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Abstract. Cervical cancer is one of the most common cancer to affect women
worldwide. Despite the efficiency of radiotherapy treatment, some patients present
recurrency. Early unfavorable outcomes prediction could help oncologist to adapt
the treatment. Several studies suggest that tumor characteristics visible with 8F-
FDG PET imaging before and during the treatment could be used to predict
post-treatment recurrency. We present a framework for segmentation and char-
acterization of metabolic tumor activity aimed at exploring the predictive value
of pre-treatment and per-treatment '‘®*F-FDG PET images. Thirty-five patients
with locally advanced cervix cancer treated by chemoradiotherapy were consid-
ered in our study. For each patient, a coregistered PET/CT scan was acquired
before and during the treatment and was segmented and characterized with our
semi-automated framework. A segmentation process was applied on the baseline
acquisition in order to find the metabolic tumor region (MTR). This MTR was
propagated to the follow-up acquisition using a rigid registration step. For every
patient, 40 features from the two MTRs were extracted to characterize the tumor
changes between the two observation points. We identified explanatory character-
istics by exploring the threshold which minimizes the p-value computed from the
Kaplan-Meier free-disease survival curves. Seven features were identified as po-
tentially correlated with cancer recurrency (p-value<0.05). Results suggest that
our method can compute early meaningful features that are related with tumor
recurrence.
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1 Introduction

Nowadays, cervical cancer is the third most common cancer and the fourth cause of
cancer death in females worlwide with 529,800 cases diagnosed and 275,000 can-
cer deaths in 2008 [1]. The standard treatment of locally advanced cervical cancer is
based on chemoradiotherapy and brachytherapy, inducing a risk of acute and late irre-
versible toxicity[2]. Because recurrence in cervical cancer significantly increase the risk
of death [3], prediction of such events is crucial. Medical imaging can provide different



markers not only to plan the therapy but also to help oncologist to adapt the incourse
treatment thereby increasing the chance of patients survival. During the last decade,
severals studies have shown that coregistered PET/CT improve the diagnostic accuracy
in several cancers [4][5]. As opposed to anatomic imaging such as CT or MRI, PET
provides metabolic information of the tumor. Since metabolic changes of the tumor pre-
cede the morphologic modifications, PET-based studies could provide early prediction
outcomes. Several studies have demonstrated that metabolic tumor changes occuring
between PET scans allow to quantitatively assess tumor response [6][7]. Further, some
studies have shown the predictive value of the informations extracted in PET [8][9].

In this study, we present a semi-automated framework for segmentation and char-
acterization of metabolic tumor activity in cervical cancer from pre and per-treatment
PET/CT acquisitions. We demonstrate the utility of our framework in predicting re-
currency on a cohort of 35 patients treated for locally advanced cervix cancer. In the
proposed framework the pre-treatment PET/CT fused information is exploited to first
isolate the tumoral region from the rest of the image, then several characteristics are
extracted from the PET at two time points during the treatment to find features that
may explain recurrency. The identification of the recurrency correlated features was
performed using Kaplan-Meier survival curves and the log-rank test.

2 Materials & Methods

2.1 Data and Clinical Protocol

Thirty-five patients (median age 52.44 years [32.15 - 84.62]) with locally advanced
cervix cancer treated at the Centre Eugene Marquis (CEM), Rennes, France, were con-
sidered. The patients were treated with external beam radiation therapy (EBRT) with
concurrent chemotherapy (CDDPcc) followed by brachytherapy (BT). With median
follow-up of 29.21 months [7.44 - 52.64], eight patients developed tumor recurrence
and three patients died. As shown in Fig. 1, each patient underwent three *F-FDG
PET/CT scans performed with a DISCOVER ST scanner each observing the same time
between injection and acquisition. In our study, we will only consider the pre and per-
treatment acquisitions. The two pre-treatment images are denoted PET1 and CT1. At
40 Gy of the EBRT, the acquisitions were denoted PET2 and CT2. In order to have
the images comparables, each PET image was converted into standardized uptake value
(SUV) which is a standardized decay-corrected value of '®F-FDG activity per unit vol-
ume of body weigth MBq/kg)[11].

