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Approximation of stationary solutions to SDEs

driven by multiplicative fractional noise

Serge Cohen∗, Fabien Panloup†, Samy Tindel‡

November 20, 2012

Abstract

In a previous paper, we studied the ergodic properties of an Euler scheme of a
stochastic differential equation with a Gaussian additive noise in order to approximate
the stationary regime of such equation. We now consider the case of multiplicative
noise when the Gaussian process is a fractional BrownianMotion with Hurst parameter
H > 1/2 and obtain some (functional) convergences properties of some empirical
measures of the Euler scheme to the stationary solutions of such SDEs.

Keywords: stochastic differential equation; fractional Brownian motion; stationary pro-
cess; Euler scheme.

AMS classification (2000): 60G10, 60G15, 60H35.

1 Introduction

Stochastic Differential Equations (SDEs) driven by a fractional Brownian motion (fBm)
have been introduced to model random evolution phenomena whose noise has long range
dependence properties. Indeed, beyond the historical motivations in hydrology and telecom-
munication for the use of fBm (highlighted e.g in [21]), recent applications of dynamical
systems driven by this process include challenging issues in Finance [11], Biotechnology [24]
or Biophysics [15, 16]. As a consequence, SDEs driven by fBm have been widely studied
in a finite-time horizon during the last decades, and the reader is referred to [23, 4] for
nice overviews on this topic.

In a somehow different direction, the study of the long-time behavior (under some
stability properties) for fractional SDEs has been developed by Hairer (see [12, 13]) and
Hairer and Ohashi [14], who built a way to define stationary solutions of these a priori non-
Markov processes and to extend some of the tools of the Markovian theory to this setting.
See also [1, 5, 10] for another setting called Random dynamical systems. The current
article fits into this global aim, and starts from the following observation: the knowledge
of the stationary regime being important for applications and essentially inaccessible in an
explicit form, we propose to build and to study a procedure for its approximation in the
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case of SDEs driven by fBm with a Hust parameter H > 1/2. This paper is following a
similar previous work for SDEs driven by more general noises but in the specific additive
case (see [3]).

More precisely, we deal with an R
d-valued process (Xt)t≥0 solution to the following

SDE
dXt = b(Xt)dt+ σ(Xt)dB

H
t (1)

where b : Rd → R
d and σ : Rd → Md,q are (at least) continuous functions, and where

Md,q is the set of d × q real matrices. In (1), (BH
t )t≥0 is a q-dimensional H-fBm and for

the sake of simplicity we assume 1
2 < H < 1, which allows in particular to invoke Young

integration techniques in order to define stochastic integrals with respect to B. Compared
to [3] we handle here a fairly general diffusion coefficient σ, instead of the constant one
considered previously. Classically the noise is called multiplicative in this setting, whereas
it is called additive when σ is constant.
Under some Hölder regularity assumptions on the coefficients (see Section 2 for details),
(strong) existence and uniqueness hold for the solution to (1) starting from x0 ∈ R

d. Clas-
sically for any stochastic differential equation, a natural question arises: if we assume that
some Lyapunov assumptions hold on the drift term, does it imply that (Xt)t≥0 has some
convergence properties (in distribution or in a pathwise sense) to a steady state when
t→ +∞ ?
This question implies in particular to define rigorously a concept of steady state. For equa-
tion (1), this work has been done in [14]: using the fact that, owing to the Mandelbrot
representation, the evolution of the fBm can be represented through a Feller transition on
a functional space S, the authors show that a solution to (1) can be built as the first coor-
dinate of an homogeneous Markov process on the product space Rd×S. As a consequence,
stationary regimes associated with (1) can be naturally defined as the first projection of
invariant measures of this Markov process. Furthermore, the authors of [14] develop some
specific theory on strong Feller and irreducibility properties to prove uniqueness of invari-
ant measures in this context.
In the current article, our aim is to propose a way to approximate numerically the station-
ary solutions to equation (1). To this end, we study some empirical occupation measures
corresponding to an Euler type approximation of (1) with step γ > 0. We show that,
under some Lyapunov assumptions, a (pathwise) convergence to the stationary solution
of the discretized equation (denoted by νγ) holds and that, when γ → 0+, νγ converges in
turn to the stationary solution of (1). This approach is the same as in [3]. However, the
introduction of multiplicative noise has some important consequences on the techniques
for proving the long-time stability of the Euler scheme. In particular, the main difficulty is
to show that the long-time control of the dynamical system can be achieved independently
of γ. In [3], this problem has been solved with the help of explicit computations for an
Ornstein-Uhlenbeck type process. Because the noise is multiplicative the computations
of [3] are not feasible anymore and we use specific tools to obtain uniforms controls of
discretized integrals with respect to the fBm. Before going more precisely to the heart of
the matter, let us mention that the numerical approximation of the stationary regime by
occupation measures of Euler schemes is a classical problem in a Markov setting including
diffusions and Lévy driven SDEs (see e.g. [28, 17, 18, 19, 25, 26]).

2 Framework and main results

For some fixed H ∈ (12 , 1), we consider (Ω,F ,P) the canonical probability space associated
with the fractional Brownian motion indexed by R with Hurst parameter H. That is,
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Ω = C0(R) is the Banach space of continuous functions vanishing at 0 equipped with the
supremum norm, F is the Borel sigma-algebra and P is the unique probability measure on
Ω such that the canonical process B = {Bt = (B1

t , . . . , B
q
t ), t ∈ R} is a fractional Brownian

motion with Hurst parameter H. In this context, let us recall that B is a q-dimensional
centered Gaussian process such that B0 = 0, whose coordinates are independent and
satisfy

E

[

(

Bj
t −Bj

s

)2
]

= |t− s|2H , for s, t ∈ R. (2)

In particular it can be shown, by a standard application of Kolmogorov’s criterion, that
B admits a continuous version whose paths are θ-Hölder continuous for any θ < H.

Let us be more specific about the definition of Hölder spaces of continuous functions.
Namely, our driving process B lies into a space Cθ defined as follows: we denote by
Cθ(R+,R

d) the set of functions f : R+ → R
d such that

∀T > 0, ‖f‖θ,T = sup
0≤s<t≤T

|f(t)− f(s)|
(t− s)θ

< +∞,

where the Euclidean norm is denoted by | . |. We recall that Cθ(R+,R
d) can be made into

a non-separable complete metric space, whenever endowed with the distance δθ defined by

δθ(f, g) =
∑

N∈N
2−N

(

1 ∧
(

sup
0≤t≤N

‖f(t)− g(t)‖ + ‖f − g‖θ,N

))

,

where x∧ y = min(x, y) ∀x, y ∈ R. However, since separable spaces are crucial for conver-
gence in law issues, we will work in fact with a smaller space C̄θ(R+,R

d): we say that a
function f in Cθ(R+,R

d) belongs to C̄θ(R+,R
d) if

∀T > 0, ωθ,T (f, δ) := sup
0≤s<t<T,0≤|t−s|≤δ

|f(t)− f(s)|
|t− s|θ

δ→0−−−→ 0.

C̄θ(R+,R
d) is a closed separable subspace of Cθ(R+,R

d).

We recall now some results on the existence and uniqueness of the solutions of the
stochastic differential equation (1) starting from a deterministic point a. Let us suppose
that b is Lipschitz continuous and that σ is (1 + α)-Lipschitz with α > 1

H
− 1,. We recall

that for 0 < α < 1, σ is (1+α)-Lipschitz on R
d if it is a C1 function and if the following

norm is finite:

‖σ‖1+α = sup
x∈Rd

‖Dσ(x)‖ + sup
x,y∈Rd, |x−y|≤δ

|Dσ(x)−Dσ(y)|
|x− y|α . (3)

Then for any deterministic function B ∈ Cθ(R+,R
q) with θ > 1

2 , any x0 ∈ R
d and any

(1+α)-Lipschitz map σ, there exists a unique solution denoted by Φ(x0, B) in Cθ(R+,R
d)

of
dXt = b(Xt)dt+ σ(Xt)dBt, X0 = x0. (4)

See [4, 20] for proofs and discussions of this kind of deterministic ordinary differential
equations. Please note that by definition

Φ(x0, B)t = x0 +

∫ t

0
b(Φ(x0, B)s)ds +

∫ t

0
σ(Φ(x0, B)s)dBs,

where the integrals are Riemman Stieljes integrals. Moreover the so-called Itô map Φ is
continuous from R

d × Cθ(R+,R
q) into Cθ(R+,R

q) (see Proposition 47 in [4]). Actually
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the solution of the stochastic differential equation (1) such that X0 = x0 is nothing but
Φ(x0, B

H(ω)), where the fractional Brownian motion BH has been first sampled.

Let us now introduce a long-time stability assumption (C) concerning the stochastic dif-
ferential equation (1) where b : Rd → R

d is a continuous function.

Let EQ(Rd) denote the set of Essentially Quadratic functions, that is C2-functions
V : Rd → (0,∞) such that

lim inf
|x|→+∞

V (x)

|x|2 > 0, |∇V | ≤ C
√
V and D2V is bounded.

Note that any element V ∈ EQ(Rd) is continuous, and thus attains its positive minimum
v > 0 so that, for any A, r > 0, there exists a real constant C

A,r
such that A+V r ≤ C

A,r
V r.

(C): The map σ is assumed to be a bounded Lipschitz continuous function. Moreover we
suppose that there exists V ∈ EQ(Rd) such that

(i) for a given C > 0 we have |b(x)|2 ≤ CV (x) ∀x ∈ R
d.

(ii) and for β ∈ R and α > 0, the following relation holds:

∀x ∈ R
d, 〈∇V (x), b(x)〉 ≤ β − αV (x).

We now turn to the definition of a stationary solution of (1).

DEFINITION 1. For 1/2 < θ < H < 1, a stationary solution ν to (1) is a probabil-
ity measure on Cθ(R+,R

d), which is the first projection of a probability measure µ on
Cθ(R+,R

d)× Cθ(R,Rq), satisfying the following conditions. Let us denote by (Xt, Bt) the
coordinate process on Cθ(R+,R

d)×Cθ(R,Rq). The projection of µ on Cθ(R,Rq) is the law
of a H-fractional Brownian motion indexed by R. For any T > 0, we consider µT the
restriction of µ on Cθ([0, T ],Rd)× Cθ([0, T ],Rq). Then we assume that

X = Φ(X0, (B
H
t )t≥0), µT almost surely (5)

and that the distribution of (Xt)t≥0 is strictly stationary under µ. A stationary solution is
called adapted, if for 0 ≤ s ≤ t the processes (Xs)0≤s≤t and (BH(s))s≥t are conditionally
independent given (BH(s))s≤t.

