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Optimal observability of the multi-dimensional wave and
Schrodinger equations in quantum ergodic domains

Yannick Privat* Emmanuel Trélat? Enrique Zuazuat®

Abstract

We consider the wave and Schrodinger equations on a bounded open connected subset 2 of
a Riemannian manifold, with Dirichlet, Neumann or Robin boundary conditions whenever its
boundary is nonempty. We observe the restriction of the solutions to a measurable subset w
of  during a time interval [0, 7] with T" > 0. It is well known that, if the pair (w,T') satisfies
the Geometric Control Condition (w being an open set), then an observability inequality holds
guaranteeing that the total energy of solutions can be estimated in terms of the energy localized
inw x (0,7).

We address the problem of the optimal location of the observation subset w among all
possible subsets of a given measure or volume fraction. A priori this problem can be modeled
in terms of maximizing the observability constant, but from the practical point of view it
appears more relevant to model it in terms of maximizing an average either over random
initial data or over large time. This leads us to define a new notion of observability constant,
either randomized, or asymptotic in time. In both cases we come up with a spectral functional
that can be viewed as a measure of eigenfunction concentration. Roughly speaking, the subset
w has to be chosen so to maximize the minimal trace of the squares of all eigenfunctions.
Considering the convexified formulation of the problem, we prove a no-gap result between the
initial problem and its convexified version, under appropriate quantum ergodicity assumptions
on €2, and compute the optimal value. Our results reveal intimate relations between shape and
domain optimization, and the theory of quantum chaos (more precisely, quantum ergodicity
properties of the domain Q).

We prove that in 1D a classical optimal set exists only for exceptional values of the volume
fraction, and in general one expects relaxation to occur and therefore classical optimal sets not
to exist. We then provide spectral approximations and present some numerical simulations
that fully confirm the theoretical results in the paper and support our conjectures.

Finally, we provide several remedies to nonexistence of an optimal domain. We prove that
when the spectral criterion is modified to consider a weighted one in which the high frequency
components are penalized, the problem has then a unique classical solution determined by
a finite number of low frequency modes. In particular the maximizing sequence built from
spectral approximations is stationary.

Keywords: wave equation, Schrodinger equation, observability inequality, optimal design, spectral
decomposition, ergodic properties, quantum ergodicity.
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1 Introduction

1.1 Problem formulation and overview of the main results

In this article we model and solve the problem of optimal observability for wave and Schrodinger
equations posed on any open bounded connected subset of a Riemannian manifold, with various
possible boundary conditions.

In order to briefly highlight the main ideas and contributions of the paper, in this introduction
let us focus on a particular case of our study, starting from a practical problem. Assume that 2 is
a given bounded open subset of IR", representing for instance a cavity in which some signals are
propagating according to the wave equation

Ouy = Ay, (1)

with Dirichlet boundary conditions. Having in mind certainly some reconstruction inverse problem,
assume that one is allowed to place some sensors in the cavity, in order to make some measurements
of the signals propagating in €2 over a certain horizon of time. We assume that we have the choice
not only of the placement of the sensors but also of their shape. Let us address the question
of knowing what is the best possible shape and location of sensors, achieving the best possible
observation, in some sense to be made precise. This problem of optimal observability, inspired
by control theoretical considerations, is intimately related to those of optimal controllability and
stabilization (see Section 6 for a discussion of these issues).

At this step, the question is too much informal and a first challenge is to settle properly this
question in the mathematical world, so that the resulting problem will be both mathematically
solvable and relevant in view of practical issues.

A first obvious but important remark is that, for any problem consisting of optimizing the
observation, certainly the best policy consists of observing the solutions over the whole domain 2.
This is however clearly not reasonable and in practice the domain covered by sensors is limited,
due for instance to cost considerations. From the mathematical point of view, we model this basic
limitation by considering as the set of unknowns, the set of all possible measurable subsets w of Q2
that are of Lebesgue measure |w| = L|Q|, where L € (0,1) is some fixed real number. Any such
subset represents the sensors put in €2, and we assume that we are able to measure the restrictions
of the solutions of (1) to w.

Modeling. Let us now model the notion of best observation. At this step it is useful to recall
some well known facts on the observability of the wave equation. For all (y°,y') € L2(2)x H=1(Q),
there exists a unique solution y € C°(0,7; L2(2))NC* (0, T; H~()) of (1) such that y(0,-) = y°(-)
and y,(0,-) = y(-). Let T > 0. We say that (1) is observable on w in time T if there exists C' > 0
such that

T
Il ) By ey < / / ly(t, )2 dadt, 2)

for all (y°,y') € L2(2) x H=Y(Q). This inequality is called an observability inequality, and is of
great importance in view of showing the well-posedness of some inverse problems. It is well known
that within the class of C*° domains €, this observability property holds if the pair (w,T) satisfies
the Geometric Control Condition in Q (see [3]), according to which every ray of geometrical optics
that propagates in the cavity €2 and is reflected on its boundary OS2 intersects w within time 7.
The observability constant is defined by

T
fo fQ Xe () |y(t, )| dz dt
1, y)3 2 0y w10

) (xw) = inf{ | (4°y") € L2(Q) x HTH(Q)\ {(0,0)}} - (3



It is the largest possible constant for which (2) holds. It depends both on the time T (the horizon
time of observation) and on the subset w on which the measurements are done.

A priori, it might appear as natural to model the problem of best observability as the problem
o . (W)
of maximizing the functional x,, — C5 ’(x.) over the set

Ur, = {xw | w is a measurable subset of Q of Lebesgue measure |w| = L|]}. (4)

However, his choice of model leads to a mathematical problem that is difficult to handle from the
theoretical point of view, and more importantly, this model is not relevant in view of practical
issues. Let us explain these two difficulties.

First of all, making a spectral expansion of the solutions shows the emergence of crossed
terms that are difficult to treat. Indeed, let (¢;);en+ be a Hilbertian basis of L?(f2) consisting of
eigenfunctions of the Dirichlet-Laplacian operator on §2, associated with the negative eigenvalues
(=A%)jen+. Then any solution y (1) can be expanded as

+oo
y(t,z) = Z (aje™ + bje™ 1) ¢ (x), (5)

j=1
where the coefficients a; and b; account for initial data. It follows that

2
+oo
W 1 . 7 —1
C(T () = 2 (a), <§n>fez2 / / (ase™" 4 b,e7) 52| dedt,
S5 (as 2 +bs1?)

and then maximizing this functional over U, appears to be very difficult from the theoretical point
of view, due to the crossed terms fw ¢;Prdr measuring the interaction over w between distinct
eigenfunctions.

The second difficulty with this model is its lack of relevance in practice. Indeed, the observability
constant defined by (3) is deterministic and provides an account for the worst possible case. Hence,
in this sense, it is a pessimistic constant. In practice where an engineer realizes a large number
of measures, it may be expected that this worst case does not occur so often, and one would
like that the observation be optimal for most of experiments. This leads us to consider rather
an averaged version of the observability inequality over random initial data. More details will be
given in Section 2.3 on the randomization procedure, but in few words, we define what we call the
randomized observability constant by

w) 1 T X A 4 ’
C Xw) = = inf E / / BY a;eNt + BY bie At ¢i(x)| dxdt
Trand( ‘*’) 2 (a;),(b;)€2(C) 0 " j;( 1,5% 2,54 ) J( ) 5
3155 (as P +bs1%)=1
(6)
where (87 ;)jen+ and (85 ;)jen are two sequences of (for example) i.i.d. Bernoulli random laws on
a probability space (X, .A,P), and E is the expectation over the X with respect to the probability
measure P. It corresponds to an averaged version of the observability inequality over random initial
data. Actually, we have the following result.

Theorem 1 (Characterization of the randomized observability constant). For every measurable
subset w of €2, there holds

) (%) =% inf / 6;(x)? de. (7)

2 jeIN*



It is interesting to note that there always holds C’(TW)(XW) < O:E“‘/Qnd(Xw)a and that the strict

inequality holds for instance in each of the following cases:

e in 1D, with Q = (0,7) and Dirichlet boundary conditions, whenever T is not an integer
multiple of ;

e in multi-D, with ) stadium-shaped, whenever w contains an open neighborhood of the wings
(W)

(in that case there even holds C}" ' (xw) = 0, see Remark 4 for details).
Taking into account the fact that, in practice, it is expected that a large number of measure-
ments is to be done, we finally model the problem of best observability in the following more
relevant way: maximize the functional

T = it [ 05w ds ®)
over the set Uy,.

The functional J appears as a criterion giving an account for eigenfunctions concentration
properties. It can be noted that it can be as well recovered by considering, instead of an averaged
version of the observability inequality over random initial data, a time-asymptotic version of it.
More precisely, we claim that, if the eigenvalues of the Dirichlet-Laplacian are simple (which is a
generic property), then J(x.,) is the largest possible constant such that

1 /T
0 ,1y2 : 2
CI 9 ey < plim 7 [ [ el dza,
for all (y°,y') € L2(Q) x H~1(Q) (see Section 2.5).
This model discussion and the introduction of these new notions of averaged observability
inequalities (Section 2) are the first contribution of our article.

Solving. In view of solving the uniform optimal design problem

sup J(Xw), (9)
Xw€UL
we first consider a convexified version of the problem, by considering the convex closure of the
set Uy, for the L™ weak star topology, that is Uy = {a € L>(Q,[0,1]) | [, a(zx)dz = L|Q[}. The
convexified problem then consists of maximizing the functional

J(a) = inf [ a(z)¢;(x)*dx
JEN* Jq
over Uy. Clearly there exists a maximizer, but since the functional J is not lower semi-continuous
it is not clear whether or not there may be a gap between the problem (9) and its convexified
version. The analysis of this question happens to be very interesting and reveals deep connections
with the theory of quantum chaos, more precisely with quantum ergodicity properties of 2. We
prove for instance the following result (see Section 3.2 for other related statements).

Theorem 2 (No-gap result and optimal value of J). Assume that there exists a subsequence of the
sequence of probability measures p; = c/)?(x) dx converging vaguely to the uniform measure ﬁ dx
(Weak Quantum Ergodicity assumption), and that the sequence of eigenfunctions ¢; is uniformly
bounded in L>=(Q). Then
sup J(xw) = max J(a) = L,
Xw€UL a€Uy,

for every L € (0,1). In other words, there is no gap between the problem (9) and its convezified
Version.



Several remarks are in order.

e The quantum ergodicity assumptions of the above result hold true in any hypercube with
Dirichlet boundary conditions (and as well with Neumann, mixed or Robin boundary condi-
tions, or periodic conditions).

They are sufficient but not necessary to derive such a no-gap statement: indeed we can prove
that it still holds true if Q is a two-dimensional disk, although the eigenfunctions do not
equidistribute as the eigenfrequencies increase, as illustrated by the well known whispering
galleries effect (see Proposition 1 in Section 3.2).

e We are not aware of any example in which there is a gap between the problem (9) and its
convexified version.

At this step, it follows from Theorems 1 and 2 that, under quantum ergodicity assumptions,
the optimal possible value of C’grvin a(xw) (over the set Uy,) is equal to T'L/2.

e It is interesting to note that, since the spectral criterion J defined by (8) depends on the
specific choice of the orthonormal basis (¢;);en~ of eigenfunctions of the Dirichlet-Laplacian,
one can consider an intrinsic version of the problem, consisting of maximizing the spectral
functional

Jint(Xw) = inf / ¢(x)? da

PeE

over Uy, where £ denotes the set of all normalized eigenfunctions of the Dirichlet-Laplacian.
For this problem we have a result similar to the one above (Theorems 8 and 9 in Section
3.7), but we are moreover able to provide an explicit example where a gap occurs between
the problem and its convexified formulation, by considering for instance the unit half-sphere
with Dirichlet boundary conditions, and certain quantum limits of a Dirac type.

These results show intimate connections between domain optimization and quantum ergod-
icity properties of €. Such a relation was suggested in the early work [13] concerning the
exponential decay properties of dissipative wave equations.

e Under the stronger assumption that the whole sequence of probability measures p; = qb? (z)dx
converges vaguely to the uniform measure ﬁ dz (Quantum Unique Ergodicity assumption),
and assuming that the sequence of eigenfunctions ¢; is uniformly bounded in some LP(£2)
with p > 2, we can prove that the supremum of J over the set of Jordan measurable subsets
of measure L|Q}| is equal to L. Moreover, the proof of this fact (done in Section 3.5), based
on a kind of homogenization procedure, is constructive and builds a maximizing sequence of
subsets for the problem of maximizing J, showing that it is possible to increase the values of
J by considering subsets having an increasing number of connected components.

Nonexistence of an optimal set and remedies. The maximum of J over I/}, is clearly reached
(in general, even in an infinite number of ways). The question of the reachability of the supremum
of J over Uy, that is, the existence of an optimal classical set, is a difficult question in general. In
particular cases it can however be addressed using harmonic analysis. For instance in dimension
one, we can prove that the supremum is reached if and only if L = 1/2 (and there is an infinite
number of optimal sets). In higher dimension, the question is completely open, and we conjecture
that, for generic domains 2 and generic values of L, the supremum is not reached and hence there
does not exist any optimal set. It can however be noted that, in the two-dimensional Euclidean
square, if we restrict the search of optimal sets to Cartesian products of 1D subsets, then the
supremum is reached if and only if L € {1/4,1/2,3/4} (see Section 4.1 for details).



In view of that, it is then natural to study a finite-dimensional spectral approximation of the
problem, namely the problem of maximizing the functional

I e =1£;1<DN/¢J

over Uy, for N € IN*. The existence and uniqueness of an optimal set w” is then not difficult
to prove, as well as a I'-convergence property of Jy towards J for the weak star topology of
L. Moreover, the sets w have a finite number of connected components, expected to increase
in function of N. Several numerical simulations (provided in Section 4.2) will show the shapes
of these sets; their increasing complexity which can be observed as N increases is in accordance
with the conjecture of the nonexistence of an optimal set maximizing J. It can be noted that,
in the one-dimensional case, for L sufficiently small, loosely speaking the optimal domain w? for
N modes is the worst possible one when considering the truncated problem with N + 1 modes
(spillover phenomenon; see [24, 47]).

This intrinsic instability is in some sense due to the fact that in the definition of the spectral cri-
terion (8) all modes have the same weight, and the same criticism can be made on the observability
inequality (2). Due to the increasing complexity of the geometry of highfrequency eigenfunctions,
it could indeed be expected that the optimal shape and placement problem would be complicated.
This leads to the intuition that lower frequencies should be more weighted than the higher ones,
and then it seems relevant to introduce a weighted version of the observability inequality (2), by
considering the (equivalent) inequality

T
C 0) (1%, g 21 + ol 31 </0 /\y(tw)Idedt (10)

where o > 0 is some weight. There holds C;YZ)(XM) < CQ(WW) (Xw), and considering as before
an averaged version of this weighted observability inequality over random initial data leads to

20W) (Xw) = T'J5(Xw), where the weighted spectral criterion J,, is defined by

T,o,rand

J(Xw—mfaj/qu T,

cIN*

with ; = A\3/(0 + A3) (increasing sequence of positive real numbers converging to 1; see Section
4.4 for details). The truncated criterion J, n is then defined accordingly, by keeping only the N
first modes. We then have the following result.

Theorem 3 (Weighted spectral criterion). Assume that the whole sequence of probability mea-
sures ft; = ¢3(x) dx converges vaguely to the uniform measure \ﬁll dz (Quantum Unique Ergodicity
assumption), and that the sequence of eigenfunctions ¢; is uniformly bounded in L>(Q). Then,
for every L € (01,1), there exists Ng € IN* such that

max J, = max J, o1 < L,
xu €U, (Xw) Yo €Uy o, N(Xw) 1
for every N > Ny. In particular, the problem of mazimizing J, over Ur has a unique solution
XuNo, and moreover the set w0 has a finite number of connected components.

It has to be noted that the assumptions of the above theorem (referred to as L>*°-QUE as
discussed further) are strong ones. Up to now, except in the one-dimensional case where these
assumptions obviously hold, in the multi-dimensional case no domain is known where they are
satisfied, and it is one of the deepest open problems in mathematical physics to exhibit such



a domain (as discussed in Section 3.3). We are however able to prove that the conclusion of
Theorem 3 holds true in a hypercube with Dirichlet boundary conditions, although QUE is not
satisfied in such a domain (see Proposition 5 in Section 4.4).

The theorem says that, for the problem of maximizing J, y over Uy, the sequence of optimal
sets w!V is stationary whenever L is large enough, and w™° is then the (unique) optimal set, solution
of the problem of maximizing J,. It can be noted that the lower threshold in L depends on the
chosen weights, and the numerical simulations that we will provide indicate that this threshold
is sharp in the sense that, if L < o7 then the sequence of maximizing sets loses its stationarity
feature.

As a conclusion, this weighted version of our spectral criterion can be viewed as a remedy for
the spillover phenomenon. Note that, of course, other more evident remedies can be discussed,
such as the search of an optimal domain among a set of subdomains sharing nice compactness
properties (such as having a uniform perimeter or BV norm; see Section 4.3), however our aim
is here to investigate domains as general as possible (only measurable) and rather to discuss the
mathematical, physical and practical relevance of the criterion encoding the notion of optimal
observability.

Let us finally note that all our results hold for wave and Schrédinger equations on any open
bounded connected subset of a Riemannian manifold (then replacing A with the Laplace-Beltrami
operator), with various possible boundary conditions (Dirichlet, Neumann, mixed, Robin) or no
boundary conditions in case the manifold is compact without boundary. The abstract framework
and generalizations are described in Section 5.

