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We study the question of when the space of embeddings of a separable Banach space E into the separable Gurarij space G admits a generic orbit under the action of the linear isometry group of G. The question is recast in model-theoretic terms, namely type isolation and the existence of prime models. We characterise isolated types over E using tools from convex analysis. We show that if the set of isolated types over E is dense, then a dense G δ orbit exists, and otherwise all orbits are meagre. We then study some (families of) examples with respect to this dichotomy. We also point out that the class of Gurarij spaces is the class of models of an ℵ 0 -categorical theory with quantifier elimination, and calculate the density character of the space of types over E, answering a question of Avilés et al.

INTRODUCTION

In 1966, Gurarij [START_REF] Gurarij | Spaces of universal placement, isotropic spaces and a problem of Mazur on rotations of Banach spaces[END_REF] defined what came to be known as the (separable) Gurarij space, and proved that it is almost isometrically unique. The isometric uniqueness of the Gurarij space was proved in 1976 by Lusky [START_REF] Wolfgang | The Gurarij spaces are unique[END_REF]. In the same paper, Lusky points out that his arguments could be modified to prove also the isometric uniqueness of the separable Gurarij space equipped with a distinguished smooth unit vector (namely, a unit that admits a unique norming linear functional, see Definition 3.1). In other words, if G denotes the separable Gurarij space, then the set of smooth unit vectors in G forms an orbit under the action of the linear isometry group Aut(G). By Mazur [START_REF] Stanisław | Über konvexe mengen in linearen normierten räumen[END_REF], this orbit is moreover a dense G δ subset of the unit sphere.

These facts are strongly reminiscent of familiar model theoretic phenomena, and, as we show in this paper, are indeed special cases thereof. It was observed some time ago by the second author that the uniqueness of the Gurarij space can be accounted for by it being the unique separable model of an ℵ 0categorical theory, which moreover eliminates quantifiers. Similarly, the Gurarij space is atomic over a vector if and only if the latter is smooth, so Lusky's second uniqueness result is a special case of the uniqueness of the prime model.

These observations serve as a starting point for the present paper, whose goals are threefold:

• Make the observations above precise, and generalise them to uniqueness results over a subset other than the empty set or a singleton -in other words, we study uniqueness and primeness of the Gurarij space over a subspace E of dimension possibly greater than one. As we shall see, this requires us to (define and) characterise when types over E are isolated.

• Present in a manner accessible to non-logicians, and without making use of formal logic, some tools and techniques of model theory: types, type spaces, type isolation, the Tarski-Vaught Criterion, the Omitting Types Theorem, atomic models, and the primeness and uniqueness of atomic models. • Present to model theorists, who are familiar with the tools mentioned in the previous item in the context of classical logic, how these tools adapt to the metric setting.

In Section 1 we recall the definition of (quantifier-free) types and type spaces over a Banach space E, and study their properties. The topometric structure of the type space, a fundamental notion of metric model theory, is defined there, as well as (topometrically) isolated types, which are among the main objects of study of this paper.

In Section 2 we start studying Gurarij spaces. At the technical level, we define and study Gurarij (and other) spaces that are atomic over a fixed separable parameter space E, and prove the Omitting Types Theorem (Theorem 2.12). We prove appropriate generalisations of the homogeneity and universality properties of the Gurarij space to homogeneity and universality over E. In particular, we show that the prime Gurarij spaces over E (see Corollary 2.13) are those Gurarij spaces that are separable and atomic over E. If a prime Gurarij space over E exists then it is unique, up to an isometric isomorphism over E, and is denoted G[E]. When G[E] exists, the set of embeddings of E in G over which G is prime forms a dense G δ orbit among all embeddings of E; otherwise, all orbits are meagre. We also give the standard model theoretic criterion for the existence of G[E], namely that the isolated types over E are dense.

While this (re-)development of model-theoretic tools is carried out in a fairly specific context, we present arguments that would be valid in the general case; these are sometimes followed by separate results that improve the general ones in the specific context of the Gurarij space. The few results that do make explicit use of formal logic (essentially, Proposition 1.21 and Theorem 2.3) serve mostly as parenthetical remarks required for the sake of completeness, and are not used in any way in other parts of the paper.

At this point we move on to the questions of when G[E] exists and how to characterise isolated types in a fashion suitable to the Banach space context. In Section 3 we consider the special case where dim E = 1, giving a model-theoretic account of Lusky's result about smooth points in G. Before considering the general case, we introduce an essential tool in Section 4, namely the presentation of 1-types as convex Katětov functions (as per [START_REF]The linear isometry group of the Gurarij space is universal[END_REF]), and the Legendre-Fenchel transformation of those. In Section 5 we characterise isolated 1-types in terms of their Legendre-Fenchel conjugate, which allows us to give in Section 6 some sufficient conditions for the existence of G[E] for finite-dimensional spaces E (e.g., smooth, polyhedral, or of dimension ≤ 3 -see Theorem 6.4), as well as examples when G[E] does not exist. The question of a satisfactory necessary and sufficient condition on E for the existence of G[E] remains an open problem.

We conclude in Section 7 with a "counting types" result, showing that the space of types over E is metrically separable if and only if E is finite-dimensional and polyhedral. This allows us to answer a question of Avilés et al. [ACC + 11].

Throughout, E, F and so on denote vector spaces over the real numbers -normed spaces, most of the time, although the Legendre-Fenchel duality in Section 4 is stated for general locally convex spaces. An embedding (or isomorphism, automorphism) of normed spaces is always isometric.

The topological dual of a normed space E will be denoted E * . We shall often use the notation B(E) for the closed unit ball of E and ∂B(E) for the unit sphere (which, regardless of topology, is the boundary of B(E) in the sense of convex geometry), and similarly for E * instead of E.

QUANTIFIER-FREE TYPES IN BANACH SPACES

Before we start, let us state the following basic amalgamation result, which we shall use many times, quite often implicitly.

Fact 1.1. For any three Banach spaces E 0 , F 0 and F 1 , and isometric embeddings f i : E 0 → F i , there is a fourth Banach space E 1 and isometric embeddings g i : F i → E 1 such that g 0 f 0 = g 1 f 1 .

Proof. Equip the direct sum F 0 ⊕ F 1 with the semi-norm v + u = inf w∈E 0 v + f 0 w + uf 1 w , divide by the kernel and complete.

We can now define the fundamental objects of study of this section and, to a large extent, the entire paper.

Definition 1.2. Let E be a Banach space and X a sequence of distinct symbols (indexed by an arbitrary set I) that we call variables. We let E(X) = E ⊕ x∈X Rx, and define S X (E) to consist of all semi-norms on E(X) that extend the norm on E, calling it the space of types in X over E. We denote members of S X (E) by ξ, ζ and so on, and the corresponding semi-norms by • ξ , • ζ and so on.

When X = {x i } i∈I we may also write E(I) = E ⊕ i∈I Rx i instead of E(X), and similarly S I (E), whose members are called I-types. Definition 1.3. Given a Banach space extension E ⊆ F and an I-sequence ā = {a i } i∈I ⊆ F, we define the type of ā over E, in symbols ξ = tp( ā/E) ∈ S I (E), to be the semi-norm b + ∑ λ i x i ξ = b + ∑ λ i a i , and say that ā realises ξ. When a sequence b generates E, we may also write tp( ā/ b) for tp( ā/E).

Conversely, given a type ξ ∈ S I (E), we define the Banach space generated by ξ, in symbols E[ξ], as the space obtained from E(I), • ξ by dividing by the kernel and completing, together with the distinguished generators

{x i } i∈I ⊆ E[ξ].
Remark 1.4. A model-theorist will recognise types as we define them here as quantifier-free types, which do not, in general, capture "all the pertinent information". However, by Fact 1.1, they do capture a maximal existential type. Moreover, it follows from Lemma 1.16 below (and more specifically, from the assertion that π x : S x,y (0) → S x (0) is open) that being an existentially closed Banach space is an elementary property, so the theory of Banach spaces admits a model companion. Then Fact 1.1 can be understood to say that the model companion eliminates quantifiers, so quantifier-free types and types are in practice the same -see Proposition 1.21. As we shall see later, the model companion is separably categorical, and its unique separable model is G, the separable Gurarij space. Definition 1.5. We equip S I (E) with a topological structure as well as with a metric structure, which may be distinct. The topology on S I (E) is the least one in which, for every member x ∈ E(I), the map x : ξ → x ξ is continuous. Given ξ, ζ ∈ S I (E), we define the distance d(ξ, ζ) to be the infimum, over all F extending E and over all realisations ā and b of ξ and ζ, respectively, of sup i a i -b i .

It is fairly clear that:

(i) The distance on S I (E) refines the topology.

(ii) While the distance need not agree with the topology (we shall see that unless the parameter space E is trivial and I is finite, they are in fact distinct), it is lower semi-continuous. In other words, S I (E), equipped with this double structure, is a topometric space in the sense of [START_REF]Topometric spaces and perturbations of metric structures[END_REF].

Lemma 1.6. Let E, F be Banach spaces, I an index set, and consider tuples ā = (a i ) i∈I ∈ E I , b ∈ F I and ε ∈ R I . Also let R (I) denote the set of all I-tuples in which all but finitely many entries vanish. The following conditions are equivalent.

(i) There exists a semi-norm • on E ⊕ F extending the respective norms of E and F, such that for each i ∈ I one has a i -b i ≤ ε i . (ii) For all r ∈ R (I) , one has

∑ r i a i -∑ r i b i ≤ ∑ |r i |ε i .
Proof. One direction being trivial, we prove the other. For c

+ d ∈ E ⊕ F define c + d ′ = inf r∈R (I) c -∑ r i a i + d + ∑ r i b i + ∑ |r i |ε i .
This is easily checked to be a semi-norm, with c ′ ≤ c for c ∈ E. Now, for c ∈ E and r ∈ R (I) we have

c -∑ r i a i + ∑ r i b i + ∑ |r i |ε i ≥ c -∑ r i a i + ∑ r i a i ≥ c .
Therefore c ′ = c , and similarly d ′ = d for d ∈ F, concluding the proof.

Proposition 1.7. Let ξ, ζ ∈ S I (E), and let E(I) 1 consist of all a + ∑ λ i x i ∈ E(I) (where a ∈ E and all but finitely many of the λ i vanish) such that

∑ |λ i | = 1. Then d(ξ, ζ) = sup x∈E(I) 1 x ξ -x ζ .
Moreover, the infimum in the definition of distance between types is attained.

Proof. Immediate from Lemma 1.6. Convention 1.8. When referring to the topological or metric structure of S I (E), we shall follow the convention that unqualified terms from the vocabulary of general topology (open, compact, and so on) apply to the topological structure, while terms specific to metric spaces (bounded, complete, and so on) refer to the metric structure.

Excluded from this convention is the notion of isolation which will be defined in a manner that takes into account both the topology and the distance.

While this convention may seem confusing at first, it is quite convenient, as in the following. Lemma 1.9.

(i) The space S I (E) is Hausdorff, and every closed and bounded set thereof is compact. (ii) The distance on S I (E) is lower semi-continuous. In particular, the closure of a bounded set is bounded. (iii) Assume that I is finite, say I = n = {0, 1, . . . , n -1} ∈ N. Then every bounded set in S n (E) is contained in an open bounded set. It follows that the space S n (E) is locally compact, and that a compact subset is necessarily (closed and) bounded. (iv) A subset X ⊆ S n (E) is closed if and only if its intersection with every compact set is compact.

