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The connected components of the moduli space of Abelian differen-
tials were described by Kontsevich and Zorich in [11]. They showed
that each stratum has up to three connected component, which are de-
scribed by two invariants: hyperellipticity and parity of spin structure,
that arise under some conditions on the set of zeroes. Later, Lanneau
has described the connected components of the moduli space of qua-
dratic differentials. The main goal of the paper is to describe connected
components of the moduli space of meromorphic differentials with pre-
scribed poles and zeroes. It is well known that each stratum of the
moduli space of genus zero meromorphic differentials is connected. We
show that when the genus is greater than, or equal to two, there is
an analogous classification as the one of Kontsevich and Zorich, while
in genus one, there can be an arbitrarily large number of connected
components.

In this paper, we will call translation surface with poles a translation
surface that comes from a meromorphic differential on a puncture Rie-
mann surface, where poles corresponds to the punctured points. We
describe in Section 2 the local models for neighborhoods of poles. Sim-
ilarly to the Abelian case, we denote by H(n1, . . . , nr,−p1, . . . ,−ps)
the moduli space of translation surfaces with poles that corresponds to
meromorphic differentials with zeroes of degree n1, . . . , ns and poles of
degree p1, . . . , ps. It will be called strata of the moduli space of mero-
morphic differentials. We will always assume that s > 0. A strata is
nonempty as soon as

∑
i ni −

∑
j pj = 2g − 2, for some nonnegative

integer g and
∑

j pj > 1.
For a genus one translation surface S with poles, we describe the con-

nected components by using a geometric invariant easily computable in
terms of the flat metric, that we call the rotation number of a surface.
As we will see in Section 4, in the stratum H(n1, . . . , nr,−p1, . . . ,−ps),
the rotation number is a positive integer that divides all the ni, pj.
Theorem 1.1. Let H(n1, . . . , nr,−p1, . . . ,−ps), with ni, pj > 0 and∑

j pj > 1 be a stratum of genus one meromorphic differentials. Denote
by c be the number of positive divisors of gcd(n1, . . . , nr, p1, . . . , ps).
The number of connected components of the stratum is:

• c− 1 if r = s = 1. In this case n1 = p1 = gcd(n1, p1) and each
connected component corresponds to a a rotation number that
divides n1 and is not n1.
• c otherwise. In this case each connected component corresponds
to a rotation number that divides gcd(n1, . . . , nr, p1, . . . , ps).

A consequence of the previous theorem, is that, contrary to the case
of Abelian differentials, there can be an arbitrarily large number of
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connected components for a stratum of meromorphic differentials (in
genus 1). For instance, the stratum H(24,−24) has 7 connected com-
ponents since the nontrivial divisors of 24 are 1, 2, 3, 4, 6, 8 and 12.

The general classification uses analogous criteria as for Abelian dif-
ferentials. We recall that in this case, the connected components are
distinguished by the following (up to a few exception in low genera):

• hyperellipticity : if there is only one singularity or two singular-
ities of equal degree, there is a component that consists only
of hyperelliptic Riemann surfaces. For each translation surface,
the hyperelliptic involution is an isometry. Slightly abusing
with terminology, we usually call this component the hyperel-
liptic component.
• parity of spin structure: If all singularities are of even degree,
there are two connected component (none of which is the hy-
perelliptic component) distinguished by a topological invariant
easily computable in terms of the flat metric.

In Section 5, we define in our context the notion of hyperelliptic
component and spin structure.

In the next theorem, we say that the set of poles and zeroes is:
• of hyperelliptic type if the degree of zeroes are or the kind {2n}
or {n, n}, for some positive integer n, and if the degree of the
poles are of the kind {−2p} or {−p,−p}, for some positive
integer p.
• of even type if the degrees of zeroes are all even, and if the
degrees of the poles are either all even, or are {−1,−1}.

Theorem 1.2. Let H = H(n1, . . . , nr,−p1, . . . ,−ps), with ni, pj > 0
be a stratum of genus g ≥ 2 meromorphic differentials. We have the
following.

(1) If
∑

i pi is odd and greater than two, then H is nonempty and
connected.

(2) If
∑

i pi = 2 and g = 2, then:
• if the set of poles and zeroes is of hyperelliptic type, then
there are two connected components, one hyperelliptic, the
other not (in this case, these two components are also dis-
tinghished by the parity of spin structure)
• otherwise, the stratum is connected.

(3) If
∑

i pi > 2 or if g > 2, then:
• if the set of poles and zeroes is of hyperelliptic type, there is
exactly one hyperelliptic connected component, and one or
two nonhyperelliptic components that are discribed below.
Otherwise, there is no hyperelliptic component.
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• if the set of poles and zeroes is of even type, thenH contains
exactly two nonhyperelliptic connected components that are
distinguished by the parity of spin structure. Otherwise H
contains exactly one nonhyperelliptic component.

From the previous theorem, we see that there are at most three con-
nected component in genus greater than or equal to two. For instance,
the stratum H(4, 4,−1,−1) contains a hyperelliptic connected compo-
nent (zeroes and poles are of hyperelliptic type) and two nonhyperellip-
tic components (the zeroes are even and the poles are {−1,−1}). So it
has three components. The stratum H(2, 4,−1,−1,−2) is connected,
since it does not have a hyperelliptic connected component and the
poles and zeroes are not of even type.

The structure of the paper is the following:

• In Section 2, we describe general facts about the metric de-
fined by a meromorphic differential and define a topology on
the moduli space.
• In Section 3, we present three tools that are needed in the proof.
The first two ones appear already in the paper of Kontsevich
and Zorich, and in the paper of Lanneau. The third one is a
version of the well known Veech construction for the case of
translation surfaces with poles.
• In Section 4, we describe the connected components in the genus
one case. Some of the results in genus one will be very usefull
for the general genus.
• In Section 5, we describe the topological invariants for the gen-
eral genus case, i.e. hyperelliptic connected components and
the parity of spin structure.
• In Section 6, we compute the connected components for the
minimal strata.
• In Section 7, we compute the connected components for the
general case.

Acknowledgments. I thank Martin Moeller for many discussions about
meromorphic differentials and for pointing out Abel’s theorem during
my stay at the Max Plank Institut for Mathematics in Bonn in spring
2009. I thank John Smillie for motivating the work on this paper and
interesting discussions. I am also thankfull Pascal Hubert and Erwan
Lanneau for the frequent discussions during the developpement of this
paper.
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2. Flat structures defined by a meromorphic
differentials.

2.1. Holomorphic one forms and flat structures. Let X be a
Riemann surface and let ω be a holomorphic one form. For each z0 ∈ X
such that ω(z0) 6= 0, integrating ω in a neighborhood of z0 gives local
coordinates whose corresponding transition functions are translations,
and therefore X inherits a flat metric, on X\Σ, where Σ is the set of
zeroes of ω.

In a neighborhood of an element of Σ, such metric admits a conical
singularity of angle (k+ 1)2π, where k is the degree of the correspond-
ing zero of ω. Indeed, a zero of degree k is given locally, in suitable
coordinates by ω = (k + 1)zkdz. This form is precisely the preimage
of the constant form dz by the ramified covering z → zk+1. In terms
of flat metric, it means that the flat metric defined locally by a zero of
order k appear as a connected covering of order k + 1 over a flat disk,
ramified at zero.

When X is compact, the pair (X,ω), seen as a smooth surface with
such translation atlas and conical singularities, is usually called a trans-
lation surface.

If ω is a meromorphic differential on a compact Riemann X, we can
consider the translation atlas defined defined by ω onX = X\Σ′, where
Σ′ is the set of poles of ω. We obtain a translation surface with infinite
area. We will call such surface translation surface with poles.

Convention 2.1. When speaking of a translation surface with poles
S = (X,ω). The surface S equiped with the flat metric is noncompact.
The underlying Riemann surface X is a punctured surface and ω is
a holomorphic one-form on X. The corresponding closed Riemann
surface is denoted as X, and ω extends to a meromorphic differential
on X whose set of poles are precisely X\X.

Similarly to the case of Abelian differentials. A saddle connection
is a geodesic segment that joins two conical singularities (or a conical
singularity to itself) with no conical singularities on its interior.

We also recall that Riemann-Roch formula implies that
∑r

i=1 ni −∑s
j=1 pj = 2g − 2, where {n1, . . . , ns} is the set (with multiplicities) of

degree of zeroes of ω and {p1, . . . , ps} is the set (with multiplicities) of
degree of the poles of ω.

2.2. Local model for poles. The neighborhood of a pole of order one
is an infinite cylinder with one end. Indeed, up to rescalling, the poles
is given in local coordinates by ω = 1

z
dz. Writing z = ez

′ , we have
ω = dz′, and z′ is in a infinite cylinder.
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Now we describe the flat metric in a neighborhood of a pole of order
k ≥ 2. First, consider the meromorphic 1-form on C∪{∞} defined on C
by ω = zkdz. Changing coordinates w = 1/z, we see that this form has
a pole P of order k+2 at∞, with zero residue. In terms of translation
structure, a neighborhood of the pole is obtained by taking an infinite
cone of angle (k + 1)2π and removing a compact neighborhood of the
conical singularity. Since the residue is the only local invariant for a
pole of order k, this gives a local model for a pole with zeroe residue.