1.2 Brief state of the art

The literature on optimal observation or sensor location problems is abundant in engineering appli-
cations (see, e.g., [34, 44, 54, 57, 60] and references therein), but very few mathematical theoretical
contributions do exist. In engineering applications, the aim is to optimize the number, the place
and the type of sensors in order to improve the estimation of the state of the system. Fields of
applications are very numerous and concern for example active structural acoustics, piezoelectric
actuators, vibration control in mechanical structures, damage detection and chemical reactions,
just to name a few of them. In most of these applications however the method consists in ap-
proximating appropriately the problem by selecting a finite number of possible optimal candidates
and of recasting the problem as a finite dimensional combinatorial optimization problem. Among
these approaches, the closest one to ours consists of considering truncations of Fourier expansion
representations. Adopting such a Fourier point of view, the authors of [23, 24] studied optimal
stabilization issues of the one-dimensional wave equation and, up to our knowledge, these are the
first articles in which one can find rigorous mathematical arguments and proofs to characterize the
optimal set whenever it exists, for the problem of determining the best possible shape and position
of the damping subdomain of a given measure. In [5] the authors investigate the problem mod-
eled in [54] of finding the best possible distributions of two materials (with different elastic Young
modulus and different density) in a rod in order to minimize the vibration energy in the structure.
For this optimal design problem in wave propagation, the authors of [5] prove existence results and
provide convexification and optimality conditions. The authors of [1] also propose a convexification
formulation of eigenfrequency optimization problems applied to optimal design. In [17] the authors
discuss several possible criteria for optimizing the damping of abstract wave equations in Hilbert
spaces, and derive optimality conditions for a certain criterion related to a Lyapunov equation. In
[47] we investigated the problem presented previously in the one-dimensional case. We also quote
the article [48] where we study the related problem of finding the optimal location of the support
of the control for the one-dimensional wave equation.



In this article we provide a complete model and mathematical analysis of the optimal observ-
ability problem overviewed in Section 1.1. The article is structured as follows.

Section 2 is devoted to discuss and define a relevant mathematical criterion, modeling the
optimal observability problem. We first introduce the context and recall the classical observability
inequality, and then using spectral considerations we introduce randomized or time asymptotic
observability inequalities, and we finally come up with a spectral criterion which is at the heart of
our study.

The resulting optimal design problem is solved in Section 3, where we derive, under appropriate
quantum ergodicity assumptions, a no-gap result between our problem and a convexified version.
We put in evidence some deep relations between shape optimization and concentration properties
of eigenfunctions.

The existence of an optimal set is investigated in Section 4. We study a spectral approximation
of our problem, providing a maximizing sequence of optimal sets which does not converge in general.
We then provide some remedies, in particular by defining a weighted spectral criterion and showing
the existence and uniqueness of an optimal set.

Section 5 is devoted to generalize all results to the wave and Schrédinger equations, on any open
bounded connected subset of a Riemannian manifold, with various possible boundary conditions.

Further comments are provided in Section 6, concerning the problem of optimal shape and
location of internal controllers, as well as several open problems and issues.

2 Modeling the optimal observability problem

This section is devoted to discuss and model mathematically the problem of maximizing the ob-
servability of wave equations. A first natural model is to settle the problem of maximizing the
observability constant, but it appears that this problem is both difficult to treat from a theoretical
point of view, and actually not relevant with respect to practice. Using spectral considerations,
we will then define a spectral criterion based on averaged versions of the observability inequalities,
which is better suited to model what is expected in practice.

2.1 The framework

Let n > 1, T be a positive real number and Q be an open bounded connected subset of R™. We
consider the wave equation
Ony = Ay, (11)

in (0,T) x Q, with Dirichlet boundary conditions. Let w be an arbitrary measurable subset of
of positive measure. Throughout the paper, the notation y,, stands for the characteristic function
of w. The equation (11) is said to be observable on w in time T if there exists C}W)(xw) > 0 such
that

T
w
OO e < | [ lnta)P dre (12

for all (y°,9%) € L3(Q,C) x H-*(,C). This is the so-called observability inequality, relevant
in inverse problems or in control theory because of its dual equivalence with the property of
controllability (see [11]). It is well known that within the class of C** domains €2, this observability
property holds, roughly, if the pair (w,T) satisfies the Geometric Control Condition (GCC) in Q
(see [3, 9]), according to which every geodesic ray in Q and reflected on its boundary according
to the laws of geometrical optics intersects the observation set w within time 7. In particular, if
at least one ray does not reach w within time 7" then the observability inequality fails because of



the existence of gaussian beam solutions concentrated along the ray and, therefore, away from the
observation set.

In the sequel, the observability constant C(TW) (xw) denotes the largest possible nonnegative
constant for which the inequality (12) holds, that is,

I L ly(t, @) de dt |

¥, yt) H%z(g,c) xH=1(9,C)

1" (xw) = inf { I (5°.y") € L3(Q,C) x H™1(2,C)\ {<o,o>}} - (13)

We next discuss the question of modeling mathematically the notion of maximizing the ob-
servability of wave equations. It is a priori natural to consider the problem of maximizing the
observability constant C(TW)(XW) over all possible subsets w of Q of Lebesgue measure |w| = L[]
for a given time T" > 0. In the next two subsections, using spectral expansions, we discuss the
difficulty and the relevance of this problem, leading us to consider a more adapted spectral criterion.

2.2 Spectral expansion of the solutions

From now on, we fix an orthonormal Hilbertian basis (¢;);en+ of L?(£2, C) consisting of eigenfunc-
tions of the Dirichlet-Laplacian on €, associated with the positive eigenvalues ()\?)je]N*.
Let (y°,y') € L?(Q,C)x H~1(Q, C) be some arbitrary initial data. The solutiony € C°(0,T; L*(2, C))N
CL(0,T; H-1(Q,C)) of (11) such that y(0,-) = y°(-) and 9;y(0,-) = y*(-) can be expanded as
+oo

y(t,2) =Y (aze™t + e 1) 6;(x), (14)

j=1

where the sequences (a;);en+ and (b;)jen+ belong to ¢2(C) and are determined in terms of the

initial data (y°,y') by
o= ([ @ s — 5 [ o).

. (15)
=5 ([ @@ 5 [ o).
Q J JQ
for every j € IN*. Moreover,
+o0
”(yoayl)”zL?(Q,(C)xH*l(Q,C) = QZU%‘\Z +1b;1%). (16)
j=1

It follows from (14) that
T 400
[ [weapaza = 3 an [ 6@ i (17)
0 w G k=1 w
where

T
i = / (aje“‘jlt — bjefi/\jt)(dkefi“t — bre ) dt. (18)
0

The coefficients ajx, (j,k) € (IN*)2, depend only on the initial data (y°,y'), and their precise
expression is given by

2a;a T\ 2a;b T\
ajr = a0k o ((Aj — ) > gNi—aE _ _240% (()\j + )\k)2> JRICYESNIE S

)\j — Ak 2 )\j + A (19)
2bjay . T\ iyt 200k T\ —i-20%
N sin ((/\J + k) 2) e + V" sin | (A; — Ag) 5 )¢
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whenever A; # Ag, and

SiH(AjT)

J

Qjf = T(ajdk + bjgk) — (ajgkeiAjT + bjdkeii)\jT) (20)

whenever \; = Aj.
Remark 1. In dimension one, set Q@ = (0,7). Then ¢;(z) = \/gsin(jx) and \; = j for every

j € IN*. In this one-dimensional case, it can be noticed that when the time T is a multiple of 27
all nondiagonal terms vanish. Indeed, if T' = 2p7 with p € IN*, then «;; = 0 whenever i # j, and

ajj = pr(la;|* + [b;]), (21)

for all (4,7) € (N*)2, and therefore

2pm +o0
/0 / ly(t, z)|? de dt = Zajj/ sin?(jz) d. (22)

Hence in that case there are no crossed terms. The optimal observability problem for this one-
dimensional case was studied in detail in [47].

Using the above spectral expansions, the observability constant is given by

2
1 Tl . ,
O (xw) = = inf // aje?it —pie” Nt ¢i(x)| dxdt, 23
row=5 oo ) Z( je M) o) (23)
S5 (lay P +b;1%)=1

and where the coefficients a; and b; in the expressions above are the Fourier coeflicients of the
initial data, defined by (15).

Due to the crossed terms appearing in (17), the problem of maximizing C&}W) (xw) over all possi-
ble subsets w of Q of measure |w| = L|Q|, is very difficult to handle, at least from a theoretical point
of view. The difficulty related with the cross terms already appears in one-dimensional problems
(see [47]). Actually, this question is very much related with classical problems in non harmonic
Fourier analysis, such as the one of determining the best constants in Ingham’s inequalities (see
25, 29)).

This problem is then let open, but as we will see next, although it is very interesting, it is not
so relevant from the practical point of view.

2.3 Randomized observability inequality

As mentioned above, the problem of maximizing the deterministic (classical) observability constant

CT(«W) (Xw) defined by (13) over all possible measurable subsets w of Q of measure |w| = L|Q|, is
open and is probably very difficult. However, when considering the practical problem of locating
sensors in an optimal way, the optimality should rather be thought in terms of an average with
respect to a large number of experiments. From this point of view, the observability constant
C’j(ww) (Xw), which is by definition deterministic, is expected to be pessimistic in the sense that they
give an account for the worst possible case. In practice, when carrying out a large number of
experiments, it can however be expected that the worst possible case does not occur very often.
Having this remark in mind, we next define a new notion of observability inequality by considering
an average over random initial data.

11



The observability constant defined by (13) is defined as an infimum over all possible (determin-
istic) initial data. We are going to modify slightly this definition by randomizing the initial data
in some precise sense, and considering an averaged version of the observability inequality with a
new (randomized) observability constant.

Consider the expression of CSFW)(XW) given by (23) in terms of spectral expansions. Following
the works of N. Burq and N. Tzvetkov on nonlinear partial differential equations with random
initial data (see [7, 10, 11]) using early ideas of Paley and Zygmund (see [45]), we randomize the
coefficients a;, b;, ¢;j, accounting for the initial conditions, by multiplying each of them by some
well chosen random law. This random selection of all possible initial data for the wave equation
(74) consists of replacing C’;W)(Xw) by the randomized version

2
W 1 . TR, L
C’%,r;nd(xw) =3 (aj),(;jn)feﬁ(c) E /0 /w ; (8¢ ja;e™t — By bje= ™) ¢y(x)| dadt |,
S5 (lag 1 +1b]%)=1 =
(24)
where (57 ;)jen+ and (05 ;)jen+ are two sequences of independent Bernoulli random variables on
a probability space (X, A, P), satisfying

P(3Y, =+1) =P(B, =+1)= = and  E(B,05,) =0,

2
for every j and k in IN* and every v € X. Here, the notation E stands for the expectation over
the space X with respect to the probability measure P. In other words, instead of considering the
deterministic observability inequality (12) for the wave equation (74), we consider the randomized
observability inequality

T
w
CE L a0 3 cpm—ic) < B ( | [mtapa dt>, (25)
w

for all y°(-) € L*(2,C) and y'(-) € H~(Q, C), where y,, denotes the solution of the wave equation
with the random initial data yJ(-) and y,(-) determined by their Fourier coefficients a} = 3 ;a;
and bY = 35 ;b; (see (15) for the explicit relation between the Fourier coefficients and the initial

data), that is,
+oo

Y (t, o) = Z (ﬂi”jajei/\ft + ﬁg,jbje_i’\jt) o;(z). (26)

j=1
This new constant C}‘Qnd(xw) is called randomized observability constant.
Theorem 4. There holds
20) (x) =T int / 6:(z)? dx
for every measurable subset w of 2.

Proof. The proof is immediate by expanding the square in (24), using Fubini’s theorem and the
fact that the random laws are independent, of zero mean and of variance 1. O

Remark 2. It can be easily checked that Theorem 4 still holds true when considering, in the
above randomization procedure, more general real random variables that are independent, have
mean equal to 0, variance 1, and have a super exponential decay. We refer to [7, 10] for more details
on these randomization issues. Bernoulli and Gaussian random variables satisfy such appropriate

12



assumptions. As proved in [11], for all initial data (y°,y') € L?(Q,C) x H=1(Q,C), the Bernoulli
randomization keeps constant the L? x H~! norm, whereas the Gaussian randomization generates
a dense subset of L?(Q, C) x H~*(2, C) through the mapping R0 ,1): v € X — (y0,y,,) provided
that all Fourier coefficients of (y°,y!) are nonzero and that the measure 6 charges all open sets of
IR. The measure ji(,0,,1 defined as the image of P by R(,0 1) strongly depends both on the choice
of the random variables and on the choice of the initial data (y°,y'). Properties of these measures
are established in [11].

Remark 3. It is easy to see that C’Er‘j‘:zznd(Xw) > C;W) (Xw), for every measurable subset w of €2,
and every T > 0.

Remark 4. As mentioned previously, the problem of maximizing the deterministic (classical)

observability constant C;W) (Xw) defined by (13) over all possible measurable subsets w of Q of
measure |w| = L|Q], is open and is probably very difficult. For practical issues it is actually more
natural to consider the problem of maximizing the randomized observability constant defined by
(24). Indeed, when considering for instance the practical problem of locating sensors in an optimal
way, the optimality should be thought in terms of an average with respect to a large number
of experiments. From this point of view, the deterministic observability constant is expected to
be pessimistic with respect to their randomized version. Indeed, in general it is expected that
Cityana (%) > O (x0):

In dimension one, with = (0,7) and Dirichlet boundary conditions, it follows from [47,
Proposition 2] (where this one-dimensional case is studied in detail) that these strict inequalities
hold if and only if T is not an integer multiple of 7 (note that if 7" is a multiple of 27 then the
equalities follow immediately from Parseval’s Theorem). Note that, in the one-dimensional case,
the GCC is satisfied for every T' > 2m, and the fact that the deterministic and the randomized
observability constants do not coincide is due to crossed Fourier modes in the deterministic case.

In dimension greater than one, there is a class of examples where the strict inequality holds:
this is indeed the case when one is able to assert that CQ(WW) (Xw) = 0 whereas Cg‘r/a)nd(xw) > 0. Let
us provide several examples. ’

An example of such a situation for the wave equation is provided by considering Q = (0, 7)?2
with Dirichlet boundary conditions and L = 1/2. It is indeed proved further (see Lemma 4
and Remark 20) that the domain w = {(z,y) € Q | * < 7/2} maximizes J over Uz, and that
J(Xw) = 1/2. Clearly, such a domain does not satisfy the Geometric Control Condition, and one
has CCSWW) (Xw) = 0, whereas ) (xw) =1/4.

Another class of examples for the wave equation is provided by the well known Bunimovich
stadium with Dirichlet boundary conditions. Setting 2 = R U W where R is the rectangular part
and W the circular wings, it is proved in [12] that, for any open neighborhood w of the closure of W
(or even, any neighborhood w of the vertical intervals between R and W) in €, there exists ¢ > 0
such that [ ¢;(z)?dz > c for every j € IN*. It follows that J(x.) > 0, whereas C’(TW)(XQ,) =0
since w does not satisfy the Geometric Control Condition. It can be noted that the result still
holds if one replaces the wings W by any other manifold glued along R, so that €2 is a partially
rectangular domain.

2.4 Conclusion: a relevant criterion

In the previous section we have shown that it is more relevant in practice to model the problem of
maximizing the observability as the problem of maximizing the randomized observability constant.
Using Theorem 4, this leads us to consider the following spectral problem.

13



Let L € (0,1) be fixred. We consider the problem of mazximizing the spectral functional

J(Xw) = inf /¢j(x)2 dz, (27)
over all possible measurable subsets w of @ of measure |w| = L|Q].

Note that this spectral criterion is independent of 7" and is of diagonal nature, not involving
any crossed term. However it depends on the choice of the specific Hilbertian basis (¢;)jen+ of
eigenfunctions of A, at least, whenever the spectrum of A is not simple. We will come back on this
issue in Section 3.7 by considering an intrinsic spectral criterion, where the infimum runs over all
possible normalized eigenfunctions of A.

The study of the maximization of J will be done in Section 3, and will lead to an unexpectedly
rich field of investigations, related to quantum ergodicity properties of €.

Before going on with that study, let us provide another way of coming out with this spectral
functional (27). In the previous section we have seen that T'J(x,,) can be interpreted as a random-
ized observability constant, corresponding to a randomized observability inequality. We will see
next that J(x.) can be obtained as well by performing a time averaging procedure on the classical
observability inequality.

2.5 Time asymptotic observability inequality
First of all, we claim that, for all (y°,y') € L?(Q,C) x H=(Q, C), the quantity

1 (T )
= ly(t, )| dx dt,
T/o /

where y € C°(0,T; L*(2,C)) N C1(0,T; H=1(Q,C)) is the solution of the wave equation (74) such
that y(0,-) = y°(-) and 9;y(0,-) = y'(-), has a limit as T tends to +oo (this fact is proved in lemmas
6 and 7 further). This leads to define the concept of time asymptotic observability constant

T
(W) s . lfO fw |y(t,.’1})‘2d$dt 0 1 2 —1
Coo (Xw) inf {TEI—EOOT ||(y0’y1)||2L2><H71 ‘ (y 'Y ) €L (Q7C) x H (Q,C)\{(0,0)} :
(28)
This constant appears as the largest possible nonnegative constant for which the time asymptotic
observability inequality

1T
NG e < lim 7 [ [ w2 drat (20)

holds for all y°(-) € L?(Q,C) and y'(-) € H~(,C).
We have the following results.

Theorem 5. For every measurable subset w of ), there holds

2
fw Z,\eU ‘Zke]()\) crpdr(z)| da

20M)(x,) = inf =
k2t lewl?

| (¢j)jen € 2(C)\ {0} »,

where U is the set of all distinct eigenvalues A\, and I(X) = {j € IN* | A\; = A\}.
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Corollary 1. There holds 20" (Xw) € J(Xw), for every measurable subset w of Q. If the domain
Q is such that every eigenvalue of the Dirichlet-Laplacian is simple, then

20M) (x) = lnf /cbg 2dr = J(xw),

for every measurable subset w of 2.

The proof of these results is done in Appendix A. Note that, as is well known, the assumption
of the simplicity of the spectrum of the Dirichlet-Laplacian is generic with respect to the domain
O (see e.g. [13, 58, 20]).

Remark 5. It follows obviously from the definitions of the observability constants that

(W)
lim sup M < O(W)(Xw)
T—+oco T

for every measurable subset w of . However, the equalities do not hold in general. Indeed,
consider a set  with a smooth boundary, and a pair (w,T) not satisfying the Geometric Control
Condition. Then there must hold C;W) (xw) = 0. Besides, J(x.) may be positive, as already
discussed in Remark 4 where we gave several classes of examples having this property.

