
HAL Id: hal-00755212
https://hal.science/hal-00755212

Submitted on 25 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A clustering approach for web vulnerabilities detection
Anthony Dessiatnikoff, Rim Akrout, Eric Alata, Mohamed Kaâniche, Vincent

Nicomette

To cite this version:
Anthony Dessiatnikoff, Rim Akrout, Eric Alata, Mohamed Kaâniche, Vincent Nicomette. A cluster-
ing approach for web vulnerabilities detection. 17th IEEE Pacific Rim International Symposium
on Dependable Computing (PRDC 2011), Dec 2011, Pasadena, CA, United States. pp.194-203,
�10.1109/PRDC.2011.31�. �hal-00755212�

https://hal.science/hal-00755212
https://hal.archives-ouvertes.fr

A clustering approach for web vulnerabilities

detection

A. Dessiatnikoff R. Akrout E. Alata M. Kaâniche V. Nicomette

CNRS; LAAS ; 7 avenue du Colonel Roche, F-31077 Toulouse, France

Université de Toulouse; UPS, INSA, INP, ISAE ; LAAS ; F-31077 Toulouse, France

Email: {adessiat, rakrout, ealata, kaaniche, nicomett}@laas.fr

Abstract—This paper presents a new algorithm aimed at the
vulnerability assessment of web applications following a black-
box approach. The objective is to improve the detection efficiency
of existing vulnerability scanners and to move a step forward
toward the automation of this process. Our approach covers
various types of vulnerabilities but this paper mainly focuses
on SQL injections. The proposed algorithm is based on the auto-
matic classification of the responses returned by the web servers
using data clustering techniques and provides especially crafted
inputs that lead to successful attacks when vulnerabilities are
present. Experimental results on several vulnerable applications
and comparative analysis with some existing tools confirm the
effectiveness of our approach.

Index Terms—Web security assessment; security scanners;
Web vulnerabilities; clustering; dynamic analysis

I. INTRODUCTION

Web application vulnerabilities have become in the recent

years a major threat to computer systems security. This is

illustrated by the 2010 CWE/SANS top 25 most dangerous

software errors report published by MITRE in which the

two top positions are taken by web application vulnerabilities

(Cross-Site Scripting and SQL injections) [1]. This situation

can be explained e.g., by the increase in complexity of web

technologies and their frequent evolution, the short develop-

ment cycles of web applications during which testing and

validation activities are limited, and also, in some cases, by

the lack of security skills and culture of the developers.

Web applications vulnerabilities can be exploited by the at-

tackers to gain unauthorized access, obtain or modify sensitive

data or even perform denial of service attacks. To cope with

these threats, several solutions have been developed to prevent,

detect or tolerate potential intrusions. Such techniques can

be used during the development phase and also during the

operation phase. As an example, we can list the following

techniques.

• Static analysis of the source code [2], [3], [4], [5], [6], [7]

allowing the identification of vulnerabilities before web

application deployment.

• Detection and possible sanitization at runtime of mali-

cious requests before they reach the server. The corre-

sponding tools can run on the server [8], [9], or be-

tween the client and the server acting as a proxy [10].

Application-level firewalls can be included in the latter

category.

• The security testing of web applications based on the use

of black-box security scanners [11]. These tools consist in

crawling the target application to identify reachable pages

and possible input vectors, and generate specially crafted

inputs to determine the presence of vulnerabilities.

In this paper, we focus on web vulnerability scanners.

A large number of vulnerability scanners have been de-

veloped, including commercial tools such as Acunetix WVS,

WebInspect and AppScan [12], open source tools such as

W3af, Wapiti, Nikto, and other publicly available tools such

as Secubat [11]. Given the high complexity of current web

sites that include a large number of pages to be analyzed,

these tools provide a useful support for the identification of

vulnerabilities in such systems. Recent analysis focused on the

assessment of such tools have pointed out the need to improve

their detection effectiveness, and to enhance the automation

capabilities offered by such tools ([13], [14], [15]). Indeed,

depending on the target application, current tools may exhibit a

significant number of false positives and false negatives. These

tools are designed to provide the request aimed at revealing

the possible existence of vulnerabilities. They are not designed

to automatically provide the specific requests allowing the

exploitation of the identified vulnerabilities.

Clearly there is still room for improving the capabilities

of web scanners. The research summarized in this paper is

aimed at contributing to fulfilling this goal. The first step in our

approach to achieve this objective consists in: i) analyzing the

main principles behind the vulnerability detection algorithms

implemented in recently developed open-source web scanners

(such as Skipfish, W3af, and Wapiti) and then ii) identifying

possible rooms for improving the detection ability of these

algorithms to address some of the limitations. Such analysis

cannot be based on commercial or other tools for which

the source code is not available. In the second step, we

developed a new algorithm allowing the automated detection

of different types of web vulnerabilities including SQL injec-

tions, OS commanding, File Include, XPath, etc. The proposed

algorithm builds on some of the concepts inherited from

existing tools and includes significant extensions. It is based

on the automatic classification of the responses returned by

the web servers using data clustering techniques and provides

specially crafted inputs that should lead to successful attacks

when vulnerabilities are present. The automatic generation

of requests allowing the successful exploitation of detected

vulnerabilities should be useful to facilitate web applications

validation and penetration testing. In order to assess our

algorithm, we have run two sets of experiments. In the first

experiments, we have injected specific vulnerabilities in five

open-source applications and analyzed the detection ability

of the new algorithm compared to the algorithms used by

Skipfish, W3af and Wapiti. In the second set of experiments,

we have considered five other vulnerable applications without

modifying them. These experiments allowed us to illustrate

the potential benefits of our proposed algorithm.

The paper is structured into 8 sections. Section II briefly

describes the principle of vulnerability scanners. Section III

discusses related work focussing on the analysis of the vul-

nerability detection algorithm used by several well-known

freeware vulnerability scanners and shows some weaknesses

of these tools that we aimed to address by proposing a new

algorithm. Section IV presents our clustering algorithm for

detecting web application vulnerabilities. The principle of this

algorithm is presented as well as examples for SQL injections.

