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In this paper we study the pinning model with correlated Gaussian disorder. The presence of correlations makes the annealed model more involved than the usual homogeneous model, which is fully solvable. We prove however that if the disorder correlations decay fast enough then the annealed critical behaviour is the same as the homogeneous one. Our result is sharper if the decay is exponential. The approach we propose relies on the spectral properties of a transfer or Ruelle-Perron Frobenius operator related to the model. We use results on these operators that were obtained in the framework of the thermodynamic formalism for countable Markov shifts. We also provide large-temperature asymptotics of the annealed critical curve under weaker assumptions.

The random pinning model applies to various situations such as localization of a polymer on a defect line, wetting transition and DNA denaturation, which all display a transition between a localized phase and a delocalized phase. In the last past years considerable progress has been made on the understanding of the critical phenomena in the case of an environment constituted of independent and

Introduction

The general model. We first present the random pinning model in a general setting. The reader can also refer to [START_REF] Giacomin | Random polymer models[END_REF][START_REF] Toninelli | Localization transition in disordered pinning models[END_REF] and [START_REF] Hollander | Random polymers. École d' Été[END_REF]Chapters 7 and 11]. Let (T n ) n≥1 be a sequence of i.i.d random variables in N * (the interarrival times), with law denoted by P . We suppose that K(n) := P (T 1 = n) = L(n)n -(1+α) > 0 (1.1) {defK} with α ≥ 0 and L a slowly varying function (see [START_REF] Bingham | Regular variation[END_REF]). We denote by τ the renewal process defined by τ 0 = 0 and τ n -τ n-1 = T n for n ≥ 1, and define the random variables

δ n := 1 {n∈τ } = 1 if τ k = n for some k ≥ 0 0 otherwise , ı n := n k=1 δ k .
We suppose that τ is recurrent in the sense that n≥1 K(n) = 1. Let ω = (ω n ) n≥0 be a sequence of real random variables, independent of τ . Its law is denoted by P. The pinning probability measure in quenched environnment ω, at size n ≥ 1 and parameters β ≥ 0 (the inverse temperature) and h ∈ R (the pinning parameter) is defined by is the quenched partition function. Define the finite volume quenched free energies by ∀n ≥ 1, F ω n,β,h := (1/n) log Z ω n,β,h . The following result is now standard (see [START_REF] Giacomin | Random polymer models[END_REF]Theorem 4.6]) and can be proved with Kingman's ergodic subadditivity theorem: Theorem 1.1. If ω is stationary ergodic and E(|ω 0 |) < +∞, then the sequence (F ω n,β,h ) n≥1 converges P-a.s and in L 1 (P) to a nonnegative and nonrandom quantity called (infinite volume) quenched free energy and denoted by F (β, h). Moreover, F (β, h) = sup n≥1 EF ω n,β,h .

dP ω n,β,h dP := 1 Z ω n,
{pinned_free} Remark 1.1. The constraint δ n appearing at the right of Equations (1.2) and (1.3) says that we look at realizations of τ such that n ∈ τ . In this case, one speaks of pinned or constraint partition functions. This constraint can be safely removed (in which case one speaks of free partition functions) without modification of the infinite volume free energy, see [START_REF] Giacomin | Random polymer models[END_REF]Remark 1.2].

Note that by suitably shifting h one can assume that ω 0 is centered without losing in generality. The localized and delocalized phases of the system are respectively defined by

L = {(β, h) ∈ R + × R : F (β, h) > 0}, D = {(β, h) ∈ R + × R : F (β, h) = 0}.
For a fixed β, the quenched free energy is nondecreasing (and convex) in h. Therefore, a phase transition occurs at the quenched critical point (when it is finite) h c (β) := sup{h : F (β, h) = 0}.

The quenched critical exponent, which governs the behaviour of the quenched free energy at the neighbourhood of h c (β), is another important critical feature of the model.

Remark 1.2. If one wants to see the delocalization transition as a denaturation transition for DNA, then the (T n ) n≥1 would (more or less) stand for the lengths of denaturation loops in a double-stranded DNA molecule and (ω n ) n≥0 for the nucleotides sequence. The presence of long-range correlations in these sequences makes the study of the correlated case relevant. See [START_REF] Giacomin | Random polymer models[END_REF]Section 1.4] for a more detailed description of the relation between the pinning model and Poland-Scheraga models.

Homogeneous case. Let us now briefly recall the critical features of the homogeneous model (β = 0), which is fully solvable. One can prove that h c (0) = 0 and (see [START_REF] Giacomin | Random polymer models[END_REF]Theorem 2.1] for a more precise statement) {hom_crit_exp} Theorem 1.2. For every choice of α ≥ 0 and L in (1.1), there exists a slowly varying function L such that

F (0, δ) δց0 ∼ δ max(1,1/α) L(1/δ).
Moreover,

lim δց L(1/δ) = 1/m when m := n≥1 nK(n) < +∞.
Therefore, the critical exponent of the homogeneous pinning model is equal to max(1, 1/α). I.I.D case and the annealed model. A lot of work has been achieved recently on the critical phenomenon of pinning models in i.i.d disorder. Here we restrict ourselves to i.i.d standard Gaussian random variables, for ease of exposition and also because in this paper we investigate the case of correlated Gaussian random variables. Most of statements in this paragraph can be extended to other laws with finite exponential moments. Let us define the annealed partition functions by Z a n,β,h := EZ ω n,β,h . By applying Jensen's inequality, one gets

E log Z ω n,β,h ≤ log Z a n,β,h , which yields F (β, h) ≤ F a (β, h) := lim n→+∞ (1/n) log Z a n,β,h , (1.4) 
h c (β) ≥ h a c (β) := sup{h : F a (β, h) = 0}. (1.5) 
These two lines are in fact always true as soon as F a (β, h) and h a c (β), respectively called annealed free energy and annealed critical point, are well defined. This fact is easily checked here, since by direct computation we have ∀n ≥ 1, Z a n,β,h = Z n,0,h+β 2 /2 , from which we infer

F a (β, h) = F (0, h + β 2 /2) (1.6) {ann_iid} h a c (β) = -β 2 /2 (1.7) {ann_cc_iid} h c (β) ≥ -β 2 /2. (1.8) 
From Equation (1.6) we deduce that the annealed critical exponent is the same as the homogeneous critical exponent given by Theorem 1.2. Furthermore, a smoothing inequality obtained in [START_REF] Giacomin | Smoothing effect of quenched disorder on polymer depinning transitions[END_REF] states that for all values of α,

∀δ ≥ 0, F (β, h c (β) + δ) ≤ 1 + α 2β 2 δ 2 ,
(1.9) {smoothing} which indicates that quenched and annealed critical exponent cannot coincide if α > 1/2. A series of papers then proved the following dichotomy, in accordance with the Harris criterion (see [START_REF] Harris | Effect of random defects on the critical behaviour of ising models[END_REF], [10, Section 5.5] and [START_REF] Toninelli | Localization transition in disordered pinning models[END_REF]Section 5] for a more detailed explanation):

