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Abstract. Accurate segmentation of the prostate and the organs at risk in CT
images is a crucial step in prostate cancer radiotherapy planning. Because of
the poor soft tissue CT contrast (prostate, bladder), an appropriate segmentation
is challenging, even when this is manually performed by an expert. This paper
introduces a Bayesian automatic segmentation method for prostate, rectum and
bladder in planning CT. Firstly, a prior shape space for the organs is built with
PCA decomposition from a population of manually delineated CT images. Then,
for a given CT to be segmented, the most similar shape is selected by the asso-
ciated probability which is set by a likelihood function. Finally, the local shape
is deformed to adjust the particular local edges of each organ such that the most
likely segmentation is produced. Experiments with real data from 30 patients
treated for prostate cancer radiotherapy were performed under a leave-one out
cross validation scheme. Results show that the method produces reliable segmen-
tations (Averaged Dice = 0.91 for prostate, 0.94 for bladder, 0.89 for Rectum) and
outperforms the best majority-vote multi-atlas based approach.

1 Introduction
Prostate cancer (PC) is one of the most commonly diagnosed male cancer, with 190.000
new cases diagnosed in USA in 2010 (American Cancer Society) and 71.000 new cases
in France in 2011 (INCa 2011). Radiation therapy is a commonly prescribed treatment
for PC which has proven to be efficient for tumor control [1]. Modern prostate cancer
radiotherapy involves an extensive use of X-ray imaging modalities: a computed to-
mography (CT) acquisition in the treatment planning and daily cone beam CT (CBCT)
in image-guided radiotherapy procedures (IGRT). During the planning, CT images are
manually processed to segment not only the clinical target (prostate and seminal vesi-
cles) but also the neighboring organs at risks (OARs), namely the bladder, rectum, etc.
These segmentations are crucial inputs for the treatment planning in order to compute
the parameters for the accelerators following dose constraints to the target and OARs,
and, considering IGRT, for the patient setup correction. Moreover, these segmentations



are up the most importance for other applications like the cumulated dose computation
or toxicity studies on population [3].

Nowadays, the segmentations are manually carried out by medical experts. They are
very time consuming and are prone to errors due to intra- and inter-experts variability.
Thus, the need for automatic segmentation methods appears crucial for IGRT develop-
ment. However, several difficulties arise and hamper automatic segmentation methods.
The poor contrast appearing in similar soft tissues, has limited application of classical
intensity-based methods, while the very high intra- and inter-individual variability has
led model-based methods to fail. Some examples of previous methods to segment pelvic
structures include deformable models [5,6]. Atlas-based segmentations [7] have also
been used, but they have mainly been tested for segmenting CT scans in other applica-
tions such as head and neck [8] and cardiac aortic CT [9]. In atlas based approaches,
precomputed segmentations in a template space are mapped to an individual CT using
non-rigid registration. Although atlas-based approaches may provide prior structural
information, the inter-individual variability and registration errors can mislead these
methods. Multi-atlas approaches can partly overcome some of these difficulties by se-
lecting the most similar atlases among a large database but the definition of a proper
similarity measure between the available atlases and the query individual has still to be
addressed [10].

We propose in this paper a method to segment pelvic structures from CT scans to be
used in planning prostate cancer radiotherapy. The main contribution of this work is the
adaptation of a Bayesian statistical framework to match a prior 3D shape model, built
from a population, with the given CT through multi-scale edge observations. Regions of
Interest (RoI’s) are automatically extracted per slice to remove CT artifacts and compute
the multiscale edge descriptor. The likelihood function is based on a geometrical shape
characterization of edges using invariant Hu moments, allowing the selection of the
most likely prior 3D shape to the multi-scale detected edges. In a final step, the obtained
shape is locally warped to fit to the edges, yielding a 3D regular and compact organ
segmentation. We compared our method with majority-vote multi-atlas strategies in a
leave-one-out cross validation scheme.

2 Materials and Methods

The overall method is summarized in Figure 1. Let Ŝo, the estimated organ shape
(prostate, bladder or rectum), computed as the most likely shape that maximizes the
maximum a posteriori (MAP), following a Bayesian framework

Ŝo = max arg
Ŝo

[P (Ŝo|Spcao1 , Spcao2 , . . . , SpcaoN )]

where {Spcao1 , Spcao2 , . . . , SpcaoN } is a collection of shapes (shape space) of the organ o
precomputed with a Principal component analysis (PCA). The likelihood function aims
to match the most similar shape to the borders extracted from a region of interest
(RoI) automatically selected around the organ o. In order to remove CT artifacts, a
pre-processing procedure is applied over the RoI. Afterward, a local deformation func-
tion is introduced to modify the most probable estimated shapes Ŝo, according to the
local changes extracted from a multiscale edge descriptor. Each step is described in the
following sections.



Fig. 1. Proposed method for 3D segmentation. First, a shape space organs is built (PCA). The
template is rigidly registered to the CT to be segmented followed by an automatic extraction of
RoIs for preprocessing and multi-scale edge detection. A likelihood function matches the most
similar PCA shape with the detected edges to finally being locally adjusted.