The application of this algorithm to other vulnerabilities is

discussed in Section V. Section VI briefly presents the scanner

we developed to implement this algorithm, called WASAPY.

We describe in Section VII the experiments performed in

order to validate our approach and assess the efficiency of

our scanner. Finally Section VIII concludes this paper and

discusses future work.

II. VULNERABILITY SCANNERS PRINCIPLES

Most frequent attacks on web servers include SQL injection

attacks (for web servers connected to an SQL database) and

code injection attacks (Flash, Javascript, etc., carried out

through so-called Cross Site Scripting or XSS attacks). These

attacks generally correspond to the exploitation of the same

kind of vulnerability related to the lack of sanitization of URL

parameters or of HTML form inputs. In the following, we will

focus on SQL injection attacks.

To check whether SQL injection attacks are possible, the

vulnerability scanners send specially crafted requests and

analyze the responses returned by the server. A server may

respond with a rejection page or with an execution page. A

rejection page corresponds to the detection of syntactically

incorrect or invalid inputs. An execution page is returned by

the server as a consequence of a successful execution of the

request. This page may correspond to the “normal” scenario,

i.e., in the case of a legitimate use of the web site, but

may also result from a successful exploitation of an injection

attack. These latter requests are those we consider in this

paper, as our objective is to identify the vulnerabilities that

can be successfully exploited by the attackers. For instance,

the successful exploitation of a vulnerability in a login form

may lead to bypass an authentication, and the successful

exploitation of a vulnerability on a search form may lead to

display extra data like /etc/passwd file content. In order

to identify the vulnerabilities of a web site, the scanners

generally send specially crafted requests via the identified

injection points allowing them to determine whether the input

parameters submitted to the target system are sanitized or not.

The identification of potential vulnerabilities is generally based

on the identification of the rejection pages.

The issue is thus the analysis of the responses to determine if

they actually correspond to rejection or execution pages. Two

main approaches can be identified based on the analysis of

related work on this topic. These approaches are discussed in

the next section. In the following, we denote as false positive

the fact that a vulnerability scanner detects a vulnerability in

a web page while this vulnerability does not exist. A false

negative occurs when the vulnerability scanner does not detect

a vulnerability in a web page while it actually exists.

III. RELATED WORK

Two main approaches exist to detect the presence of a

vulnerability in a web application. The first one relies on an

error pattern matching algorithm and is presented in section

III-A. The second one relies on the analysis of similarities

between the pages returned by the server and is presented

in section III-B. The last section III-C proposes a discussion

regarding the limits of these approaches.

A. Error pattern matching approach

To identify SQL injections, this approach consists in sending

crafted requests to the application and looking for specific

patterns in the responses: database error messages. The basic

idea is that the presence of an SQL error message in a HTML

response page means that the corresponding request has not

been sanitized by the application. Therefore, the fact that this

request has been sent unchanged to the SQL server reveals the

presence of a vulnerability. Scanners such as W3af1 (sqli

module), Wapiti2 and Secubat[11] adopt such approach.

As an example, to detect injection vulnerabilities in authenti-

cation forms, the sqli module of W3af, sends three requests

based on the SQL injection: d’z"0 (or d%2Cz%220 encoded

in ASCII). The three corresponding responses are then an-

alyzed. If they include SQL error messages (e.g. Mysql_

and supplied argument is not a valid Mysql),

W3af informs the user that the application is vulnerable.

The list of keywords adopted by Secubat for the error

pattern matching approach is presented in [11]. This list,

derived by analyzing reponse pages of vulnerable web sites, is

aimed to cover a wide range of error reponses and a variety of

database servers. A confidence factor that measures the level

of confidence that the attacked web form is vulnerable is also

assigned to each keyword.

B. Similarity approach

This approach relies on three assumptions: 1) execution

and rejection pages are different, 2) it is easy to build

requests that generate rejection pages (by generating random

or syntactically incorrect requests for instance) and 3) it is

1http://w3af.sourceforge.net
2http://wapiti.sourceforge.net

difficult to build requests including injection attacks that actu-

ally generate execution pages (i.e., requests that successfully

exploit a vulnerability). The principle of the approach consists

in sending different crafted requests to the web application

and comparing the similarity of the corresponding responses

using a textual distance, in order to identify execution pages

among the response pages (i.e., pages that correspond to the

successful execution of an injection attack).

Let us consider as an example the approach adopted by

Skipfish3 for detecting SQL injection vulnerabilities. It

sends three requests to the web application (A- ’", B- \’\"

and C- \\’\\"). The responses are compared two by two.

According to Skipfish, a vulnerability is present if both

responses associated to B and C are not similar to the response

associated to A. The similarity test uses a distance based on

the frequency of the words in the response pages.

The algorithm presented in [16] is also based on the

similarity approach. It differs from other implementations in

the additional use of the error pattern matching approach at a

first step to guide the classification. The similarity approach is

used to address the uncertainty that arises about the presence or

absence of a vulnerability when an injection does not generate

an error message.

Another example illustrating the use of the similarity ap-

proach in another context is the formAuthBrute module

of W3af, that deals with weak passwords identification. This

module first sends two requests including randomly generated

usernames and passwords. The responses likely correspond

to rejection pages. They are used as reference pages. Then,

the dictionary attack is carried out in the second step. A

large number of requests is generated based on a dictionary.

Each response is compared to the reference pages, using

the Levenshtein distance [17]. The response is assumed to

correspond to an execution page if the distances between this

page and reference pages are higher than 0.65. Otherwise, this

page is considered as a rejection page. The threshold value

0.65 is empirically configured by the developer.

C. Discussion

The assumption used by the error pattern matching approach

is questionable. Indeed, error messages that are included in

HTML response pages do not necessarily come from the

database server itself. A database related error message may

also has been generated by the application. Moreover, even if

the message is actually generated by the database server, this

is not sufficient to affirm when receiving this message, that an

SQL injection is possible. Indeed, this message means that,

for this particular request, the inputs have not been sanitized.