Proof. For the first item, clearly S I (E) is Hausdorff. If X ⊆ S I (E) is bounded, then for every x ∈ E(I) there exists M x such that x ξ ≤ M x for all ξ ∈ X. We can therefore identify X with a subset of Y = ∏ x [0, M x ], and if X is closed in S I (E), then it is closed in Y and therefore compact.

The second item follows from Proposition 1.7, and the third is immediate.

For the fourth item, assume that X ⊆ S n (E) is not closed, let ξ ∈ X X and let U be a bounded neighbourhood of ξ, in which case U ∩ X is not compact.

When I is infinite, the distance on S I (E) is somewhat badly behaved: it can be infinite, and parts of Lemma 1.9 may fail. Using it will become even more problematic for finer notions considered below, such as type isolation. Henceforth we shall only consider the distance between types when I is finite. Definition 1.10. Let m ≤ n. The variable restriction map π : S n (E) → S m (E) is the natural one induced by the inclusion E(x 0 , . . . , x m-1 ) ⊆ E(x 0 , . . . , x n-1 ), namely y πξ = y ξ for y ∈ E(x 0 , . . . , x m-1 ). Definition 1.12. We say that a type ξ ∈ S n (E) is isolated if the distance and the topology agree at ξ, i.e., if every metric neighbourhood of ξ is also a topological one. This is the definition of isolation in a topometric space, taking into account both the metric structure and the topological structure. Ordinary topological spaces can be viewed as topometric spaces by equipping them with the discrete 0/1 distance, in which case the notion of isolation as defined here coincides with the usual one.

Many results regarding ordinary topological spaces still hold, when translated correctly, with the topometric definitions. For example, the fact that a dense set must contain all isolated points becomes the following. Notice that in Lemma 1.18 below we prove that the set of isolated types is itself metrically closed.

Lemma 1.13. Let E be a Banach space, D ⊆ S n (E) a dense, metrically closed set. Then D contains all isolated types.

Proof. If ξ is isolated, then all metric neighbourhoods of ξ, which are also topological neighbourhoods, must intersect D.

For reasons that will become clearer in Section 2, one of our main goals in this paper is to characterise isolated types. We start with the easiest situation.

Proposition 1.14. Let 0 denote the trivial Banach space. Then every type in S n (0) is isolated. In other words, the distance on S n (0) agrees with the topology.

Proof. Given N ∈ N, let X N ⊆ 0(n) 1 be the finite set consisting of all ∑ λ i x i where ∑ |λ i | = 1 and each λ i is of the form k N . For ξ ∈ S n (0), let U ξ,N be its neighbourhood consisting of all ζ such that ∀x ∈

X N x ξ -1/N < x ζ < x ξ + 1/N.
This means in particular that x i ζ < x i ξ + 1 for all i < n, and now an easy calculation together with Proposition 1.7 yields that there exists a constant C(ξ) such that for all N, U ξ,N is contained in the ball of radius C(ξ)/N around ξ, which is what we had to show. This already allows us to construct the following useful tool of variable change in a type. Definition 1.15.

(i) Given a linear map ϕ : E( ȳ) → E( x) extending id E , we define a pull-back map ϕ * : S x (E) → S ȳ(E), or ϕ * : S n (E) → S m (E), by

w ϕ * ξ = ϕw ξ , w ∈ E( ȳ).
For A ⊆ S ȳ(E) we define ϕ * A = (ϕ * ) -1 (A) ⊆ S x (E). (ii) Given a tuple z in E( x), of the same length as ȳ, define ϕ : E( ȳ) → E( x) to be the unique linear map extending id E and sending y i → z i . We then write ξ↾ z = ϕ * ξ, so

a + ∑ λ i y i ξ↾ z = a + ∑ λ i z i ξ .
(In this notation E, x and ȳ are assumed to be known from context.)

Lemma 1.16. For a fixed tuple ȳ ∈ E( x) m , possibly with repetitions, the restriction map S n (E) → S m (E), ξ → ξ↾ ȳ, is continuous and Lipschitz (here n = | x|). If ȳ are linearly independent over E, then this map is also topologically and metrically open. Moreover, the metric openness is "Lipschitz" as well, in the sense that there exists a constant C = C( ȳ) such that for all ξ and all r > 0 we have

B(ξ, r)↾ ȳ ⊇ B(ξ↾ ȳ, Cr).
Proof. Continuity and the Lipschitz condition are easy. We therefore assume that ȳ are linearly independent over E, in which case we may also view them as formal unknowns. This gives rise to an inclusion map E( ȳ) ֒→ E( x), and ξ → ξ↾ ȳ may be viewed as a map S x (E) → S ȳ(E). In the special case where ȳ generate E( x) over E we have E( x) = E( ȳ), and the Lipschitz map S ȳ (E) → S x (E), ξ → ξ↾ x is the inverse of ξ → ξ↾ ȳ giving the moreover part. In the special case where y i = x i for i < m, the moreover part follows from Lemma 1.11. In the general case, we may complete ȳ to a basis for E( x) over E, and the moreover part follows as a composition of the two special cases.

For topological openness, we proceed as follows. In the case where E = 0, this follows from metric openness and Proposition 1.14. Let us consider now the case where E is finite-dimensional. We fix a basis b for E and a corresponding tuple of variables w. We may then identify E( x) with 0( w, x), and thus ȳ with its image in 0( w, x). We already know that •↾ w, ȳ : S w, x(0) → S w, ȳ(0) is open. In addition, we have a commutative diagram S w, x (0) S w, ȳ(0) S w(0)

•↾ w, ȳ / /
•↾ w ? ? ? ? ? ? ? ? ? ? ? ?

•↾ w and the map •↾ ȳ : S x (E) → S ȳ (E) is homeomorphic to the fibre of the horizontal arrow over tp( b) ∈ S w(0), so it is open as well. The infinite-dimensional case follows from the finite-dimensional one, since any basic open set in S x (E) can be defined using finitely many parameters in E.

We leave it to the reader to check that if ȳ are not linearly independent over E, then •↾ ȳ is not metric- ally open, and a fortiori not topologically so (consider, for example •↾ x,x : S 1 (0) → S 2 (0)).

Lemma 1.17. Let U ⊆ S n (E) be open and r > 0. Then B(U, r) = {ξ : d(ξ, U) < r} ⊆ S n (E) is open as well.

Proof. Let x and ȳ be two n-tuples of variables. Let us identify S n (E) with S x (E), and let W ⊆ S x, ȳ(E) consist of all ξ such that x i -y i ξ < r for i < n. Then W is open, and by Lemma 1.16 so is V = W ∩ (•↾ x ) -1 (U) ↾ ȳ ⊆ S ȳ(E). Identifying S ȳ(E) with S n (E) as well, V = B(U, r). Lemma 1.18. Let E be a Banach space.

(i) A type in S n (E) is isolated if and only if all its metric neighbourhoods have non empty interior. (ii) The set of isolated types in S n (E) is metrically closed.

Proof. The first assertion follows easily from Lemma 1.17, and the second from the first.

Another basic operation one can consider on types is the restriction of parameters S n (F) → S n (E) when E ⊆ F. Lemma 1.19. Let E ⊆ F be an isometric inclusion of Banach spaces. Then the natural type restriction map θ : S n (F) → S n (E) is continuous, closed, and satisfies θB(ξ, r) = B(θξ, r).

In particular, θ is both topologically and metrically a quotient map.

Proof. It is clear that θ is continuous. To see that it is closed we use Lemma 1.9. Indeed, since closed sets are exactly those that intersect compact sets on compact sets, it will be enough to show that if 

K ⊆ S n (E) is compact, then so is θ -1 K, which
∈ θ -1 ζ 0 with d(ξ, ζ) ≤ d(θξ, ζ 0 ), which proves that θB(ξ, r) = B(θξ, r).
We also obtain that the theory T of (unit balls of) Banach spaces admits a model completion T * , namely a companion with quantifier elimination, whose types are exactly those defined above. Moreover, as we shall see in the following section, the models of T * are exactly the Gurarij spaces. Since this is somewhat of an aside with respect to the rest of this paper, we shall allow ourselves to be brief, and assume that the reader is familiar with continuous first order logic (see [START_REF]Continuous first order logic and local stability[END_REF][START_REF] Itaï | Model theory for metric structures, Model theory with applications to algebra and analysis[END_REF]), and, for the part regarding Banach spaces as unbounded metric structures, also with unbounded continuous logic (see [START_REF] Itaï | Continuous first order logic for unbounded metric structures[END_REF]).

Lemma 1.20. Let T be an inductive theory in continuous first order logic, and for n ∈ N let S qf n (T) denote the space of quantifier-free types consistent with T, equipped with the natural logic topology. Assume first, that every two models of T amalgamate over a common substructure, and second, that for every n, the variable restriction map S ρ(q) = inf φ(p) : π p = q . Since π is continuous (automatically) and open (by hypothesis), ρ is continuous as well, and can therefore be expressed as a uniform limit of ψn : S qf n (T) → R, where ψ n ( x) are quantifier-free formulae, say ρ -ψn ≤ 2 -n for all n. One can now express that sup x |ψ n ( x) -inf y ϕ( x, y)| ≤ 2 -n for all n by a set of sentences.

Let T * consist of T together with all sentences constructed as above, for all possible quantifier-free formulae ϕ( x, y). Then every existentially closed model of T is easily checked to be a model of T * (using our amalgamation hypothesis), so T and T * are companions. Moreover, by induction on quantifiers, every formula is equivalent modulo T * to a uniform limit of quantifier-free formulae, so T * eliminates quantifiers.

Proposition 1.21. Consider Banach spaces either as metric structures in unbounded continuous logic, or as bounded metric structures via their closed unit balls, as explained, say, in [START_REF]Modular functionals and perturbations of Nakano spaces[END_REF]. Then (in either approach) the theory of the class of Banach spaces is inductive, and admits a model completion T * which is moreover complete and ℵ 0 -categorical.

When the entire Banach space is viewed as a structure, then the types over a subspace are as per Definition 1.2 and Definition 1.3, and if one only considers the unit ball, then the space of I-types over B(E) is

S ≤1 I (E) = ξ ∈ S I (E) : x i ξ ≤ 1 for all i ∈ I .
Proof. Let us consider the theory T of unit balls of Banach spaces. It is clearly inductive, and it is fairly easy to check that the space of quantifier-free I-types over a unit ball B(E) is the space S ≤1 I (E) defined in the statement. By the moreover part of Lemma 1.11, variable restriction S ≤1 n+1 (E)

→ S ≤1 n (E) is metrically open. For E = 0 this implies in particular that S ≤1 n+1 (0) → S ≤1 n (0) is topologically open, but this latter is just S qf n+1 (T) → S qf n (T)
. This, together with Fact 1.1, fulfils the hypotheses of Lemma 1.20. By quantifier elimination, S n (T * ) = S qf n (T) = S ≤1 n (0), so in particular, S 0 (T * ) is a singleton, whereby T * is complete. Finally, T * is ℵ 0 -categorical by the Ryll-Nardzewski Theorem and the fact that all types over the trivial space are isolated (see [START_REF] Itaï | On d-finiteness in continuous structures[END_REF]).