1. If 0 < α < 1/2: there exists β c ∈ (0, +∞) such that the annealed and quenched critical points and exponents coincide if β ∈ (0, β c ) (irrelevant regime) and

h c (β) > h a c (β) if β > β c (relevant regime). 2. If α > 1/2: for all β > 0, h c (β) > h a c (β).
We let aside the special cases α = 0 (irrelevance for all β > 0, see [START_REF] Alexander | Equality of critical points for polymer depinning transitions with loop exponent one[END_REF]) and α = 1/2 (marginal case). The reader can refer to [START_REF] Alexander | Quenched and annealed critical points in polymer pinning models[END_REF][START_REF] Alexander | Equality of critical points for polymer depinning transitions with loop exponent one[END_REF][START_REF] Alexander | The effect of disorder on polymer depinning transitions[END_REF][START_REF] Toninelli | A replica-coupling approach to disordered pinning models[END_REF][START_REF] Lacoin | The martingale approach to disorder irrelevance for pinning models[END_REF][START_REF] Cheliotis | Variational characterization of the critical curve for pinning of random polymers[END_REF][START_REF] Toninelli | Disordered pinning models and copolymers: Beyond annealed bounds[END_REF][START_REF] Giacomin | On the irrelevant disorder regime of pinning models[END_REF][START_REF] Giacomin | Disorder relevance at marginality and critical point shift[END_REF][START_REF] Giacomin | Smoothing effect of quenched disorder on polymer depinning transitions[END_REF] for precise results.

Correlated case. Some models with correlated disorder have been recently investigated.

In [START_REF] Berger | Sharp critical behavior for pinning models in a random correlated environment[END_REF], the renewal process evolves in an environment constituted of independent strips of 0 and -β's, where the distribution for the size of the strips has a power-law tail with exponent θ > 1. This particular environment is an example of a disorder potential with long-range power-law decaying correlations. It is then proved that the critical point is 0 for all β > 0 and that the critical exponent is θ/ min(1, α) (with explicit logarithmic corrections).

In [START_REF] Berger | Hierarchical pinning model in correlated random environment[END_REF], a hierarchical pinning model with correlated disorder is studied. The choice of correlations would correspond to power-law decaying correlations if one makes the analogy with the non-hierarchical model. The authors identify three regimes: non-summable correlations (the phase transition disappears), fast-decaying correlations (the annealed exponent is the same as in the homogeneous model and the (ir)relevance criterion for disorder is as in the i.i.d case) and a third regime where the annealed critical exponent is modified.

The random pinning model in the case of Gaussian disorder with finite-range correlations has been studied in [START_REF] Poisat | Random pinning model with finite range correlations: Disorder relevant regime[END_REF] and [START_REF] Poisat | On quenched and annealed critical curves of random pinning model with finite range correlations[END_REF]. In this case, the annealed partition function is no more a homogeneous partition function. However, one can write it (approximately) like the homogeneous partition function for a Markov renewal process (depending on β) with a shift on the pinning paramater, and see the Markov renewal process as a renewal process with a finite range memory (somehow the dependence structure of the disorder sequence is transferred to the renewal process upon annealing). The method that we use to prove Theorems 2.1 and 2.2 is a natural but not straightforward extension to the infinite-range case of the techniques used for the finite-range case, which rely on Perron-Frobenius tools. Furthermore, in the finite-range case the Harris criterion is not modified.

Model and results

Our results deal with the annealed critical features of the random pinning model with Gaussian disorder under some tail assumptions on the correlations.

Assumptions and preliminaries. In the following ω = (ω n ) n≥0 is a stationary sequence of Gaussian random variables satisfying

E(ω 0 ) = 0 and E(ω 2 0 ) = 1.
We define

∀n ≥ 1 ρ n = Cov(ω 0 , ω n ).
The first step is to compute the annealed partition function. We have

Z a n,β,h = E   exp   h + β 2 2 n k=1 δ k + β 2 1≤k<l≤n ρ k-l δ k δ l   δ n   . (2.1) {ann_part_fct}
Indeed, this a direct consequence of

Var n k=1 ω k δ k = 1≤k,l≤n ρ |k-l| δ k δ l = n k=1 δ k + 2 1≤k<l≤n ρ k-l δ k δ l .
and of the fact that n k=1 ω k δ k is a Gaussian random variable conditionally on τ . The second term in the exponential in Equation (2.1) makes this model more complicated than homogeneous pinning.

We now prove the existence of the annealed free energy under weak tail assumptions on the correlations. 

F a (β, h) = lim n→+∞ (1/n) log Z a n,β,h
exists and is finite.

Proof of Proposition 2.1. We fix β and h and write Z a n as a shortcut for Z a n,β,h . Let us define

∆ n = n k=1 i≥k |ρ i | = n k=1 k|ρ k |.
By restricting the partition function to paths with δ n = 1 and using Markov property we get

Z a n+m ≥ Z a n Z a m exp -β 2 ∆ m ≥ Z a n Z a m exp -β 2 ∆ n+m . Since |ρ n | < ∞, ∆ n n(n + 1) = ∆ n n - ∆ n+1 n + 1 + |ρ n+1 | (2.2)
is summable. We can conclude that the annealed free energy exists by applying the approximate subadditive lemma (see Lemma 2.1 below). Again, it is finite since

Z a n ≤ exp   n   h + β 2 2 + β 2 k≥1 |ρ k |     . (2.
3) {lemmaHammersley} Lemma 2.1 (Hammersley's approximate subadditive lemma, [START_REF] Hammersley | Generalization of the fundamental theorem on subadditive functions[END_REF]). Let h : N → R such that for all n, m ≥ 1,

h(n + m) ≤ h(n) + h(m) + ∆(n + m),
where (∆ n ) n≥0 is a non-decreasing sequence such that:

r≥1 ∆(r) r(r + 1) < +∞.
Then the sequence (h(n)/n) n≥1 has a limit in [-∞, +∞).

Main results

We now state our main results. Theorem 2.1 states that if the correlations decay fast enough then the annealed critical behaviour is the same as in the homogeneous case (see Theorem 1.2). Under the stronger assumption that the correlations decay exponentially fast, a sharper version of the critical behaviour can be derived, as stated in Theorem 2.2.

{critical_sum} Theorem 2.1. If n≥1 n|ρ n | < ∞ then for all β > 0, in all of the following cases there exist a constant c β ∈ (0, 1) and a slowly varying function L such that 1+α) , 0 < α < 1, for δ positive and small enough,

1. if K(n) = L(n)n -(
c β L(1/δ)δ 1/α ≤ F a (β, h a c (β) + δ) ≤ (1/c β ) L(1/δ)δ 1/α , 2. if K(n) = L(n)/n 2 with
n≥1 L(n)/n = +∞, for δ positive and small enough,

c β L(1/δ)δ ≤ F a (β, h a c (β) + δ) ≤ (1/c β ) L(1/δ)δ,
where

L(1/δ) δ→0 → 0, 3. if n≥1 nK(n) < +∞, then for all δ > 0 c β δ ≤ F a (β, h a c (β) + δ) ≤ δ. (2.4) {critical_sum_moy} {critical_exp} Theorem 2.2.
Under the following assumption:

∃C > 0, ̺ ∈ (0, 1) : ∀n ≥ 1 |ρ n | ≤ C̺ n ,
for all β > 0 and in all of the following cases there exist a constant c β > 0 and a slowly varying function L such that

1. if K(n) = L(n)n -(1+α) , 0 < α < 1, F a (β, h a c (β) + δ) δց0 ∼ c β L(1/δ)δ 1/α , 2. if K(n) = L(n)/n 2 with n≥1 L(n)/n = +∞, F a (β, h a c (β) + δ) δց0 ∼ c β L(1/δ)δ,
where

L(1/δ) δ→0 → 0, 3. if n≥1 nK(n) < +∞, F a (β, h a c (β) + δ) δց0 ∼ c β δ.
Remark 2.1. It appears in the proofs that the slowly varying functions L of Theorems 2.1 and 2.2 are the same as those of Theorem 1.2.