2.1 Learning an organ shape model: the prior

A statistical shape organ model for segmentation is built from a collection of training
samples as described in [11]. Here, a dimensionality reduction was firstly accomplished
by applying the PCA method [12] to a population of manually delineated organs encod-
ing interindividual shape variability [13]. From this PCA was computed the collection
of shapes {Spcao1 , Spcao2 , . . . , SpcaoN }, for each considered organ. Each shape contour is
the parametric curve defined by the coordinates of the points lying on the contour. The
first step consisted then in computing the first two moments of the probability distri-
bution, i.e. the mean shape vector s̄ ∈ R3M and the covariance matrix ρ ∈ R3Mx3M ,
as s̄ = 1

N

∑n
i=1 si and ρ = 1

N−1
∑n
i=1(si − s̄)(si − s̄)T where the vector (si − s̄)

describes the organ deviation w.r.t. the mean shape. The covariance matrix captures the
organ variability. A conventional spectral analysis allows diagonalization of this covari-
ance matrix that determines the directional gains or eigenmodes. Each eigenmode de-
fines a 3D vector field of correlated organ inter patient-variability displacements. Thus,
prostate and OAR samples are generated by deforming the mean shape by a weighted
sum of the L dominating eigenmodes as:



Spcaol
= s̄+

L∑
l=1

clql

where the coefficients of cl follow a Gaussian distribution with the corresponding eigen-
values ql as variances. This methodology was independently used for each organ, ob-
taining a family of shape models that are related with a template CT global coordinates.
Examples of the different shapes obtained for each organ are shown in Figure 1.

2.2 RoI pre-processing

For a given CT, it is firstly rigidly registered with the template CT of the training
database using a “block matching” method [14]. Over CT test is then defined a set
of RoIs with size {S̄o± ξ} associated to each organ, being S̄o the average shape and ξ a
tolerance value. An theoretical idealRoIo(x, y) should contain the foreground organ of
interest and a uniform background distribution, a particular configuration herein mod-
eled as a mixture of Gaussians ψ(i) =

∑
k=1,2 wkN(i|µk, σ2

k), where the two principal
distributions represent the foreground and background, weighted by wk. Because very
often the selected RoIs contain other structures near the organs, difficulting a proper
edge extraction of the organ and therefore biasing the statistical approximation, a more
appropriate representation is found by filtering out RoI with an adapted non local mean.
Thus, pixels i that may represent artifacts {i < maxk=1,2(2σk) < i} are replaced by a
weighted average of a neighborhood with foreground/background information, thereby,
satisfying a “non local property”: weights depend on the pixel similarity in the image
space, %(x, y) = e

−d(x,y)

h2 . The basic idea is to replace the pixels that represent arti-
facts by the nearest “foreground/background” pixel that represent the neighborhood.
d(x, y) =

∑
i∈φ(o)

∥∥RoIo(x, y)−Nk1,k2(µ, σ2)
∥∥, where φ(o) is a neighborhood of x an

h is a decay parameter.

2.3 Multi-scale CT edge detector: the observations

To build a set of robust observations to be used within the likelihood function a mul-
tiscale description of RoI data was implemented. For doing so, each RoIo(x, y) was
convolved several times with a gaussian kernel and first partial derivatives were calcu-
lated at the different resolution scales as:

Sedgeo (x, y;σ) =
∑
i

RoIo(x, y) ∗ ∂Gσi

∂x∂y

where Gσi is the 2D Gaussian function with standard deviation σi. The Gaussian ker-
nel is the unique kernel with an equivalent scale-space representation (linearity and
shift-invariance in both frequency and space). Afterward, a non-maximum suppression
is applied, aiming to detect points at which the gradient magnitude takes a maximum
value in the gradient direction over all the scales [15]. This multi-scale edge detection
allows a compact description of the most relevant information which is usually pre-
served through multiple scales (the universal law of scale invariance) [16].



2.4 Computing the likelihood
A likelihood function P (Ŝpcaoj |S

edge
o ) determines the best geometrical match between

the samples shapes Ŝpcaoj obtained from the learned model and each multi scale edge
descriptor Sedgeo . For doing so, every shape from the shape space and the edges in
each RoI are characterized by a set of features based on the Hu moments [2], thereby
achieving an invariant shape representation. Thus the likelihood function measures the
shape similarity through an Euclidean metric among the computed features, written as:

P (SPCAoi |Sedgeoi ) = min
Spca
oj

 ∑
hu(i=1...7)

||mSedge
o
i −m

Spca
oj

i ||
mSedge

o
i


where mSedge

o
i = sign(h

Sedge
o
i ) · log |hS

edge
o
i |, and m

Spca
oj

i = sign(h
Spca
oj

i ) · log |h
Spca
oj

i |
are the computed features for the edges and the PCA learned shapes respectively and

hS
edge

i , h
Spca
j

i are the Hu moments. Then, the likelihood function should yield a max-
imal probability when a sample learned shape closely match the observations, i.e., the
multiscale edge descriptor.
2.5 Local Shape Deformation
A local deformation function was here introduced to improve the local correspondence
of the shape sample selected by the PCA model with respect to near shape edges de-
tected and allows to regularize the segmentation surface obtained. For doing this, the
nearest borders that may correspond to the edges of the multiscale descriptor or the
borders points of the shape sagittal estimation. Then the edges were warped toward the
nearest border, controlling the deformation by a λ term, which works as a belief indica-
tor warping the shape either to the border descriptor or to the PCA shape selected.