The case of Banach spaces as unbounded structures follows via the bi-interpretability of the whole Banach space with its unit ball.

THE GURARIJ SPACE

Definition 2.1. We recall from, say, Lusky [START_REF] Wolfgang | The Gurarij spaces are unique[END_REF] that a Gurarij space is a Banach space G having the property that for any ε > 0, finite-dimensional Banach space E ⊆ F, and isometric embedding ϕ : E → G, there is a linear map ψ : F → G extending ϕ such that in addition, for all x ∈ F, (1

-ε) x ≤ ψx ≤ (1 + ε) x .
Some authors add the requirement that a Gurarij space be separable, but from our point of view it seems more elegant to consider separability as a separate property.

Lemma 2.2. Let F be a Banach space. Then the following are equivalent:

(i) The space F is a Gurarij space.

(ii) For every n, the set of realised types tp( ā/F), as ā varies over F n , is dense in S n (F).

(iii) Same as (ii) for n = 1.

Proof. (i) =⇒ (iii). Let U ⊆ S 1 (F) be open and ξ ∈ U. We may assume that U is defined by a finite set of conditions of the form a i + r i x -1 < ε, where a i + r i x ξ = 1. Let E ⊆ F be the subspace generated by the a i , and let E ′ = E + Rx be the extension of E generated by the restriction of ξ to E. By hypothesis, there is a linear embedding ψ : E ′ → F extending the identity such that (1ε) y < ψy < (1 + ε) y for all y ∈ E ′ , and in particular for y = a i + r i x, so tp(ψx/F) ∈ U.

(iii) =⇒ (ii). We prove this by induction on n, the case n = 0 being tautologically true. For the induction step, let ∅ = U ⊆ S x,y (F) be open, and let V = U↾ x ⊆ S x (F). By Lemma 1.16, V is open, and by the induction hypothesis there are b ∈ F n such that tp( b/F) ∈ V. Now, consider the map θ : S y (F) → S x,y (F), sending tp(a/F) → tp( b, a/F). It is continuous (in fact, it is a topological embedding), so ∅ = θ -1 U ⊆ S 1 (F) is open. By hypothesis, there is c ∈ F such that tp(c/F) ∈ θ -1 U, i.e., such that tp( b, c/F) ∈ U, as desired.

(ii) =⇒ (i). Let E ⊆ E ′ be finite-dimensional, with E ⊆ F, and let ε > 0. Let ā be a basis for E, and let ā, b be a basis for E ′ , say | ā| = n and | b| = m. For N ∈ N, let U N ⊆ S m (F) be defined by the (finitely many) conditions of the form ∑ s i a i + ∑ r j x j ∈ (1ε, 1 + ε), where s i and r j are of the form k N and ∑ s i a i + ∑ r j b j ∈ (1ε, 1 + ε). By hypothesis there is a tuple c ∈ F m such that tp( c/F) ∈ U N , and we may define ψ : E ′ → F being the identity on E and sending b → c. For N big enough, it follows from the construction that if y ∈ E ′ , y = 1, then ψy -1 < 2ε, which is good enough.

Model theorists may find the second and third conditions of Lemma 2.2 reminiscent of a topological formulation of the Tarski-Vaught Criterion: a metrically closed subset A of a structure is an elementary substructure if and only if the set of types over A realised in A is dense. Indeed, Theorem 2.3. Let T * be the model completion of the theory of Banach spaces, as per Proposition 1.21. Then its models are exactly the Gurarij spaces. In particular, since T * is ℵ 0 -categorical, there exists a unique separable Gurarij space (up to isometric isomorphism).

Proof. Let E be a Banach space, and embed it in a model F T * . Then, first, by quantifier elimination, E is a model of T * if and only if E F. Second, by the topological Tarski-Vaught Criterion evoked above, E F if and only if the set of types over E, in the sense of Th(F) = T * , realised in E, is dense.

By Proposition 1.21 the space of types over E (in the sense of T * = Th(E)) is S ≤1 n (E) as defined there. By a dilation argument, the set of types realised in E is dense in S 1 (E) if and only if the set of types realised in B(E) is dense in S ≤1

1 (E), and we conclude by Lemma 2.2 (or, if one works with the whole space as an unbounded structure, the same holds without the dilation argument).

As mentioned in the introduction, the isometric uniqueness of the separable Gurarij space was originally proved by Lusky [START_REF] Wolfgang | The Gurarij spaces are unique[END_REF] using the Lazar-Lindenstrauss matrix representation of L 1 pre-duals. The same was recently re-proved by Kubiś and Solecki [KS13] using more elementary methods. Upon careful reading, their argument essentially consists of showing that the separable Gurarij space is the Fraïssé limit of the class of finite-dimensional Banach spaces. The first author points this out in [START_REF]Fraïssé limits of metric structures[END_REF] as an application of a general development of Fraïssé theory for metric structures (yielding yet another uniqueness proof). From this point onward we shall leave continuous logic aside, and work entirely within the formalism of type spaces as introduced in Section 1. As we shall see, uniqueness and existence of the separable Gurarij space also follow as easy corollaries from later results that do not depend explicitly on any form of formal logic (Corollary 2.7 and Lemma 2.11).

Definition 2.4. Let E ⊆ F be Banach spaces. We say that F is atomic over E if the type over E of every finite tuple in F is isolated.

By Proposition 1.14, every Banach space is atomic over 0.

Theorem 2.5. Let E ⊆ F 0 ⊆ F 1 be Banach spaces with dim F 0 /E finite and F 1 separable and atomic over E. Also let G ⊇ E be a Gurarij space, and let ϕ : F 0 → G be an isometric embedding extending id E . Then for every ε > 0 there exist an isometric embedding ψ :

F 1 → G extending id E with ψ↾ F 0 -ϕ < ε.
In particular, any separable Banach space atomic over E embeds isometrically over E in any Gurarij space containing E.

Proof. It is enough to prove this in the case where dim F 1 /F 0 = 1. We may then choose a basis ā ∈ F n+1 1 for F 1 over E, such that in addition a 0 , . . . , a n-1 generate F 0 . By hypothesis, ξ = tp( ā/E) ∈ S n+1 (E) is isolated. Let ρ : S n+1 (G) → S n+1 (E) be the parameter restriction map, and let K = ρ -1 (ξ), observing that for any ε > 0, we have that B(K, ε) = ρ -1 B(ξ, ε) is a neighbourhood of K. Given r > 0, we construct a sequence of tuples ck ∈ G n+1 , each of which realises a type in B(ξ, 2 -k r), as follows.

For k = 0, we let V ⊆ S n+1 (G) be the set of semi-norms defined by x iϕa i < r for i < n, which is open and intersects K. Then V ∩ B(K, r) • = ∅ (where • • denotes topological interior), and we choose c0 to realise some type there. Given ck , we let U k ⊆ S n+1 (G) be the set of semi-norms defined by

x i -c k,i < 2 -k r for i ≤ n,
which is again open and intersects K, and we choose ck+1 to realise a type in

U k ∩ B(K, 2 -n-1 r) • .
We obtain a Cauchy sequence ( ck ) converging to some c ∈ G n+1 , whose type tp( c/E), being the metric limit of tp( ck /E), must be ξ. Then the linear map ψ :

F 1 → G that extends id E by a i → c i is an isometric embedding.
Finally, reading through our construction, we have ϕa i -c i < 3r for all i < n, and choosing r small enough, ψ↾ F 0ϕ is as small as desired.

In particular, any two separable Gurarij spaces atomic over E embed in one another, but we can do better.

Theorem 2.6. Let G i be separable Gurarij spaces atomic over E for i = 0, 1, and let E ⊆ F ⊆ G 0 with dim F/E finite. Also let ϕ : F → G 1 be an isometric embedding extending id E . Then for any ε > 0 there exists an isometric isomorphism ψ :

G 0 ∼ = G 1 extending id E with ψ↾ F -ϕ < ε.
In particular, any two separable Gurarij spaces atomic over E are isometrically isomorphic over E.

Proof. Follows from Theorem 2.5 by a back-and-forth argument. Indeed, by induction on n, using Theorem 2.5, we construct finite dimensional subspaces

E ⊆ F n ⊆ G 1 and E ⊆ F ′ n ⊆ G 0 , as well as isometric embeddings ϕ n : F n ֒→ G 0 and ϕ ′ n : F ′ n ֒→ G 1 extending id E , such that: (i) F 0 = F and ϕ 0 = ϕ. (ii) F n ⊆ F n+1 , F ′ n ⊆ F ′ n+1 . (iii) ϕ n (F n ) ⊆ F ′ n and ϕ ′ n (F ′ n ) ⊆ F n+1 . (iv) ϕ ′ n ϕ n -id F n + ϕ n+1 ϕ ′ n -id F ′ n < 2 -n-1 ε. (v) F n = G 1 , F ′ n = G 0 .
Once the construction is complete, we have

ϕ n -ϕ n+1 ≤ ϕ n -ϕ n+1 ϕ ′ n ϕ n + ϕ n+1 ϕ ′ n ϕ n -ϕ n+1 < 2 -n-1 ε x .
It follows that the sequence (ϕ n ) converges in norm to an isometric embedding ψ : F n ֒→ G 0 , which extends uniquely to G 1 ֒→ G 0 . We obtain ψ ′ : G 0 ֒→ G 1 as a limit of ϕ ′ n similarly. Then ψ extends id E , ψ ′ = ψ -1 , and ψ↾ Fϕ < ε, as desired.

Since every Banach space is atomic over 0, we obtain the uniqueness and universality of the separable Gurarij space.

Corollary 2.7. Every two separable Gurarij spaces are isometrically isomorphic, and every separable Banach space embeds isometrically in any Gurarij space (separable or not).

We also obtain that the Gurarij space is approximately homogeneous.

Corollary 2.8. Let G be a separable Gurarij space, let F ⊆ G be finite-dimensional, and let ϕ : F → G be an isometric embedding. Then there exists an isometric automorphism ψ ∈ Aut(G) such that ψ↾ Fϕ is arbitrarily small. Moreover, if E ⊆ F is such that G is atomic over E, and ϕ↾ E = id, then we may require that ψ↾ E = id as well.

Notation 2.9. We shall denote by G the unique separable Gurarij space. Similarly, for a separable Banach space E, we let G[E] denote the unique atomic separable Gurarij space over E, if such an extension of E exists. Observe that since all types over 0 are isolated, G = G[0].

Let E be a separable Banach space. Let Emb(E, G) denote the space of linear isometric embeddings E ֒→ G, on which Aut(G) acts by composition. Say that ϕ ∈ Emb(E, G) is an atomic embedding if G is atomic over ϕE.

Corollary 2.10. Let E be a separable Banach space. Equip Emb(E, G) and Aut(G) with the topology of pointwise convergence (the strong operator topology).

(i) The space Emb(E, G) is Polish, the action Aut(G) Emb(E, G) is continuous and all its orbits are dense.

(ii) If G[E] exists, then the set of atomic embeddings ϕ ∈ Emb(E, G) is a dense G δ orbit under this action. (iii) If G[E]
does not exist, then there are no atomic embeddings and all orbits are meagre.