This definition is very similar to the definition in [14] that comes from Stochastic Dynam-
ical Systems.

Let γ be a positive number, we will now discretize equation (1) as follows:

Y γ
t = Y γ

nγ + (t− nγ)b(Y γ
nγ) + σ(Y γ

nγ)(B
H
t −BH

nγ) ∀t ∈ [nγ, (n + 1)γ). (6)

We set
tγ = max{γk, γk ≤ t, k ∈ N}.

In fact, we will usually write t instead of tγ in the sequel. The discretization of (1) can

also be introduced with the following discretization Φγ : R× Cθ(R+,R
q) 7→ Cθ(R+,R

d) of
the Itô map :

Φγ(x0, B)t := x0 +

∫ t

0
b(Φγ(x0, B)sγ )ds+

∫ t

0
σ(Φγ(x0, B)sγ )dBs. (7)
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Please note that the definition of Φγ does not involve any Riemann integration but only
finite sums and that

Y γ = Φγ(Y γ
0 , (B

H
t )t≥0)t. (8)

Then, we call adapted solution of (6) a distribution νγ on Cθ(R+,R
d) defined as in Def-

inition 1 replacing (5) by (8). We will say that νγ is stationary if it is invariant by the
shift maps (θkγ)k∈N, where θt : Cθ(R+,R

d) → Cθ(R+,R
d) is such that (θt(ω))s = ωt+s,

for t ≥ 0. Note that in this definition, there is a a slight abuse of language since we do
not require the invariance by the shift maps θt for every t ≥ 0, but only when t = kγ, k ∈ N.

Let us introduce the following uniqueness assumption for νγ and ν:

(Sγ) (γ ≥ 0): There is at most one adapted stationary solution to (1) (resp. to (8)) if
γ = 0 (resp. if γ > 0).

For (S0), we refer to Theorem 1.1. of [14]. When γ > 0, we have the following proposition:

PROPOSITION 1. Let H ∈ (1/2, 1). Assume that d = q and that b and σ are C2-functions.
Assume that σ is invertible and that supx∈Rd σ−1(x) < +∞. Then, (Sγ) holds for every
γ > 0.

The proof, which is an application of [13], is done in the appendix.

Let us now focus on the construction of the approximation: we denote by (X̄γ
t )t≥0 the

continuous-time Euler scheme defined by: X̄γ
0 = x ∈ R

d and for every n ≥ 0

X̄γ
t = X̄γ

nγ + (t− nγ)b(X̄γ
nγ) + σ(X̄γ

nγ)(B
H
t −BH

nγ) ∀t ∈ [nγ, (n+ 1)γ). (9)

The process (X̄γ
t )t≥0 is a solution to (6) such that X̄γ

0 = x. In order to alleviate the
notations and, when it is not confusing, we will usually write X̄t instead of X̄γ

t . Now, we
define a sequence of random probability measures (P(n)(ω, dα))n≥1 on C̄θ(R+,R

d) with
θ < H by

P(n,γ)(ω, dα) =
1

n

n
∑

k=1

δX̄γ

γ(k−1)+.
(ω)(dα)

where δ denotes the Dirac measure and for every s ≥ 0, X̄γ
s+. := (X̄γ

s+t)t≥0 denotes the
s-shifted process.

For t ≥ 0, the sequence (P(n)
t (ω, dy))n≥1 of “marginal” empirical measures at time t on

R
d is defined by

P(n,γ)
t (ω, dy) =

1

n

n
∑

k=1

δX̄γ

γ(k−1)+t
(ω)(dy).

We are now able to state the main theorem of this article:

THEOREM 1. Let 1/2 < θ < H < 1. Assume (C) and (Sγ) for every γ > 0. Then,
(i) There exists γ0 > 0 such that for every γ ∈ (0, γ0),

P(n,γ)(ω, dα)
(C̄θ(R+,Rd))

=⇒ νγ(dα) a.s. where n→ +∞

and where νγ denotes the unique adapted stationary solution to (6).
(ii) Moreover, if b is Lipschitz continuous, σ is (1 + α)-Lipschitz with α > 1

H
− 1 and if

(S0) holds, then,
lim
γ→0

lim
n→+∞

P(n,γ)(ω, dα) = ν(dα) a.s.

where the convergence is again for the weak topology induced by C̄θ(R+,R
d) and ν denotes

the unique adapted stationary solution to (1).
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REMARK 1. Note that some extensions can be deduced from the proof of this theorem.
First, when uniqueness fails for the stationary solutions, the preceding result is replaced
by

THEOREM 2. 1. Assume (C). Then, there exists γ0 > 0 such that for every γ ∈ (0, γ0),
(P(n,γ)(ω, dα))n≥1 is a.s. tight on D(R+,R

d). Furthermore, every weak limit is a stationary
adapted solution of (6).
2. Assume (C) and set

U∞,γ(ω) := {weak limits of (P(n,γ)(ω, dα))}.

Then, there exists γ1 ∈ (0, γ0) such that (U∞,γ(ω))γ≤γ1 is a.s. relatively compact for
the uniform convergence topology on compact sets and any weak limit when γ → 0 of
(U∞,γ(ω))γ≤γ1 is an adapted stationary solution of (1).

REMARK 2. From the very definition of weak convergence, the preceding assertions im-
ply that the convergence of (P(n,γ)(ω, dα))n,γ holds for bounded continous functionals
F : C̄θ(R+,R

d) → R. In fact, this convergence can be extended to some non-bounded
continuous functionals F : C̄θ([0, T ],Rd) → R. Actually, setting G(α) = supt∈[0,T ] V (αt),
we easily deduce from inequality (12) of Proposition 3 and Proposition 4 that

sup
γ≤γ0

lim sup
n→+∞

P(n,γ)(ω,Gp) < +∞ a.s.

for every p > 0. By an uniform integrability argument, it follows

PROPOSITION 2. The convergence properties of (P(n,γ)(ω, dα)) extend to continuous func-
tionals F : C̄θ([0, T ],Rd) → R such that for every α ∈ C̄θ([0, T ],Rd),

|F (αt, 0 ≤ t ≤ T )| ≤ C sup
t∈[0,T ]

V p(αt)

with T > 0 and p > 0.

REMARK 3. A third natural extension of Theorem 1 consists in handling the case of an
irregular fractional Brownian motion B with Hurst index 1/4 < H < 1/2. This extension
is presumably within the reach of our technology on differential systems driven by fBm, but
requires a huge amount of technical elaboration. Indeed, to start with, equation (1) has to
be defined thanks to rough paths techniques whenever H < 1/2, and we refer to [9] for a
complete account on rough differential equations driven by Gaussian processes in general
and fractional Brownian motion in particular. More importantly, as it will be observed in
the next sections, our main result heavily relies on some thorough estimates performed on
the discretized version (6) of equation (1). When H > 1/2 this discretization procedure is
based on an Euler type scheme, but the case H < 1/2 involves the introduction of some
Levy area correction terms of Milstein type (see [6]) or products of increments of B if
one desires to deal with an implementable numerical scheme (cf. [7]). This new setting
has tremendous effects on the proof of Propositions 3 and 4. For sake of conciseness, we
have thus decided to stick to the case H > 1/2, and defer the rough case to a subsequent
publication.

The sequel of the paper is built as follows. The three next sections are devoted to
the proof of Theorem 1. In Section 3, we prove some preliminary results for the long-
time stability of (P(n,γ)(ω, dα))n, when γ > 0. It is important to note that the controls
established in this section are independent of γ in order to obtain in the sequel a long-
time control that does not explode when γ → 0. Then, in Section 4, we obtain some
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tightness properties for (P(n,γ)(ω, dα)) (in n and γ) and, in Section 5, we prove that the
weak limits of this sequence are adapted stationary solutions. Eventually, in Section 6,
we test numerically our algorithm for the approximation of the invariant distribution of a
particular fractional SDE.
Note that in the proofs below, every non-explicit constant is denoted by C and may change
from line to line.

3 Evolution control of (X̄γ
t ) in a finite horizon

The main aim of this part is to obtain a finite-time control of V (X̄γ
T ) in terms of V (X̄γ

0 )
which is somewhat contracting and which is independent of γ. This is the purpose of the
first part of Proposition 3 below. In order to obtain some functional convergence results,
we state in the second part a result about the finite-time control of the Hölder semi-norm
of X̄γ .

PROPOSITION 3. Let T > 0. Assume (C). Then,
(i) For every p ≥ 1, there exist γ0 > 0, ρ ∈ (0, 1) and a polynomial function Pp,θ : R → R

such that for every γ ∈ (0, γ0],

V p(X̄γ
T ) ≤ ρV p(x) + Pp,θ(‖BH‖θ,T ) + CQp

γ(B
H
t , 0 ≤ t ≤ T ), (10)

where Qγ is defined for every (w(t))t∈[0,T ] by

Qγ((w(t))t∈[0,T ]) =

⌊T
γ
⌋

∑

k=1

|w(kγ) − w((k − 1)γ)|2. (11)

Furthermore,

sup
t∈[0,T ]

V p(X̄γ
t ) ≤ C(V p(x) + Pp,θ(‖BH‖θ,T ) +Qp

γ(B
H
t , 0 ≤ t ≤ T )). (12)

(ii) For every θ ∈ (12 ,H), T > 0, and γ ∈ (0, γ0]

sup
0≤s<t≤T

|X̄γ
t − X̄γ

s |
(t− s)θ

≤ CT (V (x) + P̃θ(‖BH‖θ,T ) +Qγ(B
H
t , 0 ≤ t ≤ T ))

where P̃ is another real valued polynomial function.

The proof of this result is achieved in Subsection 3.2. Before, we focus in Subsection 3.1
on the control of increments of some discretized equations with non-bounded coefficients
driven by BH .

3.1 Technical Lemmas

Let us recall that, for every t ≥ 0, tγ = γmax{k ∈ N, γk ≤ t}. In the sequel, we will
usually write t instead of tγ .

