Yunian Shen 
  
W J Stronge 
  
Painlevé paradox during oblique impact with friction

Keywords: Painlevé paradox during oblique impact with friction impact dynamics, sliding, Painlevé paradox, frictional impact, jam

In analyses using non-smooth dynamics, oblique impact of rough bodies in an unsymmetrical configuration can result in self-locking or "jam" at the sliding contact if the coefficient of friction is sufficiently large; this has been termed, Painlevé's paradox. In the range of configurations and coefficients of friction where Painlevé's paradox occurs, analyses based on rigid body dynamics give results indicating that either there are multiple solutions or the solution is nonexistent. This conundrum has been resolved by considering that the contact has small normal and tangential compliance which is representative of deformability in a local region around the contact point. An analysis using a hybrid model which includes local compliance of the contact region has calculated the time-dependent changes in relative motion of colliding bodies for a range of incident angles of obliquity,

where 1 (0)

V and 3 (0) V are the incident tangential and normal relative velocities at the contact point, respectively. The paradox is shown to result from a negative relative acceleration of the contact points during an initial period of sliding -a negative acceleration that is inconsistent with the assumption of rigid-body contact.

Introduction

For a large coefficient of friction µ and sliding contact between rigid bodies in a configuration that is asymmetric with respect to the common normal for the point of contact, equations of motion from rigid-body dynamics that incorporate the Amontons-Coulomb law of friction can result in a range of configurations where a solution either does not exist or is non-unique -a phenomenon first recognized by 1 Visiting Scholar from Nanjing University of Science and Technology, Nanjing, P.R. China
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ACCEPTED MANUSCRIPT [START_REF] Painlevé | Sur les lois du frottement de glissement[END_REF][START_REF] Painlevé | Sur les lois du frottement de glissement[END_REF]. This phenomenon has been termed the Painlevé paradox.

Recently, this problem has been formulated as a Linear Complementarity Problem (LCP) in order to clearly identify the range of parameters where the Painlevé paradox occurs; i.e., the parameter range where a unique solution does not exist [START_REF] Lötstedt | Mechanical systems of rigid bodies subject to unilateral constraints[END_REF]; [START_REF] Mason | On the inconsistency of rigid-body frictional planar dynamics[END_REF][START_REF] Genot | New results on Painlevé paradox[END_REF]; [START_REF] Leine | Periodic motion and bifurcations induced by the Painlevé paradox[END_REF][START_REF] Payr | Oblique frictional impact of a bar: analysis and comparison of different impact law[END_REF].

The question of a unique solution, depends in part upon the analytical model chosen to represent the problem. Methods based on non-smooth dynamics (such as LCP) cannot obtain a unique solution for sliding if the parameter values result in Painlevé's paradox. On the other hand, methods based on smooth or continuous changes in velocity provide a unique solution and show that the paradox is related to sliding when there is sufficient friction to cause self-locking [START_REF] Stronge | Impact mechanics[END_REF]. A smooth analysis for rigid-body impacts that obtains velocity trajectories for the contact point as a function of normal impulse has been presented by [START_REF] Nordmark | Discontinuity-induced bifurcations in systems with impacts and friction: discontinuities in the impact law[END_REF] while a time-dependent analysis that incorporates local contact compliance was given by Zhao et al. (2008a). In the latter case, the existence and uniqueness problem has been resolved by including compliance at contact points as suggested by [START_REF] Dupont | Jamming and wedging in constrained rigid-body dynamics[END_REF].

The present paper describes conditions that result in Painlevé paradox for analyses based both on dynamics of sliding between two completely rigid bodies and dynamics of oblique impact for a hybrid analytical model that includes compliance of the local region around the contact point between the colliding bodies. In order to focus attention on the kinetic equations, we investigate first the problem of sliding on a rough surface of a slender 'rigid' bar that is in an inclined orientation; (i.e., the classical problem investigated by [START_REF] Painlevé | Sur les lois du frottement de glissement[END_REF], and subsequently, the problem of oblique impact between rough bodies.

For a rigid body in an inclined configuration that is sliding on a half-space, the phenomenon that gives rise to Painlevé paradox occurs when the friction force results in a moment about the center of mass that exceeds the corresponding moment of the normal force by enough to cause the normal relative acceleration across the contact point to be compressive; i.e., to cause an increasing negative (compressive) normal relative acceleration during an initial period of sliding. Hence, during an initial phase of sliding contact, the phenomenon is a self-locking process which has been termed 'jam' [START_REF] Stronge | Impact mechanics[END_REF]. After initial sliding has been brought to rest, the self-locking
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process releases and the usual positive normal relative acceleration of the contact point commences. This Painlevé process has been analyzed for planar and 3D collisions by [START_REF] Nordmark | Discontinuity-induced bifurcations in systems with impacts and friction: discontinuities in the impact law[END_REF] and Zhao et al. (2008a), respectively.