2.2 Segmentation & Characterization of the metabolic tumor region

The framework of the proposed method is illustrated in Fig. 2. The first step aims to iso-
late the tumoral area in PET1, avoiding the bladder hyperfixation. Because the tumor
uptake in PET?2 is less visible in responder patients due to the treatment, a rigid regis-
tration is carried out to map the region found in PET1 on PET2 thereby accessing to the
same tumoral region. In step three, the two regions found in the previous stages are used
to characterize the tumor before and during the treatment through features computation.
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Fig. 1: Acquisitions during the treatment protocol: A baseline exam, PET/CT1, is ac-

quired before the treatment. A second acquisition, PET/CT?2, is performed at 40 Gy of
the chemoradiotherapy. The last acquisition, PET/CT3, is performed 4-6 weeks after
the brachytherapy
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Fig. 2: Overall framework for the characterization study.

I. Metabolic tumor region segmentation in PET1: The metabolic tumor region
(MTR) is denoted as the region where the acquired 'F-FDG uptake corresponds to
the tumor activity. The purpose of this step is to determine the metabolic tumor region
in PET1 (MTR1). We considered here that the '®F-FDG hyperfixation of the tumor
before the treatment is topologically compact (one connected object). In that case, a
region-growing threshold allows to select the voxels belonging to the MTR1. Region-
growing was used to limited the inclusion of adjacent intense structures, such as the
bladder, lymph nodes, and bowel [20].

La - Region-growing adaptative threshold (RGAT): Let’s denote likely tumoral re-
gion (LTR) the region wherein the '8F-FDG hyperfixation is high enough to be consid-
ered as tumor metabolism. In order to extract the LTR, an adaptative threshold as the one
proposed by Daisne [10] was implemented. This method aimed to adapt the threshold
needed to segment the LTR according to the signal-to-background (S/B) measured in
the image. The relationship between S/B and the threshold required was set up through
a physical phantom study. Thus, because of the compactness hypothesis, the threshold
was applied using a region-growing in order to keep a compact LTR.

Lb - Fusion and gaussian mixture based classification (FGMC): Due to natural
filling and emptying of the bladder, *F-FDG can be fixed in an extremely variable way
leading to part of the bladder having intensities comparable to tumoral metabolism. It
was necessary to visually determine if voxels in the bladder were selected in the LTR.
In such case, a second step of classification was required to separate bladder and tumor.
Firstly, the CT images were downsampled to the PET resolution so that each voxel in



PET correspond to only one voxel in CT. A voxel seed was selected as being likely
within the tumor. From each voxel selected in the LTR, three features were considered:
the standard uptake value on PET (SUV), the Hounsfield unity value on CT (HU) and
a tumor membership probability (TMP). The group of voxels in LTR was thus denoted
as X = {x;|i € I'}. With x;, a three feature vector [SUV HU T M P] at the voxel i
and I, the 3D coordinates in the image. We computed the TMP as:

d(x;, s)

TMP(z;))=1— ———
(i) max d(z;, s)’

ey

where d(x;, s) is the Euclidean distance of the voxel z; from the seed s, and max d(x;, s)

denote the Euclidean distance of the furthest voxel in the LTR from the seed.llt was as-
sumed that the further the voxel is from the reference the lower is the probability to
belong to the tumor. SUV and HU were normalized between 0 and 1. The three normal-
ized features were then projected in the tri-parametric space represented in Fig. 3. Vox-
els belonging to the tumor were identified by fitting a gaussian mixture model (GMM).
In general terms, the GMM expresses that the distribution of points in this tri-parametric
space is a sum of gaussian functions. Two clusters were considered: a cluster 7" repre-
senting voxels in the MTR and a cluster B for voxels in the bladder(eq 2).

9(x4,0) = pr.fr(xi, pr, Xr) + p.fB(2i 1B, XB), (2)

where g denotes the mixture density of each LTR-voxel x;. The constants pr and pp
are the mixing proportions of the two gaussian distributions f7 and fp respectively
characterized by the means 1 and pp and variance matrix X and X'g. © represents
the model parameters of the gaussians mix © = [pr, pg, pr, U5, 21, X5| need to be
estimated.