In the following lemmas, we will use the following notation: for any element (x(t))t≥0

of C(R+,R
d) and T > 0, θ > 0, γ > 0, we define

‖x‖s,tθ,γ = sup
s≤u≤v≤t

|x(vγ)− x(uγ)|
(vγ − uγ)

θ
,

where we set by convention 0
0 = 0.

7



LEMMA 1. Assume that b is a sublinear function, i.e. that there exists C > 0 such that
for every x ∈ R

d, |b(x)| ≤ C(1+ |x|). Then, for every T > 0, there exists a constant C > 0
such that for every s, t ∈ [0, T ] with s ≤ t, for every γ > 0, for every θ ∈ (0,H)

|X̄γ
t | ≤

(

|X̄γ
s |+ C(t− s) + ‖Z̄γ‖s,tθ,γ(t− s)θ

)

exp(C(t− s)))

where

Z̄γ
t =

∫ t

0
σ(X̄γ

s )dB
H
s .

Proof. First, from the very definition of (X̄γ
t )t≥0, we have for every s, t ∈ [0, T ] with s ≤ t:

X̄γ
t = X̄γ

s +

∫ t

s

b(X̄γ
u )du+ Z̄γ

t − Z̄γ
s . (13)

The function b being sublinear, we deduce that

|X̄γ
t | = |X̄γ

s |+ ‖Z̄γ‖s,tθ,γ(t− s)θ + C

∫ t

s

(1 + |X̄γ
u |)du.

Setting gs(v) = |X̄s+v|, it follows that for every v ∈ [0, t − s],

gs(v) ≤ a+ C

∫ v

0
gs(u)du

with a = |X̄γ
s |+ ‖Z̄γ‖s,tθ,γ(t− s)θ +C(t− s). The result follows from Gronwall’s lemma.

The control of BH -integrals is usually based on the so-called sewing Lemma (see e.g.
[4, 8]) which leads to a comparison of

∫ t

s
f(xu)dB

H
u with f(xt)(B

H
t −BH

s ). The following
lemma can be viewed as a discretized version of such results:

LEMMA 2. Let γ0 > 0 and (fγ)γ∈(0,γ0] be a family of functions from R+ × R
d to Md,q

such that there exists r ≥ 0 such that for every T > 0, there exists CT > 0 such that
∀γ ∈ (0, γ0],

∀(s, x), (t, y) ∈ [0, T ]×R
d, ‖fγ(t, y)−fγ(s, x)‖ ≤ CT (1+|x|r+|y|r)(|t−s|+|y−x|). (14)

Let (H̄γ
t )t≥0 be defined by

∀t ≥ 0, H̄γ
t =

∫ t

0
fγ(s, X̄

γ
s )dB

H
s .

Then, for every θ ∈ (12 ,H), for every T > 0, there exists C̃T > 0 such that for every
γ ∈ (0, γ0], for every for every 0 ≤ s ≤ t ≤ T ,

|H̄γ
t − H̄γ

s − fγ(s, X̄
γ
s )(B

H
t −BH

s )| ≤ C̃T (t− s)2θ((1 + |X̄γ
s |r+1 + (‖Z̄γ‖s,t−γ

θ,γ )r+1)‖BH‖θ,T .

Proof. Let s, t ∈ [0, T ] with s = γi and t = γj with i < j. We build the sequences (τ
(k)
l )2

k

l=0

by: τ
(0)
0 = s, τ

(0)
1 = t and for every k ≥ 1, for every l ∈ {0, . . . , 2k}:

τ
(k)
l =











τ
(k−1)
l
2

if l is even

γ

⌊

1
γ
(τ

(k−1)
l−1
2

+ τ
(k−1)
l+1
2

)

⌋

if l is odd.
(15)
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When l is odd, τ
(k)
l is in fact a discretization point which is located in the interval

[τ
(k−1)
l−1
2

, τ
(k−1)
l+1
2

]. More precisely, it can also be defined as the largest discretization point on

the left of the middle of this interval. It is important to remark that for k large enough,

every discretization point between s and t is covered by one of the τ
(k)
l ’s, l ∈ {0, . . . , 2k}.

Then, we set

K = Kij := inf
{

k ∈ N, {γm, i ≤ m ≤ j} ⊂ {τkl , 0 ≤ l ≤ 2k}
}

.

Before going further, let us check that there exists a constant C > 0 (C = 2 is a suitable
choice) such that for every γ > 0, for every s, t ∈ [0, T ]

∀k ∈ {0,K}, ∀l ∈ {1, . . . , 2k}, τ
(k)
l − τ

(k)
l−1 ≤ C

t− s

2k
. (16)

If K = 0, this point is clearly satisfied. Assume now that K ≥ 1. Denoting by n̄
(k)
l,l+1 the

number of discretization points (strictly) between τ
(k)
l and τ

(k)
l+1, we can check by induction

that

∀k ∈ {0, . . . ,K}, max{n̄(k)l,l+1, 0 ≤ l ≤ 2k − 1} −min{n̄(k)l,l+1, 0 ≤ l ≤ 2k − 1} ≤ 1.

In other words,

∀k ∈ {0, . . . ,K}, max{τ (k)l+1− τ
(k)
l , 0 ≤ l ≤ 2k −1}−min{τ (k)l+1− τ

(k)
l , 0 ≤ l ≤ 2k −1} ≤ γ.

Using that
∑2k

l=1 τ
(k)
l − τ

(k)
l−1 = t− s, we first deduce that

max
1≤l≤2k

(

τ
(k)
l − τ

(k)
l−1

)

≤ t− s

2k
+ γ.

Owing to the definition of K, the second consequence is that (τ
(K−1)
l )l is (strictly) increas-

ing and thus that min1≤l≤2K−1(τ
(K−1)
l − τ

(K−1)
l−1 ) ≥ γ. This implies that

γ ≤ t− s

2K−1

and (16) follows.

Now, let us return to the proof of the lemma. Using that at step K, the discretization

steps are covered by the τ
(K)
l ’s, we obtain:

H̄γ
t − H̄γ

s =
2K−1
∑

l=0

f(τ
(K)
l , X̄γ

τ
(K)
l

)(BH

τ
(K)
l+1

−BH

τ
(K)
l

).

Thanks to (15), we have for every k ∈ {0, . . . ,K − 1} and l ∈ {0, . . . , 2k − 1}:

BH

τ
(k)
l+1

−BH

τ
(k)
l

= (BH

τ
(k+1)
2l+2

−BH

τ
(k+1)
2l+1

) + (BH

τ
(k+1)
2l+1

−BH

τ
(k+1)
2l

).

Thus, setting

Ik =

2k−1
∑

l=0

f(τ
(K)
l , X̄γ

τ
(k)
l

)(BH

τ
(k)
l+1

−BH

τ
(k)
l

),
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we deduce that for every k ∈ {0, . . . , 2k−1},

Ik = Ik+1 +

2k−1
∑

l=0

εγ(k, l)

with

εγ(k, l) =

(

fγ(τ
(k+1)
2l , X̄γ

τ
(k+1)
2l

)− fγ(τ
(k+1)
2l+1 , X̄γ

τ
(k+1)
2l+1

)

)(

BH

τ
(k+1)
2l+2

−BH

τ
(k+1)
2l+1

)

.

Furthermore, I0 = fγ(s, X̄
γ
s )(BH

t − BH
s ) and IK = H̄γ

t − H̄γ
s . We then deduce that for

every γ > 0,

H̄γ
t − H̄γ

s = fγ(s, X̄
γ
s )(B

H
t −BH

s )−
K−1
∑

k=0

2k−1
∑

l=0

εγ(k, l). (17)

Let us focus on the second part of the right-hand member of (17). Owing to the assump-
tions on fγ , we have

|εγ(k, l)| ≤ Cφk,l

(

(τ
(k+1)
2l+1 − τ

(k+1)
2l ) + |X̄γ

τ
(k+1)
2l+1

− X̄γ

τ
(k+1)
2l

|
) ∣

∣

∣

∣

BH

τ
(k+1)
2l+2

−BH

τ
(k+1)
2l+1

∣

∣

∣

∣

with φk,l = 1 + |X̄γ

τ
(k+1)
2l

|r + |X̄γ

τ
(k+1)
2l+1

|r. Then,

|εγ(k, l)| ≤ Cφk,l

(

(τ
(k+1)
2l+1 − τ

(k+1)
2l ) + |X̄γ

τ
(k+1)
2l+1

− X̄γ

τ
(k+1)
2l+1

|
)

(τ
(k+1)
2l+2 − τ

(k+1)
2l+1 )θ‖BH‖θ,T

(18)

for every θ ∈ (12 ,H). Let us now focus on the control of φl,k and of |X̄γ

τ
(k+1)
2l+1

− X̄γ

τ
(k+1)
2l+1

|.

First, note that if τ
(k+1)
2l+1 = t then, τ

(k+1)
2l+2 = τ

(k+1)
2l+1 = t and it follows that in this case,

εγ(k, l) = 0. In the sequel, we set At := {(k, l), τ (k+1)
2l+1 < t}. By Lemma 1, for every

(k, l) ∈ At,

|φk,l| ≤ CT

(

1 + |X̄γ
s |

r
+ (‖Z̄γ‖s,t−γ

θ,γ )r
)

.

Second, using the notation nγ(k, l) for the discretization index related to τ
(k)
l (i.e. nγ(k, l) =

γ−1τ
(k)
l ), we can write

X̄γ

τ
(k+1)
2l+1

− X̄γ

τ
(k+1)
2l

=

nγ(2l+1,k+1)−1
∑

v=nγ (2l,k+1)

γb(X̄γ
vγ) + Z̄γ

τ
(k+1)
2l+1

− Z̄γ

τ
(k+1)
2l

.

Then, using that b is a sublinear function, we deduce from Lemma 1 that there exists
CT > 0 that does not depend on γ, l and k such that

nγ(2l+1,k+1)−1
∑

v=nγ(2l,k+1)

γ|b(X̄γ
vγ)| ≤ CT

(

1 + |X̄γ
s |+ ‖Z̄γ‖s,τ

(k+1)
2l+1 −γ

θ,γ

)

(τ
(k+1)
2l+1 − τ

(k+1)
2l )

≤ CT

(

1 + |X̄γ
s |+ ‖Z̄γ‖s,t−γ

θ,γ

)

(τ
(k+1)
2l+2 − τ

(k+1)
2l ).