Along the proofs of Theorems 2.1 and 2.2, we derive an expression of the annealed critical curve in function of the largest eigenvalue of some operator that we define later (see Corollary 4.1). Even if it is not possible to compute it in general, one can give the following large-temperature asymptotics (compare with Equation (1.7)): {asympt} Theorem 2.3. Under the assumption of Proposition 2.1 we have

h a c (β) βց0 ∼ - β 2 2   1 + 2 n≥1 ρ n P (n ∈ τ )   .
Remark 2.2. The results of Theorem 2.1 were also obtained in [4, Theorem 5.2.2] with a different method which does not rely on any knowledge on the annealed critical curve. There it is also proved that the smoothing inequality (1.9) still holds (with a different constant) if n≥1 |ρ n | is finite, which, combined to the results of Theorem 2.1, means that disorder is relevant if α > 1/2 and n|ρ n | < +∞. Reference [4, Chapter 5] also contains a discussion on the Weinrib-Halperin criterion applied to the random pinning model with disorder correlations. The Weinrib-Halperin criterion is a generalization of the Harris criterion to correlated disorder (see [START_REF] Weinrib | Long-range correlated percolation[END_REF] and [START_REF] Weinrib | Critical phenomena in systems with longrange-correlated quenched disorder[END_REF] on this topic).

Outline of the proof of Theorem 2.3. The large-temperature asymptotic of the annealed critical curve is not obtained from the characterization of Corollary 4.1 but by a truncation argument: we apply Proposition 5.2 of [START_REF] Poisat | On quenched and annealed critical curves of random pinning model with finite range correlations[END_REF] (which is Theorem 2.3 for finite-range correlations) to a truncated version of the correlation sequence (ρ n ) n≥0 and then make the range of the truncation go to infinity.

Outline of the proofs of Theorems 2.1 and 2.2. A first part is common to both proofs. In the finite-range correlations case of [START_REF] Poisat | Random pinning model with finite range correlations: Disorder relevant regime[END_REF] and [START_REF] Poisat | On quenched and annealed critical curves of random pinning model with finite range correlations[END_REF], the annealed model has been tackled using a transfer matrix approach and Perron-Frobenius tools. The method also involves a Markov renewal process, which can be seen as a renewal process where one interarrival time depends on the q previous ones, where q is the range of correlations. If one wants to extend these methods to the infinite range case, it is natural to expect the following analogy:

Finite range

Infinite range Transfer matrix on N * q

Transfer operator on functions on N * N Process with finite memory Process with infinite memory Perron-Frobenius eigenvalue and eigenvectors Perron-Frobenius eigenvalue, eigenfunctions , eigenmeasures ?

Of course, there is no infinite sequence of interarrival times in finite size systems, so we introduced a modified version of the finite-volume annealed partition function by adding a "past", i.e an infinite sequence of interarrival times before τ 0 = 0. Fast decay of correlations imply that this operation does not affect the value of the infinite volume annealed free energy. The modified annealed partition function can then be written as iterations of a transfer operator (or Ruelle-Perron-Frobenius operators) acting on functions defined on the space of sequences of integers. This step makes a link between our model and a topic in ergodic theory and dynamical systems called thermodynamic formalism for countable Markov shifts (see Section 3). Some of the main interests there are the existence and properties of Gibbs and equilibrium measures for sequences taking values in a countable alphabet, equipped with the left-shift action, and in the presence of a potential. In this context, a generalized Perron-Frobenius theorem (see Theorem 3.1 and [START_REF] Sarig | Existence of Gibbs measures for countable Markov shifts[END_REF]) was proved for transfer operators under some regularity of the potential function. It also appears that this regularity assumption translates in our case as a condition on the decay of correlations, namely n|ρ n | < +∞. With "Perron-Frobenius" eigenfunctions in hands, one can first give a characterization of the annealed critical curve and free energy, and then prove Theorem 2.1. Going to the sharper results of Theorem 2.2 requires a non-trivial result on phase transitions for countable Markov shifts (see Theorem 3.2 and [START_REF] Sarig | Continuous phase transitions for dynamical systems[END_REF]), the potential regularity assumption of which is equivalent to exponential decay of correlations in our case.

Countable Markov shifts

{CMS}

In a first part we define some standard objects of the thermodynamic formalism of countable Markov shifts, among which the Ruelle-Perron-Frobenius (or transfer) operators and Gurevich pressure (an analogue of the Perron-Frobenius eigenvalue of finite irreducible matrices). The second part contains two theorems that we use to prove Theorems 2.1 and 2.2.

Definitions

Let S be a countable set and Σ = S N the set of S-valued sequences. Let T be the left-shift on Σ, that is

T : Σ → Σ x = (x i ) i≥0 → T x = (x i+1 ) i≥0 .
The metric on Σ is defined by d(x, y) = 2 -inf{k≥0:x k =y k } , with the convention that inf ∅ = +∞. We adopt the following notations for cylinder sets:

∀n ≥ 1, ∀a = (a 0 , . . . , a n-1 ) ∈ S n , [a] := {x ∈ Σ : x 0 = a 0 , . . . , x n-1 = a n-1 }.
If x is in Σ and s in S, we denote by (sx), or sx when there is no confusion, the concatenation of s and x, that is (sx) 0 = s and (sx) n = x n-1 for all n ≥ 1. Notice that in the general case, T may be defined on any shift-invariant subset of Σ, but here we are only interested in the full shift. In this case, T is clearly topologically mixing. Indeed, for all finite cylinder set C, there exists n ≥ 1 (choose n equal to the size of the cylinder) such that T n (C) = Σ. {bip} Remark 3.1. In [START_REF] Sarig | Existence of Gibbs measures for countable Markov shifts[END_REF], the BIP condition -for big images and preimages condition -is introduced. Let A = (A i,j ) (i,j)∈S×S be a matrix taking values in {0, 1} and suppose we only consider the shift acting on the subset

Σ A := {x ∈ S N : ∀i ≥ 0, A xi,xi+1 = 1}.
Then the BIP condition is satisfied iff there exist an integer N ≥ 1 and b 1 , . . . , b N in S such that for all a in S, there exists i, j such that A bi,a A a,bj = 1. In our case the state space is Σ A = S N , so all the components of A are equal to 1 and the BIP condition is clearly satisfied.

