
HAL Id: hal-00755273
https://hal.science/hal-00755273v1

Submitted on 20 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data and Instruction Uniformity in Minimal
Multi-Threading

Teo Milanez, Fernando Magno Quintão Pereira, Wagner Jr Meira, Renato A.
Ferreira, Caroline Collange, Fernando Magno, Quintão Pereira, A Renato

To cite this version:
Teo Milanez, Fernando Magno Quintão Pereira, Wagner Jr Meira, Renato A. Ferreira, Caroline Col-
lange, et al.. Data and Instruction Uniformity in Minimal Multi-Threading. 24th International Sym-
posium on Computer Architecture and High Performance Computing, Oct 2012, New-York, NY,
United States. pp.270-277, �10.1109/SBAC-PAD.2012.21�. �hal-00755273�

https://hal.science/hal-00755273v1
https://hal.archives-ouvertes.fr

Data and Instruction Uniformity in Minimal Multi-Threading ∗

Teo Milanez Caroline Collange Fernando Magno Quintão Pereira
Wagner Meira Jr. Renato A. Ferreira

Departamento de Ciência da Computação Universidade Federal de Minas Gerais, Brazil

{milanez,sylvain.collange,fernando,meira,renato}@dcc.ufmg.br

September 12, 2012

Abstract

Simultaneous Multi-Threading (SMT) is a hardware
model in which different threads share the same in-
struction fetching unit. This model is a compro-
mise between high parallelism and low hardware cost.
Minimal Multi-Threading (MMT) is a technique re-
cently proposed to share instructions and execution
between threads in a SMT machine. In this paper
we propose new ways to explore redundancies in the
MMT execution model. First, we propose and evalu-
ate a new thread reconvergence heuristics that han-
dles function calls better than previous approaches.
Second, we demonstrate the existence of substantial
regularity in inter-thread memory access patterns.
We validate our results on the four data-parallel ap-
plications present in the PARSEC benchmark suite.
The new thread reconvergence heuristics is, on the av-
erage, 82% more efficient than MMT’s original recon-
vergence method. Furthermore, about 69% to 87% of
all the memory addresses are either the same for all
the threads, or are affine expressions of the thread
identifier. This observation motivates the design of
newly proposed hardware that benefits from regular-
ity in inter-thread memory accesses.

1 Introduction

Resource sharing at the hardware level is an alterna-
tive that computer architects have been adopting to
decrease the costs of highly parallel processors. One
form of resource sharing is known as minimal multi-

threading [1], or MMT for short. An MMT-based
architecture organizes threads into groups that share
the instruction fetch logic, and might share execution

∗This work was partially supported by CNPq, CAPES,

FAPEMIG and InWEB.

units. Each thread keeps its own program counter
(PC). At fetch time, the hardware chooses heuristi-
cally the next PC to serve. If the chosen PC is the
same across several threads, then all of them receive
an instruction to execute. If this instruction has the
same input values, then the computations are com-
bined as well, so the instruction is issued once on
behalf of all participating threads.

Minimal Multi-Threading, being a recent notion,
still offers room for improvements. In particular,
Long et al.’s original formulation uses an intricate re-
convergence heuristics, which, in the words of the au-
thors themselves, has impact on the hardware’s per-
formance [1]. This heuristics is expensive because it
looks up the program counter’s history every execu-
tion cycle. On the other hand, the previous alterna-
tive, Quinn’s algorithm, which exists since the late
80’s [2], cannot couple well with function calls, as we
show in this paper. In addition to these shortcomings,
MMT, in its original conception, does not explore any
form of redundancies in memory access patterns. The
reason for this limitation is simply the fact that re-
searchers have not yet demonstrated that such redun-
dancies are common in the Single Program, Multiple
Data (SPMD) scenario. Nevertheless, this type of
redundancy has been already acknowledged, in the
GPU world, as a promising way to save hardware
space and to reduce energy consumption [3].

The objective of this paper is to advance the re-
search on minimal multi-threading, a task that we
accomplish in two ways. First, we propose a new
heuristics to keep threads synchronized. Second, we
provide an analysis of memory access patterns of typi-
cal applications to motivate new designs of data fetch-
ing units. We draw the conclusions that we present
in this paper from the simulation of the four data-
parallel applications found in the PARSEC bench-
mark suite [4]. We analyze only the data-parallel ap-

plications because in this case threads execute the
same program, following Darema’s SPMD model [5].
Hence, we have more opportunities to share instruc-
tions among threads. These experiments are mean-
ingful because the PARSEC programs are remarkably
large and complex, and they give us execution traces
with billions of x86 instructions.