Now, define UR = {z ∈ C||z| > R} equiped with the standard flat
metric. Let VR be the Riemann surface obtained after removing from
UR the π–neighborhood of the real half line R−, and identifying by
the translation z → z + ı2π the lines −ıπ + R− and ıπ + R−. The
surface VR is naturally equiped by a holomorphic one form ω coming
from dz on VR. We claim that this one form has a pole of order 2 at
infinity and residue -1. Indeed, start from the one form on UR′ defined
by (1 + 1/z)dz and integrate it. Choosing the usual determination of
ln(z) on C\R−, one gets the map z → z + ln(z) from UR′\R− to C,
which extends to a injective holomorphic map f from UR′ to VR, if
R′ is large enough. Furthermore, the pullback of the form ω on VR
gives (1 + 1/z)dz. Then, the claim follows easily after the change of
coordinate w = 1/z

Let k ≥ 2. The pullback of the form (1+1/z)dz by the map z → zk−1

gives ((k− 1)zk−2 + (k− 1)/z)dz, i.e. we get at infinity a pole of order
k with residue −(k − 1). In terms of flat metric, a neighborhood of a
pole of order k and residue −(k − 1) is just the natural cyclic (k − 1)–
covering of VR. A neighborhood of a pole of order k and a nonzero
residue is done after proper rotating and rescaling.

For flat geometry, it will be convenient to forget the term 2ıπ when
speaking of residue, hence we define the flat residue of a pole P to
be
∫
γP
ω, where γP is a small closed path that turns around a pole

counterclokwise.

2.3. Moduli space. If (X,ω) and (X ′, ω′) are such that there is a
biholomorphism f : X → X ′ with f ∗ω′ = ω, then f is an isometry for
the metrics defined by ω and ω′. Even more, for the local coordinates
defined by ω, ω′, the map f is in fact a translation.

As in the case of Abelian differentials, we consider the moduli space
of meromorphic differentials, where (X,ω) (X ′, ω′) if there is a bi-
holomorphism f : X → X ′ such that f ∗ω′ = ω. A stratum cor-
responds to prescribed degree of zeroes and poles. We denote by
H(n1, . . . , nr,−p1, . . . ,−ps) the stratum that corresponds to meromor-
phic differentials with zeroes of degree n1, . . . , nr and poles of degree
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p1, . . . , ps. Such stratum is nonempty if and only if
∑r

i=1 ni−
∑s

j=1 pj =

2g − 2 for some integer g ≥ 0 and if
∑s

j=1 pj > 1 (i.e. if there is not
just one simple pole.).

We define the topology on this space in the following way: a small
neighborhood of S, with conical singularities Σ, is defined to be the
equivalent classes of surfaces S ′ for which there is a continuous injective
map f : S\V (Σ)→ S ′ such that V (Σ) is a (small) neighborhood of Σ,
f is close to a translation, and the complement of the image of f is a
union on disks. One can easily check that this topology is Hausdorff.

3. Tools

3.1. Breaking up a singularity: local construction. Here we de-
scribe a surgery, introduced by Eskin, Masur and Zorich (see [5], Sec-
tion 8.1) for Abelian differentials, that “break up” a singularity of de-
gree k1 + k2 ≥ 2 into two singularities of degree k1 ≥ 1 and k2 ≥ 1
respectively. This surgery is local, since the metric is modified only in
a neighborhood of the singularity of degree k1 + k2. In particular, it is
also valid for the flat structure defined by a meromorphic differential.

6 CORENTIN BOISSY

Theorem (E. Lanneau). In the moduli space of quadratic differentials, the non-
connected strata have two connected components and are in the following list (up to
marked points):

• The strata that contain a hyperelliptic connected component, except the follow-
ing ones, that are connected: Q(−1, −1, −1, −1), Q(−1, −1, 1, 1), Q(−1, −1, 2),
Q(1, 1, 1, 1), Q(1, 1, 2) and Q(2, 2).

• The exceptionnal strata Q(−1, 9), Q(−1, 3, 6), and Q(−1, 3, 3, 3) and Q(12).

1.5. Breaking up a singularity: local construction. Here we describe a surgery,
introduced by Eskin, Masur and Zorich (see [8], Section 8.1) for Abelian differen-
tials, that “break up” a singularity of degree k1 + k2 ≥ 2 into two singularities
of degree k1 ≥ 1 and k2 ≥ 1 respectively. This surgery is local, since the metric
is modified only in a neighborhood of the singularity of degree k1 + k2. The case
k1 = 0 or k2 = 0 is trivial.

ρ

ρ

ρ

ρ

ρ

ρ
ρ − ε

ρ − ερ − ε

ρ − ε

ρ + ε

ρ + ε

2ε

4π + 4π6π

P ′
1

P ′
2

Figure 1. Breaking up a zero, after Eskin, Masur and Zorich

We start from a singularity of degree k1 +k2. A neighborhood of such singularity
is obtained by gluing (2k1 + 2k2 + 2) Euclidean half disks in a cyclic order. The
singularity breaking procedure consists in changing continuously the way these half
disks are glued together, as in Figure 1. This breaks the singularity of degree
k1 + k2 into singularities of degree k1 and k2 respectively, and with a small saddle
connection joining them.

Note that since the previous procedure purely local, it is also valid for quadratic
differentials, as soon as we break up a singularity of even order into two singularities
of even order. One can also in a similar way break up a singularity of odd order
into a pair of singularities (see [18] for instance) although we will not need that
case. One can show that it is not possible to break a singularity of even order
into two singularities of odd order by a local surgery. We need for this a nonlocal
construction.

1.6. Breaking up a singularity: nonlocal constructions. Here we describe a
surgery, introduced by Masur and Zorich (see [18], Section 6) for quadratic differ-
entials, that “break up” a singularity of order k1 + k2 into two singularities of order
k1 and k2 respectively. It is valid for any k1, k2 ≥ −1, with (k1, k2) #= (−1, −1).

We start from a surface S0 with a singularity of order k1 + k2, and other sin-
gularities of order n1, . . . , ns. Consider an angular sector of angle π between two
consecutive vertical separatrices of P . We denote by I this sector and by II the
image of I by a rotation of angle (k1 + 1)π, and of center P . Then, choose a closed

Figure 1. Breaking up a zero, after Eskin, Masur and Zorich

We start from a singularity of degree k1 + k2. A neighborhood of
such singularity is obtained by gluing (2k1 + 2k2 + 2) Euclidean half
disks in a cyclic order. The singularity breaking procedure consists in
changing continuously the way these half disks are glued together, as in
Figure 1. This breaks the singularity of degree k1 +k2 into singularities
of degree k1 and k2 respectively, and with a small saddle connection
joining them.

3.2. Bubbling a handle. The following surgery was introduced by
Kontsevich and Zorich in [11]. Since it is a local construction, it is
also valid for meromorphic differentials. As before, we start from a



MEROMORPHIC DIFFERENTIALS 9

singularity of degree k1 +k2 on a surface S. We first apply the previous
surgery to get a pair of singularities of degree k1 and k2 respectively, and
with a small saddle connection γ joining them. Then, we cut the surface
along γ and obtain a flat surface with a boundary component that
consists of two geodesic segments γ1, γ2. We identify their endpoints
and the corresponding segments are now closed boundary geodescis
γ′1, γ

′
2. Then, we consider a cylinder with two boundary components

isometric to γ′i, and glue each of these component to γ′i. The angle
between γ′1 and γ′2 is (k1 + 1)2π (and (k2 + 1)2π)

Using a notation similar to the one introduced by Lanneau in [12], we
will denote by S⊕ (k1 + 1) the resulting surface for an arbitrary choice
of continuous parameters1. Different choices of continuous parameters
leads to the same connected component and from a path (St)t∈[0,1],
one can easily deduce a continuous path St ⊕ (k1 + 1). Hence, as in
[12], the connected component of S ⊕ s only depends on s and on the
connected component of S. So, if S is in a connected component C of
a stratum of Abelian (resp. meromorphic) differential with only one
singularity, C ⊕ s is the connected component of a stratum of Abelian
(resp. meromorphic) differentials obtained by the construction.

The following lemma is Proposition 2.9 in the paper of Lanneau [12],
written in our context. The ideas behind this proposition were also in
the paper of Kontsevich and Zorich [11].

Lemma 3.1. Let C be a minimal stratum of the moduli space of mero-
morphic differentials, with n the degree of the unique corresponding
conical singularity. Then, the following statement holds.

(1) C ⊕ s1 ⊕ s2 = C ⊕ s2 ⊕ s1 if 1 ≤ s1, s2 ≤ n + 1 and either
s1 6= n

2
+ 1 or s2 6= n+2

2
+ 1.

(2) C ⊕ s1 ⊕ s2 = C ⊕ s2 − 1 ⊕ s1 + 1 if 1 ≤ s1 ≤ n + 1 and
2 ≤ s2 ≤ n+ 3.

(3) C⊕s1⊕s2 = C⊕s2−2⊕s1 if 1 ≤ s1 ≤ n+1 and 1 ≤ s2 ≤ n+3
and s2 − s1 ≥ 2.

(4) C ⊕ s = C ⊕ (n+ 2− s) for all s ∈ {1, . . . , n+ 1}
Remark 3.2. There is a small mistake in the statement of Lanneau: the
condition “either s1 6= n

2
+ 1 or s2 6= n+2

2
+ 1” does not appear while it

is necessary.
This leads to a gap in the proof of Lanneau’s Lemma 6.13, but this

problem is easily solved by using Lanneau’s Lemma A.2.
1The notation slightly differs to the one introduced by Lanneau: since he ma-

nipulates quadratic differentials, the angles can be any multiples of π, while in our
case, we only have multiples of 2π. So the surface we obtain would have been writen
S ⊕ 2(k1 + 1) with the notation of Lanneau.
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3.3. The infinite zippered rectangle construction. In this sec-
tion, we describe a construction of translation surfaces with poles which
is analogous to the well known Veech zippered rectangle construction.
We will call this construction the infinite zippered rectangles construc-
tion.