Proof. The first item is easy and left to the reader (density is by Corollary 2.8).

It follows from Theorem 2.6 that the set Z ⊆ Emb(E, G) of atomic embeddings forms a single orbit under Aut(G). By definition, Z = ∅ if and only if G[E] exists. Let I n ⊆ S n (E) denote the set of isolated types. For r > 0, we know that B(I n , r) is a neighbourhood of I n , so there exists an open set U n,r such that

I n ⊆ U n,r ⊆ B(I n , r) (in fact one can show that B(I n , r) is open, but we shall not require this). For each b ∈ G n , we define V b,r ⊆ Emb(E, G) to consist of all ϕ such that tp( b/ϕE) ∈ ϕU n,r . It is easy to see that since U n,r is open, so is V b,r .
Since the set of isolated types is metrically closed, we have

Z = n, b∈G n ,r>0 V b,r = n, b∈G n 0 ,k V b,2 -k ,
where G 0 ⊆ G is any countable dense subset. Thus, if Z = ∅ it is a dense G δ orbit. Consider now a non atomic embedding ψ ∈ Emb(E, G). Non atomicity means that G realises some non isolated type in S n (ψE), which we may write as ψξ, where ψ is applied to the parameters of ξ, and ξ ∈ S n (E) is non isolated. By Lemma 1.18, for r > 0 small enough, the closed metric ball B(ξ, r) is (topologically) closed with empty interior. For b ∈ G n , let V b ⊆ Emb(E, G) consist of all ϕ such that tp( b/ϕE) / ∈ B(ϕξ, r). Reasoning as above, each V b is a dense open set, and the set of ϕ ∈ Emb(E, G) such that G omits ϕξ is co-meagre. Since this set is also disjoint from the orbit of ψ, we are done.

We now turn to a criterion for the existence of G

[E]. Say that a type ξ ∈ S N (E) is a Gurarij type if E[ξ],
the generated space in the sense of Definition 1.3, is a Gurarij space. By an abuse of notation, we shall use X = {x i } i∈N to denote both the set of variables and the set of distinguished generators of E[ξ].

Lemma 2.11. Let E be a separable Banach space. Then the set of Gurarij types over E is co-meagre in S N (E). Moreover, there exists a dense G δ set Z ⊆ S N (E) such that if some ξ ∈ Z generates F = E[ξ], then F is Gurarij and the set of generators {x i } i∈N ⊆ F is dense.

In particular, the separable Gurarij space G exists.

Proof. For k ∈ N, let {W k,m } m∈N be a countable basis for the topology of S k (E), which exists since E is separable.

Whenever I ⊆ J we shall use π J,I : S J (E) → S I (E) to denote the variable restriction map, namely, tp (a i ) i∈J /E → tp (a i ) i∈I /E , which is an open map by Lemma 1.16. Thus, for example,

π -1 N,k (W k,m ) : k, m ∈ N is a

basis of open sets for S N (E).

Let us fix some n ∈ N, introduce yet another formal variable y, and consider an open set U ⊆ S n+1 (E) = S x 0 ,...,x n-1 ,y (E). Let F = S n (E) π n+1,n (U), which is closed. For each k ∈ N, let ϕ * k : S N (E) → S n+1 (E) be the variable change map given by sending x i → x i for i < n and y → x k , as per Definition 1.15, namely, tp(a 0 , a 1 , . . . /E) → tp(a 0 , . . . , a n-1 , a k /E). We then define ? ?

U = π -1 N,n (F) ∪ k (ϕ * k ) -1 (U).
π N,n / /
Given any type ξ ∈ S k (E) there are two possibilities.

• If π k,n (ξ) ∈ F then π -1 N,k (ξ) ⊆ π -1 N,n (F) ⊆ U, so ξ ∈ π N,k ( U). • If π k,n (ξ) / ∈ F then there exists ζ ∈ U such that π n+1,n (ζ) = π k,n (ξ) = χ, say. Amalgamating E[ξ] with E[ζ] over E[χ], as per Fact 1.1, we obtain a normed space F ⊇ E, a tuple b ∈ F k such that tp( b/E) = ξ, and c ∈ F such that tp(b 0 , . . . , b n-1 , c) = ζ. Let ρ = tp( b, c, c, c, . . . /E) ∈ S N (E). Then ϕ * k (ρ) = ζ, and again ξ = π N,k (ρ) ∈ π N,k ( U). Second, we claim that U is dense in S N (E). Indeed, consider a basic open set π -1 N,k (W k,m ) = ∅. Since π N,k ( U) = S k (E) ⊇ W k,m , we have ∅ = π -1 N,k (W k ) ∩ U. Lastly, we claim that the desired set is Z = n,m W n+1,m ⊆ S N (E). It is indeed a dense G δ set. Let ξ ∈ Z, let F = E[ξ]
be the generated space, and b = (b i ) i∈N be the generators. Then it will suffice to show that for any open ∅ = U ⊆ S 1 (F) there exists k such that tp(b k /F) ∈ U: this clearly implies that b is dense in F, and by Lemma 2.2, F is Gurarij. Let us fix some ρ ∈ U, which we may always write as tp(c/F) where c lies in some F ′ ⊇ F.

We define θ : S 1 (F) → S Xy (E) to be the map sending tp(a/F) to tp( b, a/E), as in the proof of Lemma 1.16 (working over E instead of 0). This is a topological embedding, so we may write U = θ -1 (W) with W ⊆ S X,y (E) open and θ(ρ) = tp( b, c/E) ∈ W, and possibly shrinking W (and U), we may assume that W is defined using only finitely many variables, say x, y = x 0 , . . . , x n-1 , y. In other words, we may assume that W = π -1 Xy, xy (W n+1,m ) for some m, so π Xy, xy • θ(ρ) = tp(b 0 , . . . , b n-1 , c/E) ∈ W n+1,m . Thus ρ provides us with a witness that

π N,n (ξ) = tp(b 0 , . . . , b n-1 /E) ∈ π n+1,n (W n+1,n ).
On the other hand, we have ξ ∈ Z ⊆ W n+1,m , so there must exist some k such that

π Xy, xy • θ tp(b k /F) = tp(b 0 , . . . , b n-1 , b k /E) = ϕ * k (ξ) ∈ W n+1,m . We conclude that tp(b k /F) ∈ (π Xy, xy • θ) -1 (W n+1,m ) = U,
and the proof is complete.

Theorem 2.12 (Omitting Types Theorem for Gurarij spaces). Let E be a separable Banach space, and assume we are given, for each n ∈ N, a metrically open and topologically meagre set X n ⊆ S n (E). Then there exists a separable Gurarij space G ⊇ E such that in addition, for every n, no type in X n is realised in G (we then say that G omits all X n ). Moreover, the set of Gurarij types that generate such spaces is co-meagre.

Proof. Let Z ⊆ S N (E) be the set produced by Lemma 2.11. For each n, let [N] n = {s ⊆ N : |s| = n}. Any s ∈ [N] n can be enumerated uniquely as an increasing sequence {k 0 , . . . , k n-1 }, and we then define

[s] : E(n) → E(N) by x i → x k i for i < n. Then [s] * : S N (E) → S n (E) is continuous and open, so [s] * X n ⊆ S N (E) is meagre. Since everything is countable, Z 1 = Z n,s∈[N] n [s] * X n
is co-meagre as well. All we need to show is that if ξ ∈ Z 1 generates G, then G omits X n . Indeed, assume that some ξ ∈ X n is realised in G, say by ā. Since X n is metrically open, there exists r > 0 such that B(ξ, r) ⊆ X n . Since the sequence {x i } is dense in G, and G has no isolated points, there exists an increasing sequence k 0 < . . . < k n-1 such that x k j -a j < r. But then tp(x k/E) ∈ X n , so ξ ∈ [ k] * X n , contradicting the choice of ξ and completing the proof.

Say that a Gurarij space G is prime over a separable subspace E if it embeds isometrically over E in every Gurarij space containing E. Corollary 2.13 (Criterion for primeness over E). Let G be a Gurarij space, and let E ⊆ G be a separable subspace. Then the following are equivalent:

(i) The space G is prime over E.

(ii) The space G is separable and atomic over E, namely, G = G[E].

Proof.

If G = G[E],
then it is prime over E by Theorem 2.5. For the other direction, assume that G is prime over E. Since E is separable, it embeds (by Theorem 2.5) in a separable Gurarij space, so G must be separable as well. Finally, assume toward a contradiction that G realises some non isolated type ξ. By Lemma 1.18 there exists r > 0 such that the closed metric ball B(ξ, r) has empty interior. Since the distance is lower semi-continuous, the closed metric ball is topologically closed, and is therefore meagre, as is the open ball B(ξ, r). By Theorem 2.12, there exists a separable Model theorists will recognise Proposition 2.14 as the usual criterion for the existence of an atomic model, and as such it is in no way particular to Banach spaces. In the specific context of Banach spaces, however, it can be improved, yielding Theorem 2.16. Lemma 2.15. For a type ξ ∈ S x (E) the following are equivalent (i) The type ξ is isolated.

(ii) The type ξ↾ ȳ is isolated for every ȳ ∈ E( x) m (and every m).

(iii) The type ξ↾ y is isolated for every y ∈ E( x).

Proof. (i) =⇒ (ii). When ȳ are linearly independent over E, this follows from Lemma 1.16. Hence, for the general case, it is enough to consider the situation where ȳ, of length m, extends the original tuple of variables x, of length n. For j < m let us write y j = a j + ∑ i<n λ ij x i . Given r > 0, there exists by hypothesis an open set U such that ξ ∈ U ⊆ B(ξ, r), and let V = (•↾ x ) -1 U ⊆ S ȳ (E). Intersecting V with the open sets defined by y j -∑ i<n λ ij y i -a j < r we obtain an open set V ′ with ξ↾ ȳ ∈ V ′ ⊆ B(ξ↾ ȳ, r ′ ) for some r ′ = r ′ (r, ȳ) that goes to zero with r.

(ii) =⇒ (iii). Immediate. (iii) =⇒ (i). We repeat the proof of Proposition 1.14 (in fact, that result is merely a special case of the present one, alongside the fact that types in S 1 (0) are trivially isolated). Indeed, for each N there exists by hypothesis a neighbourhood U N ∋ ξ consisting of ζ such that ∀y ∈ X N d(ζ↾ y , ξ↾ y ) < 1/N.

Using Proposition 1.7 we conclude as for Proposition 1.14.

Theorem 2.16. The following are equivalent for a separable Banach space E: (i) The space G[E] exists.

(ii) For each n, the set of isolated types in S n (E) is dense.

(iii) The set of isolated types in S 1 (E) is dense.

Proof. We only need to show that if the set of isolated 1-types is dense, then G[E] exists. Indeed, proceeding as in the proof of Proposition 2.14 there exists a separable Gurarij space G ⊇ E that only realises isolated 1-types over E. By Lemma 2.15, G is atomic over E.