Our first contribution is a new thread recon-
vergence heuristics that improves on Quinn’s algo-
rithm [2]. Keeping threads as much synchronized
as possible is important because if two separate
threads read different program counters, then they
will compete for the shared pipeline front-end, caus-
ing pipeline stalls and/or increased energy consump-
tion. Quinn’s reconvergence criterion gives priority to
the thread with the minimum program counter. This
strategy was proposed to reconverge SIMD programs
on distributed computers, and today it is used to
synchronize threads in GPU-like architectures [6, 7].
However, it requires the compiler and linker to stati-
cally lay out the binary code of each function accord-
ing to the function call graph, complicating the build
process and preventing its use on existing applica-
tions. Our new heuristics gives priority to the thread
with the minimum stack-pointer. In case of ties, it
then uses the minimum PC criterion. We call it min-
SP/PC. Our experiments show that the min-SP/PC
heuristics is 82% more effective than min-PC.

Our second contribution is an analysis of the mem-

ory access patterns in the MMT setting. Such pat-
terns describe the relative arrangement of addresses
in the load and store instructions used by each thread.
We have identified three different access patterns:
uniform, affine and scattered, which we shall define
in Section 4. As we show in that section, we have
observed substantial regularity in inter-thread access
patterns. These forms of regularity have not been
previously noticed because Long et al. [1] considered
multi-process workloads, whereas we are analyzing
multi-thread programs sharing a single address space.
This fact motivates the adoption, in the MMT world,
of recent memory coalescing hardware mechanisms
that have been proposed for GPUs [3]. For instance,
if all the threads read data from the same location,
or from regularly spaced locations, then the hard-
ware can bring all this data to registers with only one
cache access. Patterns in this fashion happen in over
70% of all the memory accesses. On the other hand,
if simultaneous memory accesses are randomly scat-
tered, then we lose inter-thread locality, and access
fragmentation puts an increased pressure on caches.

MMT in Perspective: Instruction and data shar-
ing are not new ideas in the computer architecture
world. In the mid nineties Tullsen et al. intro-
duced the notion of Simultaneous Multi-Threading

(SMT) [8, 9]. In the SMT execution model, several
threads share the same superscalar pipeline, includ-
ing the front-end fetching and decoding instructions.
In this way, the hardware is better equipped to avoid
control and data hazards; hence, keeping the many
stages of its pipeline always in use. In 2008 Gonzalez
et al. brought in the concept of Thread Fusion, as
a way to decrease the energy consumption of SMT
machines [10]. Thread fusion consists in giving the
same instruction to different threads, whenever they
have the same program counter. In order to recon-
verge threads, Gonzalez et al. would require the com-
piler to insert barriers at control independent pro-
gram points. Long et al. [1] extended Gonzalez’s work
by introducing the idea of minimal multi-threading.
They have designed a hardware mechanism that re-
converges threads without the intervention of a com-
piler. Notice that whereas SMT implies resource mul-
tiplexing, MMT strives for resource sharing. That is,
in the former case, only one thread can use a given
resource at a given time. In the latter, several threads
cooperatively use a resource to perform the same ac-
tion, promising higher energy reductions than what
could be achieved with independent thread execution.

2 Methodology

The Benchmarks: In this paper we chose to ana-
lyze the four data-parallel applications present in the
PARSEC benchmark suite:

• Blackscholes: option pricing with Black-
Scholes Partial Differential Equation (PDE).

• Bodytrack: computer vision application that
tracks a human body with multiple cameras
through an image sequence.

• Fluidanimate: fluid dynamics for animation
purposes with Smoothed Particle Hydrodynam-
ics (SPH) method.

• Swaptions: application that uses the Heath-
Jarrow-Morton (HJM) framework to price a
portfolio of swaptions.

These four programs are data-parallel applications
implemented in C, on top of the pthreads library. Fig-
ure 1 shows some characteristics of these applications.

