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Ratzeburger Allee 160, 23538 Lübeck, Germany
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Abstract. Respiratory motion a is major source of uncertainty in radio-
therapy. Current approaches to cope with it – like gating or tracking tech-
niques – usually make use of external breathing signals, interpreted as
surrogates of internal motion patterns. Due to the complex nature of in-
ternal motion, a trend exists toward the application of multi-dimensional
surrogates. This requires the development and evaluation of appropriate
correspondence models between the surrogate data and internal motion
patterns. We suggest using a multi-linear regression (MLR) and exploit
the Log-Euclidean Framework to embed the MLR within a correspon-
dence model yielding diffeomorphic estimates of motion fields of internal
structures. The framework is evaluated using 4D CT data of lung tu-
mor patients and different surrogates (spirometry, diaphragm tracking,
monitoring chest wall motion). Further, the application of the framework
for incorporating surrogate-based information about breathing variations
into the process of dose accumulation is illustrated.
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1 Introduction

Respiratory motion is a major source of error in conventional radiation therapy
(RT) of thoracic and abdominal tumors. Current approaches to cope with it
usually rely on the use of external breathing signals that are easy and fast to
acquire. This holds on the one hand for 4D CT imaging, during which image
or projection data are sorted (“binned”) to different breathing states based on
breathing signals like spirometry records or abdominal belt measurements; for
dose delivery, on the other hand, analogue technical devices are reported to be
used to steer gated dose delivery or tumor tracking techniques [1, 2].
These breathing signals usually provide only a surrogate of the object of inter-
est, which is the respiratory motion of internal structures (tumor/clinical target,
organs at risk); they are therefore also referred to as surrogates (of the internal
motion). Due to the three-dimensional nature of internal motion patterns, intra-
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and inter-cycle motion variability like, e.g., phase shifts between movements of
different structures, the reliability of simple one-dimensional breathing signals
is, however, more and more considered to be problematic, and a trend toward
the use of multi-dimensional surrogates can be observed [3]. This requires the
development and evaluation of correspondence models between the breathing
signals and internal motion patterns that especially take advantage of the multi-
dimensional structure of the surrogates.
The use of multi-dimensional signals and the complexity of motion patterns of
internal structures, usually described by non-linear transformations or displace-
ment fields, naturally suggests the use of multi-variate statistics. A straight-
forward approach for defining a correspondence model would therefore be a
multi-linear regression (MLR); a patient-specific correspondence between surro-
gate data and internal motion patterns could then be trained using, e.g., a 4D CT
image sequence of the patient and information about internal motion extracted
from them on the one hand and surrogate measurements corresponding to the in-
dividual image frames on the other hand. In this case, the needed representation
of the internal motion information would usually be given by transformations or
displacement fields estimated by non-linear registration of the image frames of
the 4D CT data [4].
In the context of motion estimation of internal structures it is, however, consid-
ered to be a natural choice to restrict the transformations to diffeomorphisms, as
these ensure that “connected sets remain connected, disjoint sets remain disjoint,
smoothness of anatomical features [...] is preserved, and coordinates are trans-
formed consistently” [5]. This cannot be guaranteed when applying a standard
MLR correspondence model – neither for interpolating internal motion fields
from a surrogate measurement being in the range of the surrogate data available
for the MLR training phase, nor for extrapolation purposes. Now, being placed in
that context, the motivation of our contribution is three-fold. First, we propose to
exploit the Log-Euclidean framework, which in the last years has been proven to
be an efficient way for performing statistics on diffeomorphic transformation [6,
7], for definition of a diffeomorphic MLR-based correspondence model. Second,
we present a first evaluation of the diffeomorphic MLR framework, including a
comparison of the capabilities of three different but typical types of breathing
signals when applied as regressors/surrogates: spirometry, tracking the motion of
the diaphragm, and tracking chest wall motion. Third, we demonstrate the use
of such a framework in the context of 4D dose calculation. The last part aims at
incorporation of information about motion variations as provided by breathing
signals into the process of dose accumulation during RT treatment planning.

2 Theoretical Background

During definition of the MLR-based correspondence model we assume the pa-
tient’s anatomy to be represented by a 4D CT image sequence (Ij)j∈{1,...,nph}, Ij :

Ω ⊂ R3 → R, with j denoting the breathing states. Designating w.l.o.g. the state
j = 1 as a reference breathing state, the motion of the anatomical and patholog-
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ical structures will then be described by transformations ϕj = id+ uj : Ω → Ω,
which – in the sense of image registration – maximize similarity/minimize dissim-
ilarity of I1 and (Ij ◦ ϕj) with respect to additional smoothness requirements for
the transformations. Being interested in a general diffeomorphic motion estima-
tion framework, we choose a diffeomorphic registration scheme to compute the
transformations ϕj ; the scheme is described in Section 2.1. Following, the theory
behind the MLR framework is explained in Section 2.2. Finally, in Section 2.3,
the integration of the MLR-based correspondence model into the process of dose
accumulation is detailed.