The present paper goes beyond the analyses of Nordmark and Zhao in two respects;

(i) it compares consequences of various analytical assumptions and (ii) it applies a hybrid representation of local compliance of the contact region. Both normal and tangential compliance of the contact region are considered and this has consequences for the sequence of slip processes occurring in collisions which experience the Painlevé phenomenon.

Description of Painlevé paradox

Classical Painlevé example on initial sliding or grazing impact

In this section the Painlevé example problem of a sliding bar will be reviewed.

Consider a homogeneous rigid slender bar with one end C sliding on a rigid halfspace (see Figure 1). Initially, the center of mass of the bar is translating parallel to the surface of the half-space and the bar is not rotating. The bar has length 2l , mass m , moment of inertia about the center of mass 

V y

= & , respectively. Assume that the tangential force F 1 , normal force F 3 and negligible torque act at contact point, so that the equation of motion of the system is given by

3 3 1 1 F F -- - = Mq h W W 0 && (1) 
For a heavy bar, this Painlevé example has system matrices G 0 0 ( sin cos )

0 0 0 0 m m J     =       M , 0 0 mg     = -       h , 3 0 1 sin l θ     =       W , 1 1 0 cos l θ     =   -     W Suppose the
mx F my mg F J l F F µ θ θ µ θ = -   = -+   = +  && && && (2) 
In order to take into account the unilateral feature of the normal force at the contact point C ( 3 ( ) 0 F t ≥ ), it is necessary to introduce a complementarity constraint between the normal force F 3 and the normal acceleration C y && of the contact point C. This is expressed as

C 0 y ≥ && , 3 0 F ≥ , 3 C 0 F y = && (3) 
To solve this unilateral constraint problem for a period of sliding in a positive direction, it has been reduced to a linear complementarity problem (LCP), [START_REF] Lötstedt | Coulomb friction in two-dimensional rigid body systems[END_REF]; Génot and Brogliato, 1999; Pfeiffer and Glocker, 1996)

C 3 0 y AF b = + ≥ && , 3 0 F ≥ , 3 C 0 F y = && (4a) with 1 ( , ) [1 3sin (sin cos )] A m θ µ θ θ µ θ = + + , 2 ( , ) cos b l g θ θ θ θ = - & & (4b)
This LCP is based on zero normal acceleration of the contact point C during sliding contact C 0 y = && , and zero normal contact force of bodies during flight when C 0 y > .

Depending on the sign of the coefficients A and b, possible solutions of the LCP are 1 and the intersection of lines and axes in Figure 2. Inconsistency (LCP has no solution) or indeterminacy (non-uniqueness) of the solution is termed Painlevé paradox (Génot and Brogliato, 1999).
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Table 1 The related problem of oblique rigid-body impact also has initial sliding. 2 For oblique impact of rough rigid bodies, similar LCP formulations have been developed

by [START_REF] Moreau | Some numerical methods in multibody dynamics: application to granular materials[END_REF][START_REF] Johansson | Study of frictional impact using a nonsmooth equations solver[END_REF][START_REF] Payr | Oblique frictional impact of a bar: analysis and comparison of different impact law[END_REF]. These also result in linear equations that involve two coefficients A and b, where A is identical to equation (4b). This has been analysed to provide the range of coefficients of friction µ and configurations θ where A<0 and consequently, Painlevé paradox occurs. 

π θ θ µ θ θ + -< < ≥ - (5) 
If the parameters ( µ ,θ ) are located in this region shown in Figure 3 and the variable b satisfies corresponding conditions, the Painlevé paradoxical phenomenon occurs in analyses of oblique impact between rough completely rigid bodies with positive sliding. The friction coefficient that results in Painlevé's paradox is shown in Fig. 3.

Figure 3

Explanation of Painlevé paradox

An essential part of Painlevé's paradox is the assumption of a completely rigid body. Based on this assumption, a large friction force can cause a negative acceleration at the contact point C because of large angular acceleration. However, following initial contact, the rigid body model is inconsistent with negative velocity or acceleration at the contact point C. Non-uniqueness of solutions resulting from this paradox is a result of incompatibility between the assumption that the bodies are rigid 2 For rigid bodies, the limiting case of impact at grazing incidence is equivalent to an initial state of steady sliding. Grazing impact occurs when the ratio of tangential to normal incident relative velocity at the contact point
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and the kinetic equations. A detailed analysis of this explanation and the corresponding phenomenon related to the Painlevé paradox are presented in Section 4.2.