But it does not mean that the SQL server does not sanitize all

the SQL requests.

Regarding the similarity approach, it is more easy to

generate random or syntactically incorrect requests to obtain

rejection pages than to send valid injection attacks to obtain

execution pages. Since the main assumption is based on the

3http://code.google.com/p/skipfish

observation that the content of a rejection page is generally

different from the content of an execution page, it is important

to ensure a wide coverage of the different types of rejection

pages that could be generated by the application. This can be

achieved by generating a large number of requests aimed at

activating different types of error pages. However, the existing

implementations of this approach, especially in Skipfish,

generate too few requests. Skipfish uses only 3 requests.

But, if the responses correspond to different rejection pages,

it will wrongly conclude that a vulnerability is present.

Also, as in any classification problem, the choice of the

distance is very important. The one used in Skipfish

doesn’t take into account the order of the words in a text.

However, this order generally defines the semantics of the

page. Thus it is important to take it into account to assess the

similarity, as performed in [16] with a text similarity distance.

As an example, the two following pages use the same words

in a different order, but they have a different semantics:

- You are authenticated, you have not entered a

wrong login.

- You are not authenticated, you have entered a

wrong login.

The algorithm presented in Section IV builds on some of the

concepts of the similarity approach and is aimed at addressing

the issues raised in the discussion above. In particular, it

allows: i) the generation of a large number of requests, that

can be tuned by the user, to activate different rejection pages

returned by the application, ii) the automatic generation of

various types of specially crafted requests using a grammar

and iii) the automatic clustering of the corresponding HTML

pages returned by the web server to distinguish between

rejection pages and execution pages and automatically identify

successful injections. This algorithm is also designed to iden-

tify and successfully exploit various types of vulnerabilities.

Besides SQL injections, the proposed approach can address

XPATH, OS Commanding and File Include vulnerabilities.

Regarding related work, while our work shares some of the

ideas and objectives presented in [16], we follow different

approaches. For example, the clustering approach which is the

core of our algorithm is not used in [16]. They use a different

technique combining error pattern matching and the similarity

analysis of application response pages. Also, their approach is

firstly based on error pattern matching and hence shares the

same concerns raised above.

IV. THE PROPOSED ALGORITHM

Let us first define the notion of injection point, which is

used by our algorithm. An injection point is a piece of a Web

page into which a code can be injected: a parameter in the

URL or a field of a form, etc. In the following, we consider

an authentication form for the sake of illustration and we

focus on SQL injections. In subsection IV-A, we present the

clustering algorithm used to classify pages. In subsection IV-B,

we discuss the distance used to parameterize the algorithm.

Finally, we explain in subsection IV-C how we generate the

requests sent to the web server.

A. Pages clustering

Our goal is to identify, among several SQL injections, those

which allow an attacker to bypass the authentication. The

main challenge lies in the automation of this process. Our

approach relies on the following assumptions: a) the content

of an execution page is far different from the content of

a rejection page, b) two rejection pages may be different

from each other and c) two execution pages may also be

different from each other. For example, let us consider a login

page. Responses to valid requests include welcome messages

and responses to invalid requests include PHP or SQL error

messages. The essential point is the existence of differences

between execution pages and rejection pages.

Our approach focuses on the analysis of these differences.

The objective is to identify, among several responses, those

which correspond to execution pages. In other words, we learn

the behavior of the application based on the clustering of web

server response pages that are similar enough. The entry point

of our algorithm is a set of initial requests that have a common

property: it is easy to classify the associated responses (either

execution page or rejection page). Obviously, it is easier to

generate requests, which generate rejection pages than requests

that generate execution pages. To generate rejection pages, we

can, for example, use random usernames and passwords to fill

the authentication form. We can also easily generate requests

which correspond to malformed SQL injections that would

lead to error messages.

In our proposal, we distinguish three sets of requests:

Rr is the set of requests generated from words randomly

chosen from the list [a-zA-Z0-9]+. They are very likely

to generate rejection pages. For example:

http://address/directory/page.php?

login=ABCDEF&pass=ABCDEF

Rii is the set of SQL injection requests inappropriate for the

given injection point. They are constructed to produce a

syntax error in the SQL query sent to the SQL server by

the HTTP server. Usually, these requests are composed

of an odd number of quotes. They are also very likely to

generate rejection pages. For example:

http://address/directory/page.php?

login=’’’&pass=’’’

Rvi is the set of SQL injection requests that are constructed

to generate execution pages in the presence of vulnera-

bilities, but they might as well generate rejection pages

in the absence of vulnerabilities. For example:

http://address/directory/page.php?

login=test&pass=’ or ’1’=’1

The main issue is to determine whether the response is

a rejection page or an execution page. To do so, these

responses are compared to those associated to sets Rr

and Rii.

We note Sr, Sii and Svi the responses associated to Rr, Rii

and Rvi respectively. The principle of our algorithm is then as

diff(ai, bj) =











n − i + m − j i = n or j = m
diff(ai+1, bj+1) ai = bj , i < n, j < m
1 + min(diff(ai+1, bj), diff(ai, bj+1))

ai 6= bj , i < n, j < m

d(a, b) =
diff(a1, b1)

(n + m)

Fig. 1. Distance for clustering

follows: Rvi requests whose responses are not similar to any

of the responses from Sii and Sr are considered valid SQL

injections. To assess the similarity between the pages returned

by different requests, we use a classification technique based

on the distance presented in the next subsection.

B. Distance for response pages similarity assessment

As discussed in Section III-C, it is important to take into

account the position of the words in a text when analyzing the

similarity between two pages. Thus, to compute the distance

between two pages, we use the normalized difference, based

on a slightly modified version of the Unix diff operator [18].

Let a and b be two responses of length n and m. We also

denote ai and bj the i-th character in a and the j-th character

in b. The distance is defined in Figure 1.

A threshold is required to determine whether two responses

are similar or not. This threshold may vary from one injection

point to another. Indeed, it depends on the size of responses

and the amount of data that changes between two responses.