We first recall Veech construction.

3.3.1. Veech construction of a translation surface. The Veech construc-
tion, or zippered rectangle construction is usually seen as a way to
define a suspension over an interval exchange map (see [17]). We can
also see it as a easy way to define (almost any) translation surface.
Consider a finite alphabet A = {α1, . . . , αd}, and a pair on one to one
maps πt, πb : A → {1, . . . , d}. Let ζ ∈ CA be a vector for which each
entry has positive real part.

The Veech construction can be seen in two (almost) equivalent ways.
One with a 2d sided polygon, and one with d rectangles that are iden-
tified on their boundary.

We present the first one, which is simpler but not as general as
the second one. Consider the broken line Lt on C = R2 defined by
concatenation of the vectors ζπ−1

t (j) (in this order) for j = 1, . . . , d with
starting point at the origin. Similarly, we consider the broken line
Lb defined by concatenation of the vectors ζπ−1

b (j) (in this order) for
j = 1, . . . , d with starting point at the origin.

We assume that ζ is such that the vertices of Lt are always above
the real line, except possibly the foremost right (and of course the one
at the origin), and that similarly, the vertices of Lb are below the real
line. Such ζ is called suspension datum (see [13]), and exists under a
combinatorial condition on (πt, πb) usually called “irreducibility”.

If the lines Lt and Lb have no intersections other than the endpoints,
we can construct a translation surface X by identifying each side ζj on
Lt with the side ζj on Lb by a translation. The resulting surface is a
translation surface endowed with the form ω = dz.

Remark 3.3. The surface so constructed can also be seen as a union of
rectangles whose dimensions are easily deduced from πt, πb and ζ, and
that are “zippered” on their boundary. One can define S directely in
this way: the construction works also if Lt, Lb have other intersection
points. This is the zippered rectangle construction, due to Veech ([17]).
This construction coincides with the first one in the previous case.

3.3.2. Basic domains. Now we generalize the previous construction to
obtain a flat surface that corresponds to a compact Riemann surfaces
with a meromorphic differential. Instead of having a polygon with
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Figure 2. Veech construction of a translation surface

pairwise identification on its boundary, we will have a finite union of
some “basic domains” which are half-planes and infinite cylinders with
polygonal boundaries (see Figure 3).

Let n ≥ 0. Let ζ ∈ Cn be a complex vector whose entries have
positive real part.

Consider the broken line L on C defined by concatenation of the
following:

• the half-line l1 that corresponds to R−,
• the broken line Lt defined as above, i.e. the concatenation of the
segment defined by the vectors ζj (in this order) for j = 1, . . . , n
with starting point at the origin,
• the horizontal half line l2 starting from the right end of Lt, and
going to the right.

We consider the subset D+(z1, . . . , zn) (resp. D−(z1, . . . , zn)) as the set
of complex numbers that are above L. The line l1 will be refered to
as the left half-line, and l2 will be refered to as the right half-line. We
will sometime write such domains D+ or D− for short. The sets D±
are kinds of half-planes with polygonal boundaries. Note that n might
be equal to 0, and in this case, D+ (resp. D−) is just a half-plane with
a marked point on its (horizontal) boundary.

Similarly, if n ≥ 1, we can define the subset C+(z1, . . . , zn) (resp.
C−(z1, . . . , zn)) as the set of complex numbers that are above Lt. Its
boundary consists of two infinite vertical half-lines joined by the broken
line Lt. The two infinite half-lines will be identified in the resulting
construction, hence C± is just an infinite half-cylinder with a polygonal
boundary.

3.3.3. An example: a surface with a single pole of order 2. The idea of
the construction is to glue by translation the basic domains together
in order to get a noncompact translation surface with no boundary
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D+

l1
•
ζ1• ζ2

•
ζ3

•
l2

C+

ζ1• ζ2

•
ζ3

•

Figure 3. A domain D+(ζ1, ζ2, ζ3) and a domain C+(ζ1, ζ2, ζ3)

components. Since the formal description is rather technical, we first
present a simple version of the construction.

Let A be a finite alphabet and πt, πb : A → {1, . . . , d} be one-to-one
maps. Let ζ ∈ CA be such that Re(ζα) > 0 for all α ∈ A.

We define a flat surface S as the disjoint union of the two half-planes
D+ = D+(ζπ−1

t (1), . . . , ζπ−1
t (n)) and D− = D−(ζπ−1

b (1), . . . , ζπ−1
b (n)) glued

on their boundary by translation: the left half line of D+ being glued
to the left half-line of D− and similarly with the right half-lines, and a
segment in D+ corresponding to some ζi is glued to the corresponding
one of D−.

Note that contrary to the case of compact translation surfaces, there
is no “suspension data condition” on ζ, hence, no combinatorial condi-
tion on π. The only condition that we require is that Re(ζi) > 0 for all
i. Note also that we can have n = 0, in this case S = C.

3.3.4. General case. We can generalize the above construction in order
to have several poles of any order. Instead of considering two half-
planes D+, D−, we will do the same construction starting from 2d
half-planes, s+ +s− infinite cylinders, and define identification on their
boundary. More precisely:

Let ζ ∈ Cn with positive real part. We consider the following com-
binatorial data:

• A collection n+ of integers 0 = n+
0 ≤ n+

1 ≤ . . . n+
d < · · · <

n+
d+s+ = n

• A collection n− of integers 0 = n−0 ≤ n−1 ≤ . . . n−d < · · · <
n−d+s− = n
• A pair of maps πt, πb : A → {1, . . . , n}
• A collection d of integers 0 = d0 < d1 < d2 < · · · < dr = d.
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D+

l1
•
z1 •z2

•

z3

• z4
•

l2 L1

D−

l′1
•z2

•
z1 • z4

•

z3

•
l′2 L2

Figure 4. Construction of a translation surface with a
degree 2 pole.

The resulting surface will have r poles of order greater than or equal
to two, and s+ + s− poles of order 1.

For each i ∈ {0, . . . , d−1}, we consider the basic domains as defined
before D+

i (ζπ−1
t (n+

i +1), . . . , ζπ−1
t (n+

i+1)
) and D−i (ζπ−1

b (n−i +1), . . . , ζπ−1
b (n−i+1

)).
For i ∈ {d, . . . , d+s+−1}, we define C+

i (ζπ−1
t (n+

i +1), . . . , ζπ−1
t (n+

i+1)
). For

i ∈ {d, . . . , d+ s− − 1}, we define C−i (ζπ−1
b (n−i +1), . . . , ζπ−1

b (n−i+1
)).

l1
•
z1• z2

•
l2 l3

•

z3
• z4

•
l4

l1
•

z2 •
z3

•
l4 l3

•

z4 • z1
•

l2

Figure 5. Construction of a translation surface with a
degree 3 pole.

Then, we glue these domains together on their boundary by transla-
tions:
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l1
•
z1• z2

•
l2 l3

•

z3
• z4

•
l4

l1
•

z2 •
z3

•
l2 l3

•

z4 • z1
•

l4

Figure 6. Construction of a translation surface with
two poles of degree 2

• each segment corresponding to a parameter ζi in a “+′′ domain
is glued to the unique corresponding one in a “−′′ domain.
• each left line of a domain D+

i is glued to the left line of the
domain D−i .
• For each i ∈ {1, . . . , d}\{d1, . . . , dr} the right line of the domain
D−i is glued to one of the domain D+

i+1.
• For each i = dk, k > 0, the right line of the domain D−i is glued
to one of the domain D+

dk−1+1.
• For each C+

i and C−i , the two vertical lines are glued together.
The resulting surface S has no more boundary components, and is

a flat surface with poles and conical singularities. It might not be
connected for a given combinatorial data. We will consider only those
that that give connected surfaces.

Note that such surface is easily decomposes into a finite union of
vertical strips and half-planes with vertical boundary (i.e. “infinite
rectangle”), that are “zippered” on their boundary.

Example 3.4. Figure 5 shows an example with d = 2, s+ = s− = 0,
n+ = (0, 2, 4), n− = (0, 2, 4), πt = Id, (π−1b (1), . . . , π−1b (n)) = (2, 3, 4, 1)
and d = (0, 2). One gets a surface in H(−3, 5).

Figure 6 shows an example with the same data, except that d =
(0, 1, 2). One gets a surface in H(−2,−2, 2, 2).

Lemma 3.5. Let S be a genus g surface inH(n1, . . . , nr,−p1, . . . ,−ps),
obtained by the infinite zippered rectangle construction with a continu-
ous parameter ζ ∈ Cn. Then

n = 2g + r + s− 2
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Proof. By construction, the surface (pole included) is obtained by glu-
ing s disks on their boundary. The resulting surfaces admits a decom-
positions into cells, with s faces, n edges, and r vertices. So, we have
2− 2g = s− n+ r, and the result follows. �

The following proposition will be very usefull in the remaing of the
paper. It is analogous to fact that any translation surface with no
vertical saddle connection is obtained by the Veech construction.

Proposition 3.6. Any translation surface with poles with no vertical
saddle connection is obtained by the infinite zippered rectangle construc-
tion.