Many authors present the tangential "shock" assumption [START_REF] Mason | On the inconsistency of rigid-body frictional planar dynamics[END_REF][START_REF] Stewart | An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and Coulomb friction[END_REF][START_REF] Pfeiffer | Multibody dynamics with unilateral contacts[END_REF][START_REF] Stewart | Existence of solutions to rigid body dynamics and the Painlevé paradox[END_REF] 

from 3 C 0 F y = && to 1 C C 3 3 C C 1 C 3 C C ( , ) stick ( , ), sgn( ) ( , ) sliding f x x F f y y F x f y y µ  = =   (6) 
Substituting equation [START_REF] Leine | Periodic motion and bifurcations induced by the Painlevé paradox[END_REF] (2) The time history of the contact force can be obtained and thus, the contact process can be described clearly;

 - + =   - - = -   = - +   & && && & && && && (7) 
(3) This method retains the high computational efficiency of rigid body impact dynamics . The computational cost is far less than that of impact dynamics for a flexible body. Subsequently, this paper examines oblique impact of rough bodies with contact compliance for the range of configurations and coefficients of friction where Painlevé phenomenon occurs, Eq. ( 5).

Hybrid analytical model

The hybrid model considers the compliance of a small region around the point of initial contact, C, and assumes that this contact region has negligible mass. The model has an element with bilinear stiffness oriented normal to the contact plane and a linear elastic element oriented tangent to the contact plane; the bilinear element provides hysteresis that is representative of dissipative plastic deformation. The remainder of the bodies are assumed to be rigid and because the contact period is very short, the impact configuration is assumed to be invariant with time.

Consider two bodies B and B′ which collide at a single contact point C. The colliding bodies have masses M , M ′ and contact points C , C′ . Suppose at least one of the bodies has a smooth contour so that there is a common tangent plane (CTP) that is tangent to the surface at C. Define unit vectors 1 n and 3 n that are parallel and normal to the CTP, respectively. The present paper considers the case of planar impact, where the velocity changes occurs in the ( 1 n , 3 n ) plane only. The absolute displacements of the contact points C and C′ are

T C C1 C3 [ ] U U = U and T C C 1 C 3 [ ] U U ′ ′ ′ = U
, respectively. The relative displacement of the contact points C
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and C′ is defined as

T CC C C 1 3 [ ] u u ′ ′ ′ ′ = - = u U U
. The contact points first touch at an instance of time, 0 t = . Let the normal component of incident relative velocity be negative

CC 3 3 (0) (0) 0 u ′ ′ ⋅ = < u n & & while the tangential component is positive CC 1 1 (0) (0) 0 u ′ ′ ⋅ = > u n & &
. The normal relative velocity between C and C′ , 3 ( )

u t ′ & ,
remains negative during the period of compression which ends at time c t where

3 c ( ) 0 u t ′ = &
. At contact points C and C′ , there are equal but opposite contact forces

T 1 3 [ ] F F = F and T 1 3 [ ] F F ′ ′ = F
that act on the bodies and drive them apart.

We assume that the impact period is very brief so that the configuration of the system is invariant during impact while the velocities are changing. The inertia properties for each body can be specified in terms of the radii of gyration k and k′ about the respective centers of mass and the position vectors from the respective centers of mass to the contact point are

T 1 3 [ ] r r = r and T 1 3 [ ] r r ′ ′ ′ = r . Figure 4 

Compliant contact model

The colliding bodies are assumed to be rigid except for an infinitesimally small region around the contact point. The compliance of the small region is represented by a lumped-parameter model [START_REF] Stronge | Oblique impact with friction and tangential compliance[END_REF], in which the compliance of the small region is represented by discrete elements oriented in the normal and tangential directions. These elements are connected to a massless particle P which can either stick or slide on the surface of the second body at the contact point C′ as shown in Figure 4. The absolute displacement of particle P is

T P P1 P3 [ ] U U = U
. Similar to the definition of the relative displacement of contact points C and C′ , the relative displacement of contact points C and P across the compliant element is defined as

T CP C P 1 3 [ ] u u = - = u U U .
And the relative displacement of contact point C′ and P is defined as

T PC P C 1 3 [ ] u u ′ ′ ′′ ′′ = - = u U U
where during contact 3 0 u′′ = .