ISOLATED TYPES OVER ONE-DIMENSIONAL SPACES

Recall that one of the goals of this paper is to characterise isolated types over arbitrary E. We start with the next-easiest case after E = 0, namely when dim E = 1. Even though this case will be fully subsumed in the general case, it is technically significantly simpler and deserves some specific comments, so we chose to treat it separately. Definition 3.1. A norming linear functional for v ∈ E {0} is a continuous linear functional λ ∈ E * such that λ = 1 and λv = v .

By the Hahn-Banach Theorem, a norming linear functional always exists. We say that v is smooth in E if the norming linear functional is unique. Proposition 3.2. Let E be a Banach space, and let v ∈ E {0}. Then E is atomic over v if and only if v is smooth in E.

Proof. By Lemma 2.15, we may assume that E = v, u and show that tp(u/v) is isolated if and only if v is smooth in E. Assume first that for some s, ε > 0 and D ∈ R we have

v ± su < v ± sD + sε.

It follows by the triangle inequality that

v ± tD -tε ≤ v ± tu < v ± tD + tε, 0 < t ≤ s,
or equivalently,

± rv + u -r v ∓ D < ε, r ≥ s -1 .
If v is smooth, let λ be the unique norming functional, and let D = λu. Then for any ε > 0 there exists s as above. Then ξ = tp(u/v) satisfies the open condition v ± sx < v ± sD + sε, which in turn implies that rvurvx ≤ 2ε for all |r| ≥ s -1 . Finitely many additional open conditions can ensure that that the same holds for all r, yielding an open set ξ ∈ U ⊆ B(ξ, 3ε), showing that ξ is isolated.

Conversely, if v is not smooth, then there are norming functionals λ ± , where D -= λ -u < D + = λ + u. Any neighbourhood of ξ contains an open set U that is defined by finitely many conditions of the form r i v + xr i v + u < ε. We can construct a Banach space E ′ generated by {v, w}, with v as in E, such that ζ = tp(w/v) ∈ U and v is smooth in E ′ , with unique norming functional being defined by µw = D -. This means that for r big enough we have

rv + w ≈ r v + D -≤ rv + u + D --D + , so d(ξ, ζ) ≥ D + -D -. Therefore B(ξ, D + -D -)
is not a topological neighbourhood of ξ, and ξ is not isolated.

We provided a fairly elementary argument to the "only if" part of Proposition 3.2. The machinery developed above provides us with a conceptually different argument, which in a sense we find preferable. First, let us recall that by Mazur [Maz33, Satz 2], the set of smooth points in the unit sphere of a separable Banach space is a dense G δ . Assume now that E is atomic over v, and without loss of generality, say that v = 1, and let u ∈ G be smooth of norm one. By Theorem 2.5 there exists an isometric embedding of E in G sending v to u, so v must be smooth.

We obtain the following result of Lusky [START_REF] Wolfgang | The Gurarij spaces are unique[END_REF].

Corollary 3.3. The smooth points in the unit sphere of G form a single dense G δ orbit under isometric automorphisms.

Proof. Immediate from Proposition 3.2 and Theorem 2.6.

Corollary 3.4. The distance strictly refines the topology on S n (F) for every F = 0.

Proof. It follows from Lemma 1.19 that if E ⊆ F, and the topology and distance agreed on S n (F), then they would also agree on S n (E), and every type in S n (E) would be isolated. However, by Proposition 3.2, not all types over a 1-dimensional E are isolated.

THE LEGENDRE-FENCHEL TRANSFORMATION OF 1-TYPES

In this section we recall and develop a few technical tools that will be used later in order to characterise isolated types over arbitrary E. We start with the Legendre-Fenchel transformation. This being a duality construction, it will be convenient for us to put E and its dual E * on a more equal footing.

Recall that a locally convex topology on a vector space (for our purposes, only over R), is a vector space topology admitting a basis of convex neighbourhoods for 0. Examples of such topologies include the norm topology on a normed space E, as well as the weak topology w on E and the weak * topology w * on E * . Moreover, (E, w) and (E * , w * ) are one another's dual in the locally convex category, yielding the desired symmetry.

Convention 4.1. In the rest of the paper, unless a more restrictive hypothesis is stated, E will denote a locally convex topological vector space over R. Its topological dual E * is the space of continuous linear functionals, always equipped with the weak * topology, namely the least topology in which v : λ → λv is continuous for each v ∈ E.

This applies in particular when E is a normed space: we may refer to the dual norm via the sets B(E * ) and ∂B(E * ), or the corresponding properties λ ≤ 1 and λ = 1, but the topology on E * is always taken to be the weak * topology, so B(E * ) is compact for any normed E.

The weak * topology is again locally convex, and the bi-dual E * * is canonically identified, as a set, with E (which would not always be true if for a normed space E we calculated E * * with respect to the dual norm on E * ). This induces the weak topology on E, which may be weaker than the original one, but gives rise to the same dual E * (= E * * * ). The Hahn-Banach Theorem tells us that the weak topology on E agrees with the original one when it comes to closed convex sets. In other words, both topologies give rise to the same notion of a closed convex function (defined below), which, for our purposes, is good enough.

Fact 4.2 (Hahn-Banach Theorem, see Brezis [START_REF] Haïm | Analyse fonctionnelle[END_REF]). A closed convex subset of E (a locally convex vector space) is the intersection of the closed half-spaces that contain it, and is therefore weakly closed (a half-space of E is a set of the form {v : λv ≤ r} where λ ∈ E * and r ∈ R). Definition 4.3. Following Rockafellar [START_REF] Tyrrell Rockafellar | Convex analysis[END_REF], a proper convex function on E is a convex function f : E → R ∪ {∞} that is not identically ∞. It is closed if it is lower semi-continuous (equivalently, by Fact 4.2, lower semi-continuous in the weak topology). We then define its domain dom f = {v ∈ E : f (v) < ∞}. A closed convex function is either a proper one or one of the constant functions f = ±∞ (an improper one).

For an arbitrary function

f : E → [-∞, +∞] we define f * : E * → [-∞, +∞] by f * (λ) = sup v∈E λv -f (v).
If f is closed convex we call f * its conjugate. Moreover, if g is another closed convex function, then fg = f * -g * , where • denotes the supremum norm, possibly infinite, and we agree that | ± ∞ ∓ ∞| = 0.

Proof. For the finite-dimensional case, see Rockafellar [Roc70, Section 12]. The general case is proved essentially in the same fashion, using Fact 4.2. The moreover part is easy to check directly. Lemma 4.5. Let X ⊆ E and suppose f : X → R ∪ {∞} is not identically ∞. Assume moreover that whenever x ∈ X can be expressed as a limit of convex combinations

∑ i<ℓ k t k,i x k,i , where x k,i ∈ X, we have f (x) ≤ lim inf k ∑ i<ℓ k f k,i f (x k,i ). Then extending f by ∞ outside X, we have that f * is a proper closed convex function on E * and f = f * * ↾ X . Proof. Let epi f = (v, s) : f (v) ≤ s} ⊆ X × R ⊆ E × R, the epigraph of f , let Y = co(epi f ) ⊆ E × R be the closed convex hull and define g(v) = inf{t : (v, t) ∈ Y} ∈ R ∪ {∞}.
Then g is a closed proper convex function, g ≤ f , and the hypothesis implies that g agrees with f on X. Now g * ≥ f * , so f * is in particular proper (it is automatically closed and convex), and g = g * * ≤ f * * ≤ f . Therefore f * * ↾ X = f . We recall that if X ⊆ E is convex, then ∂X is defined as the set of all v such that, for some affine line L, v is one of two distinct boundary points of L ∩ X in L. The relative interior, sometimes denoted ri(X), is defined as X ∂X: the set of all v ∈ X such that for every affine line L going though v, either L ∩ X is a single point or contains v in its interior relative to L. When X generates a finite-dimensional affine subspace, this agrees with the usual topological notions as calculated in that space. Lemma 4.6. Let E be finite-dimensional and let X ⊆ E be a compact convex subset. Let f : X → R be closed and convex, and assume that f ↾ ∂X is continuous. Then f is continuous.

Proof. We need to show that if

x n → x in X and f (x n ) → α ∈ [-∞, ∞], then f (x) = α. Since f is closed, f (x) ≤ α,
and let us assume that f (x) < α. We may then assume that f (x n ) > f (x) + ε for some ε > 0 and all n. Then the ray R n = x n + R ≥0 (x n -x) intersects ∂X at a single point, call it y n = x n + s n (x n -x), and we may further assume that y n → y, where y is necessarily also on the boundary. Notice that

x n = s n x + y n s n + 1 , so by convexity f (y n ) ≥ (s n + 1) f (x n ) -s n f (x) > f (x) + (s n + 1)ε ≥ f (x) + ε. Since f
is continuous on the boundary we must have y = x. But then y n -x is bounded away from zero, so s n → ∞, so f is unbounded on the boundary, even though ∂X is compact and f is continuous there, a contradiction.

The relevance of convex conjugation to our context comes from the following alternative characterisation of 1-types over a normed space E, introduced in [START_REF]The linear isometry group of the Gurarij space is universal[END_REF] (see also Katětov [START_REF] Miroslav | On universal metric spaces, General topology and its relations to modern analysis and algebra[END_REF] and Uspenskij [START_REF] Uspenskij | On subgroups of minimal topological groups[END_REF]). From now on, E denotes a normed space. Definition 4.7. Let X be an arbitrary metric space. A Katětov function on X is a function f : X → R satisfying f (x) ≤ f (y) + d(x, y) and d(x, y) ≤ f (x) + f (y) for all x, y ∈ X. The space of Katětov functions on X is denoted K(X). As with type spaces, we equip K(X) with a double structure, the topology of pointwise convergence and the distance of uniform convergence (i.e., the supremum distance). With this topology and distance, K(X) is a topometric space (that is to say that the distance refines the topology, and is lower semi-continuous).

If X is a normed space, or a convex subset thereof, we let K C (X) denote the space of convex Katětov functions on X, with the induced topometric structure.

Fact 4.8. Let ξ ∈ S x (E) be a 1-type over a normed space E, and let f ξ (a) = xa ξ for a ∈ E. Then (i) The map ξ → f ξ defines a bijection between S 1 (E) and K C (E), whose inverse is given by

αx -a ξ = a α = 0 |α| f ξ (a/α) α = 0.
(ii) This bijection is a topological homeomorphism and a metric isometry.

Proof. The first item is [Ben14, Lemma 1.2]. For the second, that the bijection is homeomorphic (in the respective topologies of point-wise convergence) follows easily from the characterisation of the inverse, while the isometry is exactly Proposition 1.7 for 1-types.

Consequently, from now on we shall identify K C (E) with S 1 (E).

Fact 4.9. Let X ⊆ Y be metric spaces, and for f ∈ K(X) and y ∈ Y define

f (y) = inf x∈X f (x) + d(x, y).
Then f ∈ K(Y) extends f , and the induced embedding K(X) ⊆ K(Y) is isometric. When Y = E is a normed space, X ⊆ E is convex and f ∈ K C (X), the extension f is convex as well, inducing an isometric embedding K C (X) ⊆ K C (E).

Proof. The first assertion goes back to Katětov [START_REF] Miroslav | On universal metric spaces, General topology and its relations to modern analysis and algebra[END_REF], and the second is [Ben14, Lemma 1.3(i)].