3 Solving of the optimal observability problem under quan-
tum ergodicity assumptions

We define the set
Uy, = {Xxw | w is a measurable subset of 2 of measure |w| = L|(Q}. (30)

In Section 2, our discussions have led us to model the problem of optimal observability as the
problem

sup J(xw), (31)
Xw€UL

= inf
Jlerﬁv*/¢] x,

where (¢;)jen+ is a Hilbertian basis of the Hilbert space L?(f2,C) (defined in Section 2.1), con-
sisting of eigenfunctions of A.

The criterion J(x.) can be seen as a spectral energy (de)concentration criterion. For every
j € IN*, the integral fw ¢j(x)2 dr is the energy of the j*" eigenfunction restricted to w, and
the problem is to maximize the infimum over j of these energies, over all subsets w of measure
w| = LI€].

This section is organized as follows. Section 3.1 is devoted to some preliminary remarks and
in particular to the introduction of a convexified version of the problem (31). Our main results
are stated in Section 3.2. They provide the optimal value of (31) under quantum ergodicity
assumptions on €2, by proving moreover that there is no gap between the problem (31) and its
convexified version. These assumptions are commented in Section 3.3. Sections 3.4, 3.5 and 3.6
are devoted to prove our main results. Finally, in Section 3.7 we consider an intrinsic spectral
variant of (31) where, as announced in Section 2.4, the infimum runs over all possible normalized
eigenfunctions of A. Moreover for this intrinsic problem we provide an explicit example where
there is a gap with the convexified version.

with
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3.1 Preliminary remarks

Since the set Uy, does not have compactness properties ensuring the existence of a solution of (31),
we consider the convex closure of Uy, for the weak star topology of L,

Ur = {aGL"O(Q, [0,1]) | /Qa(x) d:r:L|Q}. (32)

This convexification procedure is standard in shape optimization problems where an optimum may
fail to exist because of hard constraints (see e.g. [6]). Replacing x, € Uz, with a € U, we define
a convexified formulation of the second problem (31) by

sup J(a), (33)
GGHL
where
J@) = it [ a(w)o, @) (34)

Since J(a) is defined as the infimum of linear continuous functionals for the weak star topology of
L, it is upper semi continuous for this topology. This yields to the following result.

Lemma 1. The problem (33) has at least one solution.

Obviously, there holds

sup inf [ xw(®)¢j(z)*dr < sup inf

a(x)¢;(x)? dx. 35
xw€ly JEN" Jo wci, €N Jgo ()¢5 (x) (35)

Note that, since the constant function a(-) = L belongs to Uy, it follows that sup J(a) > L. In
a€ly,

the next section, under an additional ergodicity assumption, we compute the optimal value (33)

of this convexified problem and investigate the question of knowing whether the above inequality

is strict or not. In other words we investigate whether there is a gap or not between the problem

(31) and its convexified version (33).

Remark 6. Comments on the choice of the topology.

In our study we consider measurable subsets w of 2, and we endow the set L>(£,{0,1}) of all
characteristic functions of measurable subsets with the weak-star topology. Other topologies are
used in shape optimization problems, such as the Hausdorff topology. Note however that, although
the Hausdorff topology shares nice compactness properties, it cannot be used in our study because
of the measure constraint on w. Indeed, the Hausdorff convergence does not preserve measure,
and the class of admissible domains is not closed for this topology. Topologies associated with
convergence in the sense of characteristic functions or in the sense of compact sets (see for instance
[25, Chapter 2]) do not guarantee easily the compactness of minimizing sequences of domains,
unless one restricts the class of admissible domains, imposing for example some kind of uniform
regularity.

Remark 7. We stress that the question of the possible existence of a gap between the original
problem and its convexified version is not obvious and cannot be handled with usual I'-convergence
tools, in particular because the function J defined by (34) is is not lower semi-continuous for the
weak star topology of L (it is however upper semi-continuous for that topology, as an infimum
of linear functions). To illustrate this fact, consider the one-dimensional case of Remark 1. In this

specific situation, since ¢;(x) = \/gsin(jx) for every j € IN*, one has

J(a) = 2 inf /OTr a(x)sin®(jz) dx,

T jEN*
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for every a € Uy Since * the functions z — sin?(jz) converge weakly to 1/2, it clearly follows that
J(a) < L for every a € Uy,. Therefore,

sup J(a) =L,
aeﬁL

and the supremum is reached with the constant function a(-) = L. Consider the sequence of subsets
wy of (0,7) of measure Lw defined by
S R S
MTYANTT 2N N+1 2N

for every N € IN*. Clearly, the sequence of functions y,, converges to the constant function
a(-) = L for the weak star topology of L°, but nevertheless, an easy computation shows that

L N o iL . .
e | E B () e 1
J o Lr | 1 gy (4Lz otherwi
wN 5 57 N wise,

and hence,

2

limsup — inf / sin?(jz) dr < L.
N—otoo T jEN* wN

This simple example illustrates the difficulty in understanding the limiting behavior of the func-

tional because of the lack of the lower semicontinuity, what makes possible the occurrence of a gap

in the convexification procedure. In Section 3.2, we will prove that there is no such a gap under

an additional geometric spectral assumption.

3.2 Optimal value of the problem

In what follows, we make the following assumptions on the basis (¢;);en+ of eigenfunctions under
consideration.

Weak Quantum Ergodicity on the base (WQE) property. There exists a sub-
sequence of the sequence of probability measures p; = (;5? dx converging vaguely to the
uniform measure ﬁ dx.

Uniform L*-boundedness property. There exists A > 0 such that ||¢;|| L) < 4,
for every j € IN.

Note that the two assumptions above imply what we call the L>°-Weak Quantum FErgodicity on
the base (L>°-WQE) property', that is, there exists a subsequence of (¢7);en+ converging to ﬁ
for the weak star topology of L*°(2).

Obviously, this property implies that

sup inf /a(a:)gbj(x)2 dx =L, (36)
acti, 7SN Ja

and moreover the supremum is reached with the constant function ¢ = L on .

1The wording used here is motivated and explained further in a series of remarks.
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Remark 8. In general the convexified problem (33) does not admit a unique solution. Indeed,
under symmetry assumptions on €2 there exists an infinite number of solutions. For example, in
dimension one, with Q = (0, 7), all solutions of (33) are given by all functions of U, whose Fourier
expansion series is of the form a(xz) = L+ Zj:lj(aj cos(2jx) 4+ b; sin(2jx)) with coefficients a; < 0.

It follows from (35) and (36) that

sup inf /¢j(x)2dx < L.
Xw€UL JENT Sy,

The next result states that this inequality is actually an equality.

Theorem 6. If the WQE and uniform L -boundedness properties hold, then

sup inf/ (z)?dz =L, 37
st [ oy(0) )

for every L € (0,1). In other words, under these assumptions there is no gap between the original
problem (31) and the convezified one.

Remark 9. In fact, we can weaken the uniform L°°-boundedness property into the following
property: for almost every x € €2, there exists M, > 0 such that SUp e+ @j (r)? < M,.

It follows from this result, from Corollary 1 and Theorem 4, that the maximal value of the
randomized observability constant Cép‘gnd(xw) over the set Uy, is equal to TL/2, and that, if the

spectrum of A is simple, the maximal value of the time asymptotic observability constant Cc()ow) (Xw)
over the set Uy, is equal to L/2.

The question of knowing whether the supremum in (37) is reached (existence of an optimal set)
is investigated in Section 4.1.

Theorem 6 is established within the class of measurable subsets. We next state a similar (but
distinct) result within the class of measurable subsets whose boundary is of measure zero. We
define the set

Up = {xw €Uy, | [0w| = 0}. (38)

This is the set of all characteristic functions of Jordan measurable subsets of @ of measure L|}|.
We make the following assumptions.

Quantum Unique Ergodicity on the base (QUE) property. The whole sequence
of probability measures j1; = d)? dx converges vaguely to the uniform measure ﬁ dx.

Uniform LP-boundedness property. There exist p € (1,+00] and A > 0 such that
[6ll220(0) < A, for every j € IN.

Theorem 7. Assume that 002 is Lipschitz whenever it is nonempty. If the QUE and uniform
LP-boundedness properties hold, then

sup inf /d)j(x)z dx =L, (39)

xweub JEN
for every L € (0,1).

Theorems 6 and 7 are proved in Sections 3.4 and 3.5 respectively.
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Remark 10. It follows from the proof of Theorem 7 that this statement holds true as well whenever
the set U? is replaced with the set of all measurable subsets w of €, of measure |w| = L|Q)|, that
are moreover either open with a Lipschitz boundary, or open with a bounded perimeter.

Remark 11. The assumptions made in Theorems 6 or 7 are sufficient conditions implying (37)
r (39), but they are however not sharp, as proved in the next proposition.

Proposition 1. Assume that Q2 is the unit disk of the Euclidean two-dimensional space. Then, for
every p € (1,400] and for any basis of eigenfunctions of A\, the uniform LP-boundedness property
is not satisfied, and QUE does not hold as well. However, the equalities (37) and (39) hold true.

To establish this result, in the proof of this proposition (done in Section 3.6) we use the explicit
expression of certain semi-classical measures in the disk (weak limits of the probability measures
qﬁf dz). Among these quantum limits, one can find the Dirac measure along the boundary which
causes the well known phenomenon of whispering galleries. Having in mind this phenomenon,
it could be expected that there exists an optimal set, concentrating around the boundary. The
calculations show that it is however not the case, and (37) and (39) are proved to hold.

The next section is devoted to gather some comments on the quantum ergodicity assumptions
made in these theorems.

3.3 Comments on quantum ergodicity assumptions
This section is organized as a series of remarks.

Remark 12. The assumptions of Theorems 6 and 7 hold true in dimension one. Indeed, it has
already been mentioned that the eigenfunctions of the Dirichlet-Laplacian operator on = (0, 7)

are given by ¢;(z) = \/g sin(jx), for every j € IN*. Therefore clearly the whole sequence (not

only a subsequence) (gf)?)je]N* converges weakly to % for the weak star topology of L*(0,x). The

same property clearly holds for all other boundary conditions considered in this article.

Remark 13. In dimension greater than one the situation is more intricate, but we have the
following facts.

In any hypercube (tensorised version of the previous one-dimensional case) or flat torus, any
orthonormal basis of eigenfunctions is uniformly bounded and satisfies WQE on the base.

Generally speaking, these assumptions are related to ergodicity properties of €. Before provid-
ing precise results, we recall the following well known definition.

Quantum Ergodicity on the base (QE) property. There exists a subsequence of
the sequence of probability measures pu; = d)? dx of density one converging vaguely to

the uniform measure ﬁdm.

Here, density one means that there exists Z C IN* such that #{j € Z | j < N}/N converges to 1
as N tends to +o0o. Obviously, QE implies WQE?. It is well known that, if the domain € (seen
as a billiard where the geodesic flow moves at unit speed and bounces at the boundary according
to the Geometric Optics laws) is ergodic, then the property QE is satisfied. This is the contents
of Shnirelman Theorem, proved in [14, 19, 53, 63] in various contexts (manifolds with or without
boundary, with a certain regularity). Actually the results proved in these references are stronger,
for two reasons. Firstly, they are valid for any Hilbertian basis of eigenfunctions of A\, whereas

2Note that, up to our knowledge, the notion of WQE is new, whereas the notions of QE and QUE are classical
in mathematical physics.
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here we make this kind of assumption only for the specific basis (¢;) en+ that has been fixed at
the beginning of the study. Secondly, they establish that a stronger microlocal version of the QE
property holds for pseudodifferential operators, in the unit cotangent bundle S*Q of €, and not
just only on the configuration space €. Here however we do not need (de)concentration results in
the full phase space, but only in the configuration space. This is why, following [62], we use the
wording “on the base”.

Note that the vague convergence of the measures j1; is weaker than the convergence of the
functions d)? for the weak star topology of L*°(£2). Since €2 is bounded, the property of vague
convergence is equivalent to saying that, for a subsequence of density one, fw ¢;(z)? dz converges
to |w|/|€2] for every measurable subset w of © such that |Ow| = 0 (Portmanteau theorem). In
contrast, the property of convergence for the weak star topology of L>°(£2) is equivalent to saying
that, for a subsequence of density one, [ ¢;(2)*dx converges to |w|/|Q| for every measurable
subset w of Q. Under the assumption that all eigenfunctions are uniformly bounded in L*°(),
both notions are equivalent. This is the case for instance in flat tori. But, for instance, if 2 is
a ball or a sphere of any dimension, then the eigenfunctions of the Laplacian are not uniformly
bounded. This is well known to be a delicate issue (see [(2]). It is conjectured that flat tori are the
sole compact manifolds without boundary where the whole family of eigenfunctions is uniformly
bounded in L*°.

Note that the notion of L*°-QE property, meaning that the above QE property holds for the
weak star topology of L™, is defined and mentioned in [(62] as a delicate open problem. As
said above we stress that, under the assumption that all eigenfunctions are uniformly bounded in
L>(Q), QE and L*-QE are equivalent.

To the best of our knowledge, nothing seems to be known on the uniform LP-boundedness
property. This property holds for flat tori but does not hold for balls or spheres.

Remark 14. Shnirelman Theorem lets however open the possibility of having an exceptional
subsequence of measures p; converging vaguely to some other measure. The QUE assumption
consists of assuming that the whole sequence converges vaguely to the uniform measure. It is an
important issue in quantum and mathematical physics. Note indeed that the quantity fw qﬁf(x) dx
is interpreted as the probability of finding the quantum state of energy )\? in w. We stress again
on the fact that, here, we consider a version of QUE in the configuration space only, not in the full
phase space. Moreover, we consider the QUE property for the basis (¢;);ew+ under consideration,
but not necessarily for any such basis of eigenfunctions.

QUE obviously holds true in the one-dimensional case of Remark 1 (see also Remark 7) but it
does however not hold true for multi-dimensional hypercubes.

More generally, only partial results do exist. The question of determining what are the possible
weak limits of the p;’s (semi-classical measures, or quantum limits) is widely open in general. It
could happen that, even in the framwork of Shnirelman Theorem, a subsequence of density zero
converge to an invariant measure like for instance a measure carried by closed geodesics (these are
the so-called strong scars, see, e.g., [18]). Note however that, as already mentioned, here we are
concerned with concentration results in the configuration space only.

The QUE property on the base, stating that the whole sequence of measures j; = gb? dx con-
verges vaguely to the uniform measure, postulates that there is no such concentration phenomenon.
Note that, although rational polygonal billiards are not ergodic in the phase space, while polygo-
nal billiards are generically ergodic (see [32]), the property QE on the base holds in any rational
polygon® (see [12]), and L*°-QE on the base holds in any flat torus (see [71]). Apart from these
recent results, and in spite of impressive recent results around QUE (see, e.g., the survey [52]), up
to now no example of multi-dimensional domain is known where QUE on the base holds true.

3A rational polygon is a planar polygon whose interior is connected and simply connected and whose vertex
angles are rational multiples of 7.
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Remark 15. The results of Theorems 6 and 7 are similar but distinct. The QUE assumption is a
very strong one as said above. The proofs of these results, provided in Sections 3.4 and 3.5, are of
a completely different nature. In particular, our proof of Theorem 6 is short but does not permit
to get an insight on the possible theoretical construction of a maximizing sequence of subsets.
In contrast, our proof of Theorem 7 is constructive and provides a theoretical way of building a
maximizing sequence of subsets, by implementing a kind of homogenization procedure. Moreover,
this proof highlights the following interesting feature:

It is possible to increase the values of J by considering subsets having an increasing
number of connected components.

Remark 16. The question of knowing whether there exists an example where there is a gap
between the convexified problem (33) and the original one (31), is an open problem. We think
that, if such an example exists, then the underlying geodesic flow ought to be completely integrable
and have strong concentration properties. As already mentioned in our framework we have fixed a
given basis (¢;)jen= of eigenvectors, and we consider only the weak limits of the measures (,25? dx.
With a fixed given basis, we are not aware of any example having concentration properties strong
enough to derive a gap statement. We refer to Section 3.7 and in particular to Proposition 2 for
an example of a gap for an intrinsic variant of the second problem where the infimum runs over
all possible eigenfunctions (and not only over a basis).

Remark 17. Our results here show that shape optimization problems are intimately related
with the ergodicity properties of 2. Notice that, in the early article [13], the authors suggested
such connections. They analyzed the exponential decay of solutions of damped wave equations.
Their results reflected that the quantum effects of bouncing balls or whispering galleries play an
important role in the success of failure of the exponential decay property. At the end of the article,
the authors conjectured that such considerations could be useful in the placement and design of
actuators or sensors. Our results of this section provide precise results showing these connections
and new perspectives on those intuitions. In our view they are the main contribution of our article,
in the sense that they have pointed out the close relations existing between shape optimization
and ergodicity, and provide new open problems and directions to domain optimization analysis.

3.4 Proof of Theorem 6

Since we already have the inequality sup, ¢y, Infjen- fw oy (r)?dr < L, it suffices to prove that,
for every € > 0, there exists x,, € Uy, such that

/ ¢j(x)2dx —L’ <e,

for every j € IN*. To prove this fact, we consider the function f defined by f(z) = (¢;(%)?)jen~,
for every x € Q. Using the fact that the eigenfunctions are uniformly bounded in L*>(Q), it
is clear that f(z) € ¢°°, for every # € Q. Then, clearly, f € L'(£,¢><) (using the Bochner
integral), and fQ f dz is the constant sequence of ¢>° equal to 1. For every € > 0, there exists a
partition of Q = UP_,Q, with Q) measurable, such that [, [|(f(z) — fn(®))|¢edr < e/(L + 1),
with f, = Y1, akxq,. For every k € {1,...,n}, let wy be a measurable subset of 2, such that
lwg| = L|Q%|. We set w = U}_,wi. Note that, by construction, one has x., € Uy, and

n

/ (@) = L) fale) dz = 3" o / (@) — LYxe, (@) dz = S ap(wr] — L) = 0.
Q o Ja

k=1
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Therefore, there holds

‘/wf(x)de/Qf(:z:)da:

/ (o (@) — L) f(z) da
Q

£ ‘ £

/ (o (&) — L) () d
Q

< ‘

ZOO
/Q (v(@) = D)(f (@) — fule)) da]|  <e

+!
AaS

and the conclusion follows.