Potentials. A potential is any real valued function φ defined on Σ. Potential variations are defined by:

∀n ≥ 1, V n (φ) := sup{|φ(x) -φ(y)| : x 0 = y 0 , . . . , x n-1 = y n-1 }. (3.1) {var_pot} A potential is said to have summable variations if n≥1 V n (φ) < +∞,
and is said to have exponentially fast decaying variations if there exist ̺ ∈ (0, 1) and a constant C > 0 such that for all n ≥ 1,

V n (φ) ≤ C × ̺ n .
In the last case the potential is said to be Hölder continuous, because for all x and y such that

x 0 = y 0 , |φ(x) -φ(y)| ≤ C̺ inf{k≥0:x k =y k } = Cd(x, y) κ
with κ := -log ̺/ log 2. For all n ≥ 1, we write

φ n = n-1 k=0 φ • T k , (3.2) {phi_n} with T 0 := Id.
Transfer operators. The transfer operator (also known as Ruelle-Perron-Frobenius operator) associated to a potential φ, denoted by L φ , is defined by:

∀f ∈ R Σ , ∀x ∈ Σ, (L φ f )(x) = y:T y=x e φ(y) f (y),
which also writes:

(L φ f )(x) = s∈S e φ(sx) f (sx). ( 3 

.3) {op_def}

For the definition to be correct, we need to specify on which domain the operator is well defined, that is when the series in Equation (3.3) converges. If for instance L φ 1 ∞ is finite (here 1 is the function identically equal to 1), then the transfer operator acts on bounded functions. By iterating L φ we get

(L n φ f )(x) = y:T n y=x e φn(y) f (y) = s1,...,sn∈S e φn(sn...s1x) f (s n . . . s 1 x) (3.4) {iter_operator_fct}
where φ n was defined in Equation (3.2).

Gurevich pressure. The following proposition is taken from Theorem 1 in [START_REF] Sarig | Thermodynamic formalism for countable Markov shifts[END_REF]. 

if L φ 1 ∞ is finite.
Proof. The proof can be found in [START_REF] Sarig | Thermodynamic formalism for countable Markov shifts[END_REF] and relies on subadditivity. Indeed, if we define Z n (φ, a) :=

x:T n x=x e φn(x) 1 [a] (x), (3.6) {def_Zbold} 
(not to be confused with the partition functions of the pinning model) then for all positive integers m and n,

Z n+m (φ, a) ≥ CZ n (φ, a)Z m (φ, a)
where C = exp(-3 n≥1 V n (φ)). From standard subadditivity argument we deduce that

P G (φ) = lim n→+∞ (1/n) log Z n (φ, a)
exists and that for all n,

P G (φ) ≥ 1 n log Z n (φ, a) + log C n . (3.7) {P_G_suradd} Finally, Z n (φ, a) ≤ L φ 1 n ∞ implies P G (φ) ≤ log L φ 1 ∞ . {CN_gurevich} Remark 3.2. If P G (φ) is finite then we easily get P G (φ + c) = P G (φ) + c for every constant c. {rmk_gurevich} Remark 3.3. A sufficient condition for finiteness of L φ 1 ∞ is: ∃C > 0, u : S → R + : s∈S u(s) < +∞ and ∀x ∈ Σ, e φ(x) ≤ Cu(π 0 (x)),
where π 0 : t = (t 0 , t 1 , . . .) → t 0 is the projection onto the first coordinate. x) .

P G (φ) = lim n→+∞ 1 n log x:T n x=x e φn(
Suppose now that φ is a potential with summable variations. We have for all n ≥ 1 and all x ∈ Σ,

∀k 1 , . . . , k n ≥ 1, |φ n ([k 1 . . . k n ] per ) -φ n (k 1 . . . k n x)| ≤ m≥1 V m (φ) < +∞
where [k 1 . . . k n ] per is the periodization of the word k 1 . . . k n . From this we deduce that for all x ∈ Σ,

P G (φ) = lim n→+∞ (1/n) log(L n φ 1)(x). (3.8) {alter_def}
It is now straightforward using Equations (3.4) and (3.8) to show that for every sequence of functions

(f n ) n≥1 satisfying 0 < inf n≥1,y∈Σ f n (y) ≤ sup n≥1,y∈Σ f n (y) < +∞, we have ∀x ∈ Σ, P G (φ) = lim n→+∞ (1/n) log(L n φ f n )(x).
(3.9) {alter_def2}

Theorems

Under some strong enough assumptions, the transfer operator L φ has some properties similar to those of irreducible positive matrices, and an analogue of the Perron-Frobenius theorem can be proved. Historically this was first established by Ruelle for finite alphabets (and more generally in the compact case). This was later extended by several authors, and now include shifts on countable alphabets in the case of potential variations decaying fast enough. The reader can refer to [START_REF] Mauldin | Gibbs states on the symbolic space over an infinite alphabet[END_REF][START_REF] Ruelle | Statistical mechanics of a one-dimensional lattice gas[END_REF][START_REF] Sarig | Existence of Gibbs measures for countable Markov shifts[END_REF][START_REF] Sarig | Continuous phase transitions for dynamical systems[END_REF][START_REF] Sarig | Thermodynamic formalism for countable Markov shifts[END_REF][START_REF] Sarig | Thermodynamic formalism for null recurrent potentials[END_REF] for background. The following theorem is taken from [21, Corollary 2 and Theorem 2]. We remind that the BIP condition is satisfied in our case (see Remark 3.1).

{Ruelle_op_spec} Theorem 3.1. If φ has summable variations and finite Gurevich pressure then, writing λ := exp(P G (φ)), there exist a continuous function h : Σ → (0, +∞) and a finite Borel measure ν which is positive on finite cylinder sets, as well as ergodic, such that:

1. L φ h = λh, 2. L * φ ν = λν, where L * φ is the dual operator of L φ , 3. Σ hdν < +∞, 4. ν(Σ) < +∞, 5. 0 < inf h ≤ sup h < +∞, 6. if h is such that Σ hdν = 1, then ∀n ≥ 1, ∀a ∈ S n , λ -l L l φ 1 [a] l→+∞ -→ ν[a]h,
uniformly on every compact set of Σ.

Let h and ν be as in Theorem 3.1 and normalized so that Σ hdν = 1, and let m be a probability measure on Σ defined by dm = hdν.