Displacements 1 u and 3 u are the extensions of the tangential and normal compliant element, respectively. Let

i i v u = & and i i V u′ = & ( 1, 3 i =
) in order to conveniently express the rate of extension of the compliant elements and relative velocity between
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contact points C and C′ of bodies B and B′ , respectively. Note that the coordinate system has been defined such that 1 (0) 0 V > and 3 (0) 0 V < .

The compliance of the contact region is considered to be linear in the tangential direction and bilinear in the normal direction; the bilinear normal compliance has stiffness κ during an initial period of compression c 0 t t < ≤ and subsequently, a stiffness 2 * e κ -during restitution c f t t t < ≤ . This bilinear compliance that incorporates hysteresis of the normal compliant element only, gives contact forces i F that are related to the small extensions i u of compliant elements during separate periods of the compression c 0 t t ≤ ≤ and restitution c f

t t t < ≤ 2 1 1 3 c 3 3 2 1 1 3 c f 2 2 3 3 * 3c * 0 , ( 0, 0 compression) 0 1 0 0 , ( 0, restitution) ( 1) 0 
F u u t t F u F u u t t t F u e u e η κ η κ κ - - - -       = - < ≤ ≤ -                           = - + > < ≤ -       -             & & (8) 
where 2

η -is the ratio of tangential to normal stiffness, c t is the time of transition from compression to restitution 3 c ( ) 0 v t = , and

1 3c 3 c ( ) u F t κ -
=is the maximum normal compression. For normal force these relations give a loading-unloading hysteresis loop which equates to the energetic coefficient of restitution * e . The hysteresis of normal force results in a terminal indentation

2 3 f * 3c ( ) (1 ) u t e u = -
. The tangential force-displacement relation is assumed to be elastic. These normal and tangential compliances are illustrated in Figure 5, where it is assumed that the initial

value 3 (0) 0 u < &
. At the time of maximum compression c t , the phase of impact passes into restitution where 3 (0) 0

u > &
. These compliance relations are appropriate for bodies composed of rate-independent elastoplastic materials that collide at moderate velocities where there is insignificant plastic deformation [START_REF] Stronge | Oblique impact with friction and tangential compliance[END_REF].
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If the particle slides on the surface of body B′ , the Amontons-Coulomb law of dry friction can represent the effect of friction due to sliding of rough contact surfaces.

Thus the normal and tangential contact forces have the following relations

1 3 1 3 stick sliding F F F s F µ µ <   = -  (9) 
where the direction of sliding

1 1 1 sgn( ) sgn( ) s u V v ′′ = = - & and 1
u′′ & is the sliding velocity at P.

Equation of motion of planar oblique impact

The equations of motion of the impact system are expressed as follows [START_REF] Stronge | Oblique impact with friction and tangential compliance[END_REF])

2 2 1 1 2 1 1 1 1 1 2 2 2 3 3 3 / , / d u dt F m m M M F d u dt β β β β - - - -   -       ′ = = +       -         ( 10 
)
This expression is valid for initial conditions that include rotational as well as translational velocities of the bodies. i β (i=1,2,3) are the elements of the inverse of inertia matrix, which are defined as

2 2 3 3 1 2 2 1 mr mr Mk M k β ′ = + + ′ ′ , 1 3 1 3 2 2 2 mr r mr r Mk M k β ′ ′ = + ′ ′ , 2 2 1 1 3 2 2 1 mr mr Mk M k β ′ = + + ′ ′ (11) 
This hybrid compliant model has a contact force that depends on the state of the system; i.e., the tangential component of the force has a different expression for stick and slip while the normal component is expressed differently for periods of compression and restitution. Accordingly, after substituting (8) into [START_REF] Zhao | The Painlevé paradox studied at a 3D slender rod[END_REF], the equations of motion can be summarized into four distinct states as follows, Stronge et. (a) Compression period:

1. stick state 2 2 2 1 1 2 1 2 2 0 0 2 2 2 3 3 2 3 / 0 , 0 / d u dt u k u m d u dt β η β ω ω β η β - -     -         + = =             -       (12.1) 2. sliding state M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT 2 1 3 2 2 3 0 32 3 2 0 u s u d u u dt µη ω β  = -   + =   (12.2)
where 32 1. stick state

2 2 2 2 2 1 1 2 * 1 2 * 3c 2 2 0 0 2 2 2 2 2 3 3 2 3 * 3 * 3c / ( 1) 
/ ( 1) 

d u dt e u e u u d u dt e e u β η β β ω ω β η β β - - - - - -       - - -         + =           - -           (13.1) 2. sliding state 2 2 2 1 * 3 * 3c 2 2 2 2 2 3 0 32 * 3 0 32 * 3c 2 [ ( 1) ] ( 1) 
 = - - -   + = -   (13.2)
To select the correct equations, it is necessary to evaluate whether the contact state is in compression or restitution, and also whether it is in stick or sliding state. When the contact state changes, one needs to reconsider and select the equations of motion that correspond to the new state. Consequently, integrations of the equations of motion are event-driven and accurate identification of state is very important; the criteria for each state are given in detail in the next section.