Question 4.10. If X ⊆ E is convex and compact (or totally bounded), then the topology and distance agree on K C (X), and it follows that the inclusion K C (X) ⊆ K C (E) is also continuous, and therefore homeomorphic (since the restriction map is always continuous). At the other extremity, if X = E, then the inclusion is homeomorphic as well. What about general convex X ⊆ E?

A closed proper convex function f : E → R ∪ {∞} is essentially the same thing as a closed convex function f : X → R, with convex domain X, such that lim inf v→u f (v) = ∞ for all u ∈ X X. Indeed, we can get one from the other by restricting to the finite domain in one direction, or by extending by ∞ in the other. A special case of the second form is when X ⊆ E is closed and convex and f ∈ K C (X). If X is merely convex, every f ∈ K C (X), being 1-Lipschitz, admits a unique extension to f ∈ K C (X), so requiring X to be closed is not truly a constraint. Definition 4.11. Let f : E → R ∪ {∞} be a proper closed convex function, and let λ ∈ E * .

• We shall say that f (or more precisely, f * ) satisfies the antipode inequality at λ if f * (λ) + f * (-λ) ≤ 0.

• It satisfies the antipode identity at λ if f * (λ) + f * (-λ) = 0.

Lemma 4.12. Let X ⊆ E be closed and convex and let f ∈ K C (X). Then (i) The domain dom f * contains B(E * ), and if λ ∈ dom f * with λ > 1, then

f * (λ) = sup v∈∂X λv -f (v).
In particular, if X = E (so ∂X = ∅), then dom f * is exactly the closed unit ball.

(ii) If X is bounded and λ = 1, then f * (λ) = sup v∈∂X λv -f (v). (iii) Let f ∈ K C (E) be as per Fact 4.9. Then f * (λ) = f * (λ) λ ≤ 1 ∞ λ > 1 and f (v) = sup λ ≤1 λv -f * (λ). In addition, if v / ∈ X, then f (v) = sup λ =1 λv -f * (λ). (iv) When X = E, we have f ∈ K C (E) = S 1 (E). For λ ∈ ∂B(E * ), the least possible value of a norm- preserving extension of λ at a realisation of f is f * (λ). (v) Let g : E → R ∪ {∞} be any closed proper convex function. Then g ∈ K C (E) if and only if dom g * =
B(E * ) and the antipode inequality g * (λ) + g * (-λ) ≤ 0 holds for all λ ∈ ∂B(E * ), or, equivalently, for all λ ∈ B(E * ). (vi) Assume g ∈ K C (E) is such that the antipode identity g * (λ) + g * (-λ) = 0 holds at some λ ∈ B(E * ).

Then g * is continuous at λ.

Proof. For (i), first let λ ≤ 1, and let u ∈ X be fixed. Then for all v ∈ X we have

f (u) + u ≥ v - u -f (v) + u ≥ λv -f (v), whereby f * (λ) ≤ f (u) + u < ∞. Now let λ > 1,
say λw > w , and assume that λ ∈ dom f * . Then for each v ∈ dom f , the ray {v + αw : α ≥ 0} cannot be contained in X (or else f * (λ) = ∞) and therefore intersects the boundary, say at v ′ . In this case λv -f (v) ≤ λv ′ -f (v ′ ), proving our assertion. When λ = 1 but X is assumed to be bounded, for every v ∈ X we can find

v ′ ∈ ∂X with λv -f (v) ≤ λv ′ -f (v ′ ) + ε for ε arbitrarily small, whence (ii).
For (iii), we already know that dom f * is exactly the closed unit ball. In addition, f ≤ f implies f * ≥ f * , and if λ ≤ 1, then for every v ∈ E and u ∈ X:

λv -f (v) = λv -inf u∈X f (u) + v -u ≤ sup u∈X λu -f (u) = f * (λ), whereby f * (λ) ≤ f * (λ)
. This gives us the first identity, and then Fact 4.4 gives the second one. Now assume that v / ∈ X, so by Fact 4.2 there exists µ ∈ ∂B(E * ) such that µ↾ X < µv. For any λ ∈ B(E * ) there exists α ≥ 0 such that λ + αµ = 1. Then

f * (λ + αµ) ≤ f * (λ) + αµv, or equivalently, λv -f * (λ) ≤ (λ + αµ)v -f * (λ + αµ), whence it follows that f (v) = sup λ =1 λv -f * (λ).
Item (iv) is immediate. For (v), we have already seen that if g ∈ K C (E), then dom g * = B(E * ), and the previous item implies that g * (λ) + g * (-λ) ≤ 0 for λ ∈ ∂B(E * ). Conversely, assume that dom g * = B(E * ) and the antipode inequality holds. Then g = g * * is necessarily 1-Lipschitz, so dom

g = E. For distinct v, u ∈ E, let λ ∈ ∂B(E * ) norm v -u. Then g(v) + g(u) ≥ λv -g * (λ) -λu -g * (-λ) ≥ λ(v -u) = v -u , as desired.
For (vi), let λ α → λ. Then g * (λ α ) ≤ -g * (-λ α ) by the antipode inequality and g * (λ) = -g * (-λ) by hypothesis. Since g * is lower semi-continuous,

g * (λ) ≤ lim inf g * (λ α ) ≤ lim sup g * (λ α ) ≤ lim sup -g * (-λ α ) = -lim inf g * (-λ α ) ≤ -g * (-λ) = g * (λ).
Therefore lim g * (λ α ) = g * (λ), as desired.

Remark 4.13. Let F ⊆ E be normed spaces and let g ∈ K C (F). Since F is convex in E, there may be some ambiguity about g * , so let g * F denote the conjugate as a convex function on F and let g * E denote the conjugate of the extension by infinity to E * . Also let g ∈ K C (E) denote the canonical extension of g. Then g * E (λ) = g * F (λ↾ F ) for λ ∈ E * , and by Lemma 4.12(iii), if λ ≤ 1, then this is further equal to g * (λ). Therefore, in what interests us, this ambiguity can never lead to any form of confusion.

We obtain a characterisation of the realised types. Lemma 4.14. Let E be a Banach space, f ∈ K C (E). Then the following are equivalent:

(i) The type f is realised in E, i.e., there exists v ∈ E such that f (x) = xv for all x ∈ E.

(ii) The conjugate f * satisfies the antipode identity throughout B(E * ).

(iii) The conjugate f * satisfies the antipode identity at some λ ∈ B(E * ) ∂B(E * ).

(iv) We have f * (0) = 0.

Proof. (i) =⇒ (ii). We have f * (λ) = λv. (ii) =⇒ (iii). Clear. (iii) =⇒ (iv). Assume f * (0) = 0. Then necessarily f * (0) < 0 and λ = 0. Let α = λ < 1 and µ = λ/α, so λ = αµ + (1 -α)0. By convexity, α f * (µ) + α f * (-µ) + 2(1 -α) f * (0) ≥ f * (λ) + f * (-λ) = 0,
contradicting the antipode inequality at µ.

(iv) =⇒ (i). We have 0 = f * (0) = -inf f . Since f is Katětov, any sequence v k such that f (v k ) → 0 must be Cauchy, say with limit v. It follows that f (v) = 0 and consequently that f is realised by v.

CHARACTERISING ISOLATED TYPES OVER ARBITRARY SPACES

In [START_REF]The linear isometry group of the Gurarij space is universal[END_REF] a special kind of "well behaved" convex Katětov functions is distinguished. These will play a crucial role here as well, and admit a natural characterisation in terms of their conjugates. Definition 5.1. We say that a function

f ∈ K C (E) is local if there are f k ∈ K C (X k ),
where each X k ⊆ E is convex and compact, such that fk → f uniformly. The set of local functions in K C (E) was denoted in [START_REF]The linear isometry group of the Gurarij space is universal[END_REF] by K C,0 (E).

Lemma 5.2. Let E be a normed space, and let f

∈ K C (E). Then f is local if and only if f * is continuous on B(E * ). Proof. First let X ⊆ E be compact and let g ∈ K C (X). If X ⊆ i<n B(v i , r), then g * (λ) -g * (µ) ≤ 2r λ -µ + max i (λ -µ)v i ,
whence it follows that g * is continuous on every bounded subset of E * , and in particular on B(E * ). Since a uniform limit of continuous functions is continuous, if f is local, then f * is continuous on B(E * ).

Conversely, assume that f * is continuous on B(E * ). Since R is second countable, there exists a separable subspace F ⊆ E such that, for λ ∈ B(E * ), the value of f * (λ) only depends on λ↾ F . In this case, the map f ′ : B(F * ) → R, µ → f * (µ ′ ), where µ ′ is any norm-preserving extension of µ, is continuous. By Fact 4.4 there exists a proper closed convex function g : F → R ∪ {∞} such that g * = f ′ . By Lemma 4.12 we then have g ∈ K C (F) and by Remark 4.13 we have f * = g * , so f = g. We may therefore assume that E is separable, and choose an increasing sequence of compact convex subsets X k ⊆ E such that X k is dense in E (take closed balls of increasing radius, of sub-spaces of increasing finite dimension). For each k let f k = f ↾ X k . Then fk ց f point-wise, and for λ ∈ B(E * ) we have

f * (λ) = sup v λv -f (v) = sup v,k λv -f k (v) = sup k f * k (λ),
i.e., f * k ր f * point-wise on B(E * ). Since each f * k is lower semi-continuous, f * is continuous, and B(E * ) is compact, this implies that f * k → f * uniformly on B(E * ), whereby fk → f uniformly, and f is local. A second ingredient is the following. Definition 5.3. Let E be a normed space and let r ≥ 0. We say that f ∈ K C (E) is ∂-r-extreme (where ∂ could be pronounced boundary) if for every g ∈ K C (E) whenever g ≤ f (i.e., g * ≥ f * ) we have g * ≤ f * + r on ∂B(E * ). If r = 0 we omit it and say that f is ∂-extreme.

Notice that Definition 5.3 would remain unchanged if we replaced the requirement that g * ≥ f * on B(E * ) with g * ≥ f * on ∂B(E * ). Indeed, assume Definition 5.3 holds of f and g * ≥ f * on ∂B(E * ). Then h ′ = max( f * , g * ) agrees with g * on ∂B(E * ) and is therefore of the form h * for some h ∈ K C (E), by Lemma 4.12(v), so Definition 5.3 applies to h and yields g * = h * ≤ f * + r on ∂B(E * ).

Lemma 5.4. Let f , g ∈ K C (E) with f ∂-r-extreme and g ≤ f . Then g is ∂-r-extreme as well.

Assume furthermore that f = f ↾ X for some convex X ⊆ E. Then outside X we have g ≥ fr.

Proof. By hypothesis we have g * ≥ f * , and we clearly obtain the first assertion, as well as g * (λ) ≤ f * (λ) + r for λ = 1. By Lemma 4.12(iii

), if v / ∈ X, then f (v) = sup λ =1 λv -f * (λ) ≤ sup λ =1 λv -g * (λ) + r ≤ g(v) + r, as claimed.
Lemma 5.5. Let E be a normed space, let f ∈ K C (E) be ∂-r-extreme, and let δ > 0. Then f + δ is ∂-(r + 2δ)extreme.