3.5 Proof of Theorem 7

In what follows, for every measurable subset w of Q, we set I;(w) = [ ¢;(z)? dz, for every j €
IN*. By definition, there holds J(w) = inf;en+ I;(w). Note that it follows from QUE and from
the Portmanteau theorem (see Remark 13) that, for every measurable subset w of € such that
|w| = L|?| and |0w| = 0, one has I;(w) — L as j — +o0, and hence J(w) < L.

Let wy be an open connected subset of  of measure L|2| having a Lipschitz boundary. In the
sequel we assume that J(wg) < L, otherwise there is nothing to prove. Using QUE, there exists
an integer jo such that

o) > L= (L= J(w0), (10)

for every j > jo. Our proof below consists of implementing a kind of homogenization procedure
by constructing a sequence of open subsets wy (starting from wg) such that |wx| = L|wg| and

khlf J(wy) = L. Denote by wy the closure of wp, and by w§ the complement of wy in Q. Since
— 100

Q and wy have a Lipschitz boundary, it follows that wy and Q\wy satisfy a é-cone property*, for

some 0 > 0 (see [25, Theorem 2.4.7]). Consider partitions of Wy and w§,
K K
Wy = U Fz and w(c) = U Fl', (41)
i=1 =1

to be chosen later. As a consequence of the d-cone property, there exists c¢s > 0 and a choice of
partition (Fj)i<i<k (vesp. (Fi); ;<) such that, for |F;| small enough,

Vie{l,-- K} (resp. Vie {1, ,f(}), diaZlF_ > cs (resp. dianﬁ > 65) . (42)
g 7

where 7; (resp., 7);) is the inradius® of F; (resp., E), and diam F; (resp., diam E) the diameter of
F; (resp., of E)

Tt is then clear that, for every i € {1,..., K} (resp., foreveryi € {1,..., f(}), there exists &; € F;
(resp., & € E) such that B(&;,n:/2) C F; C B(&,m:i/cs) (resp., B(&,7:/2) C F, C B(&,7i/¢cs)),
where the notation B(§,n) stands for the open ball centered at £ with radius 7. These features
characterize a substantial family of sets (also called nicely shrinking sets), as is well known in

4We recall that an open subset Q of R™ verifies a §-cone property if, for every x € 99, there exists a normalized

vector &, such that C(y, £z,8) C Q for every y € QN B(x,d), where C(y,£4,0) = {z € R™ | (2 — y,£) > cosd||z —

y|| and 0 < ||z — y|| < é}. For manifolds, the definition is done accordingly in some charts, for § > 0 small enough.
In other words, the largest radius of balls contained in F;.
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measure theory. By continuity, the points §; and éi are Lebesgue points of the functions (,25?, for
every j < jo. This implies that, for every j < jg, there holds

[ 6@ de = Floy(€0 + olID) s m—o.
F;
for every i € {1,..., K}, and

[ ésta) o = Rloy(? + ol as i o

for every i € {1,..., f(} Setting 77 = max ( max diam F;, max diam F} )7 it follows that
1<K 1<1<K

I(wo) = /@ dm—Z|F|¢Ja Fo(nY) asn—0,
=1

(43)
K
Liwg) = | ZF\% &) +o(n') asn—0,
for every j < jo. Note that, since w§ is the complement of wy in €2, there holds
Ij((do) + I](wg) = (;5]'(.73‘)2 d.I‘ + / ¢j(l‘)2 dl‘ = 1, (44)
wo w§

for every j. Note also that 3°i°, V,(F;) = L|Q| and SK Vy(F) = (1— L)Q]. Set by = (1 —
L)V,(F;) and ¢; = LV, ( i) Then, we infer from (43) and (44) that

K
(1= L) Ii(wo) = Y hioh(&)* +o(n?) asn—0,

K
LIj(wo) =L =Y tidj(&)* +o(n?) asn—0,

for every j < jo. For € > 0 to be chosen later, define the perturbation w® of wg by
K K ~
w® = <w0\ U B(&‘,&i)) U UBGz),
i=1 i=1

where g; = eh)/" /V,(B(&,1))Y/™ and & = 0,/ /V,(B(;,1))*/™. Note that it is possible to define
such a perturbation, provided that

. . 1/71 ~. ~_ 1/n
0<s<min< min HYeBE )T L Ve(B(E 1) )

1<K hll/n 1<i<K gl?/n

It follows from the well known isodiametric inequality® and from a compactness argument that
there exists a constant V;, > 0 (only depending on Q) such that |F;| < V,(diam F;)™ for every

6The isodiametric inequality states that, for every compact K of the Euclidean space R™, there holds |K| <
|B(0, diam(K)/2)|.
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ie{l,---,K}, and |F;| < V,(diam E;)" for every i € {1,--- , K}, independently on the partitions
considered Again, by compactness of €2, there exists v, > 0 (only depending on ) such that
|B(x,1)| > v, for every x € Q. Set gg = min(1, 05vn/Vn1/"). Using (42), we get

ni| B, V" Un i

hzl/n > (1- )1/nV1/" diam F; 2 €0,
for every i € {1,--- , K}, and similarly,
~ s 1/n
mIB(flz/, DI S
o
for every i € {1,--- K }. Tt follows that the previous perturbation is well defined for every

e € (0,&0). Note that, by construction,

K
1= el = LB DI+ LB

=1 i=1

K
= |W0|—€nzhi+€"zﬁi
i1 i=1
K K
= el D) SR+ LR
i—1 i—1

= |wo|) —€"(1—-L)LIQ| +"L(1 - L)|Q|
= |UJO| = L|Q|

Nx

Moreover, one has
5 = [ o3(e) do = en) / 2 da + / ()2 dr,
! we ’ Z B(&i.es Z (51, €:) J

and using again the fact that the & and §; are Lebesgue points of the functions gb?, for every j < jo,
we infer that

Nx

L(w) = Ze—"wa, )o;(&)° + Z B(&:,1)|6;(&)” +o(n?) asn—0

i=1 i=1

Zh’b¢] gz ZE QI)J gz + O(nd) asn — 0,

and hence, using (45),

I (W) = Ij(wo) + €™ (L — Ij(wp)) +€™0(n?) asn— 0,

Ij(wf) = J(wo) +"(L = J(wo)) +"o(1) asn — 0, (46)

)
for every j < jo and every ¢ € (0,e). Since ef < 1, it then follows that
)
for every j < jo and every € € (0,eg), where the functional J is defined by (27).
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We now choose the subdivisions (41) fine enough (that is, n > 0 small enough) so that, for
every j < jo, the remainder term oo(nd) in (46) is bounded by % (L — J(wp)). It follows from (46)

17—>
that

n

€
(W) = J(wo) + ?(L — J(wo)), (47)
for every j < jo and every € € (0,¢eq).

Let us first show that the set w® still satisfies an inequality of the type (40) for ¢ small enough.
Using the uniform LP-boundedness property and Hoélder’s inequality, we have

< ([ e - <x>|wx)1/q,

for every integer j and every ¢ € (0,eq), where ¢ is defined by 1 + l = 1. Moreover,

/Qme(x)—xwo<m>\de:A|xwe<w>—xwo 2)|dz =" Zh +Z€ — 2 L(1 - D)9,

and hence |I;(w®) — I;(wo)] < (242%™ L(1 — )|Q|)1/q Therefore, setting
€1 =min (¢ (L — J(wo))* ’
! 07\ 220+1424 (1 — L)|Q] ’

I() > L= 3 (L~ J(wo)) (48)

11 (w") = Lj(wo)| = ‘/Q (Xt (%) = X () b5 (2)* d

it follows from (40) that

for every j = jo and every € € (0,e1).
Now, using the fact that J(wp) + %(L — J(wo)) < L — 3(L — J(wp)) for every e € (0,&9), we
infer from (47) and (48) that

T(wF) 2 Two) + S (L~ J(w)), (19)

for every € € (0,e1). In particular, this inequality holds for e such that e” = Cy min(Cs, L—J(wy)),
where the positive constants Cy = 1/8AL(1 — L)|Q)| and Cy = 1/2"C}. For this specific value of ¢,
we set w1 = w®, and hence we have obtained

J(wi) = J(wo) + % min(Cq, L — J(wp)) (L — J(wo))- (50)

Note that the constants involved in this inequality depend only on L, A and 2. Note also that by
construction w; satisfies a §-cone property.

If J(w1) > L then we are done. Otherwise, we apply all the previous arguments to this new
set wy: using QUE, there exists an integer still denoted jo such that (40) holds with wy replaced
with wy. This provides a lower bound for highfrequencies. The lower frequencies j < jo are then
handled as previously, and we end up with (47) with wp replaced with w;. Finally, this leads to
the existence of wy such that (50) holds with wq replaced with wy and wg replaced with wy.

By iteration, we construct a sequence of subsets wy of Q (satisfying a d-cone property) of
measure Vy(wy) = L|Q|, as long as J(wy) < L, satisfying

J(wra1) = J(wg) + % min(Co, L — J(wg)) (L — J(wg))-

If J(wk) < L for every integer k, then clearly the sequence J(wy) is increasing, bounded above by
L, and converges to L. This finishes the proof.
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Remark 18. It can be noted that, in the above construction, the subsets wj are open, Lipschitz
and of bounded perimeter. Hence, if the second problem is considered on the class of measurable
subsets w of , of measure |w| = L|Q|, that are moreover either open with a Lipschitz boundary,
or open with a bounded perimeter, then the conclusion holds as well that the supremum is equal
to L. This proves the contents of Remark 10.

3.6 Proof of Proposition 1

Assume that  is the unit (Euclidean) disk of R?, Q = {z € R? | ||z| < 1}. It is well known that
the normalized eigenfunctions of the Dirichlet-Laplacian are a triply indexed sequence given by

_ [ Bo(r)/Var it j =0,
¢>jkm(n9)—{ R?',:(r)yj () if;’>1,

for j € N, k € IN* and m = 1, 2, where (r, ) are the usual polar coordinates. The functions Yj,,(6)
are defined by Y;i(6) = ﬁ cos(j6) and Y;2(0) = ﬁ sin(j0), and the functions Rj; are defined by

(1) = /5 JizkT)
Roklr) = V2 L0

where J; is the Bessel function of the first kind of order j, and z;; > 0 is the kth-zero of Jj.
The eigenvalues of the Dirichlet-Laplacian are given by the double sequence of —z?k and are of
multiplicity 1 if j = 0, and 2 if j > 1. Many properties are known on these functions and, in
particular (see [35]):

e for every j € IN, the sequence of probability measures 7 — R;j(r)?rdr converges vaguely to
1 as k tends to +o0,

e for every k € IN*, the sequence of probability measures r +— Rjk(r)zrdr converges vaguely to
the Dirac at » = 1 as j tends to +o0.

These convergence properties permit to identify certain quantum limits, the second property ac-
counting for the well known phenomenon of whispering galleries. Less known is the convergence of
the above sequence of measures when the ratio j/k is kept constant. Simple computations (due to
[8]) show that, when taking the limit of Ry (r)?rdr with a fixed ratio j/k, and making this ratio
vary, we obtain the family of probability measures

1 T
Y e X(s,1) (r) dr,

parametrized by s € [0,1). We can even extend to s = 1 by defining p; as the Dirac at r = 1. Tt
easily follows that

Hs = fs(r) dr

2m 1
sup J(a) = sup inf / / a(r,0)¢rm(r,0)* rdrdd < sup K(a),
o Jo

ac€ly, acly, Jslné’{kﬁg]} acly,

where

K(a) = inf /01 /O27r a(r,0)do fs(r) dr.

s€[0,1]
Lemma 2. There holds sup K(a) = L, and the supremum is reached with the constant function

G.EUL
a=1L on Q.
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Proof of Lemma 2. First, note that K(a = L) = L and that the infimum in the definition of K is
then reached for every s € [0,1]. Since K is concave (as infimum of linear functions), it suffices
to prove that (DK (a = L), h) < 0 (directional derivative), for every function h defined on § such

that [, h(z) de = 0. Using Danskin’s Theorem (see [10, 1]), we have
27
(DK (a = = inf / h(r,0)do fs(r)dr
s€[0,1]
By contradlctlon let us assume that there exists a function h on €2 such that fQ z)dx =0 and

such that fo o h(r,0)do fs(r)dr > 0 for every s € [0,1]. Then, it follows that

27
/ / (r,0)dd ———=dr >0
N
for every s € [0, 1], and integrating in s over [0, 1], we get
2m 2m
0</ / h(r,0)d _SerdS—/ / m h(r,0)de dr
27
= 7/ r/ h(r,0)do dr
2Jo Jo
T / h(zx)dz =0,
2 Ja

which is a contradiction. The lemma is proved. O

It follows from this lemma that sup,.z;, J(a) = L (note that a = L realizes the maximum),
and hence, sup, <y, J(xw) < L. To prove the no-gap statement, we use particular (radial) subsets
w, of the form w = {(r,0) € [0,1] x [0,27] | 6 € wg}, where |wy| = 2L, as drawn on Figure 1. For

A maximizing sequence for L=0.3

DRSS

Figure 1: Particular radial subsets

such a subset w, one has

1
/@km(x)? dx:/ Rjk(r)Qrdr/ ij(9)2d9:/ Y (6)* df,
w 0 we we

for all j € N*, k € N* and m = 1,2. For 7 = 0, there holds

1
/qi)okm(a:)Q da:z/ Rjk(r)zrdr/ do = |wy|-
w 0 we
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Besides, since Lt = || = folrdr [, d0 = 3lwel, it follows that |we| = 2L7. By applying the
no-gap result in dimension one (clearly, it can be applied as well with the cosine functions), one
has
sup inf / sin?(j0) df =  sup inf*/ cos®(j0) df = L.
we wo

wgCl0,2x) JENT wgCl0,27] JE
‘wgl:QLTr |UJ9‘=2L7T

Therefore, we deduce that

sup  inf / Gikm(w)? dr = L,
JEN,kEIN*
Xw€UL 171616{16,2} w

and the conclusion follows.

3.7 An intrinsic spectral variant of the problem

The problem (27), defined in Section 2.4, depends a priori on the Hilbertian basis (¢;)jen+ of
L?(Q,C) under consideration, at least whenever the spectrum of A is not simple. In this section
we assume that the eigenvalues ()\J2) jen= of A are multiple, so that the choice of the basis (¢;) jen=
enters into play.

We have already seen in Theorem 5 (see Section 2.3) that, in the case of multiple eigenvalues,
the spectral expression for the time-asymptotic observability constant is more intricate and it does
not seem that our analysis can be adapted in an easy way to that case.

Besides, recall that the criterion J defined by (27) has been motivated in Section 2.3 by means
of randomizing initial data, and has been interpreted as a randomized observability constant (see
Theorem 4), but then this criterion depends a priori on the preliminary choice of the basis (¢;);en~
of eigenfunctions.

In order to get rid of this dependence, and to deal with a more intrinsic criterion, it makes sense
to consider the infimum of the criteria J defined by (27) over all possible choices of orthonormal
bases of eigenfunctions. This leads us to consider the following intrinsic variant of our second
problem.

Intrinsic uniform optimal design problem. We investigate the problem of maxi-
mizing the functional

Toilx.) = inf /w () de, (51)

over all possible subsets w of Q of measure |w| = L|QY|, where £ denotes the set of all
normalized eigenfunctions of A.

Here, the word intrinsic means that this problem does not depend on the choice of the basis of
eigenfunctions of A.

As in Theorem 4, the quantity %Jint (Xw) (resp., T'Jint(xw)) can be interpreted as a constant for
which the randomized observability inequality (25) for the wave equation holds, but this constant
is less than or equal to C’g‘gnd(xw). Besides, there obviously holds C'(TW) (Xw) € L Jine (xw)- Indeed
this inequality follows form the deterministic observability inequality applied to the particular
solution y(t, z) = e ¢(x), for every eigenfunction ¢. In brief, there holds

(W)

T
07" (%) < G () < O ana(Xe)-

As in Section 3.1, the convexified version of the above problem consists of maximizing the functional

Jint(a) = inf /Qa(x)gb(x)2 dz,

pes
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over the set ¢,. This problem obviously has at least one solution, and

sup inf L(@)o(x)?dx < su inf/aa: x)%dzx.
sl [ xo@owds < st [ oo

Theorem 8. Assume that the uniform measure ﬁ dz is a closure point of the family of probability

measures iy = ¢>dx, ¢ € E, for the vague topology, and that the whole family of eigenfunctions
in & is uniformly bounded in L>°(§). Then

sup inf/¢(x)2 dx = sup inf/a(x)qf)(m)2 dx =L, (52)
w Q

XwEUL PEE a€ly, pee

for every L € (0,1). In other words, there is no gap between the intrinsic uniform optimal design
problem and its convezified version.

Proof. The proof follows the same lines as in Section 3.4, by considering the function f defined by
f(z) = (¢(x)*)pece. Then f € L1 (Q, X) with X = L>°(&,R) which is a Banach manifold that can
be seen as an infinite product of spheres of dimension equal to the respective multiplicities of the
eigenvalues. O

Similarly, the intrinsic counterpart of Theorem 7 is the following.

Theorem 9. Assume that the uniform measure ﬁ dx is the unique closure point of the family

of probability measures py = ¢*dz, ¢ € &, for the vague topology, and that the whole family of
eigenfunctions in & is uniformly bounded in L*"(Q), for some p € (1,+00]. Then

sup inf/¢(x)2 dx =L, (53)

XUl PEE
for every L € (0,1).

Proof. The proof follows the same lines as in Section 3.4, replacing the integer index j with the
continuous index A (standing for the eigenvalues of A). The only thing that has to be noticed is
the derivation of the estimate corresponding to (47). In Section 3.4, to obtain (47) from (46), we
used the fact that only a finite number of terms have to be considered. Now the number of terms
is infinite, but however one has to consider all possible normalized eigenfunctions associated with
an eigenvalue || < |Ag|. Since this set is compact for every Ag, there is no difficulty to extend our
previous proof. O

With respect to Remark 16, it is interesting to note that, here, we are able to provide examples
where there is a gap between the intrinsic second problem (51) and its convexified version.