An expectation-maximization algorithm (EM) was used to calculate the maximum
likehood estimates of ©. Given these estimates, each voxel was assigned a label stat-
ing if it belongs to the cluster 7" or B. Fig. 3 gives an example of clustering in the
classification space.
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Fig. 3: Fusion and gaussian mixture based classification. (left) Tri-parametric classifi-
cation space : SUV value, Hounsfield value and Tumor Membership Probability. (right)
resulting EM estimation.



The largest connected component in the cluster "Tumor" was selected to be the
MTR. Fig. 4 summarizes an example of metabolic tumor region segmentation in the
pre-treatment PET.

Fig. 4: Example of metabolic tumor region segmentation in PET1. (left) PET/CT1 with
a high bladder uptake. (middle) LTR after RGAT. (right) MTR1 after the FGMC.

II. MTR1 to MTR2 registration: This step aims to propagate the MTR extracted in
the PET1 to PET2. The propagated MTR was denoted MTR2. Since PET are coregis-
tered with CT, these CT images were used to determine the transformation between PET
images. A two-step registration using a block-matching algorithm [12] was adopted.
Firstly, CT1 to CT2 were registered in order to match the whole body. Secondly, a rigid
registration was applied locally to align the cervix. In practice, this is obtained by regis-
tering a VOI around the cervix. Note that local rigid registration was assumed because
of the restricted VOI considered. This allows to keep the same shape between MTR in
PET1 and PET2 and thus keep the same tumor area.

III. Characterization: Fourteen features were extracted from the two PET MTR to
characterize patient’s tumor before and during the treatment. In addition to SUVmax,
metabolic tumor volume (MTV) and total lesion glycolysis (TLG) often reported in
literature [13][14][8], we explored intensity and texture features[15][16]. The features
are summarized in tables 1 and 2.

Note that, in PET1, the total activity by voxel volume (TAVV), is equivalent to the
total lesion glycolysis (TLG) calculated as SUV,eqn X MTV when MTV is well
defined. Since we estimated the MTR2 by registration, the TAVV can not be denoted
as TLG because MTV in PET2 is roughly delineated. However, for a good responder,
it was expected that if the activity outside the true MTV was neglected, the TAVV will
give a good approximation of the TLG.

Texture features, originally proposed by Haralick[18], are based on the co-occurence
matrix P, reflecting spatial grey-level dependencies. The intensity range into the MTR
was quantified with 16 bins. The texture features calculated shown in Tab. 2 were com-
puted for every direction covering the 26-connected neighborhood and were averaged
to keep a restricted number of characteristics. Finally, to characterize the changes be-
tween PET1 and PET?2, the difference (DIFF) was calculated between features evaluated
in MTR1 and MTR2.

2.3 Tumor recurrence prediction

A total of 40 features were extracted from 35 patients. Fourteen features were extracted
from PET1, 13 features from PET2 and 13 from DIFF. The Kaplan-Meier method was



Features Formula Definition
SUVmax maz(X) Maximal uptake in the MTR
K
SUVpeak % S Tk, k € MaTneighvor SUVmax averaged by its 26
k neighbors
SUVmean w=E[X] Average of SUV in the MTR
SUVvariance X =E[(X — u)?] Variance of SUV in the MTR
SUVskewness n=E [(X;‘)d} Asymmetry measure of the
MTR activity distribution
SUVKkurtosis v2=E [(%)4] Peakedness measure of the
MTR activity distribution
MTV Volumeyozer X Nbyogel Metabolic Tumor Volume of
the MTR
N
TAVV Volumeyozer X Z Tn Total Activity by Voxel Volume
n of the MTR
Table 1: Evaluated intensity features
Features Formula
Energy > B(i, )
2]
Entropy 2 @(i,5) X loga(P(i, )
Inertia S — §)? x (i, j)
2%
InverseDifferentMoment (IDM) S —5)% x (i, 5)
2
Cluster Shade S+ — pj — i) x B4, §)
2]
Cluster Prominence SO0 — i + G — py)t x (i, §)

Table 2: evaluated texture features

used to evaluate the disease-free survival curves of the group splitted by a threshold. The
feature assessment was perfomed following this method: for each feature, a threshold
was found in order to minimize the p-value of the log-rank test from the comparison
of the two survival curves generated when splitting the group using this threshold. The
level of significance for the log-rank test was fixed to p-value<0.05.