Likewise, we have for every (k, l) ∈ A,

|Z̄γ

τ
(k+1)
2l+1

− Z̄γ

τ
(k+1)
2l

| ≤ ‖Z̄γ‖s,t−γ
θ,γ (τ

(k+1)
2l+1 − τ

(k+1)
2l )θ.
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Plugging the previous controls into (18) and using that 2θ ≤ 1+θ, we obtain the existence
of a constant CT > 0 such that for every γ, l and k,

|εγ(k, l)| ≤ CTϕr(X̄
γ
s , ‖Z̄γ‖s,t−γ

θ,γ ))
(

((1 + |X̄γ
s |)(τ

(k+1)
2l+2 − τ

(k+1)
2l )1+θ

+ ‖Z̄γ‖s,t−γ
θ,γ (τ

(k+1)
2l+2 − τ

(k+1)
2l )2θ

)

‖BH‖θ,T .

where
ϕr(x, r) = 1 + |x|r + |z|r.

Then, using (16) and the fact that

2k−1
∑

l=0

τ
(k+1)
2l+2 − τ

(k+1)
2l =

2k−1
∑

l=0

τ
(k)
l+1 − τ

(k)
l = t− s,

it follows that

∑2k−1
l=0 |εγ(k, l)|

ϕr(X̄
γ
s , ‖Z̄γ‖s,t−γ

θ,γ )
≤ CT (t−s)

(

(1 + |X̄γ
s |)
(

t− s

2k+1

)θ

+ ‖Z̄γ‖s,t−γ
θ,γ

(

t− s

2k+1

)2θ−1
)

‖BH‖θ,T .

Summing over k and using that
∑

k≥0 2
−(k+1)θ and

∑

k≥0 2
−(k+1)(2θ−1) are convergent, we

deduce that

K−1
∑

k=0

2k−1
∑

l=0

|εγ(k, l)| ≤ CTϕr(X̄
γ
s , ‖Z̄γ‖s,t−γ

θ,γ )

×
(

(1 + |X̄γ
s |)(t− s)1+θ + ‖Z̄γ‖s,t−γ

θ,γ (t− s)2θ
)

‖BH‖θ,T .
(19)

A expansion of the right-hand side combined with elementary inequalities and the fact
that 2θ ≤ 1 + θ yields for every 0 ≤ s ≤ t ≤ T ,

K−1
∑

k=0

2k−1
∑

l=0

|εγ(k, l)| ≤ CT (t− s)2θ
(

1 + |X̄γ
s |r+1 +

(

‖Z̄γ‖s,t−γ
θ,γ

)1+r
)

‖BH‖θ,T

and the result follows from (17).

In the following lemma, we make use of Lemma 2 when fγ(t, x) = σ(x). In this
particular case, we show below that we can deduce a control of the increments of Z̄γ on
an interval with random but explicit length η(ω) (which does not depend on γ).

LEMMA 3. Let γ0 be a positive number. Assume that σ is a bounded Lipschitz continuous
function. Then, for every θ ∈ (12 ,H), for every T > 0, there exists CT > 0, there exists a
positive random variable

η(ω) :=

(

1

2
[(CT ‖BH(ω)‖θ,T )−1 ∧ 1]

) 1
θ

(20)

such that a.s for every 0 ≤ s ≤ t ≤ T with t− s ≤ η, for every γ ∈ (0, γ0)

|Z̄γ
t − Z̄γ

s | ≤ (t− s)θ
(

‖σ‖∞ + CT (1 + |X̄γ
s |)ηθ

)

‖BH‖θ,T

where ‖σ‖∞ = supx∈Rd ‖σ(x)‖.
11



Proof. For every l ≥ 0, set tl = s+γl and Nl = ‖Z̄γ‖s,tlθ,γ . Owing to the definition of ‖.‖s,tlθ,γ ,
we have

Nl+1 ≤ Nl ∨ sup
i≤l

∣

∣

∣Z̄
γ
tl+1

− Z̄γ
ti

∣

∣

∣

(tl+1 − ti)θ
.

By Lemma 2 applied with s = ti, t = tl+1 and fγ(s, x) = σ(x) (and r = 0),

∣

∣

∣
Z̄γ
tl+1

− Z̄γ
ti

∣

∣

∣

(tl+1 − ti)θ
≤
(

‖σ‖∞ + CT (tl+1 − ti)
θ
(

1 + |X̄γ
ti
|+ ‖Z̄γ‖s,tlθ,γ

))

‖BH‖θ,T .

By Lemma 1 and the fact that t→ ‖Z̄γ‖s,tθ,γ is nonincreasing, it follows that

sup
i≤l

∣

∣

∣
Z̄γ
tl+1

− Z̄γ
ti

∣

∣

∣

(tl+1 − ti)θ
≤
(

‖σ‖∞ + CT

(

(1 + |X̄γ
s |)(tl+1 − s) + ‖Z̄γ‖s,tlθ,γ (tl+1 − s)θ

))

‖BH‖θ,T .

Let ρ be a positive number. If tl+1 − s ≤ ρ, we obtain that

Nl+1 ≤ Nl ∨ (αρ + βρNl)

with

αρ =
(

‖σ‖∞ + CT ((1 + |X̄γ
s |)ρθ

)

‖BH‖θ,T and, βρ = CTρ
θ‖BH‖θ,T .

Let us now set ρ = η(ω) where η(ω) is defined by (20). For this choice of ρ, we have
βη ≤ 1

2 . Then, the interval [0, αη/(1− βη)] being stable by the function x 7→ αη + βηx, we
deduce that for every l ∈ N such that tl+1 − s ≤ η(ω),

Nl ≤
αη

2
.

The result follows.

3.2 Proof of Proposition 3

(i) We first prove (10) for p = 1. Set ∆n = BH
γn −BH

γ(n−1). Owing to the Taylor formula,

V (X̄(n+1)γ) = V (X̄nγ) + γ〈∇V (X̄nγ), b(X̄nγ)〉+ 〈∇V (X̄nγ), σ(X̄nγ)∆n+1〉

+
1

2

∑

i,j

∂2i,jV (ξn+1)(X̄(n+1)γ − X̄nγ)i(X̄(n+1)γ − X̄nγ)j .

where ξ(n+1) ∈ [X̄nγ , X̄(n+1)γ ]. Using Assumption (C) and the boundedness of D2V and
σ, we obtain

V (X̄(n+1)γ) ≤ V (X̄nγ) + γ(β − αV (X̄nγ)) +A1(n+ 1) + C(γ2V (X̄nγ) + |∆n+1|2). (21)

where
A1(n+ 1) = 〈∇V (X̄nγ), σ(X̄nγ)∆n+1〉.

Set γ0 =
α

2C
. For every γ ∈ (0, γ0], for every n ≥ 0, we have

V (X̄(n+1)γ) ≤ V (X̄nγ)(1 −
α

2
γ) +A1(n+ 1) + (βγ + C|∆n+1|2).
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Then, iterating the previous inequality yields for every s, t such that s ≤ t,

V (X̄t) ≤ V (X̄s)(1−
α

2
γ)

t−s

γ +

t

γ
∑

k= s

γ
+1

(1− α

2
γ)

t−s

γ
−k (

A1(k) + βγ + C|∆k|2
)

.

Using that log(1 + x) ≤ x for every x > −1, we deduce that

V (X̄t) ≤ e−
α(t−s)

2 (V (X̄s) + |H̄γ
t − H̄γ

s |) +

t

γ
∑

k=
s

γ
+1

(βγ + C|∆k|2), (22)

where

H̄γ
t =

∫ t

0
gγ(s)〈∇V (X̄s), σ(X̄s)dB

H
s 〉 =

∑

i,j

∫ t

0
gγ(s)(∇V )i(X̄s), σi,j(X̄s)d(B

H
s )j .

with gγ(s) = (1 − αγ
2 )

− s
γ . For every (i, j) ∈ {1, . . . , d} × {1, . . . , q}, set f i,jγ (s, x) =

gγ(s)(∇V )i(x)σi,j(x). Using that supt∈[0,T ],γ∈(0,γ0] |g′γ(t)| < +∞, we check that (gγ(.))γ∈(0,γ0 ]
is a family of Lipschitz continuous functions such that supγ∈(0,γ0][gγ ]Lip < +∞. Further-
more, (∇V )i and σi,j being respectively Lipschitz continuous and bounded Lipschitz con-

tinuous functions, we deduce that (f i,jγ )γ∈(0,γ0] satisfies (14) with r = 1. Applying Lemma

2, we obtain that for every θ ∈ (12 ,H),

|H̄γ
t − H̄γ

s |
(t− s)θ

≤ CT

[

(1 + |X̄γ
s |) + CT (t− s)θ(1 + |X̄γ

s |2 + (‖Z̄γ‖s,t−γ
θ,γ )2)

]

‖BH‖θ,T .

Now, if t− s ≤ η(ω) defined by (20),

‖Z̄γ‖s,t−γ
θ,γ ≤

(

‖σ‖∞ + CT (1 + |X̄s|)ηθ
)

‖BH‖θ,T

but owing to the definition of η, we have a.s.

‖BH(ω)‖θ,T ηθ ≤ CT

where CT is a deterministic positive number so that

(‖Z̄γ‖s,t−γ
θ,γ )2 ≤ CT (‖BH‖2θ,T + 1 + |X̄s|2).

Thus,

|H̄γ
t − H̄γ

s | ≤ CT

[

(1 + |X̄γ
s |)(t− s)θ + (t− s)2θ(1 + |X̄γ

s |2 + ‖BH‖2θ,T )
]

‖BH‖θ,T .

Using that |ab| ≤ 2−1(|a|2 + |b|2) and that 1 + |x| ≤ C
√
V (x), we have

(1 + |X̄γ
s |)(t− s)θ‖BH‖θ,T ≤ C(V (X̄γ

s )(t− s)2θ + ‖BH‖2θ,T ).

It follows that there exists CT > 0 such that for every ε > 0

|H̄γ
t − H̄γ

s | ≤ ε(t−s)V (X̄γ
s )

(

CT (t− s)2θ−1(1 + ‖BH‖θ,T )
ε

)

+CT (‖BH‖2θ,T+(t−s)2θ‖BH‖3θ,T ).