Proposition 2. In any of the two following examples:
o O =82, the unit Euclidean two-dimensional sphere, endowed with the usual flat metric;

o O is the unit half-sphere in R®, endowed with the usual flat metric, and Dirichlet conditions
are imposed on the great circle which is the boundary of €);

if L is close enough to 1 then sup, <y, J(Xw) < L, and hence there is a gap between the problem
(51) and its convezified version.

29



Proof. Assume first that Q = S2. In [30] it is proved that the set of semi-classical measures on
S? coincides with the convex set of invariant probability measures for the geodesic flow that are
time-reversal invariant. In particular, the Dirac measure p., of any great circle v on S? (defined as
an equator, up to a rotation) is the projection of a semi-classical measure. The measure j, is the
arc-length measure defined by

1 1
me) =g [ ds=g el

for every measurable subset w of S2. Besides, since the uniform measure is a quantum limit as well,
S? satisfies WQE and hence sup,cz7, J(a) = L (and the supremum is reached with the constant
function @ = L). Denoting by o the Lebesgue measure of S?, Uy, is the set of all measurable subsets
w of 8% of measure o(L) = 47w L. For every w € Uy, one has

2m ™ 2m T—€ 2m
drl = / / Xw (4, 0) sin ¢ dodf > Sins/ / Xw(p,0) dpdd > Sine/ (I Nw| — 2¢)db,
o Jo 0o Je 0

for every € € [0, /2], where 7y denotes the great circle joining the north pole to the south pole at
longitude 6 (where a north pole is fixed arbitrarily). By contradiction, assume that i, (w) > 3L/4
for every 6 € [0,27]. Then we infer that 4nL > 2w sine(3wL/2 — 2¢), which raises a contradiction
when choosing e.g. ¢ = 7w/4 and L close to 1. It then follows that

3L
(Ow) = inf, /w 95 < pnf  Haol@) < 7

for every w € Uy, whence the gap.

Assume now that € is the unit half-sphere of R®. As recalled above, for every great circle C
of §? there exists a sequence of squares of eigenfunctions ¢; whose support concentrates along
C. Let S denote the orthogonal symmetry with respect to the hyperplane passing through the
origin, cutting S? into two half-spheres, one of which being Q. Then, ¥; = (¢; — ¢; 0 S)//2 is an
eigenfunction of the Dirichlet-Laplacian on €. Let us prove’ that the support of 1/1]2- concentrates
on the union of two symmetric half-circles of €2, as drawn on Figure 2.

S

Figure 2: The half-sphere.

Indeed, since 97 = %((ﬁ? + ¢ 0S|? + ¢ - ¢; 08), it suffices to prove that for every a € L>®(1),
Jo a(x)p;(x)p;0S(x) do(x) tends to 0 as j tends to +-00. But this fact is obvious since the measure
of the intersection of the corresponding supports tends to 0. The following (interesting in itself)
fact follows: the Dirac measure along every union of symmetric half-circles on €2 is the projection of

"This idea emerged from discussions with Luc Hillairet.
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a semi-classical measure. Note however that, in this construction, the half-circles passing through
the lowest point of the half-sphere cannot be considered.

Then, the same calculation as before can be led. Indeed, let us fix a point N of the boundary of
Q, and let S be the diametrically symmetric point, as on Figure 2. If we think of NV and S as a north
pole and south pole, then any curve consisting of the union of two symmetric half-circles emerging
from N and S can be viewed, with evident symmetries, as a great circle v of S? as considered
previously. Then, the same argument can be applied and leads to the desired conclusion. O

4 Nonexistence of an optimal set and remedies

In Section 4.1 we investigate the question of the existence of an optimal set, reaching the supremum

n (31). Apart from simple geometries, this question remains essentially open and we conjecture
that in general there does not exist any optimal set. In Section 4.2 we study a spectral approxi-
mation of (31), by keeping only the N first modes. We establish existence and uniqueness results,
and provide numerical simulations showing the increasing complexity of the optimal sets. We then
investigate possible remedies to the nonexistence of an optimal set of (31). As a first remark,
we consider in Section 4.3 classes of subsets sharing compactness properties, in view of ensuring
existence results for (31). Since our aim is however to investigate domains as general as possible
(only measurable), in Section 4.4, we introduce a weighted variant of the observability inequality,
where the weight is stronger on lower frequencies. We then come up with a weighted spectral
variant of (31), for which we prove, in contrast with the previous results, that there exists a unique
optimal set whenever L is large enough, and that the maximizing sequence built from a spectral
truncation is stationary.

4.1 On the existence of an optimal set

In this section we comment on the problem of knowing whether the supremum in (37) is reached
or not, in the framework of Theorem 6. This problem remains essentially open except in several
particular cases.

For the one-dimensional case already mentioned in Remarks 1, 7 and 12, we have the following
result.

Lemma 3. Assume that Q = (0,m). Let L € (0,1). The supremum of J over Uy, (which is equal to
L) is reached if and only if L = 1/2. In that case, it is reached for all measurable subsets w C (0,7)
of measure /2 such that w and its symmetric image w' = ® — w are disjoint and complementary
in (0, 7).

Proof. Although the proof of that result can be found in [23] and in [47], we recall it here shortly
since similar arguments will be used in the proof of the forthcoming Lemma 4.

A subset w C (0, ) of Lebesgue measure L is solution of (37) if and only if [ sin®(jz)dz >
Lz/2 for every j € IN*, that is, fw cos(2jz)dx < 0. Therefore the Fourier series expansion of
Xw on (0,7) must be of the form L + j:oi(aj cos(2jx) + b; sin(2jx)), with coefficients a; < 0.
Let w’ = m — w be the symmetric set of w with respect to /2. The Fourier series expansion of
Xw 1s L + E;rg(aj cos(2jx) — b;sin(2jx)). Set g(z) = L — £(xw (@) + Xuw (2)), for almost every
x € (0,m). The Fourier series expansion of g is — Z;;OT a;j cos(2jx), with a; < 0 for every j € IN*.
Assume that L # 1/2. Then the sets w and w’ are not disjoint and complementary, and hence
g is discontinuous. It then follows that >3  a; = —oo. Besides, the sum »77° a; is also the

limit of ZZS akﬁn(k) as n — +oo, where A, is the Fourier transform of the positive function
A, whose graph is the triangle joining the points (—=1,0), (0,2n) and (1,0) (note that A, is an
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approximation of the Dirac measure, with integral equal to 1). This raises a contradiction with
the fact that

T 400
| st0anat =3 alam)
k=1

derived from Plancherel’s Theorem. O

For the two-dimensional square 2 = (0, 7)? studied in Proposition 1 we are not able to provide a
complete answer to the question of the existence. We are however able to characterize the existence
of optimal sets that are a Cartesian product.

Lemma 4. Assume that Q = (0,7)2. Let L € (0,1). The supremum of J over the class of all
possible subsets w = w1 X wy of Lebesque measure L2, where wi and wo are measurable subsets of
(0,7), is reached if and only if L € {1/4,1/2,3/4}. In that case, it is reached for all such sets w
satisfying

1
Z(Xw(xay) + Xw(ﬂ- - xa?/) + Xw(l‘,ﬂ' - y) + Xw(ﬂ- —x,T = y)) = La
for almost all (z,y) € [0,72].

Proof. A subset w C (0, 7)? of Lebesgue measure Lx? is solution of (37) if and only if the inequality
2 [, sin®(jz) sin®(ky) da dy > L holds for all (j, k) € (IN*)?, that is,

/cos(?jx) cos(2ky) dxdy}/cos(?jx) da:dy+/cos(2ky) dz dy. (54)

w w

Set £, = fow Xw(z,y) dy for almost every z € (0,7), and ¢, = foﬂ Xw(z,y) dx for almost every
y € (0, 7). Letting either j or k tend to 400 and using Fubini’s theorem in (54) leads to

/ £, cos(2jx) dx < 0 and / £y cos(2ky) dy < 0,
0 0

for every j € IN* and every k € IN*.

Now, if w = w; X wg, where wy and wy are measurable subsets of (0, 7), then the functions
x — {; and y — ¢, must be discontinuous. Using similar arguments as in the proof of Lemma 3,
it follows that the functions z — ¢, + ¢;_, and y — ¢, + {,_, must be constant on (0,7), and
hence,

/ £, cos(2jx) dr = 0 and / £, cos(2ky) dy =0,
0 0

for every j € IN* and every k € IN*. Using (54), it follows that [ cos(2jx) cos(2ky) dx dy > 0, for
all (4,k) € (IN*)2. The function F defined by

F(2,9) = ~ (o 9) + Xl — 2,9) + X (&7 — ) + X — 2,7 — 1),

4
for almost all (z,y) € (0,7)?2, can only take the values 0, 1/4, 1/2, 3/4 and 1, and its Fourier series

is of the form
4 =

L+ Z ( /w cos(2ju) cos(2kv)dudv> cos(2jz) cos(2ky),

k=1

and all Fourier coefficients are nonnegative. Using once again similar arguments as in the proof
of Lemma 3 (Fourier transform and Plancherel’s Theorem), it follows that F' must necessarily be
continuous on (0, 7)? and thus constant. The conclusion follows. O
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Remark 19. All results of this section can obviously be generalized to multi-dimensional domains
Q written as N cartesian products of one-dimensional sets.

Remark 20. According to Lemma 4, if L = 1/2 then there exists an infinite number of optimal
sets. Four of them are drawn on Figure 3. It is interesting to note that the optimal sets drawn on
the left-side of the figure do not satisfy the Geometric Control Condition mentioned in Section 2.1,
and that in this configuration the (classical, deterministic) observability constants C;W)(xw) and

C’PEFS) (xw) are equal to 0, whereas, according to the previous results, there holds 2 C’:(p‘jrvgnd(xw) =

C(Tsr)and(Xw) = TL. This fact is in accordance with Remarks 4 and 5.

Figure 3: Q = (0,7)?, L =1/2.

Remark 21. Similar considerations hold for the two-dimensional unit disk. Actually it easily
follows from Lemma 3 and from the proof of Proposition 1 that, for L = 1/2, the supremum of
J over Uy, is reached for every subset w of the form w = {(r,0) € [0,1] x [0,27] | § € wp}, where
wp is any subset of [0, 2] such that wy and its symmetric image wj = 27 — wp are disjoint and
complementary in [0, 27r]. But we do not know whether or not there are other maximizing subsets.

Remark 22. In view of the results above one could expect that when 2 is the unit N-dimensional
hypercube, there exists a finite number of values of L € (0,1) such that the supremum in (37) is
reached. The same result can probably be expected for generic domains €. But these issues are
open.

4.2 Spectral approximation

In this section, we consider a spectral truncation of the functional J defined by (27), and we define

Jn(Xw) = min /¢j(x)2dx, (55)

1SN

for every N € IN* and every measurable subset w of 2, and we consider the spectral approximation
of the second problem (uniform optimal design problem)

sup Jn (Xw)- (56)
Xw€UL

As before, the functional .Jy is naturally extended to Uy by

Jn(a) = min /Qa(x)qﬁj(x)zdx,

1ISGSN

for every a € Uy. We have the following result, establishing existence, uniqueness and I'-
convergence properties.
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Theorem 10. 1. For every measurable subset w of 1, the sequence (Jn(Xw))Nen= S nonin-
creasing and converges to J(xy)-

2. There holds

lim max Jy(a) = max J(a).
N—+oo qeldy, a€Uy,

Moreover, if (a™)nemw= is a sequence of mazimizers of Jy in Uy, then up to a subsequence,
it converges to a mazximizer of J in Uy for the weak star topology of L.

3. For every N € IN*, the problem (56) has a unique solution x,~, where w € Uy. Moreover,

wh is semi-analytic® and has a finite number of connected components.

Proof. For every measurable subset w of €, the sequence (Jy(xw))ven- is clearly nonincreasing
and thus is convergent. Note that

N

N
Jn(Xw) = inf Zaj/ ¢j(z)? dx ’ ;>0 > aj=1¢,
w )

j=1

J(Xw) = inf Z aj/¢j(x)2dx ‘ a; >0, Z a; =1

JEIN* jEN*

Hence, for every (o) jen+ € £'(R"), one has

N N
Zaj / ¢;(x)*dr > Jn(xw) Zocj,
j=1 v j=1
for every N € IN*, and letting N tend to +oo yields

> oy [ 6@z i i) 3 a,

JEN~ JEN~
and thus Nliril JIN(Xw) < J(xw). This proves the first item since there always holds Jy(xw) =
— T 00

J(Xw)-

Since Jy is upper semi-continuous (and even continuous) for the L weak star topology and
since U, is compact for this topology, it follows that Jy has at least one maximizer ¥ € Uy. Let
a € Uy, be a closure point of the sequence (a),en+ in the L> weak star topology. One has, for
every p < N,

sup J(a) < sup Jn(a) = Jy(a™) < J,(aY),
ac€Ur, acUr
and letting N tend to +oo yields

J(a) < lim Jy(a) < lim J,(aV) = J,(a),
aseuzz (@) < (lim Jy(a™) < lim Jp(a™) = Jp(a)

8A subset w of a real analytic finite dimensional manifold M is said to be semi-analytic if it can be written in
terms of equalities and inequalities of analytic functions, that is, for every « € w, there exists a neighborhood U of
x in M and 2pq analytic functions g;;, hi; (with 1 <4 <p and 1 <j < q) such that

P

wnU=|J{v €U |giy) =0and hij(y) >0, j=1,...,q}.
i=1

We recall that such semi-analytic (and more generally, subanalytic) subsets enjoy nice properties, for instance they
are stratifiable in the sense of Whitney (see [21, 27]).
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for every p € IN*. Since J,(a) tends to J(a) < sup,z, J/(a) as p tends to +oo0, it follows that a is

a maximizer of J in Uz. The second item is proved. B
To prove the third item, let us now prove that Jy has a unique maximizer a®¥ € Uy, of Jy,
which is moreover a characteristic function. We define the simplex set

N
Ay ={a= (Oéj)lgjgN | aj 20, Zaj =1}.
j=1

Note that N
. 2 . 2
(2)?dx = 6;(z)2d
in [ @)oo = win [ ola) Y 05032
for every a € Uy,. It follows from Sion’s minimax theorem (see [75]) that there exists o¥ € Ay

such that (aV, V) is a saddle point of the bilinear functional
N
(a, ) — / a(x) Zajqu(:v)Q dz
Q -
Jj=1

defined on U, x Ay, and

a€ll; “€EAN a€AN qcldy,

N N
max min /Qa(m)jz_:lajgﬁj(m)Qdm: min max/ﬂa(x)jz_:lajgbj(x)zdx
(57)

N N
= max / a(x) Z a§V¢j (z)? dx = / a™ () Z ozj-vqﬁj(:c)z dz.
aclUr JQ - Q i

Jj=1 j=1
We claim that the function x — E;\Ll aév ¢;(z)? is never constant on any subset of positive
measure. This fact is proved by contradiction. Indeed otherwise this function would be constant
on Q (by analyticity). We infer from the Dirichlet boundary conditions that the function z —

N . = c o .
2 i=1 aﬁ-v¢j(x)2 vanishes on €2, which is a contradiction.

It follows from this fact and from (57) that there exists AN > 0 such that o™ (z) = 1 if

Z;.V:l aé\’d)j(mf > AV, and a¥(z) = 0 otherwise, for almost every x € . Hence there exists

wV € Uy, such that a¥ =y ~. Since the eigenfunctions ¢; are analytic in Q (by analytic hypoel-
lipticity), it follows that w'¥ is semi-analytic (see Footnote 8) and has a finite number of connected
components. O

Remark 23. Note that the third item of Theorem 10 can be seen as a generalization of |
Theorem 3.1] and [16, Theorem 3.1]. We have also provided a shorter proof.

)

Remark 24. In the one-dimensional case {2 = (0, 7) with Dirichlet boundary conditions, it can be
proved that the optimal set wy maximizing Jy is the union of N intervals concentrating around
equidistant points and that wy is actually the worst possible subset for the problem of maximizing
Jn+1. This is the spillover phenomenon, observed in [24] and rigorously proved in [17].

We provide hereafter several numerical simulations based on the modal approximation described
previously, which permit to put in evidence some maximizing sequences of sets.

Assume first that = (0,7)?, the Euclidean two-dimensional square. The normalized eigen-
functions of the Dirichlet-Laplacian are

2 .. .
Gjk(T1,22) = p sin(jx1 ) sin(kxs),
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for every (z1,72) € (0,7)%. Let N € N*. We use an interior point line search filter method to
solve the spectral approximation of the second problem sup, ¢, J N (Xw), where

s s
o A 2
IN(xw) = 15}?}1@21\[/0 /0 Xo (@1, X2)Pj 1 (21, X2)" d21 ds.

Some results are provided on Figure 4.
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Figure 4: Q = (0,7)?2, with Dirichlet boundary conditions. Row 1: L = 0.2; row 2: L
3: L = 0.6. From left to right: N = 2 (4 eigenmodes), N = 5 (25 eigenmodes), N =
eigenmodes), N = 20 (400 eigenmodes). The optimal domain is in green.

Assume now that Q = {z € R? | |z|| < 1}, the unit Euclidean disk of R?. The normalized
eigenfunctions of the Dirichlet-Laplacian are a triply indexed sequence given by

| Rok(r) if 7 =0,
P31, 6) = { R?;':(r)Yj 0) ifj>1,

for j € N, k € N* and m = 1,2, where (r, ) are the usual polar coordinates. The functions Y;,(6)
are defined by Y;1(0) = \/LE cos(j6) and Y;2(0) = \/LE sin(j0), and the functions R, are defined by

oy = 3 JiZKT)
Roel) = V2 [
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where J; is the Bessel function of the first kind of order j, and z;; > 0 is the kth-zero of Jj.
The eigenvalues of the Dirichlet-Laplacian are given by the double sequence of —z?k and are
of multiplicity 1 if 7 = 0, and 2 if 7 > 1. In Proposition 1, a no-gap result is stated in this
case. Some simulations are provided on Figure 5. We observe that optimal domains are radially
symmetric. This is actually an immediate consequence of the uniqueness of a maximizer for the
modal approximations problem stated in Theorem 10 and of the fact that Q is itself radially
symmetric.