2

Benchmark S C D
Blackscholes 27,025 0 276,503,954
Bodytrack 71,597 62,682 1,136,165,901
Fluidanimate 32,812 6,291 6,375,221,686
Swaptions 31,246 0 1,972,213,570

Figure 1: Characteristics of the benchmarks. (S)
Number of x86 instructions in the program text. (C)
Instructions in critical section executed by a single
thread. (D) Number of instructions executed in a
single-threaded processor with simsmall input.

We have compiled them to a 64-bit x86 architecture;
hence, by “number of instructions” we mean “number
of x86 instructions”. We obtain the dynamic traces,
i.e., the number of executed instructions, by feeding
each application with its simsmall input [4, p.73].

Simulation: We have instrumented the binary pro-
grams using the Pin framework1. All the traces that
we produce in this paper are obtained from the exe-
cution of these instrumented programs.

The Available Thread-Level Parallelism
(TLP). The more opportunities for parallel execu-
tion an application presents, the more effectively it
can be handled by an MMT-based hardware. The
four applications that we have chosen are highly
parallel. To estimate TLP, we consider an ideal
multi-threaded machine executing the instructions
of each thread in sequence with a throughput and
latency of 1 cycle, and with unlimited TLP. Figure 2
plots how often we had n, 1 ≤ n ≤ 16 threads active
at each execution cycle. Critical sections prevent us
from having all the threads always active. Swaptions
is the most “parallel” application. Its regularity
makes it possible to have all the 16 available threads
simultaneously active in 99.08% of all the execution
cycles of the application. Bodytrack and Fluidani-
mate are less parallel, as we could expect from the
number of instructions in critical sections shown in
Figure 1. In Bodytrack, for instance, only the main
thread is active in 44% of all the execution cycles.

3 Instruction Sharing

We are interested in maximizing the amount of com-
mon instructions executed by independent threads.
In other words, we want to keep these threads as

1http://www.pintool.org/

!"#$!!%

&"#$!'%

("#$!'%

)"#$!'%

*"#$!'%

+"#$!'%

'"#$!'%

&% (%)% *% +% '% ,% -% .% &!% &&% &(% &)% &*% &+% &'%

!"#$%&&'(")&*

!"#$!!%

&"#$!'%

("#$!'%

)"#$!'%

*"#$!'%

+% &% ,% (% -%)% '% *% .% +!% ++% +&% +,% +(% +-% +)%

!"#$%&'()*

!"#$!!%

&"#$!'%

("#$!'%

)"#$!'%

*"#$!'%

+"#$!'%

&% (%)% *% +% ,% -% '% .% &!% &&% &(% &)% &*% &+% &,%

!"#$%&#'%()*

!"!#$!!%

&"!#$!'%

("!#$!'%

)"!#$!'%

*"!#$!'%

+"!#$!*%

+"&#$!*%

+"(#$!*%

+% &% ,% (% -%)% '% *% .% +!% ++% +&% +,% +(% +-% +)%

!"#$%&'!(

Figure 2: Histogram showing the number of cycles in
which n threads were active, where 1 ≤ n ≤ 16.

much synchronized as possible. We define the maxi-
mal sharing problem as follows:

Definition 3.1 Maximal Sharing

Instance: an alphabet of opcodes Σ = {σ0, . . . ,

σm}, plus a set {t0, t1, . . . , tn} of finite strings rang-

ing on Σ, e.g., ti[j] = σk.

Problem: find the shortest string T ranging on Σ,

with the following properties:

1. totality: for any i, j, there exists x such that

ti[j] = T [x].

2. ordering: for any i, u, v, there exists x, y, such

3

that if T [x] = ti[u], T [y] = ti[v], and v > u, then

y > x.

Each ti represents the sequence of instructions exe-
cuted by a thread; hence we call it an execution trace.
We consider two versions of maximal sharing: off-
line and on-line. The off-line version of this problem
is equivalent to the shortest common supersequence

problem, and it is NP-complete [11]. However, we
are more interested in the on-line version of maximal
sharing. In this case, each trace t is seen as a stack,
with top at t[0]. We can only perform one of two
operations on each ti: “inspect top ti” and “pop ti”.
The first operation lets us see the opcode at the top of
ti. The second removes the opcode from the top of ti,
and places it at the top of T . Notice that we are not
allowed to store opcodes before inserting them into T .
Due to this last restriction, plus the fact that traces
might contain random sequences of opcodes, there is
no algorithm that solves on-line maximal sharing op-
timally [12]. Therefore, this problem must be solved
by heuristics.