Proof. Assume not, so let g ∈ K C (E) satisfy g ≤ f + δ (i.e., g * ≥ f *δ), and let λ ∈ ∂B(E * ) be such that g * (λ) > f * (λ) + r + δ. By Fact 4.4 there exists a closed convex h on E such that h * = max f * , (g *δ) . For µ ∈ B(E * ) we have f * (µ) + f * (-µ) ≤ 0, g * (µ)δ + g * (-µ)δ ≤ -2δ < 0 and f * (µ) + g * (-µ)δ ≤ g * (µ) + f * (-µ) ≤ 0. Thus h * (µ) + h * (-µ) ≤ 0, and since the domain of h * is the unit ball, h ∈ K C (E). Now, h * ≥ f * implies h ≤ f , while on the other hand h * (λ) ≥ g * (λ)δ > f * (λ) + r, witnessing that f is not ∂-r-extreme.

Lemma 5.6. Let E be a normed space, let f ∈ K C (E) be ∂-r-extreme and local, and let r ′ > r. Then f admits a neighbourhood f ∈ W ⊆ K C (E) such that diam W < r ′ and every g ∈ W is ∂-r ′ -extreme.

Proof. Let δ > 0 be small enough. By locality, there exists a compact convex set X ⊆ E such that

f + δ > f ′ = f ↾ X . Let W ⊆ K C (E) consist of all g such that | f -g| < δ on X.
Since X is compact and Katětov functions are 1-Lipschitz, W is open, and we claim that it is as desired.

If g ∈ W, then g < f ′ < f + δ. By Lemma 5.5, f + δ is ∂-(r + 2δ)-extreme. By Lemma 5.4 so are f ′ and g, and since

f ′ = f ′ ↾ X we have g ≥ f ′ -r -2δ ≥ f -r -2δ outside X. Since g ≥ f -δ inside X, we conclude that f -r -2δ ≤ g < f + δ throughout, which is enough.
Theorem 5.7. Let f ∈ K C (E). Then f is isolated if and only if it is both local and ∂-extreme.

Proof. One direction follows directly from Lemma 5.6, so let us assume that f is isolated. We can then construct a sequence of neighbourhoods W k of f such that diam W k → 0, each defined using finitely many parameters. We let X k be the (compact) convex hull of these parameters and f k = f ↾ X k . Then fk ∈ W k , so fk → f uniformly and f is local.

It remains to show that f is ∂-extreme, so let g ∈ K C (E) satisfy g ≤ f . Let W be a neighbourhood of f of small diameter, say g ∈ W if and only if |g(v i ) -f (v i )| < ε for some v i , i < n. We know that f (v) = sup λ ≤1 λv -f * (λ), and since a closed convex function in dimension one is continuous on its domain, we have in fact f (v) = sup λ <1 λv -f * (λ). Therefore, for each i < n we may choose

λ i ∈ E * <1 such that f (v i ) -ε < λ i v i -f * (λ i ) ≤ f (v i ). Let g ′ = max g, max i<n λ i -f * (λ i )
. Since λ i < 1 for each i, g ′ agrees with g outside some ball. On the other hand, we have g ′ (v i ) > f (v i )ε and g ′ ≤ f , so g ′ ∈ W. Therefore | f -g| ≤ diam W outside some ball. Since diam W can be taken arbitrarily small, lim x →∞ f (x) -g(x) = 0. It follows that f * = g * on ∂B(E * ).

Before stating a few more corollaries, let us recall a few definitions and facts. Definition 5.8. Let E be a locally convex space and let X ⊆ E be convex.

(i) A convex subset F ⊆ X is called a face of X if a member of F cannot be expressed as a proper convex combination of two points in X that are not both in F. A proper face, i.e., a face F = X, is always contained in the relative boundary ∂X. (ii) A face consisting of a single point is called an extreme point. We shall denote the set of extreme points of X by E (X). We shall also denote by E 0 (X) the set of v ∈ E (X) such that λv = sup λ↾ X for some λ ∈ E * {0}.

By the Krein-Milman Theorem [Bou81, Chapitre II.7, Théorème 1], if X is compact and convex, then X = co E (X) . In addition, by [Bou81, Chapitre II.7, Proposition 2], if v ∈ E (X), then the family of sets {u ∈ X : λu > r}, where λ ∈ E * and λv > r ∈ R, forms a basis of neighbourhoods for v in X. Since every such neighbourhood contains a member of E 0 (X) (any extreme point of {u ∈ X : λu = sup λ↾ X } will do), we have E (X) ⊆ E 0 (X). In the special case where X = B(E * ), the set E 0 B(E * ) consists exactly of those λ ∈ E B(E * ) for which some vector v = 0 is normed by λ.

Corollary 5.9. Let E be a Banach space, f ∈ K

C (E) isolated. Let F v = {λ ∈ B(E * ) : λv = 1} where v = 1. Then f * ↾ F v is the greatest closed convex function less than λ → -f * (λ), i.e., f * (λ) = sup u∈E inf µ∈F v (λ - µ)u -f * (-µ) for λ ∈ F v .
In particular, the antipode identity f * (λ) + f * (-λ) = 0 holds at every λ ∈ E B(E * ) .

Proof. For u ∈ E and α > 0 define

h u (λ) = inf µ∈F v (λ -µ)u -f * (-µ), h u,α (λ) = α(λv -1) + h u (λ).
Since F v is closed, applying Fact 4.4 we have f * (λ) = sup u∈E inf µ∈F v (λµ)u + f * (µ) ≤ sup u∈E h u (λ).

For the converse inequality it will suffice to show that f * ≥ h u on F v . Notice that h u is linear and continuous, and in addition, for every λ ∈ F v we have h(λ) + f * (-λ) ≤ 0. Fixing ε > 0, there exists an open set V ⊇ F v such that h(λ) + f * (-λ) < ε for all λ ∈ V ∩ B(E * ). By compactness of B(E * ) V, we know that λ → λv is bounded there below some r < 1. We may therefore assume that V = {λ : λv > r}, and that r > 0, so V ∩ -V = ∅. For α big enough we have h u,α (λ)

≤ inf f * for all λ ∈ B(E * ) V. Having fixed such α, for λ ∈ B(E * ) ∩ V we have h u,α (λ) -ε + f * (-λ) ≤ h u (λ) + f * (-λ) -ε ≤ 0.
It follows that max f * , (h u,αε) satisfies the antipode inequality, and is therefore of the form g * for some g ∈ K C (E). But then g ≤ f , so g * = f * on ∂B(E * ) and in particular on F v . Thus f * ≥ h u,αε = h uε on F v . Since ε was arbitrary, f * ≥ h u on F v , as desired. It follows that the antipode identity holds on E 0 B(E * ) . By continuity of f * , it holds throughout E B(E * ) . Thus isolated types satisfy the antipode identity at some boundary points (and recall that by Lemma 4.14, the antipode identity at a non-boundary point amounts to the type being realised). When dim E = 1 we recover the characterisation of isolated types given in Section 3.

Corollary 5.10. Assume dim E = 1 and let ∂B(E * ) = {±λ}. Then a type f ∈ K C (E) is isolated if and only if it satisfies the antipode identity at λ. By Lemma 4.12(iv), this is equivalent to: any vector v ∈ E is smooth in the generated extension E[ f ].

Proof. If f is isolated then the antipode identity holds at λ by Corollary 5.9. Conversely, if the antipode identity holds at ±λ, namely, on the entire boundary, then f is ∂-extreme. Since, in dimension one, every closed convex function is continuous, f is isolated.

EXISTENCE AND NON-EXISTENCE RESULTS

This section consists of examples of various cases where densely many isolated types are known to exist or not to exist. We do not have a full characterisation of separable spaces E such that isolated types over E are dense. Definition 6.1. Let E be a Banach space. We say that f ∈ 

K C (E) is strongly ∂-extreme if (i) The antipode identity f * (λ) + f * (-λ) = 0 holds on E (B(E * )). ( 
∈ K C (E) such that |g(v i ) -f (v i )| < ε for i < n. Let X = co(v i : i < n) ⊆ E,
and replacing f with f ↾ X we may assume that f is local, i.e., that f * is continuous. For each i < n fix

λ i ∈ B(E * ) such that f (v i ) + f * (λ i ) < λ i v i + ε, and we may require λ i < 1. Define f (λ) = f * (λ)-f * (-λ) 2 λ ∈ E (B(E * )), f * (λ i ) λ = λ i .
Then f satisfies the hypotheses of Lemma 4.5, and is therefore the restriction of g * : B(E * ) → R for some g ∈ K C (E). We have g * ≥ f * , i.e., g ≤ f , and

g(v i ) ≥ λ i v i -g * (λ i ) = λ i v i -f * (λ i ) > f (v i ) -ε, so g ∈ U.
Also, g * is strongly ∂-extreme by construction. Assume now that E is as in the second item. By Lemma 4.6, if f ∈ K C (E) is strongly ∂-extreme then f * is continuous, so f is isolated by Theorem 5.7. It follows that the isolated types are dense in K C (E) = S 1 (E), so G[E] exists by Theorem 2.16. Remark 6.3. Over a reflexive Banach space E, every isolated type is strongly ∂-extreme, by Corollary 5.9 and the fact that every λ ∈ ∂B(E * ) norms some v = 0. Theorem 6.4. Let E be a normed space of finite dimension. Then the isolated types in K C (E) are dense if either of the following holds:

(i) Every face of B(E * ) of dimension at most dim E -2 is a simplex. This holds in particular whenever dim E ≤ 3. Special cases of this include:

(a) Every proper face of B(E * ) is a simplex. This holds in particular whenever dim E ≤ 2. In this case G is atomic over E ⊆ G if and only if every λ ∈ E * admits a unique extension of the same norm to G. (b) The space E is smooth, i.e., every v ∈ E is smooth. In this case G is atomic over E ⊆ G if and only if every v ∈ E is smooth in G. (ii) The space E is polyhedral.

Proof. In each case we apply Lemma 6.2, so we assume throughout that f ∈ K C (E) is strongly ∂-extreme.

In the first case, let n = dim E and let X ⊆ ∂B(E * ) be the union of all faces of ∂B(E * ) that are simplexes. Then ∂B(E * ) X consists of the relative interiors of some faces of dimension n -1, so X is closed. On each face that is a simplex, f * is affine, and since it satisfies the antipode identity at the extreme points in satisfies it throughout X. By Lemma 4.12(vi), f * , as a function on B(E * ), is continuous at every λ ∈ X. It follows by Lemma 4.6 that the restriction of f * to any face (be it a simplex or not) is continuous. Thus, if λ k ∈ ∂B(E * ), λ k → λ, then either λ belongs to the relative interior of some face of dimension n -1 or else belongs to X, and in any case f * (λ k ) → f * (λ).

In the first special case X = ∂B(E * ) and the characterisation of G[E] follows from Lemma 4.12(iv). The second special case is clear.

If E is polyhedral, one prove by induction on m, using Lemma 4.6, that f * is continuous on each face of dimension m and therefore on the union of all such faces. For m = n -1, this means that f * is continuous on ∂B(E * ).