Now, we choose η̃ε ∈ (0, η)

CT (η̃ε)
2θ−1(1 + ‖BH‖θ,T )

ε
≤ 1.
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More precisely, we set η̃ε = [(CT (1+‖BH‖θ,T )−1ε]
1

2θ−1 ∧η. Thus, we obtain that for every
0 ≤ s ≤ t ≤ T such that t− s ≤ η̃ε,

|H̄γ
t − H̄γ

s | ≤ ε(t− s)V (X̄γ
s ) + CT (‖BH‖2θ,T + (t− s)2θ‖BH‖3θ,T ). (23)

Then, we can set ε0 > 0 in order that there exists δ > 0 such that

∀x ∈ [0, 1], e−
α
2
x(1 + ε0x) ≤ 1− δx.

Thus, setting η̃ := η̃ε0 and plugging the two previous controls in(22), it follows that for
every k ∈ {1, . . . , ⌊ T

η̃ε
⌋},

V (X̄kη̃) ≤ V (X̄(k−1)η̃)(1 − δη̃) + CT (1 + ‖BH‖3θ,T ) +

kη̃

γ
∑

l=
(k−1)η̃

γ
+1

(βγ + C|∆l|2).

An iteration yields for every k ∈ {1, . . . , ⌊T
η̃
⌋}:

V (X̄kη̃) ≤ V (x)(1− δη̃)k +CT ‖BH‖3θ,T
k
∑

m=1

(1− δη̃)k−m

+

k
∑

m=1

(1− δη̃)k−m

mη̃

γ
∑

l=
(m−1)η̃

γ
+1

(βγ + C|∆l|2).

Now, on the one hand,
∑k

l=1(1− δη̃)k−l ≤ η̃−1 and owing to the definition of η̃ (and of η),

we have η̃−1 ≤ C(1+‖BH‖
1

2θ−1

θ,T ). It follows that there exists a function Pθ with polynomial
growth such that

CT ‖BH‖3θ,T
k
∑

m=1

(1− δη̃)k−m ≤ P (‖BH‖θ,T ).

In the sequel of the proofs the index θ in Pθ, which recall the dependance of the polynom
in θ is dropped. On the other hand, since (1− δη̃)k−m ≤ 1, we also have

k
∑

m=1

(1 − δη̃)k−m

mη̃

γ
∑

l=
(m−1)η̃

γ
+1

(βγ +C|∆l|2) ≤
⌊kη̃

γ
⌋

∑

u=1

(βγ + C|∆u|2) ≤ βkη̃ + C

⌊kη̃
γ
⌋

∑

u=1

|∆u|2.

We deduce that for every k ∈ {1, . . . , ⌊T
η̃
⌋}:

V (X̄kη̃) ≤ V (x)(1 − δη̃)k + P (‖BH‖θ,T ) + CQγ(B
H
t , 0 ≤ t ≤ T ), (24)

where P is a function with polynomial growth and Qγ is defined in the lemma. Applying
this inequality with k = ⌊T

η̃
⌋, we obtain

V (X̄T ) ≤ V (x)(1 − δη̃)⌊
T
η̃
⌋ + P (‖BH‖θ,T ) + CQγ(B

H
t , 0 ≤ t ≤ T ). (25)

Finally, we want to control V (X̄T )− V (X̄T ). The function ∇V being sublinear and D2V
being bounded, we deduce from the Taylor formula that for every x, y ∈ R

d,

V (y) ≤ V (x) + C(|x|.|y − x|+ |y − x|2).
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Applying this inequality with x = X̄T and y = X̄T and taking advantage of the assump-
tions on b, we have

V (X̄T ) ≤ V (X̄T ) + C
[

γ(1 + |X̄T |2) + (1 + |X̄T |)|BH
T −BH

T |+ |BH
T −BH

T |2
]

(26)

≤ V (X̄T )(1 + Cγ) + C(1 + ‖BH‖2θ,T ), (27)

where in the second line, we again used the elementary inequality |ab| ≤ 2−1(|a|2 + |b|2)
and the fact that |x|2 ≤ CV (x). Combined with (25), the previous inequality yields the
previous inequality yields:

V (X̄T ) ≤ V (x)(1− δη̃)⌊
T
η̃
⌋(1 + Cγ) + P (‖BH‖θ,T ) + CQγ(B

H
t , 0 ≤ t ≤ T ),

where P again denotes a function with polynomial growth. Finally, since (1 − δη̃)
⌊T
η̃
⌋ ≤

e−δT there exists γ0 > 0 and ρ ∈ (0, 1) such that for every γ ∈ (0, γ0),

(1− δη̃)
⌊T
η̃
⌋
(1 + Cγ) ≤ ρ.

Inequality (10) follows.

Case p > 1 :For every u, v ∈ R, |u+v|p = |u|p+p|u+κv|p−1sgn(u+κv)v with κ ∈ [0, 1].
Since |u+κv|p−1 ≤ 2p−1(|u|p−1+|v|p−1), we deduce that |u+v|p ≤ |u|p+cp(|v|.|u|p−1+|v|p)
for every u, v ∈ R and p ≥ 1. Then, by the Young inequality, it follows that for every
ε > 0, there exists cε,p > 0 such that |u+ v|p ≤ (1+ ε)|u|p + cε,p|v|p for every u, v ∈ R and
p ≥ 1. Applying this inequality, we deduce from the case p = 1 that

V p(X̄γ
1 ) ≤ ρp(1 + ε)V p(x) + C

(

P (‖BH‖θ,1) + CQγ(B
H
t , 0 ≤ t ≤ 1)

)p
.

Since ρ < 1, we can choose ε > 0 such that ρ̃ = ρp(1+ ε) < 1. Using again the elementary
inequality |u+ v|p ≤ 2p−1(|u|p + |v|p), we obtain

V p(X̄γ
1 ) ≤ ρ̃V p(x) + Pp,θ(‖BH‖θ,1) + CQp

γ(B
H
t , 0 ≤ t ≤ 1)

where Pp,θ is a polynomial function.
Now, let us focus on (12). We only give the main ideas of the proof when p = 1 (the
extension to p > 1 again follows from the inequality |u + v|p ≤ 2p−1(|u|p + |v|p)). By
(24), the announced inequality holds taking the supremum of the left-hand side of (12)
for every kη̃ with k ∈ {1, . . . , ⌊T

η̃
⌋}. Then, for every t ∈ [(k − 1)η̃, kη̃], it remains to

control (uniformly in k) V (X̄t) in terms of V (X̄(k−1)η̃). By (21) and (23), we obtain such
a control for every discretization time between (k − 1)η̃ and kη̃. Then, it is enough to

control uniformly V (X̄t) in terms of V (X̄t). This can be done similarly as in inequality
(26).

(ii) Let s, t ∈ [0, T ] with 0 ≤ s < t ≤ T . We have

X̄γ
t − X̄γ

s =

∫ t

s

b(X̄γ
u )du+ Z̄γ

t − Z̄γ
s .

First, since |b(x)| ≤ C
√
V (x),

|
∫ t

s

b(X̄γ
u )du| ≤ (t− s) sup

u∈[0,T ]

√
V (X̄u).
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Second, we focus on the increment of Z̄γ . By Lemma 3, for every u, v ∈ [0, T ] such that
v − u ≤ η (where η is given by (20)),

|Z̄γ
v − Z̄γ

u | ≤ (v − u)θ

(

‖σ‖∞ + CT (1 + sup
s∈[0,T ]

|X̄s|)ηθ
)

‖BH‖θ,T .

Using the concavity of x 7→ xθ on R+, we have for every s1, s2 ∈ [0, T ] being such that
|s2 − s1| ≤ γ,

|Z̄γ
s2

− Z̄γ
s1
| ≤≤ 21−θ‖σ‖∞(s2 − s1)

θ‖BH‖θ,T
and we derive that for every u, v ∈ [0, T ] with |u− v| ≤ η,

|Z̄γ
v − Z̄γ

u | ≤ CT (v − u)θ

(

‖σ‖∞ + (1 + sup
s∈[0,T ]

|X̄s|)ηθ
)

‖BH‖θ,T .

Now, by the very definition of η, we have ηθ‖BH‖θ,T ≤ 1. Then, since |x| ≤ CV (x), we
deduce from the first part of this proposition that for every u, v ∈ [0, T ] with |u− v| ≤ η:

|Z̄γ
v − Z̄γ

u | ≤ CT (v − u)θ(V (x) + P̃ (‖BH‖θ,T ) + CQγ(B
H
t , 0 ≤ t ≤ T )). (28)

where P̃ is a polynomial function and Qγ is defined in Lemma 3.
We want now to make use of the preceding inequality to control Z̄γ

t − Z̄γ
s for every 0 ≤

s < t ≤ T . We divide [s, t] in intervals of length lower than η. More precisely, setting
sk = s+ k⌊η⌋, we have

Z̄γ
t − Z̄γ

s = Z̄γ
t − Z̄γ

s
⌊ t−s

η ⌋
+

⌊ t−s
η

⌋
∑

i=1

Z̄γ
sk

− Z̄γ
sk−1

.

Then, we deduce from (28) that

|Z̄γ
t − Z̄γ

s | ≤ CT

(

(t− s⌊ t−s
η

⌋)
θ + ⌊t− s

η
⌋ηθ
)

(V (x) + P̃ (‖BH‖θ,T ) + CQγ(B
H
t , 0 ≤ t ≤ T ))

≤ CT

(

(t− s)θ + (t− s)ηθ−1
)

(V (x) + P̃ (‖BH‖θ,T ) + CQγ(B
H
t , 0 ≤ t ≤ T )).

Thus, using (28) if t− s ≤ η or the fact that (t− s)ηθ−1 ≤ (t− s)θ if t− s ≥ η, we deduce
that there exists CT > 0 such that for every 0 ≤ s < t ≤ T ,

|Z̄γ
t − Z̄γ

s | ≤ CT (t− s)θ(V (x) + P̃ (‖BH‖θ,T ) + CQγ(B
H
t , 0 ≤ t ≤ T )).

The result follows.