Proof. According to the book of Strebel [16] Section 11.4, when there
are no vertical saddle connection the vertical trajectories one of the
following to kind:

(1) line that converges to a pole in each directions.
(2) half-lines starting (or ending) from a conical singularity and

converging to a pole on their infinite direction.
Furthermore, the set of non-singular vertical trajectories is a disjoint
union of half-planes and of vertical strips tiPi tj Sj. The half-planes
have one vertical boundary component, and the strips have two ver-
tical boundary component. We choose these half-planes or strips as
maximals, so each boundary component necessarily contains a conical
singularity. This singularity is unique for each connected component,
otherwise there would be a vertical saddle connection on the surface.
This number of half-planes and strips is necessarily finite, since there
is only a finite number of conical singularities, and each conical singu-
larities is adjacent to a finite number of half-plane or strip.

We cut each half-plane Pi in the following way: the boundary of Pi
consists of a union of two vertical half-lines starting from the conical
singularity. We consider the unique horizontal half-line starting from
this singularity and cut Pi along this half line. It decomposes Pi into
two components P+

i (the upper one) and P−i (the lower one).
We cut each strip Sj in the following way: the boundary of Si consists

has two components, each consists of a union of two vertical half-lines
starting from a conical singularity. There is a unique geodesic segment
joining these two boundary singularities. We cut Sj along this segment
and obtain two components S+

j and S−j .
The surface S is obtained as the disjoint union of the S±j and P±i ,

glued to each other by translation on their boundary components. Now
we remark that the P+

i and S+
j are necessarily glued to each other

along their vertical boundary components. Under this identification,
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tP+
i tj S+

j is a union of subsets of the type D+ and S+, as in the
previous construction.

Similarly, gluing together along vertical sides the union of the S−j
and P−i , one obtain a union of D− and C− type subsets.

So the surface is obtained by the infinite zippered rectangle construc-
tion. �

Remark 3.7. Note that the parameters (ζi)i are uniquely defined (once
the suitable vertical direction is fixed) and the infinite zipperered rec-
tangle construction defines a triangulation of the surface for which the
(ζi) are the local parameters for the strata. Hence, map S → (ζi)i is
a local homeomorphism. The corresponding saddle connections form a
basis of the relative homology H1(S,Σ,Z), where Σ is the set of conical
singularities of S.

Note that for any translation surface with poles, the set of saddle
connection is at most countable, so it is always possible to rotate the
surface in such way that there are no vertical saddle connection. Hence
the previous theorem gives a representation for any translation surface
with pole. One important consequence this theorem is Proposition 7.1,
which is the analogous version of a key argument in [11].

4. Genus one case

4.1. Connected components. We first recall the following result in
algebraic geometry, which is a consequence of the Abel theorem.

Theorem. Let X = C/Γ be a torus and let D =
∑

i αiPi is a divisor.
Then there exists a meromorphic differential with D as a divisor if and
only if

∑
zi ∈ Γ, where for each i, zi is a representative in C of Pi.

Now we use this theorem to describe the connected components in
the genus one case.

Theorem 4.1. Let H = H(n1, . . . , nr,−p1, . . . ,−ps) be a stratum of
genus one meromorphic differentials. Let d = gcd(n1, . . . , nr, p1, . . . ps),
and let c be the number of positive divisors of d. Then the number of
connected components of H is:

• c if r + s ≥ 3.
• c− 1 if r + s = 2.

Proof. According to the previous theorem, an element in H is given,
up a scalar multiple, by a pair (X,D), where X is in the moduli space
of genus one Riemann surfaces M1, and D is a divisor on X. So, H
(or its projectivization) is a covering ofM1.
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We first assume that r+s = 2. Then H = H(n,−n), for some n ≥ 2
(the stratum H(1,−1) is empty). We have d = n. Fix X0 ∈ M1 a
regular point, and choose v1, v2 such thatX0 = C/(v1Z+v2Z). For each
(X0, ω) ∈ H, the differential ω is uniquely defined, up to a multiple
constant, by its divisor. One can assume that the divisor is −n.0+nQ,
where Q is represented in a unique way by a complex number of the
form p

n
v1 + q

n
v2, with (p, q) 6= (0, 0) and 0 ≤ p, q < n. Since X0 is taken

regular, there is a one to one correspondance with elements of H of
underlying surface X0, and such pairs (p, q) of integers.

The monodromy of the covering PH →M1 is given by the two maps
φ1 : (p, q) → (p + q, q) mod n and φ2 : (p, q) → (p, q + p) mod n.
We remark that d′ = gcd(p, q, n) is invariant by this action and the
condition on (p, q) implies that 0 < d′ < n. Hence is an invariant of
the connected components of H. The number of possible d′ is c−1. We
claim that each (p, q) as a (unique) representative modulo these actions
of the kind (d′, 0). To prove the claim, we start from an element (p, q)
and do an algorithm similar to Euclid’s algorithm. Without loss of
generality, one can assume that p 6= 0 and q 6= 0. Applying φr1 for some
well chosen r, we can obtain (p′, q) with 0 < p′ ≤ gcd(q, n). Similarly,
we can obtain (p, q′) with 0 < q < gcd(p, n). So if either gcd(q, n) < p
or gcd(p, n) < q, we obtain (p′, q′) with p′ + q′ < p + q. Otherwise
p ≤ gcd(q, n) ≤ q and q ≤ gcd(p, n) ≤ p. This implies p = q = d′, and
the result follows.

Now we assume r + q ≥ 3. We proceed in the same way as be-
fore: we fix X0 = C/Γ and a basis v1, v2 of Γ. Then a meromor-
phic differential is given by a a vector (z1, . . . zr, z

′
1, . . . , z

′
s)Cr+s with

pairwise disjoint entries (modulo Γ), and satisfying the linear equality∑r
i=1 nizi −

∑s
i=1 pizi = pv1 + qv2. One can remark that:

• For each (p, q) the set of (zi)i, (z
′
j)j satisfying the previous con-

dition is nonempty and connected.
• If we choose other representatives zi, z′j for the same differential
ω, this changes (p, q) by (p+

∑
i αini +

∑
j βjpj, q +

∑
i α
′
ini +∑

j β
′
jpj), where (αi, βj, α

′
i, β
′
j) can be any integers.

• The action of the the two generators of the modular group
changes (p, q) by (p+ q, q) and (p, q + p) respectively.

Then, by a proof very similar to the previous one, one can see that d′ =
gcd(p, q, n1, . . . , nr, p1, . . . , ps) is an invariant of connected component
and one can find representative in each connected component satisfying
(p, q) = (d′, 0). So the number of connected component is precisely c.

Note that the difference with the first case is that any pair (p, q) ∈ Z2

is possible.
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�

4.2. Flat point of view: rotation number. The previous section
classifies the connected component of the moduli space of meromorphic
differentials in the genus one case from an complex analytic point of
view.

But the invariant which is given is not easy to describe in terms of
flat geometry. The next theorem gives an interpretation in terms of
flat geometry.

Let γ be a simple closed curve parametrized by the arc length on a
translation surface that avoids the singularities. Then t→ γ′(t) defines
a map from S1 to S1. We denote by Ind(γ) the index of this map.

Definition 4.2. Let S = (X,ω) ∈ H(n1, . . . , nr,−p1, · · · − ps) be a
genus one translation surface with poles. Let (a, b) be a symplectic
basis of the homology the underlying compact Riemann surface X and
γa, γb be arc-length representatives of a, b, with no self intersections,
and that avoid the zeroes and poles of ω. We define the rotation number
of S to by:

rot(S) = gcd(Ind(γa), Ind(γb), n1, . . . nr, p1, . . . , ps)

Theorem 4.3. Let H = H(n1, . . . , nr,−p1, · · · − ps) be a stratum of
genus 1 meromorphic differentials. The rotation number is an invariant
of connected components of H.

Any positive integer d which divide gcd(n1, . . . , nr, p1, . . . ps) is re-
alised by a unique connected component of H, except for the case H =
H(n,−n) where d = n doesn’t occur.

Proof. Let (a, b) be a symplectic basis of H1(X,Z). Let γa, γ′a be rep-
resentatives of a that are simple closed curves and doesn’t contain a
singularity. Since X is a torus, γa and γ′a are homotopic as curves de-
fined on X. The index of γa doesn’t change while we deform γa without
crossing a pole or a zero. It is easy to see that when crossing a singu-
larity of order k ∈ Z, the index is changed by adding ±k. Hence the
rotation number only depend on the homology class of a and b.

If γa and γb intersects in one point, then there is a standard way
to construct a simple closed curve representing a ± b. Its index is
Ind(γa)±Ind(γb), and we obtain representatives of the symplectic basis
(a ± b, b) (or (a, a ± b)). The rotation number doesn’t change by this
operation. With this procedure, we can obtain any other symplectic
basis of X.

Hence the rotation number is well defined for a given element of H.
Also, it is invariant by deforming (X,ω) inside the ambiant stratum,
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since by continuous deformation, we can keep track of a pair of rep-
resentatives of a basis, and the indices are constant under continuous
deformations.

To prove the last part of the theorem, we remark that a surface in
H(n,−p1, . . . ,−ps) obtained from H(n− 2,−p1, . . . ,−ps) by bubbling
a handle with parameter k ∈ {1, . . . , n − 1} has a rotation number
equal to gcd(k, p1, . . . , ps) by a direct computation. Since k < n, we
have gcd(k, p1, . . . , ps) < n so n is never a rotation number. Now
we blow up the singularity of order n to get r singularities of order
n1, . . . , nr. Since this doesn’t change the metric outside a small neigh-
borhood of the singularity of order n, we obtain a rotation number
equal to gcd(k, n1, . . . , nr, p1, . . . , ps).