(3.10) {Gibbs_measure}

Then m is a shift-invariant Gibbs measure associated to φ, that is there exists a constant B > 0 so that for all n ≥ 1, a in S n and x in [a],

1 B ≤ m([a]) e φn(x)-nPG(φ) ≤ B,
see [START_REF] Sarig | Existence of Gibbs measures for countable Markov shifts[END_REF]. From ν and h we define a Markov chain on Σ, the transition probabilities of which are: ∀x, y ∈ Σ, Q(x, y) := e φ(y) h(y) λh(x) 1 {T y=x} , (3.11) {chaine_induite} with λ = exp(P G (φ)). Indeed we have s∈S Q(x, sx) = 1 for all x in Σ, from item (1) of Theorem 3.1. One can check that m is a stationary distribution for this Markov chain: for all bounded measurable function ϕ,

(Qϕ)(x)dm(x) = s∈S ϕ(sx)Q(x, sx)dm(x) = λ -1 s∈S ϕ(sx)e φ(sx) h(sx)dν(x) = λ -1 L φ (ϕh)(x)dν(x) = ϕ(x)h(x)dν(x) from item (2) of Theorem 3.1 = ϕ(x)dm(x).
The second theorem is about the sharp behaviour of the Gurevich pressure for a one-parameter family of potentials {φ + tψ} t≥0 , when t goes to 0, under some assumptions on φ and ψ. This result is taken from [ Let m be the invariant Gibbs measure associated to φ, which is defined by Equation (3.10). In the following, L is a slowly varying function.

If m({x

: ψ(x) < -n}) n→+∞ ∼ n -α L(n)
Γ(1-α) , with 0 < α < 1, then

P G (φ + tψ) -P G (φ) tց0 ∼ -L(1/t)t α ; 2. if ψ ∈ L 1 (m) then P G (φ + tψ) -P G (φ) tց0 ∼ t × ψdm ; 3. if α = 1 and ψ / ∈ L 1 (m) then P G (φ + tψ) -P G (φ) tց0 ∼ t L(1/t),
where

L(n) n→+∞ ∼ (ψ ∨ (-n))dm.
Note that in [22, Theorem 5], the term "equilibrium measure" is used instead. Nevertheless, we can safely replace it by "Gibbs measure" (ibid. footnote on page 637). Potential G and transfer operators. Let us start with some definitions and notations. Let Σ = (N * ) N be the space of sequences of positive integers. If t = (t 0 , t 1 , . . .) is in Σ and n ≥ 1, we denote by (nt) the concatenation (n, t 0 , t 1 , . . .). We introduce the potentials

G(t) = k≥0 ρ t0+...+t k , (4.1) {def_potentialG} G (n) (t) = n-1 k=0 ρ t0+...+t k , ∀n ≥ 1. (4.2) {truncated_G1}
Notice that G is well defined if |ρ n | is finite and that the truncated versions G (n) are different from the one we use to prove Theorem 2.3 (see Equation (5.1)).

For all β > 0, define:

φ β : Σ → R t → β 2 G(t) + log K(t 0 ) , or equivalently, φ β := β 2 G + log K • π 0 ,
(π 0 has been defined in Remark 3.3). If P G (φ β ) exists, then it must be finite from Remark 3.2 (G is bounded). We can then define for all β > 0 and F ≥ 0,

φ β,F : Σ → R t → β 2 G(t) + log K(t 0 ) -P G (φ β ) -F × t 0 ,
which also writes

φ β,F = β 2 G + log K • π 0 -P G (φ β ) -F × π 0 = φ β -P G (φ β ) -F × π 0 .
Again, if P G (φ β,F ) exists then it is finite from the same argument as above. The transfer operator associated to φ β (resp. φ β,F ) is denoted by L β (resp. L β,F ). Therefore we have:

L β f : Σ → R t → n≥1 e β 2 G(nt) K(n)f (nt) , L β,F f : Σ → R t → n≥1 e β 2 G(nt)-PG(φ β )-F n K(n)f (nt)
.

Note that L β is not the same as L β,F =0 . Let us now remark that the decay of variations of φ β and φ β,F is linked to the decay of the correlations (ρ n ) n≥0 .

More precisely, we have: {lien_variations} Proposition 4.1. If n≥1 n|ρ n | is finite then for all β ≥ 0 and F ≥ 0, the potentials φ β and φ β,F have summable variations. If the ρ n 's decrease exponentially fast then so do the variations of φ β and φ β,F (with the same exponent).

Proof. First, we have for all n ≥ 1,

V n (φ β ) = V n (φ β,F ) = β 2 V n (G). (4.3) {decayG1}
Constants and functions depending only on the first coordinate play no role in the potential variations (see Equation (3.1)). Observe now that for all n ≥ 1 and all x, y in Σ such that x 0 = y 0 , . . . , x n-1 = y n-1 , 

|G(x) -G(y)| ≤ k≥n ρ x0+...+x k - k≥n ρ y0+...+y k ≤ 2 k≥n |ρ k |. Therefore, V n (G) ≤ 2 k≥n |ρ k |. ( 4 
P G (φ β,F =0 ) = P G (φ β -P G (φ β )) = 0. ( 4 

.5) {null_pressure}

Let a be any positive integer. For all F 1 and F 2 in R + we have

∀t ∈ Σ, φ β,F1+F2 (t) ≤ φ β,F1 (t) -F 2 ,
hence (recall Equation (3.6))

Z n (φ β,F1+F2 , a) ≤ Z n (φ β,F1 , a) exp(-F 2 n),
and taking the limit in n,

P G (φ β,F1+F2 ) ≤ P G (φ β,F1 ) -F 2 . ( 4 

.6) {decr_P_G}

From this we deduce that F → P G (φ β,F ) is strictly decreasing and that P G (φ β,F ) tends to -∞ as F tends to +∞. Continuity on (0, +∞) is a consequence of convexity. Indeed, for all n, the function F → log Z n (φ β,F , a) is convex (a property that is conserved by taking the limit in n) since for F > 0, ∂ 2 F log Z n (φ β,F , a) can be written as a variance, which is nonnegative. Let us now prove the continuity (on the right) at F = 0. Let ǫ > 0. From Equation (4.5),

(1/n) log Z n (φ β,F =0 , a) n→+∞ -→ 0,
therefore there exists an integer n 0 such that

1 n 0 log Z n0 (φ β,F =0 , a) + log C n 0 ≥ -ǫ,
where C is the constant appearing in Equation (3.7). From the same equation,

P G (φ β,F ) ≥ 1 n 0 log Z n0 (φ β,F , a) + log C n 0 ,
and by continuity of Z n0 (φ β,F , a) w.r.t F , we deduce that P G (φ β,F ) ≥ -2ǫ for all F small enough, which ends the proof.

Characterization of the annealed free energy. The starting point to prove Theorems 2.1 and 2.2 is the following characterization of the annealed free energy: Note that hypothesis n|ρ n | < +∞ ensures that the annealed free energy, P G (φ β ) and P G (φ β,F ) are well defined (see Proposition 2.1 and Remark 4.1). An immediate consequence of Proposition 4.3 is:

{inf_caract} Proposition 4.3. Suppose that n≥1 n|ρ n | is finite. For all β ≥ 0, 1. if h ≤ -(β 2 /2) -P G (φ β ) then F a (β, h) = 0, 2. if h = -(β 2 /2)-P G (φ β )+δ with δ > 0 then F a (β,
{cor} Corollary 4.1. For all β ≥ 0, h a c (β) = -(β 2 /2) -P G (φ β ).
Proof of Proposition 4.3. Let us first point out that Equation (4.7) has indeed a unique positive solution because of Proposition 4.2. We slightly modify the expression of the annealed partition function by setting:

Z a n,β,h := E   exp   h + β 2 2 n k=1 δ k + β 2 0≤k<l≤n ρ l-k δ k δ l   δ n   ,
(the second sum starts at k = 0 instead of k = 1) which does not affect the value of the annealed free energy.