2.1 Diffeomorphic Registration and the Log-Euclidean Framework

Diffeomorphic transformations can be modeled as endpoints of the evolution
equation over unit time t ∈ [0, 1],

∂

∂t
φt (x) = v (φt (x) , t) with φ0 (x) = x, (1)

with v : Ω × [0, 1]→ R3 being sufficiently smooth velocity fields parameterizing
the flow φ : Ω × [0, 1] → Ω. Thus, a diffeomorphic transformation ϕ : Ω → Ω
can be computed by

ϕ (x) = φ1 (x) = φ0 (x, 0) +

∫ 1

0

v (φt (x) , t) dt (2)

[8]. The time-dependence of the velocity fields leads, however, to time and mem-
ory consuming algorithms in the context of image registration [5]. To avoid these
problems, stationary velocity fields can be considered instead. Then, as part of
the Log-Euclidean Framework, it can be exploited that the set of diffeomor-
phisms Diff (Ω), together with the function composition, exhibits a Lie group
structure. For a diffeomorphism parameterized by a stationary velocity field v, v
is part of the tangential space TidDiff (Ω) at the neutral element of Diff (Ω) [6].
Further, TidDiff (Ω) and Diff (Ω) are connected by the so-called group exponen-
tial exp : TidDiff (Ω)→ Diff (Ω), with the paths φt = exp (tv) being one param-
eter subgroups of Diff (Ω). Based thereon, Arsigny et al. proposed to rephrase
the transformation of (2) by

ϕ (x) = φ1 (x) = exp (v (x)) , (3)

with the group exponential being efficiently computed using the scaling-and-
squaring algorithm [6].
The parameterization (3) also states the basis of the PDE-driven non-linear reg-
istration framework applied in the work at hand to compute the sought trans-
formations ϕj describing the respiratory motion of internal structures in the 4D
image sequences. Let therefore I1 serve as reference image and Ij with j be-
ing an arbitrary breathing state denoting the target image, we search for the
transformation ϕj = exp (vj) that minimizes the energy functional

J [vj ] = D [I1, Ij ◦ ϕj ] + αS [vj ] ; (4)
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D represents a dissimilarity measure and S a smoothness term/regularizer. The
Euler Lagrange equations can then be formulated as

f (x, ϕj (x)) + αA[vj ] (x) = 0, x ∈ Ω, (5)

with f being a force-term corresponding to the dissimilarity measure and A as
a linear differential operator associated to S. Here, a diffusion regularization
approach (i.e. A = ∆) and the so-called active Thirion forces, also referred to as
normalized SSD forces, are applied; for details see, e.g., [9].

2.2 Multi-linear Regression for Surrogate-based Motion Estimation

With the transformations (ϕj)j∈{1,...,nph} and velocity fields (vj)j∈{1,...,nph} be-

ing computed by diffeomorphic registration, we further assume that surrogate
measurements (ξj)j∈{1,...,nph}, ξj ∈ Rnsur have been acquired simultaneously to

the CT image data (or subsequently simulated). Then, the idea of the diffeomor-
phic MLR-based correspondence model is to apply a regression to estimate the
relationship between the surrogate-signals ξj (regressors) and the velocity fields
vj (regressands) instead of the motion fields uj or transformations ϕj . Interpret
the velocity fields vj and the surrogate data ξj as random variables Vj and Zj ,
for which the motion information is written in a single column. Let the individual
random variables further be combined within the matrices V := (Vc

1, . . . ,V
c
nph

)

and Z := (Zc
1, . . . ,Z

c
nph

) with Vc
j = Vj − V̄ and Zc

j = Zj − Z̄ as the centered
versions of Vj and Zj . The multi-variate multi-linear regression can then be
phrased as the estimation of the relationship

V = BZ (6)

by

B = arg min
B′

tr
[
(V −B′Z) (V −B′Z)

T
]

= VZT
(
ZZT

)−1
. (7)

Thus, B represents an ordinary least squares (OLS) estimator between the sur-
rogate data ξj ≡ Zj and the velocity fields vj and Vj , respectively.