The previous construction gives at least as many connected compo-
nent as the number given by Theorem 4.1. So, we see each rotation
number is realized by a unique component, and that this component is
realized by the bubbling a handle construction. �

Note that the last two paragraphs of the proof of the last theorem
gives the following description of the connected components of the min-
imal strata in genus one.

Proposition 4.4. Let H = H(n,−p1, . . . ,−ps) be a minimal stratum
of genus one meromorphic differentials. Any connected component of
H is obtained after bubbling a handle.

Also, for 1 ≤ k1, k2 ≤ n− 1 we have:

H(n− 2,−p1, . . . ,−ps)⊕ k1 = H(n− 2,−p1, . . . ,−ps)⊕ k2
if and only if gcd(k1, p1, . . . , ps) = gcd(k2, p1, . . . , ps).

Remark 4.5. It is shown in the appendix that there are some translation
surface with pole that do not contain any closed geodesic.

5. Spin structure and hyperelliptic components

Recall that in the classification of the connected component of strata
of the moduli space of Abelian differentials [11], the connected compo-
nents are distinghished by two invariant.

• “Hyperelliptic components”: there are some connected compo-
nents whose corresponding translation surface have all an extra
symmetry.
• “Parity of spin structure”, which is a complex invariant that can
be expressed in terms of the flat geometry by a simple formula.



20 CORENTIN BOISSY

5.1. Hyperelliptic components.

Definition 5.1. A translation surface with poles S is said to be hy-
perelliptic if there exists an isometric involution τ : S → S such that
S/τ is a sphere. Equivalently, the underlying Riemann surface X is
hyperelliptic and the hyperelliptic involution τ satisfies τ ∗ω = −ω.
Remark 5.2. In the case of Abelian differentials, if the underlying Rie-
mann surface is hyperelliptic, then the translation surface is hyperel-
liptic since there are no nonzero holomorphic one forms on the sphere.
In our case, similarly to the case of quadratic differentials, the under-
lying Riemann surface might be hyperelliptic, while the corresponding
translation surface is not.

Proposition 5.3. Let n, p be positive integers with n ≥ p. The follow-
ing strata admit a connected component that consists only of hyperel-
liptic translation surfaces.

• H(2n,−2p)
• H(2n,−p,−p)
• H(n, n,−2p)
• H(n, n,−p,−p)

Furthermore, any strata that contains an open set of flat surfaces with
a nontrivial isometric involution is in the previous list for some n ≥
p ≥ 1.

Proof. Let H be a stratum and H̊hyp ⊂ H the interior of the set of
elements of H that admit an nontrivial isometric involution.

Given a combinatoria data σ = (n+,n−, πt, πb,d) that defines an
infinite zippered rectangle construction, we denote by Cσ the set of flat
surfaces that are obtained by this construction with parameter σ, up
to a rotation. Clearly, Cσ is open and connected.

We claim that for each σ, the intersection between Cσ and H̊hyp

is either Cσ or empty. Indeed, choose a generic parameter ζ for the
infinite zippered rectangle construction, such that the corresponding
surface S(σ, ζ) is in H̊hyp. Let D+(z1, . . . , zk) ⊂ S(σ, ζ) be a half-plane
of the construction. Then, ζ being generic, an isometric involution τ
will necessarily send the segment corresponding to zi to itself. Hence
if τ is not the identity, it is easy to see that the set D+(z1, . . . , zk) will
be sent to D−(zk, zk−1, . . . , z1), and therefore, we can define a similar
involution for any value of z1, . . . , zk. Since this argument is valid for
any D

∑
pm and C± components, we see that all flat surfaces obtained by

the infinite zippered rectangle construction with combinatorial datum
σ have a nontrivial isometric involution. This proves the claim.
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Now we remark that, by Proposition 3.6, H = ∪σCσ, where the union
is taken on all σ that corresponds to H. The previous claim implies
that H̊hyp and its complement in H are both unions of some Cσ, so if
H̊hyp is nonempty, it is a connected component of H.

Now we check that if H̊hyp is not empty, then the stratum H is in
the given list, i.e. there is either one even degree zero (resp. pole) or
two equal degree zeroes (res. poles). Let ζ1, . . . , ζn be the continuous
data in the infinite zippered rectangle construction for an element S in
H̊hyp. The above condition implies that for each ζi, the middle of the
corresponding segment in the surface is a fixed point for the involution
τ . So, there are at least n fixed points. Let r be the number of conical
singularities , s be the nomber of poles and let g′ be the genus of S/τ .
We must have #(Fix(τ)) = 2g + 2 − 4g′, and 2g + r + s − 2 = n ≤
#(Fix(τ)) (see Lemma 3.5). Since r, s > 1, this implies g′ = 0, so S is
hyperelliptic, and #(Fix(τ))− n = 4− r − s. The fixed points of τ in
X that do not correspond to the middle of a zi segment are necessarily
either conical singularities or pole.

The above combinatorial condition on the infinite zippered rectangle
construction implies that S has either two equal degree poles that are
interchanged by τ or one pole of even degree that is preserved by τ . So
the condition #(Fix(τ))−n = 4−r−s implies that either there is one
conical singularity which is fixed by τ , or there are two singularities
P1, P2 that are not fixed by τ . By a similar argument as in the proof
of Proposition 7.1, P1, P2 are the endpoints of a saddle connection
corresponding to a parameter ζi, so they are interchanged by τ , hence
they are of the same degree. Therefore, the stratum is necessarily one
of the given list.

The last step of the proof is to check that for the strata given in the
statement, H̊hyp is nonempty. This is an elementary check by using
the infinite zippered rectangle construction that satisfies the previous
condition.

�

5.2. Parity of spin structure. Let S = (X,ω) be a (standard) trans-
lation surface and (αi, βi)i be a symplectic basis for the homology. Ac-
cording to Kontsevich and Zorich [11], the parity of spin structure for
S is given by the formula:∑

i

(ind(αi) + 1)(ind(βi) + 1) mod (2)

Therefore, the number defined by above formula doesn’t depend on
the choice of the basis. It is clear that it doesn’t change under small
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deformation of the surface inside the ambiant stratum, hence is an
invariant of connected components of strata.

We will define a similar formula in our case and show that it doesn’t
depend on the choice of the basis, and still call it parity of spin struc-
ture. The key argument is to reduce the problem to the case of standard
translation surfaces. We define the following:

Definition 5.4. Let S be a translation surface with poles, and S̃ be a
standard translation surface. We say that S̃ is a closing of S if S iso-
metrically embeds in S̃, once removed a neighborhood of its poles, and
such that the complement of the image of the map in S̃ is connected.

A closing is not necessarily unique, but, as shown in the next lemma,
it always exists.

Lemma 5.5. Any translation surface with poles admits a closing.

Proof. Recall that we call flat residue of a pole P the value 2ıπRes(P ).
Let S ∈ H(n1, . . . , nr,−p1, . . . ,−ps). We assume for simplicity that

all residues are non zero. The case with zero residue is similar. Up to
rotating S, we can assume that all residues have nonzero real parts.
Let P1, . . . , Ps be the poles of S of order p1, . . . , ps respectively.

For each i ∈ {1, . . . , s} we define p′i = pi − 2 if pi ≥ 2 and p′i =
0 if pi = 1. Now we use the (usual) Veech construction defined in
Section 3.3.1 to construct a flat surface in H(p′1, . . . , p

′
s, k), where k is

any positive integer such that H(p′1, . . . , p
′
s, k) is nonempty.

Let (ζ1, . . . , ζn) ∈ Cn and a permutation π ∈ Σn as in Section 3.3.1.
The Veech construction defines a surface S0. We can assume that all
|ζi| are very large. Recall that S0 is obtained in the following way: we
consider the broken line Lt defined by concatenation of the vectors ζj
(for j ∈ {1, . . . , n}), and the broken Lb starting from the same point as
Lt, and obtained by the concatenation of the vectors ζπ−1(j). We denote
by Q1, . . . , Qs the (pairwise distinct) singularities of degree p′1, . . . , p′s
respectively. Now for each i ∈ {1, . . . , s}, if Pi has flat residue ηi with
negative real part, we choose j ∈ {1, . . . , n} such that the vertex of
Lt corresponding to the right endpoint of ζj corresponds to Pi. Then
we change Lt by pasting in a segment of vector −ηi between ζj and
ζj+1. If Pi has a flat residue ηi with positive real part, we choose
j ∈ {1, . . . , n} such that the vertex of Lb corresponding to the right
endpoint of ζπ−1(j) corresponds to Pi. Then we change Lb by pasting
in a segment of vector ηi between ζπ−1(j) and ζπ−1(j+1). The two newly
created broken lines L′t, L′b still share the same starting point and ending
point since

∑
i ηi = 0. Also, if the ζj are large enough compared to

the ηi, the lines L′t, L′b still only intersect at their starting and ending
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points, so they form a polygon P ′ with 2n + s sides, and where 2n of
these sides are pairwise parallel and of the same length. Identifying
the sides by translation, we obtain a surface with boundary S ′. Each
boundary component is isometric to a segment corresponding to a ηi
or a −ηi, and corresponds to the pole Pi.

Let i ∈ {1, . . . , s}. We assume that Pi is a pole of order greater than,
or equal to two. Let si be the boundary segment of S ′ in the previous
construction. Let Vδ be the δ–neighborhood of si in S ′. Note that, by
construction,

∫
∂Vδ

ω = −ηi. If δ is large enough, ∂Vδ is isometric to a
curve γi in S that turns around the pole Pi in the clockwise direction.
Hence we can glue S ′\Vδ with the interior of γi in S.