4 Tightness properties

In the following proposition, we obtain some a.s. tightness results for the sequence (P(n,γ)(ω, dα))n≥1.
Using that the controls established in Proposition 3 are uniform in γ, we also show that
tightness properties also hold for the set of its limiting measures (U (∞,γ)(ω, θ))γ defined
by

U (∞,γ)(ω, θ) =
{

µ ∈ C̄θ(R+,R
d),∃(nk(ω))k≥1,P(nk(ω),γ)(ω, dα)

n→+∞−−−−−→ µ
}

.
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PROPOSITION 4. Assume (C). Then, there exists γ0 > 0 such that,
(i) For every γ ∈ (0, γ0] and p ≥ 1, a.s.,

lim sup
n→+∞

1

n

n
∑

k=0

V p(X̄γ
γ(k−1)) ≤ CpE[|Pp(‖BH‖θ,1)|+Qp

γ(B
H
t , 0 ≤ t ≤ 1)] < +∞.

where C does not depend on γ and Pp is a polynomial function and Qγ is defined by (11).
(ii) For every θ ∈ (1/2,H), for every γ ∈ (0, γ0], (P(n,γ)(ω, dα))n≥1 is almost surely tight
on C̄θ(R+,R

d).
(iii) For every θ ∈ (1/2,H), (U (∞,γ)(ω, θ))γ∈(0,γ0] is a.s. tight in C̄θ(R+,R

d).

Proof. (i) Case p = 1 : We first focus on the sequence ( 1
N

∑N−1
k=0 V (X̄γ

k ))N≥1. We set

∀k ≥ 0, (δkB
H)t = BH

kγ+t −BH
kγ .

By Proposition 3 applied with T = 1, we have for every k ≥ 1

V (X̄γ
k ) ≤ ρV (X̄γ

k−1) + P (‖δ(k−1)B
H‖θ,1) + CQγ((δ(k−1)B

H)t, 0 ≤ t ≤ 1)

with ρ ∈ (0, 1). An iteration yields for every k ≥ 1

V (X̄γ
k ) ≤ ρkV (x) +

k−1
∑

l=0

ρk−1−lP (‖δlBH‖θ,1) + CQγ((δlB
H)t, 0 ≤ t ≤ 1).

Setting Ul = P (‖δlBH‖θ,1) + CQγ((δlB
H)t, 0 ≤ t ≤ 1) and summing over k, we obtain

1

N

N−1
∑

k=0

V (X̄γ
k ) ≤

V (x)

N(1− ρ)
+

1

N

N−1
∑

k=0

k−1
∑

l=0

ρk−1−lUl

≤ V (x)

N(1− ρ)
+

1

N

N−2
∑

l=0

Ul

N
∑

k=l+1

ρk−1−l ≤ V (x)

N(1− ρ)
+

1

N(1− ρ)

N−2
∑

l=0

Ul.

Let us remark that since BH is a C̄θ([0, 1],Rq) valued Gaussian random variable, the
norm ‖BH‖θ,1 has finite moments of every order, which is classical consequence of Fernique
Lemma. Moreover

E[Qγ(B
H
t , 0 ≤ t ≤ 1)|] ≤ Cγ2H−1.

Hence
h(γ) := E[|P (‖BH‖θ,1) + CQγ(B

H
t , 0 ≤ t ≤ 1)|] < +∞. (29)

Since (δlB
H) is ergodic and that h(γ) < +∞, We have

1

N

N−2
∑

l=0

Ul
n→+∞−−−−−→ E[P (‖BH‖θ,1) + CQγ(B

H
t , 0 ≤ t ≤ 1)] a.s. (30)

and it follows that

lim sup
N→+∞

1

N

N−1
∑

k=0

V (X̄γ
k ) ≤

1

1− ρ
E[P (‖BH‖θ,1) + CQγ(B

H
t , 0 ≤ t ≤ 1)] a.s. (31)

We want now to use this result to control the a.s. asymptotic behavior of ( 1
n

∑n−1
k=0 V (X̄γ

γk))n≥1.
By the second point of Proposition 3(i), for every k ≥ 0,

sup
l∈[⌊ k

γ
⌋+1,⌊k+1

γ
⌋]
V (X̄γ

γl) ≤ C
(

V (X̄γ
k ) + P (‖δkBH‖θ,1) + CQγ((δkB

H)t, 0 ≤ t ≤ 1)
)

.
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As a consequence, setting N = ⌊γ(n − 1)⌋+ 1, we have

1

n

n−1
∑

l=0

V (X̄γ
γl) ≤

N

n

1

N






V (x) +

N−1
∑

k=0

⌊k+1
γ

⌋
∑

⌊ k
γ
⌋+1

V (X̄γ
γl)







≤ C(γ +
1

n
)(
1

γ
+ 1)

(

1

N

N−1
∑

k=0

(

V (X̄γ
k ) + P (‖δkBH‖θ,1) + CQγ((δkB

H)t, 0 ≤ t ≤ 1)
)

)

.

Using (30) and (31), the result follows when p = 1.

The proof when p > 1 is very similar to the case p = 1 and is left to the reader.

(ii) By (i), (P(n,γ)
0 (ω, dx)) is tight on R

d (since V is coercive). Owing to some classical
tightness results in Hölder spaces (see e.g. [27], Theorem 1.4), we deduce that we have
only to prove that for every T > 0, for every θ ∈ (1/2,H), for every ε > 0,

lim sup
δ→0

lim sup
n→+∞

1

n

n
∑

k=1

1{ωθ,T (X̄γ

γ(k−1)+.
,δ)≥ε} = 0,

where we recall that

∀T > 0, ωθ,T (f, δ) := sup
0≤s<t<T,0≤|t−s|≤δ

|f(t)− f(s)|
|t− s|θ .

By Proposition 3 (ii) with θ′ ∈ (θ,H),

sup
0≤s<t≤T

|X̄γ
t − X̄γ

s |
(t− s)θ

≤ CT (t− s)θ
′−θ(V (x) + P̃ (‖BH‖θ,T ) +Qγ(B

H
t , 0 ≤ t ≤ T )

so that for every s, t ∈ [0, T ] such that s < t and t− s ≤ δ,

sup
0≤s<t≤T

|X̄γ
t − X̄γ

s |
(t− s)θ

≤ CT δ
θ′−θ(V (x) + P̃ (‖BH‖θ,T ) +Qγ(B

H
t , 0 ≤ t ≤ T ).

As in (i), this property can be extended to the shifted process: we have for every k ≥ 0

sup
0≤s<t≤T

|X̄γ
γk+t − X̄γ

γk+s|
(t− s)θ

≤ CT δ
θ′−θ(V (X̄γ

γk) + P̃ (‖δkBH‖θ,T ) +Qγ((δkB
H)t, 0 ≤ t ≤ T )

By (i) and the ergodic properties of the increments of BH (see (30) for similar arguments),
we deduce that

lim sup
n→+∞

1

n

n
∑

k=1

1ωθ,T (X̄γ

γ(k−1)
,δ) ≤ Cδθ

′−θ. (32)

The result follows.

(iii) Let θ ∈ (1/2,H) and denote by µ(γ) an element of U (∞,γ)(ω, θ) and by µ
(γ)
t its

marginals. By (29) and (31),

∀γ ∈ (0, γ0], µ
(γ)
0 (V ) ≤ 1

1− ρ
h(γ)
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where ρ does not depend on γ. Since H > 1/2, supγ∈(0,γ0] h(γ) < +∞. It follows that

U (∞,γ)
0 (ω, θ) is a.s. tight in R

d (where U (∞,γ)
0 (ω, θ) stands for the set of initial distributions

µ
(γ)
0 ).

Now, since C does not depend on γ in (32), we also have for every T > 0, δ > 0 and ε > 0
for every θ′ > θ:

∀γ ∈ (0, γ0], µ(γ)(1{ωθ,T (.,δ)≥ε}) ≤ Cδθ
′−θ.

and the announced result follows again from Theorem 1.4 of [27].

5 Identification of the weak limits

5.1 Weak limits of (P(n,γ)(ω, dα))n≥1

We have the following result:

PROPOSITION 5. Assume (C) and let P(∞,γ)(ω, dα) denote a weak limit of ((P(n,γ)(ω, dα))n≥1.
Then, P(∞,γ)(ω, dα) is a.s. an adapted stationary solution of (6).

REMARK 4. In the following proof, we will prove some properties “for every function f, for
almost every ω” and conclude that “for almost every ω, for every function f” the property
is true. For the sake of completeness, we recall here that such inversions are rigourous
since we work on Polish spaces (in which the distributions and the weak convergence are
characterized by some countable family of bounded continuous functions).

Proof. In the proof, we denote by (P̃(n)(ω, dα, dβ))n≥1, the sequence of probability mea-
sures on C̄θ(R+,R

d)× C̄θ(R,Rq) with 1
2 < θ < H defined by

P̃(n,γ)(ω, dα, dβ) =
1

n

n
∑

k=1

δ(X̄γ

γ(k−1)+.
(ω),BH

(k−1)γ+.
(ω)−BH

(k−1)γ
(ω))(dα, dβ))

where (BH
t )t∈R is the fractional Brownian motion used to build the Euler scheme (9).

First, let us recall that by Proposition 4 (ii), (P(n,γ)(ω, dα))n≥1 is a.s. tight. Thus, we can
consider a weak limit P(∞,γ)(ω, dα). Second, one checks that (P̃(n,γ)(ω, dα, dβ))n≥1 is also
almost surely tight since each of its margins have this property. Indeed, for the first margin,
it is again (ii) of Proposition 4. For the second margin, we use that (BH

t )t∈R is ergodic
under the transformation Tγ : C̄θ(R,Rd) → C̄θ(R,Rq) defined by (Tγ(ω))t = ω(γ+t)−ω(γ)
(see e.g. [22]). In particular,

1

n

n
∑

k=1

δBH
(k−1)γ+.

−BH
(k−1)γ

(dβ) (33)

is converging almost surely to the distribution of (BH
t )t∈R (on C̄θ(R,Rd)). Hence, the

sequence (P̃(n)(ω, dα, dβ))n≥1 is almost surely tight (and thus relatively compact). Then,
if P(∞,γ)(ω, dα) is the limit of a subsequence of (P(n,γ)(ω, dα))n≥1, maybe with the help of
a second extraction, it follows that a.s., there exists a subsequence (nk(ω))k≥0 such that

P(nk ,γ)(ω, dα)
k→+∞−−−−→ P(∞,γ)(ω, dα) and P̃(nk ,γ)(ω, dα, dβ)

nk→+∞−−−−−→ P̃(∞,γ)(ω, dα, dβ)
(34)

where the first margin of P̃(∞,γ)(ω, dα, dβ) is obviously P(∞,γ)(ω, dα) and the second one

is a.s. the distribution of (BH
t )t∈R (thanks to (33)). Let us also denote by (X

(∞,γ)
t , BH

t )

19



the coordinate process on C̄θ(R+,R
d) × C̄θ(R,Rq) endowed with the probability P̃(∞,γ).