In our algorithm, the threshold is defined empirically by the

shortest distance between: i) the maximum distance between

the responses belonging to Sr and ii) the maximum distance

between the responses belonging to Sii. Using this threshold,

we are able to identify clusters of similar responses. For that

purpose, we use the hierarchical clustering technique [19].

Using this classification, we are able to identify the type

of requests. Note that a request is associated to a response

and vice versa. So, in order to identify the type of requests,

it is enough to identify the types of corresponding responses.

This identification concerns responses in Svi. Indeed, this is

the only set containing responses with type not yet defined.

The following rule is used:

1) A request, for which the response belongs to a cluster that

also contains responses of Sr or Sii, is an invalid SQL

injection; otherwise the request corresponds to a valid

SQL injection.

An illustrative example is presented in Figure 2.

In this example, the third cluster contains only requests

from Rvi: these correspond to valid SQL injections. The first

cluster contains both requests from Rr and Rvi. However,

this cluster is not the only one associated with requests that

generate rejection pages: there are different error messages

for this example. Other tools (like Skipfish) may consider

that a response included in the second cluster corresponds to a

valid SQL injection simply because it is far from the reference

Fig. 2. Example of classification

response page tested by these tools, which would correspond

to a request belonging to the first cluster. This case would lead

to a false positive.

C. Requests generator

One important aspect of the proposed algorithm is its ability

to identify the presence of a vulnerability in an injection point

based on multiple responses generated from this injection

point. To improve the accuracy of the results, we need to

generate a large number of responses, allowing to achieve a

high coverage of the response domain. Let us note that other

approaches are often based on a small number of responses

(for example, 3 for Skipfish).

One possible way to generate a significant number of

responses (and associated queries) is to record in a static file,

queries obtained from security experts (similar e.g., to SQL

sheets [20]). A more flexible approach would be to define

a grammar to automate this process. Such approach can be

compared to some extent to fuzzing techniques [21]. In the

following, we outline the grammar that we have defined to

automate the generation of Rr, Rii and Rvi requests.

On the Web server side, most of the time, a SQL query is

forged by concatenating SQL terms and parameters sent by

the client. For example, the following PHP script deals with

the authentication of a user given the username and password

sent by the client:

$query = "SELECT id FROM users WHERE

name=’$name’ AND pass=’$pass’";

Given a correct (username, password) couple, the forged

SQL query is considered syntactically correct. Also, the forged

query associated to a (username, password) couple generated

based on a dictionary attack is considered syntactically correct,

even if the authentication failed. From this observation, an

SQL injection is defined as a string that may change the

semantics of the generated SQL query. In many situations,

a SQL injection is interesting if it leads to a tautology in

the WHERE clause of the forged SQL query. In the previous

example, such a SQL injection is:

name="’ OR 1=1 OR string=’"

Therefore, the grammar of SQL injections is just a part of

the grammar of SQL queries. The advantage of a grammar

is that it enables to easily generate as many SQL injections

as needed. We can apply the same reasoning to the set

of randomly generated words (Rr), and to the set of SQL

injections that are inappropriate for the given injection point

(Rii). A tiny grammar for the set Rvi (i.e. the set of SQL

injection requests that are constructed in order to generate

execution pages) can be expressed using BNF4 notation as

follows:

INJECTION | WORD’ POR TAUTAG [’ POR TAUTAG]
| WORD” POR TAUTAG [” POR TAUTAG]

POR := ’ or ’ / ’)’ POR ’(’
TAUTAG := hex(’A’)=’41

| ’1’=’1
| ’[f-m]’ between ’[a-e]’ and ’[n-z]’

WORD := [0-9a-zA-A]*
...

This grammar generates different variations of SQL injec-

tion attacks whose principle consists in inserting a tautology

inside an expression evaluated by a WHERE clause, in such a

way that this expression becomes a tautology itself. To inject

the tautology, the initial expression is splitted into several

pieces. The TAUTAG rules are examples of such tautologies

and the INJECTION rules express how the tautology is

included in an initial expression, i) by closing the expression

with delimiter characters (’, ", or)), ii) by inserting the

tautology (through a disjonction) and iii) by opening a new

expression using the same delimiter characters.

V. EXTENSION TO OTHER VULNERABILITIES

The SQL injection vulnerability detection principle can be

generalized. Indeed, many attacks adopt the same behavior:

the client sends a string which changes the semantics of the

forged query. According to the context, the forged query is sent

to a specific web server side component such as the XPATH

engine, the OS, etc. The name of the corresponding injection

attacks are derived from the name of this component leading

to the so-called XPATH injection, OS Commanding, etc. Thus,

the clustering algorithm that we have illustrated through SQL

injection examples in the previous section can also be used

for other kinds of vulnerabilities.

The adaptation of our algorithm to other kinds of vulnerabil-

ities only requires the definition of the three sets of requests

Rr, Rii and Rvi for each kind of vulnerability. Once these

sets are established, the algorithm is always the same: sending

these requests, storing the corresponding results and obtaining

clusters using the distance presented in the previous section.

Due to space limits, we briefly present in the following an

example that illustrates how our algorithm can be applied for

the detection of OS Commanding vulnerabilities. Examples

4BNF stands for Backus Normal Form. It is a notation for grammar writing.

corresponding to XPATH and File Include vulnerabilities are

presented in [22].

In the case of OS commanding vulnerability, the string

sent by the client is used to create a command propagated

to the OS. This command is then executed by the OS with

the privilege of the web server process. The exploitation

of this vulnerability allows an attacker to execute arbitrary

commands and, for example, to make read or write accesses

on the file system. An example of a vulnerable PHP web

page on the server side is as follows:

<?php

system("cat ".$_GET[’cmd’]);

?>

This code executes the cat command with arguments

extracted from the cmd parameter. As this parameter is not

sanitized, the code is vulnerable.

Syntactically invalid and valid requests may respectively

look like:

Rii: .;. LeSS /OFr/BxEBHM . cAt /sCs/wJjqCg

Rvi: | more /././etc/././passwd

The first request contains invalid Unix commands and is

constructed to be invalid. The second one contains a valid pipe

towards a command that is supposed to display the content of

the /etc/passwd file.