If Pi is a pole or order one, its boundary is an infinite cylinder. We
cut this cylinder along a closed geodesic and remove the pole. The
resulting boundary component is isometric to si and can be glued to
the corresponding boundary component of S ′.

One gets a closing of S by doing this construction for all values of i.
�

Let S = (X,ω) be a translation surface with poles and let (αi, βi)i
be a collection of curves representing a symplectic basis of H1(X,Z),
and that avoid the zeroes and poles of ω. By analogy to the formula of
Kontsevich and Zorich, we define the parity of spin structure of S by:∑

i

(ind(αi) + 1)(ind(βi) + 1) mod (2)

Proposition 5.6. Let S be a translation surface with poles such that
all singularities are of even degree. The parity of spin structure of S
as defined above doesn’t depend on the choice of the symplectic basis.

Proof. By the construction of the previous lemma, there is a closing of
S that contains only even singularity. Let S̊ be a subset of S obtained
by removing a neighborhood of the poles, and such that S̊ embeds in S̃.
Without loss of generality, we can assume that the paths (αi, βi)i∈{1,...,g}
on S defining the symplectic basis are paths on S̊, and therefore define
a symplectic family of H1(S̃,Z).

Now we complete (αi, βi)i∈{1,...,g} into a symplectic basis of H1(S̃,Z)

in the following way: let g′ be the genus of S̃\S̊ and choose represen-
tatives (αj, βj)j∈{g+1,...,g+g′} for a maximal symplectic family of S̃\S̊.
The family (αi, βi)i∈{1,...,g+g′} is symplectic but not a basis. The surface
S̊ ⊂ S̃ has r connected components. Choose r− 1 of such components
and consider the corresponding curves αg+g′+1, . . . , αg+g′+r−1. Now it is
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easy to complete to get a symplectic basis ofH1(S̃,Z) them by choosing
suitable dual paths βj for the αj.

Now let (α′i, β
′
i)i∈{1,...,g} be another basis of S. We do the same con-

struction as before an get another symplectic basis (α′i, β
′
i)i∈{1,...,g+g′+r−1}.

We can choose αi = α′i for i ∈ {g + 1, . . . , g + g′ + r − 1} and βi = β′i
for i ∈ {g+ 1, . . . , g+ g′} but not for i ∈ {g+ g′+ 1, . . . , g+ g′+ r−1}.
Since the parity of the spin structure for the surface S̃ does not depend
on the choice of the basis by the result of [11], we have:

g∑
i=1

(ind(αi) + 1)(ind(βi) + 1)−
g∑
i=1

(ind(α′i) + 1)(ind(β′i) + 1)

= −
g+g′+r−1∑
i=g+1

(ind(αi) + 1)(ind(βi)− ind(β′i)) mod 2

= −
g+g′+r−1∑
i=g+g′+1

(ind(αi) + 1)(ind(βi)− ind(β′i)) mod 2

Since the degree is even, it is easy to see that ind(αi) is odd for
i ∈ {g + g′ + 1, . . . , g + g′ + r − 1}, so the term on the right in the
previous equation is zero. This proves the proposition. �

5.3. Spin structure for surfaces with two simple poles. In the
case when the surface S admits only two poles and conical singularities
of even degree, we can still define a spin structure in the following
way: the two poles have opposite residues, hence by cutting the poles
and gluing together the corresponding cylinders, we get a standard
translation surface S̃ (it is in fact a closing of S) in a stratum where the
spin structure is well defined. The different choices for this operation
give the same connected components. Hence we define the parity of spin
structure of S to be the parity of spin structure of the corresponding
standard translation surface S̃.

Remark 5.7. Note that the formula for spin structure will not be in-
variant if we only consider basis for the homology of S.

6. Higher genus case: minimal stratum

A minimal stratum correspond to the case where there is only one
conical singularities (and possibly several poles). As in [11] and in [12],
we first describe the connected components of minimal strata. The
idea is similar: show that each such strata is obtained by bubbling g
cylinders and compute the connected components in this case.
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The first step is to find a surface obtained by bubbling a handle.
In [11] and in [12] is used a rather combinatorial argument. A similar
approach is possible in our case by using the infinite zippered rectangle
construction, but this is quite technical. Another possibility is to reduce
the problem to the genus one case for which it was proven in Section 4
that any minimal stratum contains a surface obtained by bubbling a
handle.

Proposition 6.1. Let C be a connected component of the stratum
H(n,−p1, . . . ,−ps). We assume that the genus g is nonzero. Then,
there exists a flat surface in C which is obtained by bubbling a handle
from a genus g − 1 flat surface.

Proof. We start from a surface in C obtained by the infinite zippered
rectangle construction. It is defined by a combinatorial data and a
continous parameter ζ ∈ Cn, with n = 2g + s− 1.

Each ζi defines a closed geodesic path γi joining the conical singular-
ity to itself. The intersection number between any two such path is 0
or ±1. We claim that there is a pair γi, γj whose intersection number is
one. Indeed, the genus is higher than zero and {γ1, . . . , γn} generates
the whole homology space H1(S,Z) since the complement is a union of
punctured disks.

Now we shrink ζi, ζj until they are very small compared to all the
other parameters. Then, we observe that a neighborhood of γi, γj is
isometric to the complement of a neighborhood of a pole for a surface in
H(n,−n). Then, deforming suitably the surface, using Proposition 4.4,
one obtains the desired result. �

We recall the notation introduced in Section 3.2. Let C is a con-
nected component of a minimal stratum H(n,−p1, . . . ,−ps). Let s ∈
{1, . . . , n+1}. The set C⊕s is the connected component of the stratum
H(n + 2,−p1, . . . ,−ps) obtained by bubbling a handle after breaking
the singularity of order n into two singularities of order (s − 1) and
(n+ 1− s).

The proposition that follows uses roughtly the same arguments as in
[11] and [12]. The only difference is the case when n is odd, which does
not occur for Abelian or quadratic differentials.

Proposition 6.2. Let H(n,−p1, . . . ,−ps) be a stratum of meromor-
phic differentials genus g ≥ 2 surfaces, and denote by C0 the unique
component of H(n− 2g,−p1, . . . ,−ps). The following holds:

• If n is odd, the stratum H(n,−p1, . . . ,−ps) is connected.
• If n is even, the stratum H(n,−p1, . . . ,−ps) has at most three
connected components which are in the following list:
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– C0 ⊕ (n−2g
2

+ 1)⊕ (n−2g
2

+ 2)⊕ · · · ⊕ (n−2g
2

+ g)
– C0 ⊕ 1⊕ · · · ⊕ 1⊕ 1
– C0 ⊕ 1⊕ · · · ⊕ 1⊕ 2

Proof. Let C be a connected component of H(n,−p1, . . . ,−ps). By
proposition 6.1, there exists integers s1, . . . , sg, such that:

C = C0 ⊕ s1 ⊕ · · · ⊕ sg
and for each i ∈ {1, . . . , g}, 1 ≤ si ≤ n − 2g − 2 + 2i + 1, since at
Step i, the handle corresponding to si is bubbled on a zero of degree
n− 2g + 2(i− 1).

We assume for simplicity that g = 2, and (s1, s2) 6= (n−2g
2

+ 1, n−2g
2

+
2). Using operations (1) and (3) of Lemma 3.1, one can assume that
1 ≤ s1 ≤ s2 ≤ s1 + 1. Then, if 1 6= s1, using operations (1), (2), (3)
and (1) (in this order), we have C0⊕ s1⊕ s2 = C0⊕ (s1− 1)⊕ (s2− 1).
Repeating the same sequence of operations, we see that C is one of the
following:

• C0 ⊕ (n−2g
2

+ 1)⊕ (n−2g
2

+ 2)
• C0 ⊕ 1⊕ 1
• C0 ⊕ 1⊕ 2

If n is odd, then the first case doesn’t appear. By operation (4) of
Lemma 3.1, we have

C0 ⊕ s1 ⊕ s2 = C0 ⊕ s1 ⊕ ((n− 2g + 2) + 2− s2)
so we can assume that s1 and s2 are of the same parity. Then, using
the previous argument, we have:

C = C0 ⊕ 1⊕ 1

The case g > 2 easily follows. �

The above proposition uses purely local constructions in a neighbor-
hood of a singularity. The next proposition explains why the existence
of suitable poles (at infinity) will “kill” some components.

Proposition 6.3. Let H(n,−p1, . . . ,−ps) be a stratum of meromorphic
differentials genus g ≥ 2 surfaces with n even and s ≥ 2, and denote
by C0 the unique component of H(n− 2g,−p1, . . . ,−ps). The following
holds:

(1) If there is a odd degree pole and
∑

i pi > 2, then:

C0 ⊕ 1⊕ · · · ⊕ 1 = C0 ⊕ 1⊕ · · · ⊕ 1⊕ 2

(2) If s > 2 or p1 6= p2, then:

C0 ⊕
(
n− 2g

2
+ 1

)
⊕ · · · ⊕

(
n− 2g

2
+ g

)
= C0 ⊕ 1⊕ · · · ⊕ 1⊕ s
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for some s ∈ {1, 2}.
Proof. Case (1).
Note that s ≥ 2 implies that we necessarily have

∑
i pi ≥ 2. From

Proposition 4.4, C0 ⊕ 2 = C0 ⊕ k if and only if gcd(k, p1, . . . , ps) =
gcd(2, p1, . . . , ps). So, if there is an odd degree pole, gcd(2, p1, . . . , ps) =
1 = gcd(1, p1, . . . , ps), hence

C0 ⊕ 1 · · · ⊕ 1 = C0 ⊕ 2⊕ 1 · · · ⊕ 1 = C0 ⊕ 1 · · · ⊕ 1⊕ 2,

which concludes the proof.
Case (2).
As before, we use the classification in genus one. Since n−2g−∑i pi =

−2, we have n−2g
2

+ 1 =
∑
i pi
2

. If s > 2 or p1 6= p2, then there exists i ∈
{1, . . . , s} such that n−2g

2
+1 > pi, so gcd(n−2g

2
+1, p1, . . . , ps) <

n−2g
2

+1,
hence there exists k < n−2g

2
+ 1 such that C0 ⊕ (n−2g

2
+ 1) = C0 ⊕ k. So

we have

C0 ⊕ (
n− 2g

2
+ 1)⊕ (

n− 2g

2
+ 2)⊕ · · · = C0 ⊕ k ⊕ (

n− 2g

2
+ 2)⊕ . . .