Figure 5: Q = {x € R? | |#| < 1}, with Dirichlet boundary conditions, and L = 0.2. Optimal
domain for N = 1 (1 eigenmode), N = 2 (4 eigenmodes), N = 5 (25 eigenmodes), N = 10 (100
eigenmodes) and N = 20 (400 eigenmodes).

4.3 A first remedy: other classes of admissible domains

According to Lemma 3, we know that, in the one-dimensional case, the problem (31) is ill-posed
in the sense that it has no solution except for L = 1/2. In larger dimension, we expect a similar
conclusion. One of the reasons is that the set Uy defined by (30) is not compact for the usual
topologies, as discussed in Remark 6. To overcome this difficulty, a possibility consists of defining
a new class of admissible sets, Vi C Uy, enjoying sufficient compactness properties and to replace
the problem (31) with
sup J(xo): (58)
Xw€EVL
Of course, now, the extremal value is not necessarily the same since the class of admissible domains
has been further restricted.
To ensure the existence of a maximizer x,« of (58), it suffices to endow Vy with a topology,
finer than the weak star topology of L°°, for which Vj, is compact. Of course in this case, one has

J(xw+) = max J(xo) < sup J(xw)-
Xw€EVL XwEUL

This extra compactness property can be guaranteed by, for instance, considering some « > 0, and
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then any of the following possibles choices

Vi = {Xw euUr | Pﬂ(w) < a}, (59)

where Pq(w) is the relative perimeter of w with respect to €2,

Vi ={xw €UL | [XullBV(0) <}, (60)
where || - HBV(Q) is the BV (Q)-norm of all functions of bounded variations on € (see for example
[2]), or

Vi = {xw € UL | w satisfies the 1/a-cone property}, (61)

(see Section 3.4, footnote 4). Naturally, the optimal set then depends on the bound « under
consideration, and numerical simulations (not reported here) show that, as a tends to +oo, the
family of optimal sets behaves as the maximizing sequence built in Section 4.2, in particular the
number of connected components grows as « is increasing.

The point of view that we adopted in this article is however not to restrict the classes of possible
subsets w, but rather to discuss the physical relevance of the criterion under consideration. In the
next subsection we rather consider a modification of the spectral criterion, based on physical
remarks.

4.4 A second remedy: weighted observability inequality

We start our discussion from the remark that, in the observability inequality (12), by definition
all modes (in the spectral expansion) have the same weight. It is however expected (and finally,
observed) that the problem is difficult owing to the increasing complexity of the geometry of
highfrequency eigenfunctions. Moreover, measuring lower frequencies is in some sense physically
different from measuring highfrequencies. It seems then relevant to introduce weighted versions of
the observability inequality (12), by considering the inequality

T
w
Chry) () (N6 ) 1 + o1yl </0 /\y(t@)lzdfvdt, (62)

where o > 0 is some weight.

This inequality hold true under GCC Since the norm used at the left-hand side is stronger
than the one of (12), it follows that C ( w) < CT(«W)(XW), for every o > 0.

From this weighted observability 1nequahty (82), we can define as well the randomized observ-
ability constant and the time asymptotic observability constant (we do not provide the details),
and we come up with the following result, which is the weighted version of Theorem 4 and of
Corollary 1.

Proposition 3. For every measurable subset w of €, there holds

w
Cigj a)r(md( ) TJ ( )
and moreover if every eigenvalue of /\ is simple, then

20W) (xw) = Jo (X)),

where

Tola) = inf — AQ o [ e (63)
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It is seen from this proposition that the (initial data or time) averaging procedures do not lead
to the functional J defined by (27) but to the slightly different (weighted) functional J, defined
by (63). Let us now investigate the problem

sup Jo(Xw)- (64)
XwEUL

We will see that the study of (63) differs significantly from the one considered previously. Note that
the sequence (A3 /(g +A3))jen~ is monotone increasing, and that 0 < A7/(0+A7) < A3/(0+A3) < 1
for every j € IN™.

As in Section 3.1, the convexified version of this problem is defined accordingly by

sup Jo(a), (65)
aeﬁL
where
J, inf a1 2d 66
- (a) —jlefllN*(H)\?/Qa(m)%(x) €. (66)

As in Sections 3.1 and 3.2, under the assumption that there exists a subsequence of (gb?)jE]N*
converging to ﬁ in weak star L™ topology (L*°-WQE property), the problem (65) has at least
one solution, and sup, 7, J,(a) = L, and the supremum is reached with the constant function
a=0L.

We will next establish a no-gap result, similar to Theorem 6, but only valuable for nonsmall
values of L. Actually, we will show that the present situation differs significantly from the previous
one, in the sense that, if ﬁi% < L < 1 then the highfrequency modes do not play any role in the
problem (64). Before coming to that result, let us first define a truncated version of the problem
(64). For every N € N*, we define

2

Jox(a) = inf —2d /Q a(2)é5(2)? da. (67)

1<G<N o + ,\]2

An immediate adaptation of the proof of Theorem 10 yields the following result.

Proposition 4. For every N € IN*, the problem

sup J, n(a) (68)
aGﬁL

N

has a unique solution a that is the characteristic function of a set w™. Moreover, W™ is semi-

analytic (see Footnote 8) and has a finite number of connected components.
The main result of this section is the following.

Theorem 11. Assume that the QUE one the base and uniform L°°-boundedness properties hold.

Let L € (%, 1). Then there exists Ng € IN* such that
i
Ja w) — Ja w gi La 69
g o (Xw) = ma Jov(xw) < T < (69)

for every N > Ny. In particular, the problem (64) has a unique solution X ~,, and moreover the
set wNo is semi-analytic and has a finite number of connected components.
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Proof. Using the same arguments as in Lemma 1, it is clear that the problem (65) has at least
one solution, denoted by a°°. Let us first prove that there exists Ng € IN* such that J,(a®>) =

Jo.Ny(a™). Let € € (0, L — ). Tt follows from the L>*°-QUE property that there exists Ny € IN*
such that

+>\2
22
—2 [ a™ () ?dr > L — 70
e R D (70)

for every j > Ny. Therefore,

J-(a*) = inf 7/Qa (x)p;(x)" dx

jEN* o + )\5

22 22
— 3 : Ty o] . 3 00 . 2
= min <1<1jn<f]\[0 P /Qa (x)¢;(z)*d j1>n£ Y / a™(z)¢;(x) dx)
> min (Jo N, (a™), L — &) = Jo N, (a™),

since L —¢ > — )\2 and J, n, (a*) < +>\2 It follows that J,(a*>) = J, N, (a™).

Let us now prove that J,(a>®) = J, n,(a’¥0), where a0 is the unique maximizer of Jo, Ny
(see Proposition 4). By definition of a maximizer, one has J,(a*) = J, n,(a*®) < Jyn,(a’¥?). By
contradiction, assume that J, n, (a>) < Jo N, (a 0) Let us then design an admissible perturbation
ay € Uy, of a® such that J,(a;) > J,(a®), which raises a contradiction with the optimality of a*>
For every t € [0,1], set a; = a®™ + t(a®° — a>). Since J, n, is concave, one gets

JUJVO(a’t) > (1 - t)‘]mNo(a’oo) + tJmNo(a’NO) > JUJVO (aoo)7
for every t € (0,1], which means that

22
/at(x)¢j(x)2dx> inf 7]/ 0 (@)g;(2)2 dx > Jp(a™),  (T1)
Q Q

1<G<No 0 + A

22

inf
1<<No 0 + /\§

for every t € (0, 1]. Besides, since a™¥o(z) —a™(x) € (—2,2) for almost every = € €, it follows from
(70) that

22 22 A2
Hj/\?/ﬂat(:ﬂ)qﬁ(m) dx = U_'_j/\i/QLIOO(CIC)@'(@2 d:c—i—ta _~_J)\? /Q(aNO(x)—aoo(:c))(j)j(x)2 dx

>L—¢e—2t,

2
for every j > Ny. Let us choose t such that 0 < t < (L—g— ﬁ), so that the previous inequality
1
yields
2
N
o+ N\

A2 A2

/Q w(w)oafde > Sl > /Q @i (@) de > T (@), (72)

for every j > Ny. Combining the low modes estimate (71) with the high modes estimate (72), w
conclude that

2

To(ae) = glerlll\g* o+ )\2

/ (:l:)d)j(a:)2 dx > J,(a™),

which contradicts the optimality of a*°
Therefore J, n,(a®) = J,(a*>) = Jy n,(a™?), and the result follows. O
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Remark 25. Under the assumptions of the theorem, there is no gap between the problem (64)
and its convexified formulation (65), as well as before. But, in contrast to the previous results, here
there always exists a maximizer in the class of characteristic functions whenever L is larger than
a threshold value, and moreover, this optimal set can be computed from a truncated formulation
(67) for a certain value of N. In other words, the maximizing sequence (X~ )nen+ resulting from
Proposition 4 is stationary. Here, the high modes play no role, whereas in the previous results all
modes had the same impact. This result is due to the fact that we added in the left hand-side of

2
the observability inequalities the weight ¢ > 0. It can be noted that the threshold value ﬁ,

1
accounting for the existence of an optimal set, is as smaller as o is larger. This is in accordance
with what could be physically expected.

Remark 26. Here, if L is not too small then there exists an optimal set (sharing nice regularity
properties) realizing the largest possible time asymptotic and randomized observability constants.
The optimal value of these constants is known to be less than L but its exact value is not known.
It is related to solving a finite dimensional numerical optimization problem.
2
Remark 27. In the case where L < T);l)\%
1

the problem (64) and its convexified formulation (65). Adapting shrewdly the proof of Theorems 6
or 7 does not seem to allow one to derive a no-gap result. Nevertheless, one can prove using these

A
o+A2 L.

we do not know whether there is a gap or not between

arguments that sup, cy, Jo(Xw) =
Remark 28. We formulate the following two open questions.
e Under the assumptions of Theorem 11, does the conclusion hold true for every L € (0,1)?

e Does the statement of Theorem 11 still hold true under weaker ergodicity assumptions, for
instance is it possible to weaken QUE into WQE?

Remark 29. The QUE assumption made in Theorem 11 is very strong, as already discussed.
It is true in the one-dimensional case but up to now no example of a multi-dimensional domain
satisfying QUE is known.

Anyway, we are able to prove that the conclusion of Theorem 11 holds true in a domain
which is a tensorized version of a one-dimensional domain. Indeed, consider the Euclidean n-
dimensional square € = (0, 7). The normalized eigenfunctions of A are then ¢, (z1,...,2,) =

(%)n/Z [T sin(jrxx), for all (ji,...,jn) € (IN*)", for every z € (0,7). Obviously, 2 does not
satisfy QUE (nor QE), but satisfies WQE, and moreover the eigenfunctions ¢;, . ;, are uniformly
bounded in L>®(2). Let us prove however that the equality (69) holds. More precisely, one has

the following result.

Proposition 5. Assume that Q = (0,7)". There exists Lo € (0,1) and Ny € IN* such that

Jcr w) = Jcr w)s 73
g Jr () = g T () &

for every L € [Lo,1) and every N = Np.

Proof. The proof follows the same lines as the one of Theorem 11. Nevertheless, the inequality
(70) may not hold whenever QUE is not satisfied and has to be questioned. In the specific case
under consideration, (70) is replaced with the following assertion: there exists Ny € IN* such that
for € > 0, there exists Lo € (0,1) such that

Aj

_ Tredn ®(x)pj, .5 (x)?dr > L —e,
U+)\31jn /Qa ( )¢J1~~-Jn( )
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for every L € [Lg,1) and for all (j1,...,j,) € (IN*)" such that min(j1,. .., jn) = Nop. This assertion
indeed follows from the following general lemma.

Lemma 5. Let p € L™(Q, Ry) be such that [, p(x)dx > 0. Then

inf /Qp(m)d)jl.--jn (2)?dx > F (/ﬂ p(x) dx) > 0,

(G5 nsdn)€(INF)"

where F(z) = X(x —sinx) for every x € (0,7) and FI"l=Fo...oF (n times).
This lemma itself easily follows from [18, Lemma 6] (case n = 1) and from an induction
argument. O

We end this section by providing several numerical simulations based on the modal approxima-
tion of this problem for the Euclidean square 2 = (0, 7)2. Note that we are then in the framework
of Remark 29, and hence the conclusion of Proposition 5 holds true. As in Section 4.2, we use
an interior point line search filter method to solve the spectral approximation of the problem
SUpy . cuy, JIN o (Xw), With 0 = 1. Some numerical simulations are provided on Figures 6, where the
optimal domains are represented for L € {0.2,0.4,0.6,0.9} (by row). In the three first cases, the
number of connected components of the optimal set seems to increase with N. On the last row
(L =0.9), the numerical results illustrate the conclusion of Proposition 5, showing clear evidence
of the stationarity feature of the maximizing sequence proved in this proposition.

5 Generalization to wave and Schrodinger equations on man-
ifolds with various boundary conditions

In this section we show how all the results previously derived can be generalized to wave and
Schrédinger equations posed on any bounded connected subset of a Riemannian manifold, with
various possible boundary conditions. For each step of our analysis we explain what are the
modifications that have to be taken into account.

General framework. Let (M, g) be a smooth n-dimensional Riemannian manifold, n > 1. Let
T be a positive real number and 2 be an open bounded connected subset of M. We consider both

the wave equation
Oy = Dgy, (74)

and the Schrédinger equation
’Laty = Ag’]J, (75)

in (0,T) x Q. Here, A, denotes the usual Laplace-Beltrami operator on M for the metric g. If the
boundary 99 of €2 is nonempty, then we consider boundary conditions

By=0 on (0,T) x 09, (76)
where B can be either:

e the usual Dirichlet trace operator, By = y|sq,

e or Neumann, By = where % is the outward normal derivative on the boundary 052,

9y
an |9

e or mixed Dirichlet-Neumann, By = xr,yja0+Xx1, g—z where 990 = TyUT'; with ToNT'; = 0,

|oQ’
and xr, is the characteristic function of I';, ¢ = 0,1,
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Figure 6: = (0,7)2, with Dirichlet boundary conditions. Row 1: L = 0.2; row 2: L = 0.4; row
3: L =0.6.; row 4: L =0.9. From left to right: N = 2 (4 eigenmodes), N = 5 (25 eigenmodes),
N =10 (100 eigenmodes).

e or Robin, By = %I o0 TBYja0, where (3 is a nonnegative bounded measurable function defined
on 99, such that [, 3> 0.

Our study encompasses the case where 9Q = §: in this case, (76) is unnecessary and € is a
compact connected n-dimensional Riemannian manifold. The canonical Riemannian volume on
M is denoted by Vj, inducing the canonical measure dV,. Measurable sets” are considered with
respect to the measure dV.

In the boundaryless or in the Neumann case, the Laplace-Beltrami operator is not invertible
on L2(Q2,C) but is invertible in

L30.0) = (e X@.0) | [ yla)de =0},

In what follows, the notation X stands for the space L3(f2,C) in the boundaryless or in the
Neumann case and for the space L?(€2, C) otherwise. We denote by A = —A, the Laplace operator

9If M is the usual Euclidean space R" then dVy = d is the usual Lebesgue measure.
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defined on D(A) = {y € X | Ay € X and By = 0} with one of the above boundary conditions
whenever 9 # (). Note that A is a selfadjoint positive operator.

For all (y°,y') € D(AY?) x X, there exists a unique solution y of the wave equation (74) in
the space C°(0,T; D(AY?)) N C(0,T; X) such that y(0,-) = y°(-) and d;5(0,-) = y'(-).

Let w be an arbitrary measurable subset of 2 of positive measure. The equation (74) is said to
be observable on w in time T if there exists C'(TW) (Xw) > 0 such that

T
R O W iaermyx < [ [ 1ouwte. ) avy (77)

for all (y°,y') € D(AY/?) x X. This observability inequality holds if (w,T') satisfies the GCC in Q.

A similar observability problem can be formulated for the Schrodinger equation (75). For
every y' € D(A), there exists a unique solution y of (75) in the space C°(0,T; D(A)) such that
y(0,+) = y°(-). The equation (75) is said to be observable on w in time 7 if there exists C’C(FS) (Xw) >0
such that

T
S
8 () 19° By </0 /Iaty(t,x)IQdVg dt, (78)

for every y° € D(A). If (w,T*) satisfies the GCC then the observability inequality (78) holds for
every T > 0 (see [38]). Indeed the Schrodinger equation can be viewed as a wave equation with an
infinite speed of propagation. We refer to [37] for a thorough discussion of the problem of obtaining
necessary and sufficient conditions ensuring the observability inequality, which is a widely open
problem.

Remark 30. These inequalities can be formulated in different ways by adequate choices of the
functional spaces. For instance, the observability inequality (12) is equivalent to

T
w
N By < [ [ e avyar (79)

for all (y°,y') € X x (D(A'/?))’, with the same observability constants. Here the dual is considered
with respect to the pivot space X. For instance if A is the negative of the Dirichlet-Laplacian as it
has been considered previously, then the observability inequality (79) exactly coincides with (12):
we then recover the observability inequality that we considered up to now throughout the paper
for wave equations with Dirichlet boundary conditions.

Similarly, the observability inequality (78) is equivalent to

T
S
Pl < [ [ ) av; (50)
w

for every y° € X.

Spectral expansions. We fix an an orthonormal Hilbertian basis (¢;);en+ of X consisting of
eigenfunctions of A on Q, associated with the positive eigenvalues (A7) en-.