With the OLS estimator B computed, for any measurement ξ̂ ≡ Ẑ a correspond-

ing velocity field v̂ can be derived by V̂ = V̄ + B
(
Ẑ− Z̄

)
and resorting the

entries of V̂ wrt. the structure of v̂. Exploiting the Log-Euclidean framework, the
sought diffeomorphic transformation is finally to be calculated by ϕ̂ = exp (v̂j).

2.3 Application of the MLR-based Correspondence Model to
Situation-adapted Dose Accumulation

In the context of 4D dose calculation, dose accumulation aims at assessing dosi-
metric effects of respiratory motion for a generated (3D) treatment plan. Given a
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4D image sequence (Ij)j∈{1,...,nph} of the patient, a standard dose accumulation

for voxels x ∈ Ω of the reference image reads

D4D (x) =

nph∑
j=1

wj (Dj ◦ ϕj) (x) (8)

with D4D : Ω → R+ being the sought accumulated dose; in that, the dose con-
tributions Dj : Ω → R+ (3D dose calculated as resulting for the given treatment
plan and the CT image Ij) are often equally weighted, i.e. wj = 1/nph.
It is obvious that neither motion variations nor effects due to the interplay of or-
gan motion and short delivery times of single irradiation fields can be assessed by
(8) [10]. Thus, going one step further toward accurate dose accumulation, in this
contribution we propose to start the dose accumulation process with a patient-
specific surrogate signal measurement and the corresponding OLS estimator B
as computed by (7). Additionally, we assume the beginning time and the dura-
tion of each irradiation field of the treatment plan to be known and denoted by
tk,0 and tk,end (k = 1, . . . , nfields). Then, instead of a weighted summation over
the dose distributions Dj , we now sample the surrogate signal equidistantly in
time and rephrase the dose accumulation problem as follows:

D4D (x) =

nfields∑
k=1

∫ tk,end

tk,0

Ḋk (x (t) , t) dt

≈
nfields∑
k=1

∑
l

Ḋk (ϕ̂l (x) , tl)∆t

≈
nfields∑
k=1

∆t

tk,end − tk,0

∑
l

Dk (ϕ̂l (x) , tl). (9)

Ḋk (ϕ̂l (x) , tl) is the dose rate for field k at time tl belonging to the sampling
point l, which is evaluated at the position of voxel x ∈ Ω of the reference CT at
time tl; Dk (ϕ̂l (x) , tl) is the corresponding dose with ϕ̂l being estimated based
on the surrogate measurement at tl and the OLS estimator B (cf. Section 2.2).

3 Experiments and Results

Our experiments were based on 4D CT images of 10 lung tumor patients (10-14
breathing states, spatial resolution 320×320×270 voxels with an isotropic spac-
ing of 1.5 mm). The image binning was grounded on spirometry records, which
were also considered as a first example of a (one-dimensional) breathing surrogate
during evaluation of the MLR correspondence model. For evaluation purposes we
further identified the domes of the left and the right hemi-diaphragm and inter-
preted the corresponding displacements

{
u1
(
xdia

)
, . . . , unph

(
xdia

)}
as a second

type of surrogate measurements (nsur = 2·3). As a third type of breathing signal
we simulated a laser-based tracking of lifting/raising of chest wall points within
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Table 1. Landmark-based target registration errors and tumor propagation errors
(evaluated based on the tumors’ centers of mass, COM), obtained for the diffeomorphic
MLR-based estimation of inner lung motion as part of the leave-out tests and listed for
the different surrogate types (mean± standard deviation for the ten patients considered;
EE/ME = end-/mid-expiration, EI/MI = end-/mid-inspiration).

Landmark-based Tumor COM
Target-Registration-Error [mm] distance [mm]

Motion Estimation EI → EE EI → MI EI → ME EI → EE

No motion estimation 6.8± 1.8 4.9± 1.2 2.5± 0.6 6.9± 6.1
Intra-patient registration 1.6± 0.2 1.6± 0.1 1.5± 0.2 0.9± 0.5

Diffeomorphic MLR framework; surrogate = . . .