For (α, β) ∈ C̄θ(R+,R
d)× C̄θ(R+,R

q) we consider the following function

Φ̃γ(α, β)t := α0 +

∫ t

0
b(Φ̃γ(α, β)sγ )ds+

∫ t

0
σ(Φ̃γ(α, β)sγ )dβs. (35)

Please remark that Φ̃γ is slightly different from Φγ in the way it handles the initial con-
dition but

Φ̃γ(α, β) = Φγ(a, β)

for every α such that α0 = a. For t, K > 0 let us denote by Ft,K the function defined
on C̄θ(R+,R

d) × C̄θ(R,Rq) by Ft,K(α, β) = sup0≤s≤t |αs − Φ̃γ(α, β+)s| ∧K where β+ =
(β(t))t≥0. The function Ft,K is bounded continuous on C̄θ(R+,R

d)× C̄θ(R,Rq).

Then,

E(Ft,K(X(∞,γ), BH)) = lim
nl→∞

1

nl

nl
∑

k=1

Ft,K(X̄γ
(k−1)γ+.

, BH
(k−1)γ+. −BH

(k−1)γ).

By definition of the Euler scheme (even though it is shifted), we have for every k ≥ 1,
Ft,K(X̄γ

(k−1)γ+.
, BH

(k−1)γ+.
−BH

(k−1)γ) = 0 almost surely, and

X(∞,γ) = Φ̃γ(X(∞,γ), BH)

almost surely, which ensures that the pair (X(∞,γ), BH) is a solution of (6).
The stationarity of X(∞,γ) follows from the construction. Actually, using the convergence
of (P(n,γ)(ω, dα)), we have for every bounded continuous functional F : C̄θ(R+,R

d) → R,

1

n

n
∑

k=1

F (X̄γ

γ(k−1)+t+.
)− F (X̄γ

γ(k−1)+.
)

n→+∞−−−−−→ E[F (X
(∞,γ)
t+. )]− E[F (X(∞,γ)

. )]

and owing to a change of variable, it is obvious that for every t ∈ γN,

1

n

n
∑

k=1

F (X̄γ
γ(k−1)+t+.

)− F (X̄γ
γ(k−1)+.

)
n→+∞−−−−−→ 0

It follows that for every t ∈ γN, for every F ,

E[F (X
(∞,γ)
t+. )] = E[F (X(∞,γ)

. )].

This property implies that X(∞,γ) is stationary.
We now focus on the adaptation of X(∞,γ). In this step, we need to introduce, for a
subset D of R that contains 0, the Polish space Wθ,δ(D) that denotes the completion of
C∞
0 (D,Rq) (space of C∞-functions f : D → R

q with compact support and f(0) = 0) for
the norm

‖f‖ = sup
s,t∈D

|f(t)− f(s)|
|t− s|θ(1 + |t|δ + |s|δ) .

This space is convenient to obtain some Feller properties for the conditional distribution
of the fractional Brownian motion given its past. More precisely, by Lemmas 4.1 to 4.3 of
[14], the paths of BH belong a.s. to Wθ,δ(R) when θ ∈ (1/2,H) and θ+ δ ∈ (H, 1) and, in
this case, for every T > 0,

PT (ω, .) := L((BH,T
t )t≤0|(BH

t )t≤0 = (ωt)t≤0)
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is a Feller transition on Wθ,δ(R
−) where BH,T

t = BH
t+T −BH

T . Let us now prove that X(∞,γ)

is adapted. It is enough to show that for every 0 ≤ t ≤ T , for every bounded continuous
functionals f : C̄θ([0, t],Rd) → R, g : Wθ,δ((−∞, T ]) → R and h : Wθ,δ(R−) → R

E[f(X(∞,γ)
s , s ∈ [0, t])g(BH

s , s ≤ T )h(BH
s+t, s ≤ 0)]

= E[f(X(∞,γ)
s , s ∈ [0, t])ψg(BH

s , s ≤ 0)h(BH
s+t, s ≤ 0)]

(36)

where ψg((ωs)s≤t) = E[g(BH
s , s ≤ T )|(BH

s )s≤t = (ωs)s≤0]. Owing to the Feller property
on PT (ω, .), we easily obtain that ψg is continuous on Wθ,δ(R−).
Then, using the ergodicity of the increments of BH , we can show as in the beginning of
the proof that (P̃(n,γ)(ω))n≥1 is tight on C̄θ(R+,R

d) ×Wθ,δ(R). Thus, there exists a.s. a
sequence (nk) such that

E[f(X(∞,γ)
s , s ≤ t)g(BH

s , s ≥ T )h(BH
s , s ≤ t)] = lim

k→+∞
1

nk

nk
∑

k=1

Hk−1Jk

E[f(X(∞,γ)
s , s ≤ t)ψg

t (B
H
s , s ≤ t)h(BH

s , s ≤ t)] = lim
k→+∞

1

nk

nk
∑

k=1

Hk−1E[Jk|Fγ(k−1)+t]

with Ft = σ(BH
s , s ≤ t), Hk = f(X̄γ

γk+s, s ≤ t)h(BH
γ(k−1)+s+t

− BH
γ(k−1), s ≤ 0), and

Jk = g(BH
γ(k−1)+s

−BH
γ(k−1), s ≤ T ). This implies that it is now enough to prove that

1

n

n
∑

k=1

Hk−1

(

Jk − E[Jk|Fγ(k−1)+t]
) n→+∞−−−−−→ 0 a.s.

This point follows from a decomposition of the above sum in martingale increments and
from classical martingale arguments (see proof of Proposition 6 of [3] for a similar proof).

5.2 Identification of limits when γ → 0+

In this part we fix aH-fractional Brownian motion BH on C̄θ(R,Rq) and we consider a pair
(X∞,γ , BH) on C̄θ(R+,R

d) × C̄θ(R+,R
q) such that for each γ > 0 the joint distribution

is given by Proposition 5.

PROPOSITION 6. Let (γk) be a sequence converging to 0 such that the distributions of
(X∞,γk , BH) are converging weakly on C̄θ(R+,R

d) × C̄θ(R,Rq) to (X∞, BH). Then the
pair (X∞, BH) is a stationary adapted solution to (1) in the sense of Definition 1.

Proof. Let us first introduce

Φ̃(α, β)t := α0 +

∫ t

0
b(Φ̃(α, β)s)ds +

∫ t

0
σ(Φ̃(α, β)s)dβs,

and remark that Φ̃(α, β) = Φ(a, β), if α0 = a. We want to show that

X∞ = Φ̃(X∞, BH) (37)

almost surely so that (X∞, BH) is a solution to (1). Let us rewrite the equation with the
help of two continuous operators on C̄θ(R+,R

d)× C̄θ(R+,R
q) :

Ψ(α, β)t =

∫ t

0
b(αs)ds+

∫ t

0
σ(αs)dβs,
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and
∆(α)t = αt − α0.

Then equation (37) is equivalent to

∆(X∞) = Ψ(X∞, BH). (38)

Let us also consider the discretization of Ψ

Ψγ(α, β)t =

∫ t

0
b(αsγ

)ds +

∫ t

0
σ(αsγ

)dβs.

Obviously (6) can be rewritten

∆(X∞,γ) = Ψγ(X∞,γ , BH). (39)

LEMMA 4. Let (γk)k≥1 be a sequence converging to 0 such that (X∞,γk , BH)k≥1 converges
weakly on C̄θ(R+,R

d)× C̄θ(R,Rq) to (X∞, BH). Then Ψγk(X∞,γk , BH) converges weakly
on C̄θ(R+,R

d) to Ψ(X∞, BH).

Proof. Let (α, β) ∈ C̄θ(R+,R
d)× C̄θ(R+,R

q). A classical result concerning the discretiza-
tion of Young integrals shows that

|Ψ(α, β)t −Ψγ(α, β)t| ≤ ‖α‖θ,t‖β‖θ,tγ2θ−1t.

See for instance [4], Proposition 31 or [30]. Hence for T > 0,

‖Ψ(α, β) −Ψγ(α, β)‖θ,T ≤ ‖α‖θ,T ‖β‖θ,T γ2θ−1T 1−θ. (40)

Let F be any bounded K-Lipschitz functional on C̄θ(R+, [0, T ]),

|E(F (Ψ(X∞,γk , BH))− E(F (Ψ(X∞, BH))| → 0 (41)

as k → ∞. Then

|E(F (Ψγk(X∞,γk , BH))− E(F (Ψ(X∞,γk , BH))| ≤ KE(‖X∞,γk‖θ,T ‖BH‖θ,T )T 1−θγ2θ−1
k ,

(42)
and using Proposition 3(ii) the left hand side of (42) is converging to 0 as k → ∞.
Combining (41) and this last fact, we get the desired convergence in distribution.

Let us start with
∆(X∞,γk) = Ψγ(X∞,γ , BH), (43)

and let k → ∞. By Lemma 4, the right hand side of (43) converges to Ψ(X∞, BH) and
the left hand side to ∆(X∞), which, in turn, has the same distribution as Ψ(X∞, BH).

Now, let us prove that X∞ is stationary. It is enough to show that E[F (X∞
. )] =

E[F (X∞
t+.)] for every t ≥ 0 and for every functional F defined by F (α) =

∏m
k=1 fi(αti)

where f1, . . . , fm denote Lispchitz continuous functions on R
d and t1, . . . , tm belong to

R+. By Proposition 5, the distribution of X∞,γ is invariant by the time-shift (θkγ) for
every k ∈ N so that E[F (X∞

. )] = E[F (X∞
t+.)]. The result follows easily by checking that

for every T > 0,

E[ sup
u,v∈[0,T ],|u−v|≤γ

|X∞,γ
v −X∞,γ

u |] γ→0−−−→ 0.