VI. IMPLEMENTATION

Figure 3 presents a high-level view of the tool that we have

developed to implement the proposed algorithm following an

iterative approach. When the user runs the tool, he provides the

initial URL. Most of the time, it corresponds to the main page

of the application (index.html). Then, the crawling of the

application begins, starting from this initial injection point.

This crawling identifies all potentially vulnerable injection

points. This first stage ends when all accessible injection points

have been reached. The second stage begins at this moment.

It corresponds to the execution of our clustering algorithm on

each injection point, considering the different vulnerabilities

presented in the previous section. This second stage may lead

to the identification and exploitation of a vulnerability. If so,

we obtain a new injection point which was not accessible in

the first stage. Consequently, it is possible that a new area of

the application becomes accessible from now. Hence, the tool

then starts again the first stage using the newly discovered

injection point. Figure 3 presents these two stages.

The tool was developed using Python language. The Python

libraries make easy the management of HTTP concepts (cook-

ies, parameters, etc.). Our tool is linked to the statistical

analysis tool, R. The base installation of R gives a set of

packages useful to achieve hierarchical clustering. They have

been used to develop our clustering algorithm. The crawler is

developed by ourselves in order to easily integrate it with the

vulnerability exploitation part of our algorithm. Our tool is

named Wasapy. Wasapy stands for Web Application Security

Assessment in PYthon.

Fig. 3. Principle of the algorithm

VII. EXPERIMENTAL RESULTS AND DISCUSSION

This section presents the experiments that we have carried

out to validate and assess our algorithm. We have consid-

ered several applications using Wasapy and the three open-

source vulnerability scanners discussed in this paper: W3af

1.1, Skipfish 1.9.6b and Wapiti 2.2.1. The ex-

periments are run on a Gnu/Linux (2.6 kernel) host running

several virtual machines thanks to the VirtualBox utility.

All the virtual machines run the Apache web server

1.3.37 or 2.2.8 with PHP 4.0.0 or 5.0.0 and MySQL

database server 5.

This section is organised as follows. Subsection VII-A

presents notations and abbreviations. Subsection VII-B

presents the first experiments realized in order to assess our

approach. Five web applications including SQL vulnerabili-

ties are used. We purposely injected these vulnerabilities to

calibrate Wasapy. Subsection VII-C the second set of exper-

iments with vulnerable off-the-shelf applications, without any

modification of these applications. This subsection compares

Wasapy to other vulnerability scanners on non-purposely

injected vulnerabilities. For some of these applications, eval-

uation reports based on commercial scanners are available in

[23]. We reported some of these results in order to compare

these scanners with Wasapy. Subsection VII-D presents the

summary of all these experiments.

A. Notations

The results of our experiments are presented in different

tables. We use following notations and abbreviations:

3 The vulnerability has been detected by the

corresponding scanner

7 The vulnerability has not been detected by the

corresponding scanner

– The injection point is not tested by the scanner

SQLi stands for SQL Injection

XPa stands for XPath Injection

OsC stands for OS Commanding

FIn stands for File Include

CVE reports the CVE reference of the considered

vulnerability if it exists

NR The vulnerability does not have a CVE

A vulnerability is considered as detected if the scanner

actually sends an alert for this vulnerability, whatever the

method used to detect it. A vulnerability is considered as

not detected if the scanner actually tested the corresponding

injection point without sending any alert. A vulnerability is

considered as ignored by the scanner if the corresponding

injection point is not tested by the scanner.

B. Experiments with modified applications

The five applications chosen for this first set of experiments

are described hereafter:

• phpBB-3: This application5 is a forum manager written

in PHP and using a MySQL database. We modified the

authentication form of the application so that it includes

a vulnerability (v1) that can be exploited by a SQL

injection. This vulnerability allows an attacker to reach

the restricted administration area of the forum.

• SecurePage: This application6 written in PHP, is

designed to protect the access of a web site through

authentication. Valid couples for this authentication are

stored in a MySQL database. A vulnerability (v2) was

purposely injected, it is similar to v1.

• HardwareStore: We developed this application, in

PHP 5.0. This application allows a user to inventory

computer equipments in a database and to interrogate

this database. The user needs first to be authenticated.

Five SQL vulnerabilities were purposely injected in this

application. v3 allows SQL injection in a search form,

and allows an attacker to access the whole database.

v4 allows SQL injection in the authentication form. v5

allows SQL injection in a parameter of a HTML request.

For this vulnerable HTML page, we have purposely

disabled the error message reporting, in order to compare

the behavior of W3af and Wapiti in such a situation

with the behavior of Wasapy. Vulnerability v6 is similar

to v4 but it is used in a different context: the error

message reporting is deactivated. Vulnerability v7 can

only be exploited after the successful exploitation of v4.

Indeed, this vulnerability is included in a page that can

only be accessed after successful authentication on the

application or after a successful bypass of the authenti-

cation mechanism (through exploitation of v4). XPATH,

5http://www.phpbb.com
6http://www.01php.com/fiche-scripts-126.html

Scanners

S
k

ip
fi

sh

W
3

af

W
ap

it
i

W
as

ap
y

Vulnerabilities

Type Application ID

phpBB3 v1 7 7 3 3

SecurePages v2 7 7 3 3

v3 3 3 3 3

v4 3 3 7 3

SQLi HardwareStore v5 3 7 7 3

v6 7 7 7 3

v7 – – – 3

Insecure v8 3 3 7 3

DVWA v9 3 3 – 3

XPa HardwareStore v10 7 7 7 3

OsC HardwareStore v11 – – – 3

FIn HardwareStore v12 – – – 3

Number of detections 5 4 3 12

Fig. 4. Vulnerability detection results for modified applications

OS Commanding and File Include vulnerabilities were

also injected in this application. Vulnerability v10, in

the authentication page, allows an attacker to bypass the

authentication through a XPATH injection. v11 is an

Os Commanding vulnerability that can be exploited only

after v4 is successfully exploited. Indeed, this vulnera-

bility is included in a page that is only accessible after

authentication (or bypass of the authentication through

successful exploitation of v4). Vulnerability v12 is a File

Include vulnerability, it is included in the same page as

v11 and can be exploited in the same conditions as v11.