Soi(x, y) = λŜpcaoi (x, y) + (1− λ)(min
So

(‖Ŝpcaoi − {S
edge
oi , Ŝpcaoi±1

}‖))

This local deformation allows to preserve a compact representation of the shape
given by the λ term and the nearest edge criterion. In this work, the best performance
was obtained with a λ = 0.6

3 Evaluation and Results
We carried out a study on 30 prostate cancer patients, treated with external radiother-
apy. Each individual underwent a planning CT. All acquired CT were 2 mm thickness
slice with a 512x512x1 mm-pixels resolution in the axial plan. For each individual,
the organs were manually delineated by the same expert, following the standard clini-
cal protocol in prostate cancer radiotherapy. The expert contoured the clinical targets -
namely the prostate and the seminal vesicles - and the organs at risk (OAR): the blad-
der and the rectum. In this study, only the CT and the delineated prostate, bladder and
rectum were considered.

We aimed to compare individual’s radiologist segmentations (ground truth) with
the obtained by the proposed approach and those obtained with multi-atlas vote meth-
ods, on a set of 30 individuals, following a leave-one-out cross validation scheme. The



multi-atlas vote methods, used to evaluate the performance of the proposed approach,
may be summarized in three main step. Firstly, the atlases rigidly registered using a
“block matching” strategy were ranked according to the normalized cross-correlation
(NCC) [14]. Secondly, the organs delineations were propagated into the individual’s
space, using a non-rigid registration, either the free-form deformation (FFD) [17], or
the demons algorithm [18]. Eventually, the majority vote decision rule was applied to
obtained a single segmentation for each considered organs.

Figure 2 illustrates a typical pelvic structures segmentation obtained by our ap-
proach (red contour) and the the radiologist reference represented by the green contour.
These results shows the effectiveness obtained by our approach to closely adjust each
organ structure. Likewise, it is shown a good local variability shape which preserve a
compact representation, which means that, there are no strong spikes around the contour
shapes.

Fig. 2. Axial segmentation examples of pelvic structures ((a) rectum, (b) bladder and (c) prostate).
The delineation obtained by our approach (red) and the expert reference (green).

A quantitative comparison was performed between the individual’s organ delin-
eations (prostate, bladder, rectum) and the computed segmentation using two different
measures: a dice score (DSC) and the Hausdorff distance.

The DSC is an overlapping similarity measure defined as DSC(A,B) = 2|A∩B|
|A|+|B| ,

where | · | indicates the number of voxels of the considered A (gold standard) and B
(method evaluated) volumes. We carried out an exploratory analysis of DSC obtained
with the different segmentation strategies. Figure 3 illustrates the results comparing our
approach with the atlas based methods. Results suggest that our method provide more
accurate segmentations (t-test,p<0.001 for the prostate and the rectum) with an average
score of 0.91 for prostate, 0.94 for bladder, 0.89 for Rectum

A second quantitative comparison was performed by computing the Hausdorff Dis-
tance. This metric identifies the segmentation voxel that is farthest from any voxel of
the ground truth. Table 1 summarizes the performance obtained by the evaluated ap-



Fig. 3. Dice scores comparison for vote vs proposed approach (SAMED)

Table 1. The Hausdorff distances obtained with the multi-atlas majority-vote method using rigid,
FFD or a demons registration and with the proposed approach (SAMED)

Hausdorff Distance (mm)
Prostate Bladder Rectum

Vote(Rigid) 16.61±5.6 102.02±26 66.87±10.3
Vote(FFD) 14.27±4.2 78.63±20.1 65.22±6.1
Vote(Demons) 9.33±3.2 79.42±18.2 61.44±5.8
SAMED 5.98±2.2 19.09±3.1 7.52±2.3

proaches. The results shows that our approach obtain compact shape segmentations,
with average distances of 5.98 for the prostate, 19.09 for the bladder and 7.52 for the
rectum. The large distance of the multi-atlas based methods may be attributed to iso-
lated voxels labeled as organ structure.

4 Conclusions

The proposed method introduces a new methodology to segment pelvic structures in
CT scans used in prostate cancer radiotherapy. The Bayesian method combines a de-
formable prostate model, learned by examples, and a geometrical likelihood strategy
that maps this model into a particular CT image, adequately described by a multiscale
edge detector. The results summarized in this paper pointed out that our segmentation
technique segment the prostate and rectum shape suitably in relation to radiologists’ ref-
erence. This approach also may be extended to other structures over CT images. Future
work includes validation with a large data set.
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