Then, as in the proof of Proposition 6.2,

C0 ⊕ k ⊕ (
n− 2g

2
+ 2) · · · ⊕ (

n− 2g

2
+ g) = C0 ⊕ 1⊕ · · · ⊕ 1⊕ s

for some s ∈ {1, 2}. �

Putting together the last two propositions and the invariants, we
have the following theorem.

Theorem 6.4. Let H = H(n,−p1, . . . ,−ps) be a minimal stratum of
meromorphic differentials on genus g ≥ 2 surfaces. We have:

(1) If n is even and s = 1, then H has two connected components
if g = 2 and ps = 2, three otherwise.

(2) If H = H(n,−p,−p), with p even, then H has three connected
components.

(3) If H = H(n,−1,−1), then H has three connected components
for g > 2, two otherwise.

(4) If H = H(n,−p,−p), with p 6= 1 odd, then H has two connected
components.

(5) If all poles are even and we are not in the previous case, then
H has two connected components.

(6) In the remaining cases, H is connected.

Proof. From Proposition 6.2, when n is odd, which is part of Case (6),
H is connected. So we can assume that n is even. Let C be a connected
component of H. Let C0 be the (connected) genus 0 stratum H(n −



28 CORENTIN BOISSY

2g,−p1, . . . ,−ps). From Proposition 6.2, we have one of the three
following possibilities.

a) C = C0 ⊕ (n−2g
2

+ 1)⊕ (n−2g
2

+ 2)⊕ · · · ⊕ n
2

b) C = C0 ⊕ 1⊕ · · · ⊕ 1⊕ 1
c) C = C0 ⊕ 1⊕ · · · ⊕ 1⊕ 2

When H = H(n,−p) or H = H(n,−p,−p), it is easy to see that case
a) corresponds to a hyperelliptic connected component, while case b)
do not, and neither c) (except for the case n−2g = 0 and g = 2, where
a) and c) are the same).

When all degree of zeroes (and poles) are even, then Lemma 11 in [11]
shows that cases b) and c) corresponds to different spin structure, so
are a different connected component. This is also true for H(n,−1,−1)
by Section 5.3.

The arguments of the two previous paragraphs proves the result for
Cases (1), (2) and (3). Remark that Riemann-Roch theorem implies
that n− 2g =

∑
i pi − 2.

For Case (4), Proposition 6.3 shows that there are at most two con-
nected components. Since n− 2g = 2p− 2 > 0, Case a) corresponds to
a hyperelliptic component while b)and c) do not correspond to a hyper-
elliptic component. So there are at least two components. Since there
are odd degree poles, b) and c) correspond to the same component by
Proposition 6.3. So there are two components.

For Case (5), Proposition 6.3 shows that a) is in the same connected
component as b) or c), while Lemma 11 in [11] shows that b) and c)
have different spin structures.

For Case (6), with n is even: this corresponds to having at least one
odd pole, and either at least three poles or two poles of different degree.
Then a direct application of Proposition 6.3 shows that a), b) and c)
are the same connected component.

This concludes the proof.
�

7. Higher genus case: nonminimal strata

The remaining part of the paper uses similar arguments as in Sec-
tions 5.2–5.4 in [11]. We quickly recall the three main steps.

• Each stratum is adjacent to a minimal stratum, and we can
bound the number of connected components of a stratum by the
number of connected components of the corresponding minimal
one.
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• We construct paths in suitable strata with two conical singulari-
ties that join the different connected components of the minimal
stratum.
• We deduce from the previous arguments upper bounds on the
number of connected component of a stratum, lower bounds are
given by the topological invariants.

The following proposition is analogous to Corollary 4 in [11]. It is
proven there by constructing surfaces with a one cylinder decomposi-
tion. Such surfaces never exists in our case, we use the infinite zippered
rectangle construction instead.

Proposition 7.1. Any connected component of a stratum of mero-
morphic differentials is adjacent to the minimal stratum obtained by
collapsing together all the zeroes.

Proof. Let S be in a stratum H of meromorphic differentials. We prove
the result by induction on the number of conical singularities of S.
We can assume that S is obained by the previous construction. By
connexity of S, there is a D± component or a C± component that
contains two different conical singularities on its boundary, hence, there
is a parameter ζi whose corresponding segment on that component joins
two different conical singularities. The segment is on the boundary
of two components. Assume for instance, that it is a D+ and a C−
component. Now we just need to check that the surface obtained by
shrinking ζi to zero is nondegenerate. Hence it will correspond to an
element in a stratum with one less conical singularity. The set D′+
obtained by shrinking ζi to zero from D+ is still a domain as defined
in Section 3.3.2. The set C ′− obtained by shrinking ζi to zero from C−

is also a domain as defined in Section 3.3.2 except if we have C− =
C−(ζi). But in this case, since the two vertical lines of C− are identified
together, the two endpoints of the segment defined by ζi are necessarily
the same singularity, contradicting the hypothesis.

So, in any case, we obtain a surface S ′ with fewer conical singularities.
�

The following proposition is analogous to Corollary 2 in [11], and is
the first step of the proof described in the beginning of this section. The
proof of Kontsevich and Zorich uses a deformation theory argument.
We propose a proof that uses only flat geometry.

Proposition 7.2. The number of connected component of a stratum
is smaller than or equal to the number of connected component of the
corresponding minimal stratum.
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Proof. From the previous proposition, any connected component of a
stratum H = H(k1, . . . , kr,−p1, . . . ,−ps) is adjacent to a minimal stra-
tum Hmin = H(k1+, · · · + kr,−p1, . . . ,−ps) by collapsing zeroes. It is
enough to show that if (Sn), (S ′n) are two sequences in H that con-
verge to a surface S ∈ Hmin, then Sn and S ′n are in the same connected
component of H for n large enough.

By definition of the topology on the moduli space of meromorphic
differentials , for n large enough, the conical singularities of Sn (resp.
S ′n) are all in a small disk Dn (resp. D′n) which is embedded in the
surface Sn (resp. S ′n), and whose boundary is a covering of a metric
circle.

Note that Dn and D′n can be chosen arbitrarily small if n is large
enough, and we can assume that they have isometric boundaries. Re-
placing Dn by a disk with a single singularity, one obtain a translation
surface S̃n which is very near to S, hence in the same connected com-
ponent, and similarly for S ′n.

Now we want to deform Dn to obtain D′n. It is obtained in the
following way: Dn can be seen as a subset of a genus zero translation
surface S1 in the stratum H(k1, . . . , kr,−2 −∑r

i=1 ki): we just “glue”
a neighborhood of a pole to the boundary of the disk Dn. We proceed
similarly with the disk D′n and obtain a translation surface S2 in the
same stratum as S1. This stratum is connected since the genus is zero.
Hence we deduce a continuous transformation that deform Dn to D′n.

From the last two paragraph, we easily deduce a continuous path
from Sn to S ′n, which proves the proposition. �

The following proposition is the second step of the proof. It is the
analogous of Proposition 5 and Proposition 6 in [11]. Our proof is also
valid for the Abelian case, and gives an interesting alternate proof.

Proposition 7.3. (1) Let H = H(n,−p1, . . . ,−ps) be a genus g ≥
2 minimal stratum whose poles are all even or the pair (−1,−1).
For any n1, n2 odd such that n1 + n2 = n, there is a path
γ(t) ∈ H(n1, n2,−p1, . . . ,−ps) such that γ(0), γ(1) ∈ H and
have different parities of spin structures.

(2) Let H = H(n,−p1, . . . ,−ps) be a genus g ≥ 2 minimal stra-
tum that contains a hyperelliptic connected component. For
any n1 6= n2 such that n1 + n2 = n, there is a path γ(t) ∈
H(n1, n2,−p1, . . . ,−ps) such that γ(0) is in a hyperelliptic com-
ponent of H and γ(1) is in a nonhyperelliptic component of H.

Proof. Case (1)
Let C0 = H(n − 2g,−p1, . . . ,−ps). The connected components of H
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given by C0⊕1 · · ·⊕1⊕1 and C0⊕1 · · ·⊕1⊕2 have different parities of
spin structures. We can rewrite these components as C ⊕ 1 and C ⊕ 2,
where C = C0 ⊕ 1 · · · ⊕ 1.