Step 1: Adding a past. In the following we call "past" a sequence of positive integers placed before τ 0 = 0. We then get for any past p in Σ:

Z a n,β,h = n k=1 l1,...,l k ≥1 l1+...+l k =n k i=1 e h+ β 2 2 +β 2 G (i) (lili-1...l1p) K(l i ) . (4.8) {tronque}
The inconvenient of this expression is that an infinite number of potential functions appear (the G (i) 's, see Equation (4.2)). Now, by analogy with the finite range correlations case (see [START_REF] Poisat | On quenched and annealed critical curves of random pinning model with finite range correlations[END_REF]), one would like to relate the annealed partition function Z a n,β,h with the spectral properties of a unique operator (thus associated to a unique potential). The next step therefore consists in replacing the G (i) 's by the potential G (see Equation (4.1)), that is replacing an infinite number of potentials with finite memory (which means that their value does not depend on the whole sequence but only on a finite set of index) by a unique potential with infinite memory. Since we assume that n≥1 n|ρ n | is finite and that the variations of G are summable, the error produced by this operation tends to 0 as n goes to +∞. For all past p in Σ, let us define:

Z p n,β,h := n k=1 l1,...,l k ≥1 l1+...+l k =n k i=1 e h+ β 2 2 +β 2 G(lili-1...l1p) K(l i ) . (4.9) {nontronque} 
Under the assumptions of the proposition, we have for all β and h:

F a (β, h) = lim n→+∞ (1/n) log Z p n,β,h . (4.10) {limite_passe}
Indeed, for all i ≥ 1, l 1 , . . . , l i ≥ 1 and p in Σ, we have

|G(l i . . . l 1 p) -G (i) (l i . . . l 1 p)| = k≥0 ρ li+...+l1+p0+...+p k ≤ k≥i |ρ k |
and from Equations (4.8) and (4.9), we get the bounds

e -β 2 n≥1 n|ρn| Z p n,β,h ≤ Z a n,β,h ≤ Z p n,β,h e β 2 n≥1 n|ρn| , (4.11) {encadr} 
from which it is straightforward to deduce Equation (4.10). From now on, we can therefore work with (Z p n,β,h ) n≥1 .

Step 2: Application of Theorem 3.1 and induced transition probabilities. As n≥1 n|ρ n | is finite, the variations of φ β (resp. φ β,F ) are summable (Proposition 4.1), so we can apply Theorem 3.1. Let us denote by h β and ν β (resp. h β,F and ν β,F ) the eigenfunction and eigenmeasure obtained thereby, normalized in such a way that Σ h β dν β = 1 (resp. Σ h β,F dν β,F = 1) and denote by dm β = h β dν β (resp. dm β,F = h β,F dν β,F ) the associated Gibbs measure. The induced transition probabilities, which were defined in Equation (3.11) in the general case, are written (Q β (s, t)) s,t∈Σ (resp. (Q β,F (s, t)) s,t∈Σ ), and the law of the Markov chain on Σ associated to these transition probabilities, starting from p, is denoted by P β (•|p) (resp. P β,F (•|p)). One also defines

P β (•) = Σ P β (•|p)dm β (p) (resp. P β,F (•) = Σ P β,F (•|p)dm β,F (p)).
Theses distributions can also be seen as distributions on the process τ . Indeed, since Q β (x, y) > 0 if and only if T y = x, one may define for all x in Σ and all n ≥ 1,

K β (x, n) := Q β (x, nx) = exp(β 2 G(nx))K(n)h β (nx) exp(P G (φ β ))h β (x) . ( 4 

.12) {Kbeta}

Then, for all x in Σ, n≥1 K β (x, n) = 1, and for all p in Σ, n ≥ 1, and l 1 , . . . , l n ≥ 1,

P β (τ 1 = l 1 , τ 2 = l 1 + l 2 , . . . , τ n = l 1 + . . . + l n-1 + l n |p) = K β (p, l 1 )K β (l 1 p, l 2 ) . . . K β (l n-1 . . . l 1 p, l n ) (4.

13) {Pbeta}

Under P β (•|p), the process τ = (τ n ) n≥0 has infinite range memory.

Step 3: Proof of item [START_REF] Alexander | The effect of disorder on polymer depinning transitions[END_REF]. Let us consider the case h ≤ -(β 2 /2) -P G (φ β ) and show that F a (β, h) = 0. Since free energy is nondecreasing in h, it is enough to prove that

F a (β, -β 2 /2 -P G (φ β )) = 0.
For any past p we have

Z p n,β,-β 2 /2-PG(φ β ) = n k=1 l1,...,l k ≥1 l1+...+l k =n k i=1 e β 2 G(li...l1p)-PG(φ β ) K(l i ) = n k=1 l1,...,l k ≥1 l1+...+l k =n h β (p) h β (l k . . . l 1 p) k i=1 K β (l i-1 . . . p, l i ) where l 0 p := p ≤ C β n k=1 l1,...,l k ≥1 l1+...+l k =n k i=1 K β (l i-1 . . . p, l i ) from item (5) of Theorem 3.1 = C β P β (n ∈ τ |p) ≤ C β ,
then we use Equation (4.10) to conclude.

Step 4: Proof of item [START_REF] Alexander | Quenched and annealed critical points in polymer pinning models[END_REF]. Now we deal with the case h = -β 2 2 -P G (φ β ) + δ when δ > 0. Let us denote by F (δ) the solution to Equation (4.7). By analogy with Equation (4.12), we define for all x in Σ and n ≥ 1:

K β,F (δ) (x, n) = exp(δ + β 2 G(nx) -P G (φ β ) -F (δ)n)K(n) h β,F (δ) (nx) h β,F (δ) (x) ,
and for all past p, P β,F (δ) (•|p) is the law on τ which is associated to the transition probabilities K β,F (δ) (as in Equation (4.13)). Then we have:

Z p n,β,h = n k=1 l1,...,l k ≥1 l1+...+l k =n k i=1 e δ+β 2 G(li...l1p)-PG(φ β ) K(l i ) = exp(nF (δ)) n k=1 l1,...,l k ≥1 l1+...+l k =n k i=1 e δ+β 2 G(li...l1p)-PG(φ β )-F (δ)li K(l i ) = exp(nF (δ)) n k=1 l1,...,l k ≥1 l1+...+l k =n h β,F (δ) (p) h β,F (δ) (l k . . . l 1 p) k i=1 K β,F (δ) (l i-1 . . . p, l i ).
From item (5) of Theorem 3.1 and the fact that

P β,F (δ) (n ∈ τ |p) = n k=1 l1,...,l k ≥1 l1+...+l k =n k i=1 K β,F (δ) (l i-1 . . . p, l i ),
there exist two constants 0 < c β ≤ C β < +∞ such that

c β P β,F (δ) (n ∈ τ |p) exp(F (δ)n) ≤ Z p n,β,h ≤ C β exp(F (δ)n).
Therefore, in order to finish the proof it is enough to show that