3 Results
3.1 FGMC evaluation

Among the 35 PET1 segmented in step L.a, 12 visually presented high bladder uptake
and were clustered in step L.b. In order to evaluate the deletion of bladder voxels per-
formed by the FGMC, we used expert manual cervix and bladder CT-segmentation
available for six patients. After I.b, the number of voxels remained in the cervix mask
was considered as true positive (TP) whereas false positive (FP) was the number of
those in the bladder mask. For the six clusterization evaluated, the averaged results



were 0.80 &£ 0.17 sensitivity, 0.97 4= 0.08 specificity and 0.85 £ 0.11 accuracy. We can
observe a lower sensitivity due to the worst patient which presented a classification with
0.53 sensitivity, 1.00 specificity and 0.63 accuracy. In this case, the patient presented a
small tumor and as the number of voxels in the cervix mask in LTR was limited, any
suppressed voxel during the FGMC had an important impact on the resulting sensitivity.

3.2 Explanatory features identification

Tab. 3 summarizes the significant features extracted in step III. Results show that the
explanatory features found are mainly based on SUV intensity. The four characteristics
found from PET1 might suggest that tumor recurrence could be predicted before the
treatment. Moreover, the TAVV evolution between the two exams(DIFF) might be a
recurrency correlated feature that could be used by oncologists to adapt the ongoing
treatment. An example of a Kaplan-Meier curve with the TAVV feature in PET1 and
DIFF is diplayed in Fig. 5.

exam feature p-value threshold
SUVmax 0.0335 10.52
SUVpeak 0.0478 7.27
PETI SUVmean 0.0335 6.30
TAVV or TLG 0.0114 155.62
SUVmax 0.0307 6.26
PET2 IDM 0.0419 0.16
DIFF (PET1-PET2) TAVV 0.0171 -266.15

Table 3: Assessed features by the Kaplan-Meier method with p-value<0.05 and the

corresponding threshold.
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Fig. 5: Example of feature evaluation with Kaplan-Meier method. (left) TAVV in PET1
(p-value=0.0114). (right) TAVV in DIFF (p-value=0.0171).



4 Discussion & Conclusion

In this study, we presented a whole framework to characterize cervical cancer tumor
from ®F-FDG PET imaging and to predict its response to radiotherapy. One of the
challenges was to isolate the tumor region from the bladder in PET1. With the use of
CT information, we proposed a semi-automated method to segment and characterize
PET imaging based on a RGAT followed by a FGMC approach. Since metabolic infor-
mations can be hidden in lower uptake than the applied threshold, an intensity-based
segmentation can lead to an underestimation of the true LTR extracted. Also, an adap-
tative threshold suffers from poor reproducibility[19] and a more evolved segmentation
method could enhance this. The FGMC has demonstrated the ability to classifying vox-
els between tumor and bladder with good specificity, sensitivity and accuracy (respec-
tively 0.80, 0.97 and 0.85). Nonetheless, for one given patient, we visually decided if
the classification step was necessary. An integration of the FGMC into the segmenta-
tion step is in progress in order to reduce user dependency. The characterization step
was perfomed by evaluating intensity and texture features on MTR1 and MTR2. Also,
we characterized the tumor changes by computing the difference between the features
in MTR1 and MTR2. In future work, shape metrics could be extracted to describe the
tumor thereby providing complimentary information. We identified seven features that
might be correlated with cervical cancer recurrency by assessing free-disease survival
curves. This is an exploratory study so, in future work, the predictive capabilities of the
found thresholds will be assessed through a larger cohort of patients.
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