Remark 31. Note that, in the Neumann case or in the case 9Q = (), one has X = L3(9Q).
Otherwise if we would consider X = L2({2) in those cases, then we would have A\; = 0 (simple
eigenvalue) and ¢; = 1/,/]Q[. The fact that in those cases we define X = L2(2) permits to keep
a uniform presentation for all boundary conditions considered here.
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Remark 32. There holds

+o0 too
DA)={y € X | Y M(y,d;)7: < +oo}, D(AY?) ={ye X | > Ny, 4;)72 < +oo}.
j=1 j=1

In the case of Dirichlet boundary conditions, and if Q is C? then one has D(A) = H?(Q,C) N
HY(Q,C) and D(A'Y?) = H}(Q,C). For Neumann boundary conditions, one has D(A) = {y €
H?(Q,C) (%‘{m =0and [,y(z)dz =0} and D(AY?) = {y € H(Q,C) | [,y(z)dz = 0}. In the

mixed Dirichlet-Neumann case (with T # @), one has D(A) = {y € H*(Q,C) | yr, = %‘Fl =0}
and D(AY2) = HY, (9,C) = {y € HN@,C) | yr, = 0} (see .. [3]).

Let us briefly show for the Schrédinger equation how the solutions can be expanded. For every
y° € D(A), the solution y € C°(0,T; D(A)) of (75) such that y(0,-) = y°(-) can be expanded as

+oo )
z) =) e, ()
j=1

where the sequence ()\QCJ)JG]N* belongs to ¢?(C) and is determined in terms of y° by ¢; =
Jo v°( ) dVy, for every j € N*. Moreover, [|y°[|3,4) = ;r:f Ajlej]?. Tt follows that

/ /\@y (t,x)>dV, dt = Z A%kajk/@ Vi (z

7,k=1

with

T _
- i(A2-22 2¢jCk . o L\ ipzoanz
ajk:CjCk/O et k)tdt—)\iiAz&n(()\j/\k)2>6(1 W7

whenever j # k, and a;; = |cj|2T whenever j = k. The observability constant is given by
2
' () = i / / Acjeiti(x)| dV, dt.
7 () <A2cj>eﬂ(c> 0 Z ()] vy
SIS Al =1
Making as in Section 2.3 a random selection of all possible initial data for the Schrédinger equation
(75) leads to define its randomized version as
2
s r =2 iA2
Cé’v r)and(xw) = lnf E / / Z A?ﬁ;cjel)\jtqu (x) d‘/g dt ,

(Ajej)er*(C) o Ju iz
SIS Afles =1

where (6;’ )jen~ denotes a sequence of independent Bernoulli random variables on a probability
space (X, A,P). This corresponds to considering the randomized observability inequality

T
S
Cé)(xw)llyoll%(A)<E</0 /3tyy(t,it)|2dvgdt>,

for every y°(-) € D(A), where y,, denotes the solution of the Schrédinger equation with the random
initial data y°(-) determined by its Fourier coefficients ¢ = B¢
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Theorem 4 then still holds in this general framework, and one has

20440 = Ciac) = T int [ 6,0 v, = T,

for every measurable subset w of €2, where J is defined as before by (27).
The time asymptotic observability constant is defined accordingly for the Schrédinger equation
by

T
1[5 [ 10wyt z)>dV, dt

CP(xp) =inf{ lim —J0 - ’ I |y e D(A)\ {0} }. 81

() =inf im0 G T | € DAY o) (s1)
Corollary 1 holds as well, stating that 2 Céow) (Xw) = Céos )(Xw) = J(xw) whenever every eigenvalue
of A is simple. Note that the spectrum of the Neumann-Laplacian is known to consist of simple
eigenvalues for many choices of Q: for instance, it is proved in [26] that this property holds for
almost every polygon of R? having N vertices.

Main results under quantum ergodicity assumptions. Theorems 6 and 7 are unchanged
in this general framework.

Spectral approximation. It must be noted that the third point of Theorem 10 holds true only
if M is an analytic Riemannian manifold and if 2 has a nontrivial boundary.

This assumption is used at the end of the proof of this theorem, when showing by contradiction
that the function x — Z;V:1 aév ¢;(z)? is never constant on any subset of positive measure. Indeed
at this step we have to distinguish between the different boundary conditions under consideration.

For Neumann boundary conditions, we infer that AQ(Z?]:l ol ¢j(x)?) = 0 on 9 (by continuity),

and therefore Z;vzl aév Ajd;(z)? = 0 on 09, whence the contradiction since the coefficients aév are
nonnegative for every j € {1,---, N} and Zj\]:l aév = 1. For the other boundary conditions, we
infer that the function x — Zjvzl aJN ¢;(z)? vanishes on 2, which is a contradiction.

It follows from this fact and from (57) that there exists AN > 0 such that o™ (z) = 1 if

Zjvzl a§y¢j(x)2 > AV, and a™(x) = 0 otherwise, for almost every = € 2. Hence there exists
w™ € Uy, such that a®¥ = x,,~. Since the eigenfunctions ¢; are analytic in  (by analytic hypoel-
lipticity), it follows that w? is semi-analytic (see Footnote 8) and has a finite number of connected

components.

Numerical simulations. Some results are provided on Figure 7 in the case Q = (0,7)? with

Neumann boundary conditions. They illustrate as well the non-stationarity feature of the maxi-

mizing sequence of optimal sets w? .

Remedy: weighted observability inequalities In the general framework, the weighted ver-
sions (as discussed in Section 4.4) of the observability inequalities (77) and (78) are

T
C4 0 (1060 o +ol8°1) < [ [ 10vwt.a) e i (2)

in the case of the wave equation, and
() !
O ) (18 ben + ol l) < [ [ ot de (83)
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Figure 7: © = (0,7)?, with Neumann boundary conditions. Row 1: L = 0.2; row 2: L = 0.4; row
3: L = 0.6. From left to right: N = 2 (4 eigenmodes), N = 5 (25 eigenmodes), N = 10 (100
eigenmodes), N = 20 (400 eigenmodes).

in the case of the Schrodinger equation, where o > 0.
Note that, in the Dirichlet case, if o = 1 then the inequality (82) corresponds to replacing the
H{} norm with the full H! norm defined by || f||z1(ac) = (Hf”%%(z,C) + ||Vf||%2(97c))1/2.

Clearly, there holds C’g‘;) (o) < C)(x) and C’}Sg (o) < CY¥(x,), for every o > 0.
Proposition (3) remains unchanged, stating that QC;YZ?rand(XW) = ¥ (Xw) = TJs(Xw)

T,o,rand
for every measurable subset w of €, and that 2 CC(,OWU) (Xw) = CC(;?)U (Xw) = Jo(Xw) if moreover every
eigenvalue of A is simple, where J, is defined by (63).

Theorem 11 remains in force as well. Therefore, in the general framework, considering the aver-
aged versions of these weighted observability inequalities constitutes a physically relevant remedy
to ensure the existence and uniqueness of an optimal set

For the completeness let us provide a numerical simulation illustrating this result. In Remark
29, the domain 2 = T" (flat torus) can be considered as well, or we can also consider the domain
Q = (0, 7)™ with Dirichlet boundary conditions, or mixed Dirichlet-Neumann boundary conditions
with either Dirichlet or Neumann condition on every full edge of the hypercube. Then the ¢;’s
consist either or sine or of cosine functions, and it is easy to see that the conclusion of Proposition
5 holds true in these more general cases.

Some numerical simulations are provided on Figure 8 (with the weight o = 1), again clearly
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Figure 8: Q = (0,7)2, with Dirichlet boundary conditions on 9Q N ({x5 = 0} U {22 = 7} and
Neumann boundary conditions on the rest of the boundary. Row 1: L = 0.2; row 2: L = 0.4; row
3: L =0.6; row 4: L =0.9. From left to right: N = 2 (4 eigenmodes), N = 5 (25 eigenmodes),
N =10 (100 eigenmodes).

illustrating the stationarity feature of the maximizing sequence, as soon as L is large enough.

6 Further comments

In Section 6.1, we show how our results for the second problem can be extended to a natural
variant of observability inequality for Neumann boundary conditions or in the boundaryless case.
In Section 6.2 we show how the problem of maximizing the observability constant is equivalent to
an optimal design of a control problem and, namely, to that of controllability in which solutions
are driven to rest in final time by means of a suitable control function. Section 6.3 is devoted to
comment on several open issues.



6.1 Further remarks for Neumann boundary conditions or in the bound-
aryless case

In the Neumann case, or in the case 9 = (), there is a problem with the constants, as explained in
Footnote 31. In this section, let us show that, if instead of considering the observability inequalities
(77) and (78), we consider the inequalities

T
w
N @ oparoe < [ [ (owta)f +lua)l?) v (59

in the case of the wave equation, and

T
s

O el e < | [ (0t + e o)) av a (85)

in the case of the Schrédinger equation (see [56, Chapter 11] for a survey on these problems), then

all results remain unchanged.

Indeed, consider initial data (y°,y') € H*(Q,C) x L?(Q,C). The corresponding solution y
can still be expanded as (14), except that now (¢;)jen+ consists of the eigenfunctions of the
Neumann-Laplacian or of the Laplace-Beltrami operator in the boundaryless case, associated with
the eigenvalues (—)\?)jelN*, with A\; = 0 and ¢; which is constant, equal to 1/4/]Q]. The relation
(16) does not hold any more and is replaced with

+oo
1%y 7 .0 x p200) = Z (20 F1aj* + 22310517 + la; + b; ) - (86)

J=1

Following Section 2.3, we define the time asymptotic observability constant CC()OW) (xw) as the largest
possible nonnegative constant for which the time asymptotic observability inequality

1t
N wcpeirne) < i [ [ (0ol + eoP) avar (s)

holds, for all (y°,y') € HY(Q,C) x L?(Q,C). Similarly, we define the randomized observabil-

ity constant C;‘Qnd(xw) as the largest possible nonnegative constant for which the randomized
observability inequality

T
C:(FV,Qnd(Xw)||(y0, yl)H%[l(Q,C)xLZ(Q,C) <E </o / (\3tyy(t,:1:)|2 + |y (¢, I)|2) dVy dt) (88)

holds, for all °(-) € H*(Q,C) and y!'(-) € L?(2,C), where y, is defined as before by (26). The
time asymptotic and randomized observability constants are defined accordingly for the Schrodinger
equation. We have the following result, showing that we recover the same criterion as before.

Theorem 12. Let w be a measurable subset of 2.

1. If the domain ) s such that every eigenvalue of the Neumann-Laplacian is simple, then

200 (vw) = C) (xw) = T(xw)-

2. There holds 2C\"Y) (Xw) = C’gr)and(xw) =TJ(xXw)-

T,rand
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Proof. Following the same lines as those in the proofs of Theorems 4 and 5, we obtain C’g‘gnd(xw) =
7c ) (x,) = TT, with

in 220422 (s + 10s1) [, 65 () aV,
() (b)E@©)\(0}  S2T°0 (222 (Jay |2 + [b;[2) + |aj + by [2)

Let us prove that I' = %J(Xw). First of all, it is easy to see that, in the definition of T, it
suffices to consider the infimum over real sequences (a;) and (b;). Next, setting a; = p; cos@; and
bj = pjsinb;, since |a; 4 b;|* = p3(1 4 sin(26;)), to reach the infimum one has to take 6; = 7 /4
for every j € IN*. Tt finally follows that

1
'= inf ij/ avy = §J(Xu})~

(pj )EZQ (]R
T pi=1

6.2 Optimal shape and location of internal controllers

In this section, we investigate the question of determining the shape and location of the control
domain for wave or Schrodinger equations that minimizes the L? norm of the controllers realizing
null controllability. In particular, we explain why this optimization problem is exactly equivalent
to the problem of maximizing the observability constant. For the sake of simplicity, we will only
deal with the wave equation, the Schrodinger case being easily adapted from that case. Also,
without loss of generality we restrict ourselves to Dirichlet boundary conditions.

Consider the internally controlled wave equation on € with Dirichlet boundary conditions

atty(t"r) - Agy(t7x) = hw(tax)a ( 71‘) ( ) X Q
y(t,z) =0, (t,z) € [0,T] x 39 (89)
y(0,7) = yo(z)a O0ry(0,z) = yl(x)’ xz €N

where h,, is a control supported in [0,7] X w and w is a measurable subset of 2. Note that the
Cauchy problem (89) is well posed for all initial data (y°,y') € H}(Q,C) x L?(Q,C) and every
h, € LQ((O,T) x €2,C), and its solution y belongs to C°(0,T; H}(Q,C)) N C*(0,T; L*(22,C)) N
C?(0,T; H-1(©,C)). The exact null controllability problem settled in these spaces consists of
finding a control h,, steering the control system (89) to y(T,-) = dy(T,-) = 0. It is well known
that, for every subset w of €2 of positive measure, the exact null controllablhty problem is by duality
equivalent to the fact that the observability inequality

i

T
Ol ) 2a(ccrx 1) < / / 16(t,2)? dV dt, (90)

holds, for all (¢°, ¢') € L%(Q2,C) x H~1(Q, C), for a positive constant C' (only depending on 7" and
w), where ¢ is the (unique) solution of the adjoint system

Oud(t,x) — Dgod(t,xz) =0, (t,z) € (0,T) x Q,
o(t,x) =0, (t,z) € [0,T] x 09, (91)
$(0,2) = ¢°(x), 0;4(0,2) = ¢'(z), z€Q

The Hilbert Uniqueness Method (HUM, see [40, 41]) provides a way to design the unique control

solving the above exact null controllability problem and having moreover a minimal L?((0,7) x
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2, C) norm. This control is referred to as the HUM control and is characterized as follows. Define
the HUM functional 7, by

T
T = 5 [ [ ol avyde— (0 )+ (000 (92)

The notation (-, ) -1 g1 stands for the duality bracket between H=1(Q,C) and H}(Q,C), and the
notation (-, )72 stands for the usual scalar product of L(Q,C). If (90) holds then the functional
J. has a unique minimizer (still denoted (¢°,#')) in the space L%(Q,C) x H(Q,C), for all
(y°,y*) € HF(Q,C) x L?(2,C). The HUM control h,, steering (y°,y') to (0,0) in time 7" is then
given by

ho(t, ) = Xu(2)o(, ), (93)
for almost all (¢, ) € (0,T) x 2, where ¢ is the solution of (91) with initial data (¢°, ¢*) minimizing
Jo- The HUM operator T, is then defined by

I, : H}Q,C)x L*(Q,C) — L2((0,T) x Q,C)
W%y — he
With this definition, it is a priori natural to model the problem determining the best control
domain as the problem of minimizing the norm of the operator I,

[hellL2(0.m)x0.C
HFUJ” = sup { ||(y0 yl)HH(l((Q (Z;( LQEQ o) | (yO’yl) € H(%(Q?(C) X L2(Q7(C) \ {(an)} ’ (94)
) 5 (£,C)x R

over the set U;,. We have the following result (generalizing [48] where similar issues were investi-
gated in the one-dimensional case).

Proposition 6. Let T' > 0 and let w be measurable subset of Q. If C’}W)(Xw) > 0 then

1

C(W)

Tl = ;
T (Xw)

and if CQ(WW)(XW) =0, then ||T,| = +oc.
Proof. Denote by ¢,, the adjoint state solution of (91) whose initial data minimize the functional
Jo- Then ¢, can be expanded as

“+o0
¢w(t,$) — Z (A;;ei)\jt + Bfefi)\jt) d)j(x)v

J=1

where the sequences A = (A4Y)jen+ and B = (BY);en+ belong to £%(C) and are determined in
function of the initial data (¢, ¢} ) minimizing 7. Since [J,, is convex, the first-order optimality
conditions for the problem of minimizing 7, over L?(£2, C) x H~1(Q, C) are necessary and sufficient.
In terms of Fourier coefficients, they are written as A, (A, B) = C, where the operator A, :

(£2(C))? — (£2(C))? is defined by

T 400 ) ) T Nt N
s = [ [ St s nmo@( Sa ) o)
Y g=1

for every j € IN*, with the notation A, (4, B) = (Au (A, B);)jen~, and where

C»:( (5, 9" ) 2 12 )
! Xi{d5: 8 a1,y )
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for every j € IN*. For all (A, B) € [(2(C)]?, one has
+oo 2
> (A 4 Brem Mgy ()| dVy dt,

(Au(A,B), (A, B))e2(c))2 = /OT/W

and it follows that
<AW(A, B), (A, B)>(52(C))2

1A B

Indeed, we obtain the left-hand side inequality by definition of the observability constant. The
right-hand side one is easily obtained, writing that the integral of a nonnegative function over
w is lower than the integral of the same function over €2, which permits to use the orthogonality
properties of the ¢;’s. By duality, we deduce that A, is a continuous symmetric invertible operator
from (£2(C))? to (¢*(C))2. Note that

o™ (v) < <oT.

—1/2
(AHO), O) (2 (my)2 [t Oz )2
IToll = sup 7 = sup 5 :
cerm®)2\{oy  NCITemy)e cee®)2\{oy  NClTe(my):

where Au_,l/2 denotes the square root of the operator A, Setting ¢ = AJI/Q (C), one computes

||<P\|(e2(1R))2 L
Il = e\ (0) 1A% ()12 ) A2y
. e e {Iopleme | e (@) (0}
(£2(R))
frng - w N
inf 4 Aol ezam) | g (12(R))2\ {0} o™ (xw)
1T 2 g2
The conclusion follows. O

This result illustrates the well known duality between controllability and observability, but says
moreover that, for the optimal design control problem, one has

-1
mfwm<wp®mm0 , (96)

Xw€U Xw€EUL

and therefore the problem of minimizing ||T,|| is equivalent to the problem of maximizing the
observability constant over Uy. As discussed previously in the article, it is more relevant to
maximize rather the randomized observability constant Cr rand(Xw) defined by (24) (see Section
2.3). If doing so then all considerations done in this article can be applied to the optimal design
control problem as well. The interpretation of this problem in terms of random initial data is
however not clear (see next section).

6.3 Open problems

We provide here a list of open problems.