Notice that Proposition 3.2 fits all cases mentioned in Theorem 6.4. More generally, the case where E = ℓ ∞ (n), namely R n equipped with the supremum norm, fits cases (i)(a) and (ii). We next use this to show that there are infinitely many distinct orbits in the action of Aut(G) ∂B(G) (previously we only knew there were at least two, since there are both smooth and non-smooth points). Corollary 6.5. For each n ∈ N there exists v ∈ ∂B(G) such that N(v) = λ ∈ ∂B(G * ) : λv = 1 is a simplex of dimension n. Consequently, the action Aut(G) ∂B(G) admits infinitely many distinct orbits.

Proof. By Theorem 6.4(i)(a), G ℓ ∞ (n + 1)) exists, and letting v = (1, 1, . . .) ∈ ℓ(n + 1), the set N(v) is a simplex of dimension n. Say that two convex sets are isomorphic if there exists a homeomorphism between them respecting convex combinations. Then the isomorphism type of N(v) is invariant under the action of Aut(G), whence the existence of distinct orbits.

Let us now give some examples in which the conclusion of Theorem 6.4 fails. This will show that while Theorem 6.4 is not necessarily optimal, none of the hypotheses can be simply done away with.

Example 6.6. We construct an example of a space E of dimension 4, such that G[E] does not exist. Let B 0 = {±1} 4 ⊆ R 4 , B 1 = {(x, y, 0, 0) : x 2 + y 2 = 2 and x, y = ±1} and B = co(B 0 ∪ B 1 ). Then B is a compact symmetric convex neighbourhood of 0, so we may take E * = R 4 with B(E * ) = B. Moreover, the set of extreme points in B is exactly B 0 ∪ B 1 . It follows by Corollary 5.9 that if f ∈ K C (E) is isolated, then f * satisfies the antipode identity also at the four points (±1, ±1, 0, 0) (which are not extreme).

Let us construct a special f ∈ K C (E) by constructing f * . At a point (x, y, z, w) ∈ B 0 we let f * (x, y, z, w) = xyz, on B 1 we let f * vanish, and the define f * on B as the generated closed convex function. This function satisfies the antipode inequality and therefore is indeed of the form f * for some f ∈ K C (E). In addition, a direct calculation reveals that f * (±1, ±1, 0, 0) = -1.

Fix ε > 0 (ε = 1/2 will do). At each point λ ∈ B 0 there is some v λ ∈ E such that f * (λ) < λv λf (v λ ) + ε. Let U ⊆ K C (E) consist of all g such that |g(v λ ) -f (v λ )| < ε for all λ ∈ B 0 . Then U is a neighbourhood of f , and if g ∈ U, then at λ ∈ B 0 we have

g * (λ) ≥ λv λ -g(v λ ) > λv λ -f (v λ ) -ε > f * (λ) -2ε,
and therefore g * (λ) ≤ -g(-λ) < -f * (-λ) + 2ε = f * (λ) + 2ε. Thus g * < f * + 2ε throughout the unit cube, and in particular g * (±1, ±1, 0, 0) < 2ε -1. Thus, for ε = 1/2 or less, the antipode identity fails at (±1, ±1, 0, 0) for every g ∈ U, so U contains no isolated points.

If we want counter-examples consisting of smooth spaces we need to move to infinite dimension. In fact, we obtain a plethora of examples over which there are no isolated types other than the obvious ones. Proposition 6.7. Let E be a Banach space such that E (B(E * )) ∂B(E * ). Then the only isolated types over E are the realised ones.

This holds in particular when E = c 0 , E * = ℓ 1 or E = ℓ p , E * = ℓ q with 1 < p, q, 1 p + 1 q = 1, since λ i → 0, where λ i consists of a single 1 at position i and 0 elsewhere. Proof. Indeed, let f ∈ K C (E) be isolated. By Corollary 5.9, f * satisfies the antipode identity on E (B(E * )) and therefore (by continuity of f * ) at some non-boundary point. By Lemma 4.14, f is realised.

Over E = G the isolated types are again exactly the realised ones, but in this specific case they are dense and G[E] = E. Question 6.8. Is there any infinite-dimensional E other than G over which the isolated types are dense? Is there any infinite-dimensional E over which there are unrealised isolated types? Specifically, what happens in the case E = ℓ 1 , E * = ℓ ∞ , to which Proposition 6.7 does not apply?

COUNTING TYPES

We conclude with a calculation of the size of the type-space over a separable Banach space E. By "size" we mean here the metric density character (since the cardinal | S n (E)| is the continuum as soon as n > 0 and E = 0). Theorem 7.1. Let E be a separable Banach space.

(i) If E is finite-dimensional and polyhedral, then S n (E) is metrically separable.

(ii) Otherwise, S n (E) has metric density character to the continuum for every n ≥ 1.

Proof. Assume first that E is finite-dimensional and polyhedral. Then by Melleray [Mel07, Remarks following Corollary 4.6], the space K(E) is separable, and a fortiori so is S 1 (E) = K C (E). The passage from 1-types to n-types is done as in the proof of Lemma 2.15, and is left to the reader. Now assume that E is not both finite-dimensional and polyhedral. Then by Lindenstrauss [Lin64, Theorem 7.7] there exists a sequence {v n } ⊆ E such that for any n = m and choice of signs:

v n ± v m ≤ v n + v m -1.
Embed E (isometrically) in ℓ ∞ , and for a sequence ε ∈ {±1} N , consider the family of closed balls B(ε n v n , v n -1 2 ). By hypothesis every two such balls intersect at a non empty set, and therefore there exists v ∈ ℓ ∞ that belongs to them all. In other words, there exists ξ ε = tp(v/E) ∈ S 1 (E) such that

xε n v n ξ ε ≤ v n -1 2 . If ε = ε′ , then d(ξ ε, ξ ε′ ) ≥ 1, so the density character of S 1 (E) is at least the continuum. The same holds a fortiori for S n (E), n ≥ 1.

Remark 7.2. Lindenstrauss's argument is quite elementary and yields a quick proof for Theorem 7.1(ii) that does not depend on the machinery developed in earlier sections. An argument closer to the spirit of the present paper can also be given.

Let Ξ be the set of lower semi-continuous functions f 0 : E (B(E * )) → R that satisfy in addition f 0 (λ) + f 0 (-λ) ≤ 0. Then E is not a finite-dimensional polyhedral space if and only if E (B(E * )) is infinite, in which case Ξ has density character continuum. If f 0 ∈ Ξ and f = f * 0 as in Lemma 4.5, then f * ↾ E (B(E * )) = f 0 and f * (λ) + f * (-λ) ≤ 0 throughout B(E * ), so f ∈ K C (E) and we are done. Notice that this argument has the advantage of treating the two cases of "finite-dimensional, non polyhedral" and "infinite-dimensional" in the same manner, while the proof of [Lin64, Theorem 7.7] treats them separately, with the second one being significantly more involved. Theorem 7.1(ii) answers Problem 2 of Avilés et al. [ACC + 11, Section 4] in the negative (and we thank Wiesław KUBI Ś for having pointed this out to us). They say that a Banach space G is of universal disposition for finite-dimensional spaces if it satisfies a strengthening of Definition 2.1 with ψ being an isometry.

Corollary 7.3. The density character of any space of universal disposition for finite-dimensional spaces is at least the continuum. In other words, the answer to Problem 2 of [ACC + 11, Section 4] is negative.

Proof. Assume that G is of universal disposition for finite-dimensional spaces. Then the Euclidean plane E embeds isometrically in G, and all types over E are realised in G, so the density character of G must be at least the metric density character of S 1 (E), namely the continuum.

On the other hand, say that a Gurarij space G is strongly ℵ 1 -homogeneous if the following stronger version of Corollary 2.8 holds in G:

For every separable F ⊆ G and isometric embedding ϕ : F → G there exists an isometric automorphism ψ ∈ Aut(G) extending ϕ. Clearly, a strongly ℵ 1 -homogeneous Gurarij space is of universal disposition for finite-dimensional (and even separable) spaces. Moreover, there does exist such a space of density character the continuum. This is merely a special case of a general model theoretic result: for any cardinal κ and structure M of density character ≤ 2 κ , in a language of cardinal ≤ κ, there exists an elementary extension M ′ M of density character still ≤ 2 κ , which is moreover κ + -saturated and strongly κ + -homogeneous. Apply this to M = G and κ = ℵ 0 .

Lemma 1. 11 .

 11 Let m ≤ n, and let π : S n (E) → S m (E) denote the variable restriction map. Then for every ξ ∈ S n (E) and ζ ∈ S m (E) we have d(πξ, ζ) = d(ξ, π -1 ζ). Moreover there exists ρ ∈ π -1 ζ such that d(πξ, ζ) = d(ξ, ρ) and x i ρ = x i ξ for all m ≤ i < n. In particular, the map π is metrically open. Proof. The inequality d(πξ, ζ) ≤ d(ξ, π -1 ζ) is immediate. For the opposite inequality, assume that d(πξ, ζ) < r. By definition, there exist an extension F ⊇ E and realisations ā of πξ and b of ζ in F such that a i -b i < r for i < m. By Fact 1.1, possibly extending F, there is c ∈ F n-m such that tp( ā c) = ξ. Then ρ = tp( b c/E) is as desired for both the main assertion and the moreover part. It follows that πB(ξ, r) ⊇ B(πξ, r), so π is metrically open.

  qf n+1 (T) → S qf n (T) is open. Then T admits a model completion, namely a companion that eliminates quantifiers. (In fact, an approximate amalgamation property for models of T over a common finitely generated substructure suffices.) Proof. Let ϕ( x, y) be a quantifier-free formula, inducing a continuous function φ : S qf n+1 (T) → R (which has compact range, by compactness of S qf n+1 (T)). Let π : S qf n+1 (T) → S qf n (T) denote the variable restriction map, and define ρ : S qf n (T) → R as the infimum over the fibre:

Fact 4. 4 .

 4 For any f : E → [-∞, +∞], the function f * is closed convex. If f is closed and convex, then f = f * * under the canonical identification E = E * * , and f * is proper if and only if f is.

  follows from the characterisation of compact sets as closed and bounded.It is clear that θB(ξ, r) ⊆ B(θξ, r). Conversely, if ζ 0 ∈ S n (E), then using Fact 1.1, there exists ζ

  This is the union of an open and a closed set in a second-countable compact space, so it is G δ .First, we claim that if k ≥ n then π N,k ( U) = S k (E). Indeed, we have a commutative diagram

	π N,k	S k (E) ? ? ? ? ? ? ? ? π k,n ? ? ? ? ? ?
	S N (E) ? ? ? ϕ * k ? ? ? ? ? ? ? ? ?	S n (E) π n+1,n
		S n+1 (E)

  Gurarij space G ⊇ E that omits B(ξ, r). Thus G cannot embed over E in G, a contradiction.

Proposition 2.14. Let E be a separable Banach space. Then G[E] exists if and only if, for each n, the set of isolated types in S n (E) is dense.

Proof. For a given n, let I n be the set of isolated types in S n (E), and assume that it is dense. Then B(I n , r) contains a dense open set, and r>0 B(I n , r) = I n is co-meagre. By Lemma 1.18 we have I n = I n , so S n (E) I n is meagre and metrically open. Therefore, by Theorem 2.12, if I n is dense for all n, then an atomic separable Gurarij space over E exists.

Conversely, assume that G[E] exists. Then the set of n-types over E realised in G[E] is dense (by Lemma 2.2), and they are all isolated.
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