3.1 Heuristics for Instruction Sharing

While simulating the PARSEC programs, we have ex-
perimented with two different instruction schedulers,
which were based on the the min-PC and the min-
SP/PC heuristics. Before presenting numbers, it is
interesting to discuss why threads diverge, and how
each heuristics reconverges them. Figure 3 illustrates
the min-PC heuristics. We assume that the hard-
ware supports two threads executing simultaneously
the same instruction. The program in Figure 3(a)
is written in a C-like language with a special key-
word, fork, that passes a function to a freshly cre-
ated thread. Figure 3(b) provides a static view of
the code that will be executed by each thread. In
this rather artificial example thread zero will follow
the “then” path after the branch, whereas thread one
will follow the “else” path. Thus, the execution di-
verges after the test at instruction 3. In face of a
divergence, the min-PC heuristics keeps feeding the
thread that is reading instructions from the lowest
program counter. The rational behind this heuris-
tics is that the next instruction that is not controlled
by a branch is normally located below that branch in
the program code. In this example shared instruction
fetching resumes at instruction six.

Unfortunately, the min-PC heuristics might take
too long to reconverge threads in code that contains
function calls. Figure 4 illustrates this phenomenon.

In this new example function bar has been laid out
before function foo in the program text. The call
to foo happens inside a conditional when only one
thread is active. Because foo is located after bar,
thread one will finish bar before thread zero has a
chance to execute foo. In this case, the resulting
execution trace is two instructions longer than that
sequence seen in Figure 3(c).

Computer architectures usually provide a stack

pointer (SP) register to track the data manipulated
by the current active function. We propose to use
this value, combined with the program counter, to
reconverge threads. Priority is always given to the
thread with the lowest string “SP:PC” in lexico-
graphic order. Assuming a conventional downward-

growing stack, this policy gives priority to the most
inward call nesting level. In this way, if a function f

calls a function g, threads that must execute code in
g receive priority over the threads still executing f .
This heuristics provides optimal reconvergence in the
example of Figure 4. We show empirically that this
heuristics fits well the existing SPMD applications
expected in the minimal multi-threading scenario.

Figure 5 compares these two heuristics. The mea-
sure of efficiency, in this case, is the total number
of instructions executed by an MMT-enabled hard-
ware. The shorter the length of the instruction trace,
the more efficient is the heuristics. For instance, in
Figure 4(c), the min-PC heuristics produces a trace
with ten instructions. On the other hand, the min-
SP/PC heuristics would produce a trace with eight
instructions, because it would be able to share pro-
gram counters 4 and 5. As we can see in the charts of
Figure 5, the min-SP/PC heuristics is more efficient.
On the average, it produces traces 33.3% shorter
for blackscholes, 33.8% shorter for bodytrack, 33.1%
shorter for fluidanimate and 46.7% shorter for swap-
tions, given two threads in flight. With 16 threads
the difference is even larger: 74.1%, 74.4%, 75.3%
and 74.4% respectively. The min-SP/PC heuristics
produces remarkably good results for very regular ap-
plications. For example, for swaptions, over 98% of
all the instructions issued with 16 threads are shared
among all the threads.

4 Memory Access Patterns

Data locality is an important player in the develop-
ment of high-performance programs. The literature
traditionally considers two types of locality in sequen-
tial applications: spatial and temporal [13]. Data

4

0: t = i * i

1: return t

2: (i % 2 == 0)?

3: a = foo(i)

4: goto 6

5: a = i+1

6: a = 42 * a

7: print(a)

2: (i%2 == 0)?

3: a = foo(i)

0: t = i * i

1: return t

4: goto 6

•

6: a = 42 * a

7: print(a)

2: (i%2 == 0)?

•

•

•

•

5: a = i+1

6: a = 42 * a

7: print(a)

int foo(int i) {

 int t = i * i;

 return t;

}

int bar(const int i) {

 if (i % 2 == 0) {

 a = foo(i);

 } else {

 a = i + 1;

 }

 a = 42 * a;

 print(a);

}

for (int id = 0; id < 2; id++) {

 fork<bar(id)>;

}

Thread 0 Thread 1

(a) (b) (c)

Figure 3: A example where the min-PC heuristics is able to reconverge optimally divergent threads.