Finally, it remains to show that (X∞, BH) is adapted. Since (X∞,γk) converges in dis-
tribution to X∞ on C̄θ(R+,R

d) and since BH belongs to Wθ,δ (with θ ∈ (1/2,H) and
θ+ δ ∈ (H, 1)), (X∞,γ′

k , BH) converges to (X∞, BH) for γ′k a subsequence of γk. Then, we
can let γ go to 0 in equality (36) and the result follows.
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6 Simulations

In this section, we give an illustration of the application of our procedure for a one-
dimensional toy equation:

dXt = −Xtdt+ (4 + cos(Xt))dB
H
t .

We propose to compute an estimation of the density of the (marginal) invariant distri-
bution in this case. We denote it by νH0 . By Theorem 1, for every bounded continuous
function f : Rd → R,

lim
γ→0

lim
n→+∞

P(n,γ)
0 (ω, f) = νH0 (f).

The first step is to simulate the sequence (BH
γk − BH

γ(k−1))
n
k=1. We use the method of

Wood-Chan (see [29]) which is based on the embedding of the covariance matrix of the
fractional increments in a symmetric circulant matrix (whose eigenvalues can be computed
using the Fast Fourier Transform).

Then, we compute Kh ∗ P(n,γ)
0 where Kh is the Gaussian convolution kernel defined by

Kh(x) = 1√
2πh

exp(−x2

2h). Note that Kh ∗ P(n,γ)
0 (x0) = P(n,γ)

0 (Kh(x0 − .)), where, for a

measure µ, and a µ-measurable function f, we set µ(f) =
∫

fdµ. In Figure 1 is depicted
the approximate density with the following choices of parameters

n = 107, γ = 0.05 h = 0.2, H =
3

4
.

We choose to compare it with the density of the invariant distribution when H = 1/2.
Note that in this case, the invariant distribution is (semi)-explicit (as for every ergodic
one-dimensional diffusion) and is given by

ν
1
2
0 (dx) =

M(dx)

M(R)
where M(dx) =

1

(4 + cos x)2
exp

(

−
∫ x

0

2u

(4 + cosu)2
du

)

dx.

We observe that the distribution when H = 3/4 has heavier tails than in the diffusion case.
Finally, in order to have a rough idea of the rate of convergence, we depict in Figure 2 the
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Figure 1: Approximate density of νH0 (continuous line) compared with that of ν
1
2
0 (dotted

line)

approximate densities for different values of n keeping the other parameters unchanged.
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Figure 2: Approximate density of νH0 for n = 105 (dotted line), n = 106 (dash-dotted
line), n = 107 (continuous line)

REMARK 5. As mentioned before, this section is only an illustration. In fact, there are
(many) numerical open questions. For the estimation of the error, it would be necessary for

a function f to get some rate of convergence results for P(n,γ)
0 (f)−νH(f) (long-time error)

and for νH,γ
0 (f)− νH0 (f) (discretization error) where νH,γ

0 denotes the initial distribution
of the stationary Euler scheme with step γ. Note that in the diffusion case, the long time
error is managed by a CLT with rate (γn)−

1
2 whereas the discretization error is O(γ)

(see [28]). Finally, even if the Wood and Chan simulation method is fast and exact, it
requires a lot of memory because of the Fast Fourier Transform. On Matlab, for instance,
this implies that we can not take n greater than 2.107. Thus, it could be interesting to
study some discretization schemes based on some approximations of the fBm-increments
simulated, which consumes less memory.

7 Appendix

Proof of Proposition 1 Let us show that (X̄γk) is a skew-product in the sense of [13]
as follows. For a fractional Brownian BH motion on R, set for every n ∈ Z ∆γ

n =
BH

(n+1)γ−BH
nγ . SettingW := (Rd)Z− , we then introduce the regular conditional probability

P̄γ : W → M1(R
d) defined by1:

P̄γ(ω) = L(∆γ
1 |(∆

γ
k)k≤0 = ω)

and denote by Pγ the Feller transition on W defined for every measurable function f :
W → R by Pγf(ω) =

∫

Rd f(ω ⊔ ω̃)P̄γ(ω, dω̃) where for ω ∈ (Rd)Z− and ω̃ ∈ R
d, ω ⊔ ω̃ =

(. . . , ω2 , ω1 , ω0, ω̃). Setting Φγ(x, ω̃) = x+ γb(x) + σ(x)ω̃ and P
γ
H := L((∆n)n≤0), we have

defined a skew-product (W,Pγ
H ,Pγ ,Rd,Φγ) with the transition operator Qγ on R

d × W
defined by

Qγf(x, ω) =

∫

f(Φγ(x, ω′))Pγ(ω, dω′),

which describes the dynamics of the Euler scheme.
Then, thanks to Theorem 1.4.17 of [13], uniqueness of the adapted and stationary discrete
Euler scheme (X̄γk) (in distribution) holds, if the skew-product (W,Pγ

H ,Pγ ,Rd,Φγ) is

1Note that since (∆γ
n)n∈Z is a stationary sequence, L(∆γ

1 |(∆
γ
k)k≤0 = ω) = L(∆γ

n+1|(∆
γ
n+k)k≤0 = ω) for

every n ∈ Z.
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strong Feller and topologically irreducible (in the sense of Definition 1.4.6 and 1.4.7 of
[13]).
First, write ω̃ = (ω̃1, . . . , ω̃q) and Φγ = (Φγ

1 , . . . ,Φ
γ
d). Denote by MΦ(x, ω̃) the (discrete)

Malliavin covariance matrix of Φ defined by

∀(x, ω̃) ∈ R
d × R

d and(i, j) ∈ {1, . . . , d}2, MΦ
i,j(x, ω̃) :=

d
∑

k=1

∂ω̃kΦ
γ
i (x, ω̃)∂ω̃kΦ

γ
j (x, ω̃).

Thus, MΦ(x, ω̃) = (σσ∗)(x) and since σ−1 is bounded (and continuous), it follows that
x → (det(MΦ)−1(x, ω) is bounded continuous. Second, the functions DωΦ, DωDxΦ and
D2

ωΦ are clearly bounded continuous. Finally, the sequence ((∆γ
n)1) has a spectral density

f that satisfies
∫ π

−π
(f(x))−1dx < +∞ (see e.g. [2] for an explicit expression of f). Thus,

it follows from Theorem 1.5.9 of [13] that the skew-product is strong Feller.
For the topogical irreducibility, it is enough to show that for every (x, ω) ∈ R

d ×W, for
every (y, ε) ∈ R

d × R
∗
+, Q(x, ω,B(y, ε) × W) > 0 . Since σ is invertible, the map Φ is

controllable in the following sense: Φ(x, ω̃x) = y has a (unique) solution ω̃ ∈ R
q, for every

x, y ∈ R
d. Furthermore, b and σ being continuous, for every ε > 0, there exists rε such

that for every ω̃ ∈ B(ω̃x, rε), Φ(x, ω̃) ∈ B(y, ε). Thus,

Q(x, ω,B(y, ε) ×W) ≥ P̄(ω,B(ω̃x, rε)) > 0

since P̄(ω, .) is Gaussian with positive variance. This concludes the proof.

References

[1] Ludwig Arnold. Random dynamical systems. Springer Monographs in Mathematics.
Springer-Verlag, Berlin, 1998.

[2] Jan Beran. Statistics for long-memory processes, volume 61 of Monographs on Statis-
tics and Applied Probability. Chapman and Hall, New York, 1994.

[3] Serge Cohen and Fabien Panloup. Approximation of stationary solutions of Gaussian
driven stochastic differential equations. Stochastic Process. Appl., 121(12):2776–2801,
2011.

[4] Laure Coutin. Rough paths via sewing lemma. To appear in ESAIM PS, 2012.

[5] Hans Crauel. Non-Markovian invariant measures are hyperbolic. Stochastic Process.
Appl., 45(1):13–28, 1993.

[6] A. M. Davie. Differential equations driven by rough paths: an approach via discrete
approximation. Appl. Math. Res. Express. AMRX, (2):Art. ID abm009, 40, 2007.

[7] A. Deya, A. Neuenkirch, and S. Tindel. A Milstein-type scheme without Lévy area
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[10] Maŕıa J. Garrido-Atienza, Peter E. Kloeden, and Andreas Neuenkirch. Discretization
of stationary solutions of stochastic systems driven by fractional Brownian motion.
Appl. Math. Optim., 60(2):151–172, 2009.

[11] Paolo Guasoni. No arbitrage under transaction costs, with fractional Brownian motion
and beyond. Math. Finance, 16(3):569–582, 2006.

[12] Martin Hairer. Ergodicity of stochastic differential equations driven by fractional
Brownian motion. Ann. Probab., 33(2):703–758, 2005.

[13] Martin Hairer. Ergodic properties of a class of non-Markovian processes. In Trends in
stochastic analysis, volume 353 of London Math. Soc. Lecture Note Ser., pages 65–98.
Cambridge Univ. Press, Cambridge, 2009.

[14] Martin Hairer and Alberto Ohashi. Ergodic theory for SDEs with extrinsic memory.
Ann. Probab., 35(5):1950–1977, 2007.

[15] Jae-Hyung Jeon, Vincent Tejedor, Stas Burov, Eli Barkai, Christine Selhuber-Unkel,
Kirstine Berg-Sørensen, Lene Oddershede, and Ralf Metzler. In Vivo anomalous
diffusion and weak ergodicity breaking of lipid granules. Phys. Rev. Lett., 106:048103,
Jan 2011.

[16] S. C. Kou. Stochastic modeling in nanoscale biophysics: subdiffusion within proteins.
Ann. Appl. Stat., 2(2):501–535, 2008.

[17] Damien Lamberton and Gilles Pagès. Recursive computation of the invariant distri-
bution of a diffusion. Bernoulli, 8(3):367–405, 2002.

[18] Damien Lamberton and Gilles Pagès. Recursive computation of the invariant dis-
tribution of a diffusion: the case of a weakly mean reverting drift. Stoch. Dyn.,
3(4):435–451, 2003.

[19] Vincent Lemaire. An adaptive scheme for the approximation of dissipative systems.
Stochastic Process. Appl., 117(10):1491–1518, 2007.

[20] Terry Lyons. Differential equations driven by rough signals. I. An extension of an
inequality of L. C. Young. Math. Res. Lett., 1(4):451–464, 1994.

[21] Benoit B. Mandelbrot and John W. Van Ness. Fractional Brownian motions, frac-
tional noises and applications. SIAM Rev., 10:422–437, 1968.
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