• Insecure: This application was developed in Ruby on

Rails in the context of the Dali project7. It is an e-

commerce site, including user sessions through virtual

shopping carts. A vulnerability (v8), which allows an

attacker to inject SQL code, was purposely included in the

authentication form of the application. This vulnerability,

functionally equivalent to v4 is anyway different because

Insecure is implemented in Ruby and the error re-

porting messages differ from the Apache error reporting

messages.

• Damn Vulnerable Web Application (DVWA): This ap-

plication8 is written in PHP and uses MySQL server. A

vulnerability v9, similar to v3, was purposely introduced

in the application.

Figure 4 shows that the performances of W3af and Wapiti

are similar in average, even if the vulnerabilities detected

are not the same (Wapiti successfully detects v1 and v2

whereas W3af does not detect them; on the other hand, W3af

detects v4 and v8 whereas Wapiti does not detect them).

This result is consistent with the fact that both scanners use a

pattern matching-based algorithm. The observed variations are

related to the generation of different requests by these tools.

Wasapy allows us to detect all these vulnerabilities. This

7ANR’s program ARPEGE(2009-2011).
8http://www.dvwa.co.uk

confirms that the vulnerability detection clustering algorithm

presents a better coverage than the pattern matching algorithm

for these vulnerability classes.

Regarding vulnerabilities v1 and v2, we manually checked

the injections performed by Skipfish (’", \’\" and

\\’\\") and stored the corresponding responses (respectively

A, B et C). As discussed in Section III, Skipfish considers

that the pages A and C must be different so that a vulnerability

is present. Unfortunately, for these two injection points, this is

not the case. The responses correspond to SQL error messages

that are very similar.

Regarding vulnerabilities v5 and v6, they are included

in PHP pages for which we purposely deactivated the error

reporting message feature9 in the configuration file of PHP5.

In this particular case, none of the three scanners (Skipfish,

W3af and Wapiti) is able to detect vulnerabilities.

Regarding vulnerability v7, Wasapy is the only scanner

that is able to detect it. Moreover, it is the only scanner

that is able to test the corresponding injection point. Indeed,

this injection point is included in a HTML page that can

only be accessed after a successful authentication or after the

successful exploitation of vulnerability v4. As Wasapy is the

only scanner able to actually exploit v4, it can automatically

access the page including vulnerability v7. For the other

scanners, it is necessary to manually perform the exploitation

of v4 so that it is possible to access the page including

v7. Vulnerabilities v11 and v12 were identified only by

our tool for the same reasons: they remain masked until the

authentication is bypassed.

The purpose of these initial tests was the calibration of

Wasapy. The calibration of our tool consists in defining

empirically the number of requests to generate for each

group and injection point. We set this number to 30 for all

the applications tested (i.e., 90 requests per injection point).

We have observed that a higher number does not provide

significantly higher accuracy, while a lower number generates

false negatives.

These initial tests also allowed us to check the grammars

that we presented in the previous section. Of course, the

corresponding vulnerabilities have been identified for this

purpose. So, these results are not aimed to be used to make an

absolute comparison between the scanners. A more represen-

tative comparative assessment of the different tools should be

based on vulnerable applications in which vulnerabilities have

not been deliberately injected by ourselves. These experiments

are presented in the next subsection.

C. Experiments with non-modified vulnerable applications

This second set of experiments allowed us to have a more

precise idea of the coverage of our detection algorithm. For

that purpose, we compared it to the detection algorithms of

Skipfish, W3af and Wapiti on not purposely modified

vulnerable web applications. For some of these applications,

9The configuration file of PHP5 includes: For production web sites, you’re

strongly encouraged to turn this feature off, and use error logging instead.

S
k

ip
fi

sh

W
3

af

W
ap

it
i

W
as

ap
y

Vulnerability

Type CVE Location

NR search.php 3 3 3 3

SQLi 2005-3236 lostpwd.php 3 3 3 3

2005-3236 newmsg.php 3 3 3 3

2005-3575 show.php 3 3 3 3

False positive 1 0 0 0

Fig. 5. Vulnerability detection results for Cyphor application

we could compare our algorithm with some commercial

vulnerability scanners, considering the results available in

[23]. In this document, the author presents the vulnerability

detection results obtained with three commercial scanners:

WebInspect from HP, AppScan from IBM and Web

Vulnerability Scanner from Acunetix. These re-

sults provide only some preliminary indications to analyse the

performance of our tool on the same set of applications and

are not meant to be used for a validation purpose.

For our experiments, we selected five web applications

(most of them tested in [23]), known to include vulnerabilities.

These applications cover different functionalities and execu-

tion contexts. We installed these applications, and performed

vulnerability detection tests without modifying them.

• Cyphor10 is a configuration Webforum, which uses PHP

4.0.0 session capabilities to authenticate users and a

MySQL database.

• Seagull11 is an OOP framework for building web,

command line and GUI applications. This project allows

PHP developers to integrate and manage code resources,

and build complex applications. This application requires

the following configuration: PHP 4.3.0 or newer, MySQL

4.0.x or newer, Apache 1.3.x or 2.x.

• Fttss is a research project12 that implements a Text-

To-Speech System based on PHP (4.3.0 or newer) and

MySQL (4.1.2 or newer).

• Riotpix13 is an open-source discussion forum for the

web based on PHP (4.3.0 or newer) and MySQL (4.1.2

or newer).

• Pligg14 is a social networking open source CMS (Con-

tent Management System) that permits visitors to register

on the website, submit content and connect with other

users. This software creates websites where stories are

created and voted on by members. PHP (4.3.0 or newer)

and MySQL (4.1.2 or newer) are required.

We inspected manually all vulnerabilities detected by each

scanner to check the experiment results and get more con-

fidence on the number of detected vulnerabilities and false

positives.