spirometry 2.0± 0.3 2.0± 0.3 1.8± 0.3 1.5± 0.9
diaphragm motion 2.1± 0.4 1.8± 0.2 1.7± 0.3 1.7± 0.9
chest wall motion, sternum 4.7± 1.4 2.6± 0.9 2.4± 0.7 4.7± 4.3
chest wall motion, line 2.1± 0.4 1.9± 0.2 1.8± 0.2 1.4± 1.0

the 4D CT images by a ray tracing approach (ray direction: anterior-posterior).
In a first run, a point laser was simulated with the laser origin placed over the
sternum; in the second run, we used several (≈ 150) points lying on line (di-
rection: superior-inferior), aiming at simulating the use of a line laser. For each
surrogate and the state of end-inspiration (EI) as reference state, we evaluated
the accuracy of the MLR correspondence models in leave-out tests. For eval-
uating “extrapolation” capabilities, all breathing states but the states of and
around end-expiration (EE), i.e. in total (nph − 3) states, are used for training
the OLS estimators; the surrogate values ξEE were then applied to estimate the
transformation ϕ̂EE . The accuracy of the motion estimation was evaluated by
determining a target registration error based on manually defined corresponding
landmarks (70 landmarks per patient and breathing phase). Additionally, the
accuracy of a model-based tumor segmentation propagation between EI and EE
was quantified considering manual tumor segmentations as ground truth data.
Interpolation capabilities were analogously analyzed for motion estimation be-
tween EI and mid-inspiration (MI) and mid-expiration (ME).
The corresponding results are listed in Table 1. Referring to the accuracy of the
breathing surrogates, no significant differences can be observed between spirom-
etry, tracking diaphragm motion, and combining motion information of several
chest wall points (i.e. simulating the line laser). In comparison thereto, the accu-
racy is significantly decreased when tracking the raising/lifting of only a single
chest wall point (here: the sternum); this demonstrates the potential of combin-
ing motion information at least for tracking chest wall motion. The values listed
in Table 1 were further compared with analogous results obtained by a standard
non-diffeomorphic MLR framework (i.e. modeling correspondences directly be-
tween the motion fields uj and the surrogate data ξj). It turned out that no
significant differences were apparent wrt. the accuracy of the motion estima-
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Fig. 1. Illustration of differences between the MLR-based situation-adapted and stan-
dard dose accumulation results. Left: spirometry record, acquired during 4D CT im-
age acquisition. The interval III denotes the spirometry values represented by the 4D
CT data. The periods I and II are the intervals considered for demonstration of the
situation-adapted dose accumulation. Right: dose-volume-histograms for the dose ac-
cumulation approaches and the clinical target volume CTV.

tion. However, especially in the case of extrapolation, the motion fields obtained
by non-diffeomorphic correspondence models featured a series of singularities –
which were not existing for the diffeomorphic framework.
To further demonstrate the application of the diffeomorphic MLR-based corre-
spondence model for dose accumulation purposes, a 3D IMRT treatment plan
was generated for a patient with a clinically relevant tumor motion amplitude
of 12 mm (10 mm isotropic margin between clinical and planning target vol-
ume CTV and PTV; planning phase: MI; treatment planning system: CMS XiO
v.4.3.3). Accumulated dose distributions were computed using standard dose
accumulation according to (8) and applying the surrogate-based accumulation
scheme as derived in (9). The surrogate-based dose accumulation was based on
the spirometry data recorded during the 4D CT image acquisition, see Figure 1
(left); we selected both a period of the record with little variance of the distribu-
tion of the local maxima (dose accumulation for a “regular breathing situation”;
period I in the figure) and a period of high variance of the local maxima (“ir-
regular breathing situation”, period II).
The dose-volume-histograms for the CTV and the different dose distributions are
shown in Figure 1 (right). It becomes obvious that standard dose accumulation
based on only the 4D CT image information underestimates the risk of CTV un-
derdosages due to respiratory motion when compared with the surrogate-based
dose accumulation and especially the “irregular breathing situation”. It should,
however, be noted that for the case at hand the irregularities in the spirometry
records are very pronounced compared to other patients. Further, the discrep-
ancies between standard and situation-adapted dose accumulation are conse-
quences of both breathing signal variations and the interplay effects mentioned
in Section 2.3. The example case gives, nevertheless, an intuitive illustration of
the principle and the idea behind the situation-adapted dose accumulation.
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4 Conclusions

Current RT techniques to cope with respiratory motion usually rely on the use
of breathing signals, also referred to as surrogates (of internal motion patterns).
Taking into account a trend toward multi-dimensional surrogates, we applied
the Log-Euclidean framework for defining a diffeomorphic MLR-based corre-
spondence model and, considering different types of breathing signals, presented
a first evaluation of its accuracy. Further, its use for incorporating surrogate-
based information about breathing motion variations into 4D dose calculation
has been illustrated. At this, the focus of the contribution lay on the theoreti-
cal concept of both the diffeomorphic MLR-based correspondence modeling and
the surrogate-based dose accumulation with the results presented being a first
proof-of-concept, which has to be approved in following evaluation studies. This
addresses – as potential future work – the generation of suitable ground-truth
data, perhaps by acquiring repeatedly 4D CT data of the patients or designing
appropriate motion phantom studies.
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