Fix Sg−1 ∈ C. For a surface S1 ∈ H(n,−n), one can get a surface S
in H(n,−p1, . . . ,−ps) by the following surgery:

• Cut Sg−1 along a small metric circle that turns around the sin-
gularity of degree n − 2, and remove the disk bounded by this
circle
• Cut S1 along a large circle that turns around the pole of order n,
and rescale S1 such that this circle is isometric to the previous
one. Remove the neighborhood of the pole of order n bounded
by this circle.
• Glue the two remaning surfaces along these circle, to obtain a
surface S ∈ H(n,−p1, . . . ,−ps).

All choices in previous construction lead to the same connected compo-
nent of H(n,−p1, . . . ,−ps), once Sg−1, S1 are fixed. Similarly, we can
do the same starting from a surface in S1 ∈ H(n1, n2,−n) and get a
surface in H(n1, n2,−p1, . . . ,−ps).

Now we start from a surface S1,1 ∈ H(n,−n) obtained by bubbling a
handle with angle 2π, i.e. S1,1 ∈ H(n−2,−n)⊕1. The rotation number
of this surface is gcd(1, n) = 1. Breaking up the singularity into two
singularities of order n1, n2, the rotation number is still 1. Similarly,
start from S1,2 ∈ H(n−2,−n)⊕2. Its rotation number is gcd(2, n) = 2.
Breaking up the singularity into two singularities of order n1, n2, the
rotation number becomes gcd(2, n1, n2) = 1 since n1, n2 are odd. Hence
there is a path in H(n1, n2,−n) that joins S1,1 ∈ H(n − 2,−n) ⊕ 1
to S1,2 ∈ H(n − 2,−n) ⊕ 2. From this path, we deduce a path in
H(n1, n2,−p1, . . . ,−ps) that joins C ⊕ 1 to C ⊕ 2. So Part (1) of the
proposition is proven.

Case (2)
The proof is similar as the previous one: the hyperelliptic component
of H(n,−p1, . . . ,−ps) is of the kind C ⊕ n

2
, for some component C.

Any component of the kind C ⊕ k, with k 6= n
2
is nonhyperelliptic. As

before, we reduce use genus one strata. A surface in H(n− 2,−n)⊕ n
2

is of rotation number gcd(n
2
, n) = n

2
. Breaking up the singularity of

degree n into two singularities of degree n1, n2, one obtain surface in
H(n1, n2,−n) of rotation number gcd(n

2
, n1, n2). Since n1 + n2 = n

and n1 6= n2, this rotation number is not n
2
, but some integer k ∈

{1, . . . , n
2
−1}. Hence there is a path in H(n1, n2,−n) that joins H(n−
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2,−n) ⊕ n
2
to H(n − 2,−n) ⊕ k. From this, we deduce the required

path in H(n1, n2,−p1, . . . ,−ps). �

Now we have all the intermediary results to prove Theorem 1.2.

Proof of Theorem 1.2. Let H = H(n1, . . . , nr,−p1, . . . ,−ps) be a stra-
tum of genus g ≥ 2 surfaces. Denote by Hmin the minimal stratum
obtained by collapsing all zeroes. Recall that by Proposition 7.2, the
number of connected components of H is smaller than, or equal to the
number of connected components of Hmin.

If
∑

i pi is odd, then the minimal stratum is connected and therefore
the stratum is connected. So we can assume that

∑
i pi is even.

Assume that
∑
pi > 2 or g > 2. From Theorem 6.4, Hmin, hence H

has at most three components.
We fix some vocabulary: we say that the set of degree of zeroes

(resp. poles) is of hyperelliptic type if this set is {n, n} or {2n} (resp.
{−p,−p} or {−2p}), i.e. it is the set of degree of zeroes or poles of
a hyperelliptic component. Note that the set of degree of poles are
of hyperelliptic type if and only if the corresponding minimal stratum
contains a hyperelliptic connected component. We will also say that
the set of degree of poles is of even type if they are all even or if they
are {−1,−1}. This means that the underlying minimal stratum has
two nonhyperelliptic components distinghished by the parity of spin
structure.

• If the stratum isH(n, n,−2p) orH(n, n,−p,−p). There is a hy-
perelliptic connected component. The corresponding minimal
stratum H(2n, ∗) has one hyperelliptic component and at least
one nonhypereliptic component. It is easy to see that breaking
up the singularity of degree 2n into two singularities of degree
n, from a nonhyperelliptic translation surface gives a surface
in a nonhyperelliptic connected component. So, the stratum
H(n, n, ∗) has one hyperelliptic connected component and at
least one nonhyperelliptic connected component.
• If the set of degrees of poles and zeroes is of even type, we know
from Theorem 6.4 that the minimal stratum has two nonhyper-
elliptic components (and possibly one hyperelliptic). Breaking
up the singularity into even degree singularities preserves the
spin structure, which therefore gives at least two nonhyperel-
liptic components in the stratum.

From the above description, we obtain lower bounds on the number of
connected component. In particular, we see that if the degree of zeroes
and poles are both of hyperelliptic and even type, H as at least, so
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exactly, three connected components. Also, if the the set of degrees of
zeroes and poles are of hyperelliptic or even type, H as at least two
connected components.

Now we give upper bounds.

(1) Assume that the poles are of hyperelliptic and even type, i.e.
the minimal stratum has three connected components. Denote
respectively by Chyp, Codd and Ceven the connected components
of H that are adjacent respectively to the three connected com-
ponents of Hmin, Hhyp

min,Hodd
min and Heven

min . For any j ∈ {1, . . . , r},
the stratum H(nj,

∑
i 6=j ni,−p1, . . . ,−ps) is adjacent to Hmin.

• If the zeroes are not of hyperelliptic type, we can choose,
ni so that ni 6=

∑
i 6=j ni, and by Proposition 7.3 there is

a path in H(nj,
∑

i 6=j ni,−p1, . . . ,−ps) joining the hyperel-
liptic component of Hmin to a nonhyperelliptic connected
component. Breaking up the singularity of order

∑r
i 6=j ni

along this path into singularities of order (ni)i 6=j, we obtain
a path in H that joins a neighborhood of Hhyp

min to a neigh-
borhood of a nonhyperelliptic component of Hmin. Hence,
we necessarily have Chyp = Codd or Chyp = Ceven.
• If the zeroes are not even, we conclude similarly that Codd =
Ceven
• Note that if the zeroes are neither of hyperelliptic type nor
of even type, then Ceven = Codd = Chyp, so there is only one
component for H.

(2) Assume that the poles are of hyperelliptic type but not of even
type. The minimal stratum has two connected components,
so there are at most two connected components for H. If the
zeroes are of hyperelliptic type, we have already seen that there
are two components.

Assume the zeroes are not of hyperelliptic type. Denote re-
spectively by Chyp, Cnonhyp the connected components of H that
are adjacent respectively to the hyperelliptic and the nonhyper-
elliptic component of Hmin. By the same argument as in (1),
using Proposition 7.3 we have Chyp = Cnonhyp, soH is connected.

(3) Assume that the poles are of even type but not of hyperelliptic
type. The minimal stratum has two connected components dis-
tinguished by the parity of spin structure. So there are at most
two components for H. If the zeroes are of even type, there are
exactly two connected component for H, that are distinguished
by the parity of spin structure.
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If the zeroes are not of even type, denote respectively by
Codd, Ceven the connected components of H that are adjacent
respectively to the two components of Hmin. By the same ar-
gument as in (1), using Proposition 7.3 we have Codd = Ceven.

(4) Assume that the poles are neither of hyperelliptic nor of even
type, then the minimal stratum is connected, soH is connected.

It remains to prove the theorem when g = 2 and
∑

i pi = 2. The
minimal stratum has two connected components. In this case, it is
equivalent to say that the zeroes are of hyperelliptic type or to say
that they are of even type. If H = H(2, 2, ∗) or H(4, ∗), the stratum
has at least two components, so exactly two. Otherwise, the stratum
is adjacent to H(3, 1, ∗), which connects Hodd

min to Heven
min , hence H is

connected. �

Appendix A. Negative results for meromorphic
differentials

In this section, we quickly give some examples to show that many
well known results for the dynamics on translation surfaces are false in
the case of translation surfaces with poles.

A.1. Dynamics of the geodesic flow. On a standard translation
surface, the geodesic flow is uniquely ergodic for almost any direc-
tions. From the result of Proposition 3.6, for almost any direction on
a translation surface with poles, all infinite orbits for the geodesic flow
converge to a pole.

A.2. Cylinders and closed geodesics. On a standard translation
surface, always exists infinitely many closed geodesics (hence cylinders).
For the case of translation surface with poles, one can consider the
following example. Take the plane C and remove the inside of a square,
and glue together by translation the corresponding opposite sides. One
gets a surface in H(−2, 2). It is easy to see that there are exactly two
saddle connections joining the conical singularity to itself and no closed
geodesic. A similar example in H(−2, 1, 1) obtained by removing a
regular hexagon gives an example with not a single saddle connection
joining a conical singularity to itself.

A.3. SL2(R) action. The SL2(R) action on the strata of the moduli
space of Abelian differentials is ergodic. It is not the case for the
moduli space of meromorphic differentials if we consider the (infinite)
volume form defined by the flat local coordinates. Indeed, consider
the stratum H(−2, 2), which is connected. Consider the set of surfaces
obtained with the infinite zippered rectangle construction, by gluing
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together the set D+(z1, z2) and the set D−(z2, z1). It is easy to see that
if Im(z2) < 0 < Im(z1), there are no cylinders on the surface while if
Im(z2) > 0 > Im(z1), there is a cylinder on the surface. These two
cases form two nointersecting open subsets of H(−2, 2). Considering
SL2(R) orbits, we obtain two disjoints SL2(R)-invariants open subsets
of a connected stratum.
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