Figure 5 presents the results for Cyphor application. All

10http://webscripts.softpedia.com/script/Snippets/Cyphor-27985.html
11http://seagullproject.org/
12http://fttss.sourceforge.net
13http://www.riotpix.com/
14http://www.pligg.com/

S
k

ip
fi

sh

W
3

af

W
ap

it
i

W
as

ap
y

Vulnerability

Type CVE Location

SQLi 2010-3212 index.php 7 7 7 3

2010-3209 container.php 7 7 7 7

FIn 2010-3209 QuickForm.php 7 7 7 7

2010-3209 NestedSet.php 7 7 7 7

2010-3209 Output.php 7 7 7 7

False positive 0 0 0 0

Fig. 6. Vulnerability detection results for Seagull application

S
k

ip
fi

sh

W
3

af

W
ap

it
i

W
as

ap
y

A
p

p
S

ca
n

W
eb

In
sp

ec
t

A
cu

n
et

ix

Vulnerability

Type CVE Location

OsC NR index.php 7 3 7 3 7 7 7

False positive 0 0 0 0 0 0 0

Fig. 7. Vulnerability detection results for Fttss application

the scanners found all the vulnerabilities because error mes-

sages are reported to the client. Thus, it is easy to distinguish

successful vulnerability exploitation from error messages. The

underlined results correspond to detections made possible by

supplying a valid (login/password) to the scanners to perform

authentication. In other words, the corresponding vulnerability

is only visible when logged in the site (the authentication

page does not contain any SQL-injection vulnerability, it is

the only way for any scanner to access the page including the

vulnerability).

The results reported for Seagull in Figure 6 show that

Wasapy is the only one that reports a vulnerability in this

application. Others are unable to do so because the application

does not report errors to the client. Regarding File Include vul-

nerabilities, the injection points which allow their exploitation

are not directly visible by the client. Hence, the source code

is necessary to identify these vulnerabilities. This explains the

failure of all scanners.

Fttss is an application that has been tested in [23]. Hence,

some results associated to the three commercial scanners con-

sidered are available (cf. Figure 7). The commercial scanners

do not detect the OS commanding vulnerability, which is

the only vulnerability known of this application. In contrast,

W3af and Wasapy are able to identify this vulnerability. It is

noteworthy that none of tested scanners reports false positives

in this case.

Regarding Riotpix (cf. figure 8), the results are similar

to those of Cyphor. The vulnerabilities are only accessible to

successfully authenticated users. Therefore we had to provide

a valid login/password to all scanners. Two vulnerabilities

have not been found by any scanner. They correspond to code

injection into variables that are not visible to the client and thus

cannot be discovered by scanners (their identification would

require a source code analysis). These results also show that

Wasapy is efficient for this kind of vulnerability.

Regarding the Pligg application (cf. figure 9), all vulner-

S
k

ip
fi

sh

W
3

af

W
ap

it
i

W
as

ap
y

A
p

p
S

ca
n

W
eb

In
sp

ec
t

A
cu

n
et

ix

Vulnerability

Type CVE Location

NR edit post.php 7 7 7 3 7 7 7

NR edit post script.php 7 7 7 7 7 7 7

SQLi NR index.php 7 7 7 7 7 7 7

NR message.php 7 7 7 3 7 7 7

NR reader.php 3 3 7 3 7 7 7

False positive 0 0 0 0 0 0 0

Fig. 8. Vulnerability detection results for Riotpix application

S
k

ip
fi

sh

W
3

af

W
ap

it
i

W
as

ap
y

A
p

p
S

ca
n

W
eb

In
sp

ec
t

A
cu

n
et

ix

Vulnerability

Type CVE Location

2008-7091 login.php 7 7 7 3 7 3 7

2008-7091 story.php 3 7 3 3 3 3 3

NR userrss.php 7 7 7 7 3 3 3

2008-7091 out.php 7 7 7 7 3 7 3

2008-7091 trackback.php 7 7 7 7 7 7 7

SQLi 2008-7091 cloud.php 7 7 7 7 7 7 7

2008-7091 cvote.php 7 7 7 7 7 7 7

2008-7091 recommend.php 7 7 7 7 7 7 7

2008-7091 submit.php 7 7 7 7 7 7 7

2008-7091 vote.php 7 7 7 7 7 7 7

2008-7091 edit.php 7 7 7 7 7 7 7

False positive 0 0 0 2 1 1 0

Fig. 9. Vulnerability detection results for Pligg application

abilities but the first two are available on hidden injection

points. The scanner must be aware of the presence of the

injection point in order to test the vulnerability. For the first

two vulnerabilities, Wasapy found them, whereas the other

scanners found only one of these vulnerabilities. This is due

to the fact that error messages are not forwarded to the client.

D. Summary

The main lessons learned form all our experiments are

summarized in the following:

• Wasapy is an efficient scanner, especially in particular

conditions for which it has been designed : 1) it is more

efficient than the other freeware scanners tested when the

error reporting is disabled, 2) it is more efficient than the

other scanners to discover and exploit vulnerabilities that

are included in pages not directly accessible (pages that

require the successful exploitation of a vulnerability to

be accessed). Indeed, our scanner is the only one which

is capable of actually exploiting the vulnerability, and

supplying the exact corresponding injection requests.

• Wasapy is globally as efficient as the other vulnerability

scanners tested on not modified vulnerable applications.

• Our clustering algorithm can be easily adapted to dif-

ferent kinds of vulnerabilities. Besides SQL injections,

the results of the experiments show that Wasapy also

detects XPATH, OS Commanding and File Include vul-

nerabilities and that it is at least as efficient as the other

vulnerability scanners.

VIII. CONCLUSION

In this paper, we presented a vulnerability scanner that im-

plements a new algorithm aimed at detecting web applications

vulnerabilities, following a black-box approach. Our algorithm

is based on the automatic generation of specially crafted inputs

allowing the successful exploitation of detected vulnerabilities,

using data clustering techniques and language theory.