0: (i % 2 == 0)?

1: a = foo(i)

2: goto 4

3: a = i+1

4: a = 42 * a

5: print(a)

2:0: (i%2 == 0)?

2:1: a = foo(i)

•

•

•

1:6: t = i * i

1:7: return t

2:2: goto 4

2:4: a = 42 * a

2:5: print(a)

2:2: (i%2 == 0)?

•

2:3: a = i+1

2:4: a = 42 * a

2:5: print(a)

•

•

•

•

•

Thread 0 Thread 1

(a) (b) (c)
6: t = i * i

7: return t

int bar(const int i) {

 if (i % 2 == 0) {

 a = foo(i);

 } else {

 a = i + 1;

 }

 a = 42 * a;

 print(a);

}

int foo(int i) {

 int t = i * i;

 return t;

}

for (int id = 0; id < 2; id++) {

 fork<bar(id)>;

}

Figure 4: Example where the min-PC criterion fails to reconverge divergence threads, but the min-SP/PC
does it optimally. In part (c) we prefix each instruction with its stack pointer plus program counter.

in close memory locations have good spatial local-
ity. And data that is likely to be accessed often
within short periods of time have good temporal lo-
cality. Recently, Meng et al. have introduced the
notion of inter-thread locality in the context of the
Single Instruction, Multiple Data (SIMD) execution
model [14]. If two separate threads simultaneously
read data from nearby memory cells, then these ac-
cesses are said to have good inter-thread locality. In
this case, a single memory access might provide data
to several different threads. The importance of inter-
thread locality is clear in the realm of graphics pro-
cessing units, given that memory access coalescing is,
according to many authors, the most important op-
timization in this environment [15, 16, 17].

In this paper we look into the potential of inter-
thread locality in the context of minimal multi-
threading. With this objective, we define three types
of memory access patterns: uniform, affine and scat-
tered. If we have n active threads executing a mem-
ory access instruction such as a load, e.g., v = ∗a, or a
store, e.g., ∗a = v, then we assume that each thread i

reads from, or writes to an address ai. Given this as-
sumption, we say that a memory access is uniform if
a0 = a1 = . . . = an. If Tid is an integer that uniquely
identifies a thread, then we say that the address is
affine if ai = c1 × Tid + c2, for any two integer con-
stants c1 and c2. Finally, if none of these patterns
applies, then we say that the access is scattered.

Current multi-threaded hardware has not been de-

5

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

-./01234.52" -46789/01" :;<6/=<>/85" 2?/@A4=2"

%"B395/62" '"B395/62" +"B395/62" $)"B395/62"

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

-./01234.52" -46789/01" :;<6/=<>/85" 2?/@A4=2"

%"B395/62" '"B395/62" +"B395/62" $)"B395/62"

Figure 5: (Left) Instruction trace reduction produced by the min-PC heuristics. (Right) Instruction trace
reduction produced by the min-SP/PC heuristics.

signed to benefit from uniform and affine memory
patterns: independent on the target address, n simul-
taneous threads require n accesses to memory ports.
However, there exist proposals for new hardware de-
signs that proceed differently [3]. In these processors
a uniform address causes only one access to the data
cache. Likewise, if n threads execute an affine access,
e.g., a load v = ∗(c1 ×Tid + c2), then a set of n mem-
ory cells, spaced by c1 words, and starting at base
address c2 is accessed at once. In case c1 is equal
to the word size, accesses are contiguous and can be
combined into a single memory transaction.

Counting Access Patterns. Figure 6 shows how
often each pattern is found in our simulation of the
PARSEC data-parallel applications. We run tests for
settings with 2 and 16 threads, and we only count
patterns when we have the full number of threads ac-
tive. It is only meaningful to distinguish affine from
scattered access if we have more than two threads in
flight. Otherwise we classify every non-uniform mem-
ory access as scattered. Notice that we could just as
well have classified them as affine. When we enable
16 threads, we find an encouraging amount of regular-
ity in the memory access patterns. For instance, we
have observed 1.65 million memory accesses during
the execution of bodytrack. 44.23% of these accesses
are uniform, and 30.78% are affine. Swaptions gives
us the largest number of accesses: 65.64 million, of
which 73.12% use affine addresses.