(1/n) log P β,F (δ) (n ∈ τ |p) n→+∞ -→ 0.
Now, fix β > 0 and δ > 0, and let us write P p instead of P β,F (δ) (•|p) to shorten notations. We show that there exists a constant C > 0 such that for all m, n ≥ 1,

P p (m + n ∈ τ ) ≥ CP p (n ∈ τ )P p (m ∈ τ ). ( 4 

.14) {almost_subadd}

Multiplying both sides of the last equation by C, one can use a standard subadditivity argument to prove that the sequence ((1/n) log P p (n ∈ τ )) n≥1 converges to a limit which is clearly nonpositive. But if it were negative then we would get

E p   n≥1 δ n   = n≥1 P p (n ∈ τ ) < +∞,
which is absurd since n≥1 δ n = +∞ almost surely. Thus the limit is 0. Let us now prove Equation (4.14). Let m, n ≥ 1. Then:

P p (n + m ∈ τ ) ≥ P p (n ∈ τ, n + m ∈ τ ) = 1≤k≤n 1≤p≤m l1+...+l k =n j1+...+jp=m K β,F (δ) (p, l 1 )K β,F (δ) (l 1 p, l 2 ) . . . K β,F (δ) (l n-1 . . . l 1 p, l n ) × K β,F (δ) (l n . . . l 1 p, j 1 ) . . . K β,F (δ) (j p-1 . . . j 1 l n . . . l 1 p, j p ).
But for all i ≥ 1,

|G(j i . . . j 1 l k . . . l 1 p) -G(j i . . . j 1 p)| ≤ 2 k≥i |ρ k |.
Since we assumed c = i≥1 k≥i |ρ k | < +∞, we can set

C = e -2cβ 2 × inf x,y∈Σ {h β,F (δ) (y)/h β,F (δ) (x)},
which is a finite and positive constant (from item (5) of Theorem 3.1), so we have:

P p (n + m ∈ τ ) ≥ C 1≤k≤n 1≤p≤m l1+...+l k =n j1+...+jp=m K β,F (δ) (p, l 1 )K β,F (δ) (l 1 p, l 2 ) . . . K β,F (δ) (l n-1 . . . l 1 p, l n ) × K β,F ( 
δ) (p, j 1 ) . . . K β,F (δ) (j p-1 . . . j 1 p, j p )

≥ CP p (n ∈ τ )P p (m ∈ τ ),
which concludes the proof.

Proof of Theorem 2.2. As we know from Proposition 4.1, if the ρ n 's decrease exponentially fast then the same holds for the variations of the potentials φ β and φ β,F , which are then Hölder continuous. Assume that

h = h a c (β) + δ = -(β 2 /2) -P G (φ β ) + δ with δ > 0. From item (2) of Proposition 4.3, F (δ) := F a (β, h) satisfies P G (φ β -P G (φ β ) -F (δ)π 0 ) = -δ. ( 4 

.15) {inf_caract_equ}

We now apply Theorem 3.2 with φ β -P G (φ β ) instead of φ, and -π 0 instead of ψ, to obtain asymptotics for the left-hand term of Equation (4.15) when δ ց 0, i.e F (δ) ց 0. By "inverting" these asymptotics (see [START_REF] Bingham | Regular variation[END_REF]Theorem 1.5.12]), we get the critical behaviour of F (δ) as δ goes to 0. In order to find the asymptotic behaviour of m β ([n])), which is needed to apply Theorem 3.2, we show that for all x in Σ, the sequence (h β (nx)) n≥1 converges to a positive constant (not depending on x) that we denote by h β . Indeed, let us choose an arbitrary a ≥ 1 and define for all x in Σ and l ≥ 1:

h (l) β (x) := exp(-lP G (φ β )) L l β 1 [a] (x).
Let m ≥ n ≥ 1 be two integers. Then for all l ≥ 1, we have

e -2β 2 j≥n i≥j |ρi| h (l) β (mx) ≤ h (l) β (nx) ≤ h (l) β (mx)e 2β 2 j≥n i≥j |ρi| .
By making l go to +∞, using item (6) of Theorem 3.1 and taking the logarithm, one obtains:

|log h β (mx) -log h β (nx)| ≤ 2β 2 j≥n i≥j |ρ i | n→+∞ -→ 0.
The sequence (log h β (nx)) n≥1 is therefore a Cauchy sequence. As a consequence, (h β (nx)) n≥1 converges to a finite positive limit. Moreover, it does not depend on x since for all x and y, we have

|log h β (nx) -log h β (ny)| ≤ 2β 2 j≥n i≥j |ρ i |.
By invariance of m β under Q β , we have: 

m β ([n]) = Q β (p, np)dm β (p) = e β 2 G(np)-PG(φ β ) K(n)h β (np)dν β (p), ( 4 
m β ([n]) n→+∞ ∼ e -PG(φ β ) h β ν β (Σ) × K(n) := c β K(n). ( 4 

.17) {equ_mbeta}

Using Theorem 3.2 knowing Equations (4.17) and (1.1), we get:

1. if 0 < α < 1, then δ ∼ 0 c ′ β L(1/F (δ))F (δ) α ; 2. if m = n≥1 nK(n) < +∞ then δ ∼ 0 c ′ β F (δ); 3. if α = 1 and n≥1 nK(n) = +∞ then δ ∼ 0 c ′ β L(1/F (δ))F (δ);
where c ′ β is a positive constant (not the same from one case to another) and L a slowly varying function. In order to get the asymptotic behaviour of F (δ) w.r.t δ, we use [START_REF] Bingham | Regular variation[END_REF]Theorem 1.5.12].

Notice that when n≥1 nK(n) < +∞, one has

F (δ) δց0 ∼ π 0 dm β -1 δ,
and the constant π 0 dm β -1 can be interpreted as a limit contact fraction when τ has distribution m β .

Proof of Theorem 

δ > 0, if h = h a c (β) + δ = -(β 2 /2) -P G (φ β ) + δ, then Z p n,β,h ≥ c β E β (exp(δı n )|p)
and by integrating on p and using Jensen's inequality:

1 n log Z p n,β,h dm β (p) ≥ δE β (ı n /n) + o(1). ( 4 

.18) {borneinf}

Besides, from our assumptions, π 0 is m β -integrable. Indeed,

π 0 dm β = n≥1 n × m β ({x : π 0 (x) = n}) = n≥1 n K(n) e β 2 G(np) e PG(β) h β (np) h β (p) dm β (p) from Equation (4.16) ≤ C β n≥1 nK(n) < +∞ from item (5) of Theorem. 3.1.
Since m β is ergodic, Birkhoff's Theorem tells us that

τ n n = 1 n n i=1 T i n→+∞ -→ π 0 dm β m β -a.s.
From the bounds τ ın ≤ n < τ ın+1 , we get that m β -a.s (and in L 1 (m β ) by Dominated Convergence), 

ı n n n→+∞ -→ π 0 dm β -1 > 0. ( 4 
F a (β, h a c (β) + δ) ≥ π 0 dm β -1 δ.
The upper bound in Equation (2.4) comes from the following inequality:

(h a c (β) + δ)ı n ≤ h a c (β)ı n + δn.
We now come back to pinned partition functions and deal with the other cases. In what follows, the parameter β > 0 is kept fixed. The idea of the proof is to get bounds on P G (φ β,F ) for small values of F by applying the operator L β,F to the function h β /(h β • T ), where h β is the eigenfunction of the operator L β associated to the eigenvalue exp(P G (φ β )), which is given by Theorem 3.1. Indeed, we have for all x in Σ,

L β,F h β h β • T (x) = n≥1 e β 2 G(nx)-PG(φ β ) h β (nx) h β (x) K(n)e -nF = n≥1 e β 2 G(nx)-PG(φ β ) h β (nx) h β (x) K(n) + n≥1 e β 2 G(nx)-PG(φ β ) h β (nx) h β (x) K(n)(e -nF -1).
The sum in the second line is equal to 1 by definition of h β , whereas by boundedness of G and item (5) of Theorem 3.1, the sum in the last line is bounded above and below by a constant (which does not depend on x) times ϑ(F ) := n≥1 K(n)(e -nF -1).

We then prove by induction that for small enough values of F , there exists a constant C such that for all n ≥ 1 and for all x in Σ, we have which is what we have just proved above for n = 1 and all x. Suppose Equations (4.20) and (4.21) hold for some n ≥ 1 and all x. We prove that both relations hold for n + 1. Let x ∈ Σ. Recall Equations (3.2) and (3.4). We have Proof. Recall Equation (4.1). For every sequence of positive integers t = (t i ) i≥0 and for all q ≥ 1, let us define G [q] (t) := n≥0 ρ t0+...+tn 1 {t0+...+tn≤q} .

L n β,F h β h β • T n (x) ≤ (1 + Cϑ(F )) n
L n+1 β,F h β h β • T n+1 (x) =
(5.1) {truncated_G} Since G [q] (t) -G(t)

≤ k≥q+1 |ρ k |,
we have

F a,q   β, h -β 2 k≥q+1 |ρ k |   ≤ F a (β, h) ≤ F a,q   β, h + β 2 k≥q+1 |ρ k |   ,
where F a,q (resp. h a,q c ) is the free energy (resp. critical curve) of the annealed model with ρ n replaced by ρ n 1 {n≤q} . Hence, we have We conclude by making q tend to +∞.

If m = n≥1 nK(n) < +∞, we can also prove the upper bound by applying Jensen's inequality on the annealed partition function. We get indeed by considering free partition functions (see Remark 1.1): Take the large n limit and use the Renewal Theorem to get:

Z a n,β,h ≥ exp   h +
F a (β, h) ≥ 1 m   h + β 2 2   1 + 2 n≥1 ρ n P (n ∈ τ )     ,
and so, for all β ≥ 0, for all h > -β 2 2 1 + 2 n≥1 ρ n P (n ∈ τ ) , we have F a (β, h) > 0, which means that:

∀β ≥ 0, h a c (β) ≤ - β 2 2   1 + 2 n≥1 ρ n P (n ∈ τ )   .
Note that in this case the upper bound holds for all β.

{existence} Proposition 2 . 1 .

 21 If |ρ n | < ∞ then the annealed free energy

{def_gurevich_pressure} Proposition 3 . 1 .

 31 Let a be an element of S and [a] = {x ∈ Σ : x 0 = a}. Suppose that n≥1 V n (φ) < +∞. Then the following limitP G (φ) := lim n→+∞ 1 n log x:T n x=x e φn(x) 1 [a] (x), (3.5) {def_gurevich}called Gurevich pressure of φ, exists and does not depend on a. Moreover, it is finite

{alter_pression} Remark 3 . 4 .

 34 Here are some useful alternative expressions for the Gurevich pressure of a potential with summable variations. First, if the BIP condition holds, then from [21, Corollary 1] one has (compare with Equation (3.5)):

Theorem 3 . 2 .

 32 22, Theorems 4 and 5, Remark (3) on page 635]. {Gurevich_pressure_crit Let φ and ψ be potentials with exponentially decreasing variations such that 1. sup φ < +∞, 2. sup ψ < +∞, 3. P G (φ) < +∞.
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  Proofs of Theorems 2.2 and 2.1 {preuvedestheoremes...} Both proofs use the tools of the previous section in the case S = N * .

  h) is the unique positive solution of the following equation (w.r.t. F ): P G (φ β,F ) = -δ. (4.7) {inf_equ1}

  .16) {mbeta_n} which, by Dominated Convergence, gives

  β • T n (x) ≥ (1 -(1/C)ϑ(F )) n , (4.21) {rec_2}

  k1,...,kn+1≥1 e φ β,F,n+1 (kn+1...k1x) h β (k n+1 . . . k 1 x) h β (x) = k1,...,kn≥1e φ β,F,n (kn...k1x) h β (k n . . . k 1 x) h β (x) × kn+1≥1 e φ β,F (kn+1kn...k1x) h β (k n+1 k n . . . k 1 x) h β (k n . . . k 1 x)Using Equations (4.20) and (4.21) for n = 1 and x replaced by (k n . . . k 1 x), one getsL n+1 β,F h β h β • T n+1 (x) ≤ (1 + Cϑ(F )) k1,...,kn≥1 e φ β,F,n (kn...k1x) h β (k n . . . k 1 x) h β (x) = (1 + Cϑ(F )) L n β,F h β h β • T n (x) ≤ (1 + Cϑ(F )) n+1 by induction hypothesis.We prove in the same way thatL n+1 β,F h β h β • T n+1 (x) ≥ (1 -(1/C)ϑ(F )) n+1 ,which ends the induction. Combining Equations (4.20) and (4.21) with Equation (3.9) (recall that 0 < inf h β ≤ sup h β < +∞), we get for small values of F :-(1/C)ϑ(F ) ≤ P G (φ β,F ) ≤ -Cϑ(F ). (4.22) {ingr1} Since K(n) = L(n)n -(1+α) , we get (see [7, Corollary 8.1.7]) ϑ(F ) ∼ cL(1/F )F α (4.23) {ingr2} for some constant c. Combining Equations (4.22) and (4.23) applied to F = F a (β, h a c (β) + δ) for small positive values of δ, with item (2) of Proposition 4.3 and [7, Theorem 1.5.12], we get the result. 5 Proof of Theorem 2.3

h a,q c (β) -β 2 k≥q+1 2 k≥q+1

 22 |ρ k | ≤ h a c (β) ≤ h a,q c (β) + β

Pρ

  (k ∈ τ ) + β 2 1≤k<l≤n ρ l-k P (k ∈ τ )P (l -k ∈ τ ) l P (l ∈ τ ).

  2.1. We first deal with the case n≥1 nK(n) < +∞. With the same techniques as in the proof of Proposition 4.3, and by considering free rather than pinned partition functions (see Remark 1.1), one can prove that for all

  .19) {cvg_mbeta} Notice that the convergence in Equation (4.10) remains true if we replace Z p n by Z p n dm β (p), from the bounds of Equation (4.11). By taking the large n limit in Equation (4.18) and using Equation (4.19), we get
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