We used a large set of applications with and without

deliberately injecting vulnerabilities into them in order to

validate our approach and analyse its effectiveness compared

to three other open source web scanners. The experimental

results are promising. In particular, we have shown that our

algorithm can contribute to improve the detection capabilities

of some existing tools and to pushes one step forward the

automation of the vulnerability detection process (by allowing

for instance the successful detection of vulnerabilities in pages

that are not directly accessible but only accessible after the

successful exploitation of a first vulnerability).

In this paper we focussed on SQL injection vulnerabilities.

Nevertheless, we have also shown that the proposed algorithm

can be successfully applied to other vulnerability types. A

more extensive validation case is needed to confirm the

promising results obtained so far. The proposed algorithm has

been implemented in a new tool Wasapy. This algorithm

can also be integrated in the open source tools that we have

investigated (such as W3aF and Skipfish to take advantage

of the other powerful facilities offered by these tools.

Overall, the experimental results presented in the paper

also highlight the usefulness of combining different kinds

of vulnerability scanners at the same time to enhance the

vulnerability detection capabilities of current scanners. A first

kind can be represented by W3aF which performs pattern

matching on web responses and the second kind can be

represented by our scanner which uses a different approach.

Such an architecture leads to the problem of correlation of

the results provided by diverse tools. It will be interesting

to perform a new evaluation considering scanners working

together with an overall detection correlation mechanism. The

corresponding results may contribute to propose an efficient

method to wisely combine different scanners.

REFERENCES

[1] Mitre, “2010 CWE/SANS Top 25 most dangerous software errors”, Doc-
ument version 1.06, September 2010, http:://www.cwe.mitre.org/top25

[2] Y.-W Huang, F. Yu, C. Huang, C.-H.Tsai, D.-T.Lee, and S.-Y Kuo, “Se-
curing Web Application code by static analysis and runtime protection”,
Proc. 13th Int. Conf. on World Wide Web (WWW’04), NY, USA. ACM.
pp. 40-52.

[3] V.B. Livshits and M. S. Lam, “Finding security errors in Java program
with static analysis”, Proc. 14th Usenix Security Symposium, Baltimore,
MD, USA, 2005.

[4] N. Jovanovic, C. Kruegel, and E. Kirda, “Static analysis for detecting
taint-style vulnerabilities in web applications”, Journal of Computer

Security, 18 (2010), pp. 861-907.

[5] Y. Xie, A. Aiken, “Static detection of vulnerabilities in scripting lan-
guages”, Proc. 15th USENIX Security Symposium, pp. 179-192, 2006

[6] G. Wassermann and Z. Su, “Sound and precise analysis of web appli-
cations for injection vulnerabilities”, SIGPLAN Notices, vol 42, n06, pp.
32-41, 2007.

[7] M. S. Lam, M. Martin, B. Livshits, and J. Whaley, “Securing Web
Applications with static and dynamic information flow tracking”, Proc . of

the 2008 ACM SIGPLAN Symposium on Partial evaluation and semantics-

based program manipulation (PEPM’08), New York, NY, USA : ACM,
2008, pp. 3-12.

[8] T. Pietraszek, C.V. Berghe, “Defending against injection attacks through
context sensitive string evaluation”, Recent Advances in Intrusion Detec-

tion (RAID-2005), Seattle, WA, USA, 2005.
[9] C. Kruegel, G. Vigna, “Anomaly Detection of Web-based Attacks”, Proc.

of the 10th ACM Conference on Computer and Communication Security

(CCS’03), pp. 251-261, October 2003.
[10] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic, “Noxes: A client-side

solution for mitigating cross-side scripting attacks”, 21st ACM Symposium

on Applied Computing (SAC2006), Dijon, France, 2006.
[11] K.Stefan, E. Kirda, C. Kruegel and N. Jovanovic,“SecuBat: a web

vulnerability scanner”, Proc. of the 15th int. conf. on World Wide Web

(WWW ’06), Edinburgh, Scotland, 2006.
[12] Sectools Website, “Top 10 vulnerability scanners”, http://

sectools.orf/web-scanners.html
[13] J. Fonseca, M. Vieira, and H. Madeira, “Testing and Comparing Web

vulnerability scanning tools for SQL injections and XSS attacks”, Proc.

2007 IEEE Symposium Pacific Rim Dependable Computing (PRDC 2007),
Victoria, Australia, pp. 330-337, USA, 2007.

[14] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell, “State of the art:
Automated black-box web application vulnerability testing”, Proc. 2010

IEEE Symposium on Security and Privacy, Oakland, USA, 2010.
[15] A. Doupé, M. Cova, and G. Vigna, “Why Johnny can’t pentest : An

analysis of black-box web vulnerability scanners”, Proc. DIMVA 2010.
[16] Y.-W Huang, S.-K Huang, T.-P. Lin, C.-H.Tsai, “Web Application

security assessment by fault injection and behavioral monitoring”, Proc.

12th Int. Conf. on World Wide Web (WWW’03), Budapest, Hungary, 2003.
[17] Levenshtein, V., Leveinshtein distance, 1965

http://en.wikipedia.org/wiki/Levenshtein distance[accessed on 02/22/10]
[18] J. W. Hunt and M. D. McIlroy, “An Algorithm for Differential File

Comparison”, Tech. Report CSTR 41, Bell Laboratories, Murray Hill,
NJ, 1976.

[19] S. C. Johnson, “Hierarchical Clustering Schemes”, in Psychometrika

Journal, pp. 241-254,Volume = 2, 1967.
[20] A.Kiezun, P. J. Guo, K.Jayaraman and M. D. Ernst, “Automatic creation

of SQL Injection and cross-site scripting attacks”, IEEE 31st Int. Conf.

on Software Engineering(ICSE 2009) , Vancouver, BC, 2009.
[21] E. Gutesman, “gFuzz: An Instrumented Web Application Fuzzing En-

vironment”, Hack.Lu ’08, Luxembourg, 2008.
[22] A.Dessiatnikoff and R.Akrout and E.Alata and M.Kaâniche and

V.Nicomette, “HTML pages clustering algorithm for web security scan-
ners”, Rapport Laas N11053, 2011.

[23] http://anantasec.blogspot.com/ [accessed on 12/9/10]