The large quantity of affine accesses that we have
observed is mostly due to the fact that we use a cus-
tomized loader to allocate stack frames. Local vari-
ables created during function calls, such as t in Fig-

ure 3, are placed in allocation units called activation

records. These records are stored in a space called the
stack frame. The core idea of the loader is very sim-
ple: we allocate the same amount of space for each
thread to create its stack frame, and we make sure
that the stack of activation records always starts at
the beginning of this region. In this way, the local
variables accessed by each thread are equally spaced.

Access Distance. If the data simultaneously ac-
cessed by active threads is within a short distance of
each other, then it may fit into the same cache line.
In this case, if the data is already cached, then every
thread scores a hit. Otherwise, it can be brought to
the cache with just one trip to a lower level in the
memory hierarchy. Figure 7 shows the average max-
imum distance between the data accessed by all the
threads, considering the setting with 16 threads in
flight. Each number, e.g., 0 to 63, is the base-2 loga-
rithm of the maximum distance between any two ad-
dresses given sixteen simultaneous memory accesses.

In general we have observed very long distances
between the addresses used by threads when simulta-
neously processing load and store instructions. Fig-
ure 7(Left) shows the maximum distances between
affine addresses. The longest distance that we have
observed in this case is 230. Long spaces between
affine accesses are common because each thread re-
ceives 226 bytes of memory to allocate their stack
frames. Thus, local variables stored in the stack
are likely to be spaced 226 bytes. Closer addresses
are found in affine accesses of data stored either in
static memory, or, more usually, in the memory heap.
Blackscholes and bodytrack use more these memory

6

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*!"#

+!"#

,!"#

$!!"#

-./01234.52# -46789/01# :;<6/=<>/85# 2?/@A4=2#

B=<C49># DE=5# F0/G5956#

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*!"#

+!"#

,!"#

$!!"#

-./01234.52# -46789/01# :;<6/=<>/85# 2?/@A4=2#

B=<C49># DE=5# F0/G5956#

Figure 6: (Left) Access patterns with two active threads. (Right) Access patterns with 16 active threads.

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*!"#

+!"#

,!"#

$!!"#

-./01234.52# -46789/01# :;<6/=<>/85# 2?/@A4=2#

B<28#C#!#D#*# B<28#C#+D$(# B<28#C#$)D&$#

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*!"#

+!"#

,!"#

$!!"#

-./01234.52# -46789/01# :;<6/=<>/85# 2?/@A4=2#

B<28#C#+D$(# B<28#C#$)D&$# B<28#C#&%D)&#

Figure 7: (Left) Maximum access distance among affine addresses. (Right) Maximum access distance among
scattered addresses.

regions. 27.98% of the memory accesses that hap-
pen during the execution of blackscholes are within
a memory block less than 215 bytes long. The pro-
portion of these accesses in bodytrack is even larger:
63.92%. We have observed very close addresses only
in fluidanimate. 2.75% of the memory accesses per-
formed by this benchmark are within blocks less than
27 bytes long. Figure 7(Right) shows the maximum
distance among scattered accesses. In this case, we
have observed accesses distant as much as 240 bytes
away. Furthermore, we have not observed very close
accesses, e.g., within blocks up to 27 bytes long.

We speculate that these large spaces between ad-
dresses are common because the target benchmarks
have not being coded with memory coalescing in
mind. The PARSEC benchmarks are meant to run in
traditional CPUs, and in this case inter-thread local-

ity is not at a premium. On the contrary, close inter-
thread locality would be harmful in the context of
multi-core platforms with coherent private caches, by
causing false sharing of cache lines. Collange has ob-
served a substantially different behavior in GPGPU
applications [18]. In that case, inter-thread proximity
is much more common, as this type of locality con-
tributes notoriously to performance improvements.