Optimal shape and location of internal controllers with random initial data. In Section
6.2 we have obtained the relation (96), establishing a clear duality relation between the problem of

optimal control domain and the problem of optimal observation domain, in their classical, deter-
ministic versions. In this article we have defined the randomized observability constant Cr rand (Xw)
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and shown its relevance in the problem of shape and location of sensors. However the problem of
maximizing Cr rand (Xw) does not have a nice interpretation in terms of controlling to zero random
initial data in time T'. The reason is that the randomization procedure does not commute with the
operator A, defined by (95). Actually the set of random initial data that can be steered to 0 in
a random way is the image through A, of the random laws used in the randomization procedure.
Since this mapping is viewed as an infinite dimensional symmetric full (i.e., non sparse) matrix, it
is not clear then to show that the resulting random laws have nice probability properties.

An alternative way to model the problem of optimal shape and location of internal controllers
is to use, instead of the HUM approach, the well known moment method, which leads to define a
relevant problem that can be interpreted in terms of random initial data (see the ongoing work[50]).

Optimal stabilization domain. Similar important problems can be addressed as well for sta-
bilization issues. When considering the wave equation with a local damping,

Oy = DNy — 2kXwYt, (97)

with k& > 0, one can address the question of determining the best possible damping domain w (in
the class Uy, ), achieving for instance (if possible) the largest possible exponential decay rate. This
question was investigated in [23] in the one-dimensional case, on the base of the two following
remarks. First, if k& tends to 400 then the decay rate tends to 0 (overdamping phenomenon). Sec-
ond, it is proved in [15] that (in 1D), if the set w has a finite number of connected components and
if k& is small enough, then at the first order the decay rate is equivalent to kinfjen- fw sin? (jx) dx.
Therefore, in this 1D case, for k small maximizing the decay rate is then equivalent to the problem
(31) in 1D (however, with the additional restriction that the subsets w consist only of a finite union
of intervals and thus cannot be any measurable sets).

Note that, even in 1D, for k not small and not too large the problem of maximizing the decay
rate over Uy, is a completely open problem. As is well known, the exponential stability property
of (97) is equivalent to the observability property of the corresponding conservative wave equation
(1) (see [20]), and by duality this problem is similar to the problem of maximizing the (classical)
observability constant C'T(FW) (Xw) over Uy, (see below).

In the multi-dimensional case the situation is much more intricate. Indeed, as proved in [39], the
exponential decay rate 7(w) does not coincide in general with the negative of the spectral abscissa
S(w): it is the minimum of this real number and of a geometric quantity giving an account for the
average time spent by geodesics crossing w (see [22] for a study of this geometric quantity in the
square). It is an interesting open problem to study the maximization of this geometric criterion
over the set Uy,.

It can be noted that the fact that 7(w) < —S(w) and that in multi-D the strict inequality
may hold, is similar to the fact, underlined in Remark 4, that C;W)(Xw) < Cé"m;;nd(xw) and that
the strict inequality may hold. As recalled above, the exponential stability ﬁroperty of (97) is
equivalent to the observability property of the corresponding conservative wave equation (1), and
establishing such an equivalence in a randomized context (in the sense of what we developed in
Section 2.3) is an open problem. This could give another way to model the optimal stabilization
domain, and to make precise some possible relations between O’EFI,/Qnd(Xw) and the abovementioned
geometric quantities.

Maximization of the deterministic observability constant. As discussed in Section 2.3,
the problem of maximizing the (usual) deterministic observability constant CT(FW) (Xw) (defined by
(13)) over Uy, is open, and is difficult due to the crossed terms appearing in the spectral expansion.
Although less relevant than the one we considered throughout, this problem is however natural and
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interesting. It can be noted that the convexified version of this problem, consisting of maximizing
Cj(ww) (a) over Uy, obviously has some solutions, and again here the question of a gap, and the
question of knowing whether the supremum is reached over Uy, (existence of a classical optimal
set) are open. Even a truncated version of this criterion is an open problem, that is, the problem
of maximizing the lowest eigenvalue of the Gramian matrix whose element row j and column k is
fw ¢j(x)¢r(x) dr. An interesting problem consists of investigating theoretically or numerically the
sequence of maximizing subsets for this truncated problem.

Even in 1D, this problem is open.

As it was noted in Remark 1, in the one-dimensional case and if T is an integer multiple of 27
then the crossed terms disappear and the Gramian matrix is diagonal, but if 7" is not an integer
multiple of 27 then owing to the crossed terms the functional cannot be handled easily. Similar
difficulties due to crossed terms are encountered in the open problem of determining the best
constants in Ingham’s inequality (see [28]), according to which, for every v > 0 and every T > 27”,
there exist C1(T,v) > 0 and Cy(T,~) > 0 such that for every sequence (A, )nen+ of real numbers
satisfying |[A\,41 — An| = 7 for every n € IN*, there holds

T
T Yl < [ |3 ae
0

nelN* nelN*

2

dt < Co(T,7y) Y lanl,

nelN*

for every (a,)nen+ € €2(C) (see, e.g., [29, 31, 33, 59]).

Dependence on time. Instead of maximizing the observability constant over Uz, for a fixed
time 7', one can think of running the optimization also over the time.

Before setting this problem, let us make the following remark in 1D. Setting Q = [0, 7] (with
Dirichlet boundary conditions), it is clear that if T > 27 then the observability inequality (12) is
satisfied for every subset w of positive measure. However 27 is not the smallest possible time for
a given specific choice of w. For instance if w is a subinterval of [0, 7] then the smallest possible
time for which the observability inequality holds is 2 diam((0, 7) \ w). The question of determining
this minimal time is nontrivial if, instead of an interval, the set w is a fractal set. We settle the
following open problem (not only in 1D but also in general): given L € (0,1), does there exist a
time T, > 0 such that the observability inequality (12) holds for every w € Uy, and every T > T1,7

Having in mind this open question, it is interesting to investigate the problem of maximizing
the functional (x,,T) — Cr(x.) over the set Uy x (0,400). Similar questions arise can as well
be addresses when the unknown (,,,7") runs over a class which is not necessarily cylindrical but
is rather a measurable space-time set having a certain fixed measure. For such problems note that
the existence of a maximizer is easy to derive when considering their convexified version, but then
the question of proving a no-gap result is nontrivial and has not been studied. Also, it is interesting
to investigate whether or not the supremum is reached in the class of classical sets.

Nonexistence of an optimal set. In Section 4.1, using harmonic analysis we have proved
that, in 1D, the supremum of .J over Uy, is reached if and only if L = 1/2 (and there is an infinite
number of optimal sets). In the Euclidean square the question is open, however if the supremum
is considered only over sets to Cartesian products of 1D subsets, then it is reached if and only if
L e{1/4,1/2,3/4}. In general, the question of the existence of an optimal set is completely open,
and we expect that the supremum is not reached for generic domains 2 and generic values of L.
This conjecture is in accordance with the observed increasing complexity of the sequence of
optimal sets w® solutions of the problem of maximizing the truncated spectral criterion Jy. An
interesting question occurs here. In the (certainly) nongeneric case where an optimal set does exist
(like in 1D for L = 1/2 where there is an infinite number of optimal sets), what is the limit of
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the sets w’V? More precisely, can it happen that w’¥ converges to a set (if it does) which is of
fractal type? The study of [49], done for fixed initial data, indicates that it might be the case. The
question is however completely open.

Note that the spillover phenomenon was proved to occur in 1D for L sufficiently small, according
to which the optimal set w" maximizing Jy is, loosely speaking, the worst possible one for the
problem of maximizing Jy41. Proving this fact in a more general context is an open problem.

Besides, note that Jy is defined as a truncation of the functional J, keeping the N first modes.
It would be interesting to consider similar optimal design problems running for instance over
initial data whose Fourier coefficients satisfy a uniform exponential decreasing property. Another
possibility is to truncate the Fourier series and keep only the modes whose index is between two
integers N7 and Nos.

Weighted observability inequalities as a remedy. In view of providing a physically relevant
remedy to the problem of nonexistence of an optimal set, in Section 4.4 we introduced a weighted
version of the observability inequality, which is however equivalent to the classical one. We proved
that, if L > A\?/(0 + A?) then there exists a unique optimal set, which is moreover the limit of the
stationary sequence of optimal set w® of the truncated criterion. Our simulations indicate that this
threshold in L is sharp. It is an open question to investigate the situation where L < \2/(0 + \}):
is there a gap or not between the problem and its convexified version? Is the supremum over Uy,
reached or not?

Quantum ergodicity assumptions. Theorem 6 has been established under WQE on the base
and uniform L°° boundedness assumptions. Up to our knowledge, WQE on the base is a new
concept and has not been investigated in mathematical physics. It is interesting to study whether
this property frequently occurs or not. The uniform L* boundedness is a strong assumption but
as already discussed nothing is known on this property in general. We recall that it is conjectured
that flat tori are the sole compact manifolds without boundary for which this property holds true.

In Theorem 7, we assumed the stronger QUE on the base, and uniform L? boundedness. As
discussed in Section 3.3, except in 1D up to now no domain is known where these assumptions
hold true. The property QUE is attached to a well known conjecture in mathematical physics.
With the example of the disk (Proposition 1), we have seen that these assumptions are however
not sharp.

Theorem 11, providing the existence of an optimal set for the weighted version of the problem,
holds true under L*°-QUE on the base. The example of the hypercube (Proposition 5) shows that
these assumptions are not sharp.

Weakening the sufficient assumptions of these three results is a completely open problem.

Besides of that, note that, concerning the quantum ergodicity assumptions that we used, and
the discussion we made in Section 3.3, we used the current state of the art in mathematical physics.
The model that we used throughout, based on averaging either with respect to time or with respect
to random initial data, leads to a spectral criterion whose solving requires a good knowledge on
quantum ergodicity properties which are in the current state of the art not well known. The
question is open to look for more robust models in which the solving of an optimal design problem
would not require such a fine knowledge of the eigenelements. For instance it is likely that the
microlocal methods used in [3] in order to provide an almost necessary and sufficient condition for
the observability to hold (the Geometric Control Condition) in terms of geometric rays, should
allow one to identify classes of domains where the constant is governed by a finite number of modes.

In brief, it is an open question to model the optimal design problems under consideration
(possibly, based on the notion of geometric rays as discussed above) in such a way that the resulting
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problem will be both physically and mathematically relevant, and will not require, for its solving,
such strong sufficient assumptions than the ones considered here.

Other models. In this article we have modeled and studied the optimal observability problem
for wave and Schrodinger equations. It can be noted that, using the randomization procedure
or the time averaging procedure that we have introduced on the observability inequalities, the
spectral criterion J considered throughout can be derived as well for many other conservative
models, however then nothing is known on the probability measures p; = d)? dx where the ¢;
are the eigenfunctions of the underlying operator. As we have seen, even for the Laplacian the
quantum ergodicity properties are widely unknown, and then the situation is even more open for
other operators.

For parabolic models the situation seems to go differently. The randomization leads to a
weighted spectral criterion similar to J,, but where the sequence of weights o; is an increasing
sequence tending to +oo (whereas, here, it was an increasing sequence converging to 1). Because
of that, in contrast to the results of the present article, it is expected that an optimal set does
exist, only under slight assumptions. We refer to [50] for results in that direction.

Also, for such other models, the previous raised questions — optimal shape and location of
internal controllers; maximization of the deterministic observability constant — can be as well
settled as open problems.

A Appendix: proof of Theorem 5 and of Corollary 1

For the convenience of the reader, we first prove Theorem 5 in the particular case where all the
eigenvalues of A are simple (it corresponds exactly to the proof of Corollary 1) and we then give
the generalization to the case of multiple eigenvalues.

From (14), we have y(t,z) = Zjﬁ y;(t, x) with

yi(t,x) = (a;e"™" + bje ") (). (98)

Without loss of generality, we consider initial data (y°,y*) € L?(Q,C) x H~1(©2,C) such that
1(%°, )13 2, -1 = 2, in other words such that > jen( ajl? +|bj|?) = 1 (using (16)).
Setting

T 2 T
t,2)|2 da dt
Sr(ab) = Lo Lo Wb O dvdt _ 1 / / ly(t, @) 2 dadt,
T ||(y Y )||L2><H—1 2T )y Ju

we write for an arbitrary N € IN*,

1 T N 2 +o0 2
S (a, b) :T// Syta)| +| Y wito)
0 Jw j=1 k=N+1
N “+o0
+2Re | Y yi(tx) > ge(ta) | | ddt. (99)
j=1 k=N+1

Using the assumption that the spectrum of A consists of simple eigenvalues, we have the following
result.

Lemma 6. With the notations above,

T N 2 N
. 1 Z Z 2 2 2
TETOO T /0 /w =1 yilt,w)) dwdi = P (lag™ 1651 /u.) 93(x)" de.

1
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Proof of Lemma 6. Since the sum is finite we can invert the infimum (which is a minimum) and
the limit. Now, we write

f// it 2) dxdt:;iajj/@ ii / (2)on () da
= =i

where o, is defined by (18). Using (19) and (20), we get

s
i 35— i l? 4 (b |2
Tirfw T laj | + ;1%

for every j € IN* and, using that the spectrum of A consists of simple eigenvalues,

4 maxlgj,ng(/\j, >\k')

k| < 7 (100)
! AT = AR
whenever j # k. The conclusion follows easily. O
Let us now estimate the remaining terms
+oc
/ / yi(t,x)| dadt
W lj=N+1
and
1 T N —+o00
= T?Re / / Zyj(t,x) Z Uk (t,x) da dt
0 Jw = k=N+1
of the right-hand side of (99).
Estimate of R. Using the fact that the ¢;’s form a Hilbertian basis, we get
2
R < —// y]tm) dx dt
j=N+1
1 —iAjt 2
= = Z |aj it —bje Nt dt
j=N+1"0
oo 2i\; T
1 1 — et —1
= 7 X (100l sl - e (ah, )
j=N+1 J
and finally
1 =
2 2
R< (1+W> > (laj* +1b;). (101)

j=N+1
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Estimate of ¢. Using (19) and the fact that A; # A, for every j € {1,---,N} and every
k> N + 1, we have

2
0] < (ST + S5+ 557+ 51),

with

sV = Z Z a_akeiuj—xk)%sin ((Aj—Ak)€>/¢j(x)¢k(x)dx,

j=1k=N+1 Aj—

Sév _ Z Z » +)\ ajbke i+ T gip (()\ +Ak)§)/¢j(x)¢k(x)dx ,

j=1k=N+1

T T
Sé\f _ Z Z A +)\ b ape” i(\j +)\k)7 : <()\]+)\k)2 ‘/w(i)j((];)qsk(m)df s

j=1k=N+1

N “+o0

)
= 0 % poptbe @5 (- w7y ) [ oo,

Let us estimate S¥. We write

Sy = 3 / v RICYESYOL- T
1= Zaj ¢j(z) Z m 2 sin ()‘j_)\k)§ o () dz|

j=1 @ k=N+1

and, using the Cauchy-Schwarz inequality and the fact that the integral of a nonnegative function
over w is lower than the integral of the same function over €2, one gets

9 1/2

dzx

+oo _
[

X — Mk

=2 F gip <(>\ —Ap)= >¢k( )

j=1 k=N+1

+o0 anl? . T 1/2
z:: aj( > ()\j|_k|/\k)2$m2 <(/\j_>\k)2)> :

k=N+1

< Sl /

The last equality is established by expanding the square of the sum inside the integral, and by
using the fact that the ¢’s are orthonormal in L?(Q). Since the spectrum of A consists of simple
eigenvalues (assumed to form an increasing sequence) we infer that Ay — A; > Any1 — Ay for all
je{l,---,N} and k > N + 1, and since Z % laj)* < 1, it follows that

1/2
N
N < 2
ST < )\NZ|%|< Z |ak| ) < Mo: -

SNt — ot AN+1

The same arguments lead to the estimates

N N N
SVg—, 8Vg—, 8g——m—,
2 AN 3 AN 4 AN+1 — AN
and therefore,
4N 1 1
< — | —+ > . 102
o1 T ()\N ANF1 — AN (102)
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Now, combining Lemma 6 with the estimates (101) and (102) yields that for every € > 0, there
exist N, € N* and T'(e, N.) > 0 such that, if N > N, and T > T'(e, N.), then

N
- Z(|aj|2 + |bj\2)/ ¢j(x)2 de| < e
j=1 w

As an immediate consequence, and using the obvious fact that, for every n > 0, there exists
N,, € N* such that, if N > N, then

+o0o N
Z(|<lj|2 + |bj\2)/ Z (Jaj > + |bj|? /¢>j(x)2 dz| <,
7=1 w Jj=1

one deduces that
“+o0

(i (@ b) = 3 (o + ) [ o) d.

j=1 w
At this step, we have proved the following lemma, which improves the statement of Lemma 6.

Lemma 7. Denoting by a; and b; the Fourier coefficients of (y°,y') defined by (15), there holds

+oo

Tgrm/ [ e dzar =3 (a4 ) [ 602 .

Jj=1
Corollary 1 follows, noting that
+oo
inf a42—|—b:2/ dx—mf/(b
el LI [ e de = int [0
S50 (lay P +bs1?)=1
To finish the proof, we now explain how the arguments above can be generalized to the case of
multiple eigenvalues. In particular, the statement of Lemma 1 is adapted in the following way.

Lemma 8. Using the previous notations, one has

2 2

T
TEIEOO%/O LZy(tm dx dt = Z/ > Madi(@)| +| D Aebeo(x dz.

AU ¥\ |keI(N) keI(N)
ASKAN

Proof of Lemma 8. Following the proof of Lemma 6, simple computations show that

2
17 S
f/o /w;yj(t,z) dedt = TZ Z a]k/% Vor(x

A€U (j,k)eI(N)?

=3 zaﬂc/@ Jon(a

()\ p)eU? jEI(N)
AAp  kel(p)

59



where

lim % _ ajdk + bji)k if (j7 k) S I()\)2,
T=400 T 0 if j € I(\), k€ I(n), with (\,u) € U? and X # p.
The conclusion of the lemma follows. O

Noting that the previous estimates on R and ¢ are still valid and that

2 2

inf Z/w D adr(@)| +| Y begw(a)| | de

(a5).(b;)€L%(C)
S (Jas 2415 )=1 Xy REI) keI)

2

= inf /wz Z ek (z)| do,

= inf
(en)gen= €6 (©)Jw Nt lker(n)
2ok2 ekl

Theorem 5 follows.
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