5 Conclusion

In this paper we have advanced the research on min-
imal multi-threaded hardware in two different di-
rections. First, we have proposed a new thread
synchronization heuristics: min-SP/PC, and com-
pared it with min-PC, a heuristics originally proposed

7

for SIMD languages. Our empirical evaluation has
demonstrated that min-SP/PC is remarkably more
efficient to keep threads synchronized. We have also
studied the memory access patterns typical of data-
parallel multi-threaded applications, and have found
a substantial amount of regularity between concur-
rent threads. This regularity is a further motivation
for new hardware designs that have been proposed in
the literature, but are yet to be manufactured. The
paper brings in one negative result: data accessed by
different threads tend to be distant in memory. This
distance makes it difficult to take benefit from spatial
locality in inter-thread memory accesses. It suggests
the data layout of call stack memory should be re-
considered in the context of inter-thread locality. We
leave this new study as future work.

References

[1] G. Long, D. Franklin, S. Biswas, P. Ortiz,
J. Oberg, D. Fan, and F. T. Chong, “Minimal
multi-threading: Finding and removing redun-
dant instructions in multi-threaded processors,”
in MICRO. IEEE, 2010, pp. 337–348.

[2] M. J. Quinn, P. J. Hatcher, and K. C. Jour-
denais, “Compiling C* programs for a hyper-
cube multicomputer,” SIGPLAN Not., vol. 23,
pp. 57–65, 1988.

[3] B. W. Coon and J. E. Lindholm, “System and
method for managing divergent threads in SIMD
architecture,” 2008, US Patent 7353369.

[4] C. Bienia, S. Kumar, J. P. Singh, and K. Li,
“The PARSEC benchmark suite: characteriza-
tion and architectural implications,” in PACT.
ACM, 2008, pp. 72–81.

[5] F. Darema, D. A. George, V. A. Norton, and
G. F. Pfister, “A single-program-multiple-data
computational model for epex/fortran,” Parallel

Computing, vol. 7, no. 1, pp. 11–24, 1988.

[6] G. Diamos, A. Kerr, H. Wu, S. Yalamanchili,
B. Ashbaugh, and S. Maiyuran, “SIMD re-
convergence at thread frontiers,” in MICRO,
2011.

[7] Y. Lee, R. Avizienis, A. Bishara, R. Xia,
D. Lockhart, C. Batten, and K. Asanovic, “Ex-
ploring the tradeoffs between programmability
and efficiency in data-parallel accelerators,” in
ISCA. ACM, 2011, pp. 129–140.

[8] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Si-
multaneous multithreading: maximizing on-chip
parallelism,” SIGARCH Comput. Archit. News,
vol. 23, pp. 392–403, May 1995.

[9] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M.
Levy, J. L. Lo, and R. L. Stamm, “Exploiting
choice: instruction fetch and issue on an imple-
mentable simultaneous multithreading proces-
sor,” SIGARCH Comput. Archit. News, vol. 24,
pp. 191–202, May 1996.

[10] J. González, Q. Cai, P. Chaparro, G. Magklis,
R. Rakvic, and A. González, “Thread fusion,”
in ISLPED. ACM, 2008, pp. 363–368.

[11] P. Barone, P. Bonizzoni, G. D. Vedova, and
G. Mauri, “An approximation algorithm for the
shortest common supersequence problem: an ex-
perimental analysis,” in SAC. ACM, 2001, pp.
56–60.

[12] A. Borodin and R. El-Yaniv, Online computation

and competitive analysis. Cambridge University
Press, 1998.

[13] J. L. Hennessy and D. A. Patterson, Computer

Architecture: A Quantitative Approach, 3rd ed.
Elsevier, 2003.

[14] J. Meng, D. Tarjan, and K. Skadron, “Dy-
namic warp subdivision for integrated branch
and memory divergence tolerance,” in ISCA.
ACM, 2010, pp. 235–246.

[15] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S.
Stone, D. B. Kirk, and W. mei W. Hwu, “Opti-
mization principles and application performance
evaluation of a multithreaded gpu using cuda,”
in PPoPP. ACM, 2008, pp. 73–82.

[16] Y. Yang, P. Xiang, J. Kong, and H. Zhou, “A
GPGPU compiler for memory optimization and
parallelism management,” in PLDI. ACM,
2010, pp. 86–97.

[17] A. Lashgar and A. Baniasadi, “Performance in
GPU architectures: Potentials and distances,”
in WDDD. IEEE, 2011, pp. 75–81.

[18] C. Collange, D. Defour, and Y. Zhang, “Dy-
namic detection of uniform and affine vectors in
GPGPU computations,” in HPPC. Springer,
2009, pp. 46–55.

8