The normal relative displacement 3 u′ of the contact points C and C′ is always equal to 3 u because the particle P stays in contact with the surface of body B′ throughout entire impact process. However the tangential relative displacement 1 u′ of the contact points C and C′ , usually is not equal to 1 u . The relative displacement 1 u′ , is equal to 1 u during initial stick, but during sliding it is obtained from the following equations. 

Criteria for different contact processes
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Here we assume the collision begins at time 0 t = with compliant element extensions 0 i u = . The following criteria can be used to determine the initial state of the system, the transition time c t from compression (approach) to restitution (separation), the transition time 01 t from stick to sliding (slip) and the transition time 10 t from sliding to stick (slip), respectively.

(1) Initial state At initial time ( 0 t = ), the contact is in compression and either initial stick or slip.

With the Amontons-Coulomb friction law, an upper bound on the angle of incidence for initial stick can be obtained by assuming initial slip and finding the time 10 t when initial slip is brought to rest. Then taking the limit as 10 0 t → , the upper limit of the ratio of tangential to normal incident velocity for initial stick is obtained. The upper bound for initial stick is

2 1 3 (0) / (0) V V µη < (15) 
(2) Compression or restitution

In the initial period of collision, the contact is in compression. 

( ) 0 F t = (18) 
i.e., at time f t , post-impact separation begins.

Computation process

The computation process naturally divides into two periods (compression c 0 t t ≤ ≤ , and restitution c f t t t < ≤ ). Each period can consist of pure slip, slip-stick or stick-slip where stick and slip occur alternately. While the compression period can also consist of pure stick, the period of restitution always terminates in slip.

1 st period-compression ( c 0 t t ≤ ≤ )
During the initial period of compression, the equation of motion is either equation The initial state of slip or stick at t = 0 can be determined by condition [START_REF] Johansson | Study of frictional impact using a nonsmooth equations solver[END_REF]. If there is initial stick and 01 c t t < , then at time 01 t there is a transition to slip.

It should be noted that this calculation is not complete until compression transitions into restitution at time c t .

2 nd period-restitution ( c f t t t < ≤ )
For the period of restitution, the equation of motion is either equation (13.1) or equation (13.2) depending on the state of slip (either stick or sliding) at the end of the period of compression c t .

Also note that this calculation is not complete until the contact terminates at time f t , when 3 f ( ) 0 F t = . The terminal time f t is when the contact points begin to separate.

Parameter limits for different patterns of stick or sliding
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For collinear impact of bodies with local contact compliance, [START_REF] Stronge | Impact mechanics[END_REF] found that the slip process can experience one of three sequences of slip and stick only depending on the angle of incidence. The sequence can be stick-terminal slip, slipstick-terminal slip, or gross (continuous) slip, respectively.

For a noncollinear impact with local contact compliance, the sequence of tangential behavior is not as simple as that for collinear impact because the inertia coefficients 2 β and 3 β depend on the impact configuration. The detailed process of contact cannot be known by initial conditions in advance. The slip-stick transition time can be either during the period of compression or restitution. The direction of terminal slip can be either the same as the initial state or reversed. Nevertheless, the tangential behavior of noncollinear impact can also be divided into three types of pattern and these result from a small angle of incidence, an intermediate angle of incidence or a large angle of incidence. For a small angle of incidence, stick initiates at initial contact. If the angle of incidence is intermediate, initially there is slip which is followed by stick and finally there is a terminal slip. For a large angle of incidence, sliding continues throughout the entire contact period; i.e., there is gross sliding.

The bounds of different patterns for noncollinear impact are complicated compared with collinear impact. They depend on both the angle of incidence and other parameters such as 1 2 3 , , β β β and µ . Here we only consider the case of

1 3 (0) / (0) 0 V V - > ; the bounds for 1 3 (0) / (0) 0 V V -
< can be obtained by symmetry.

Figure 6 illustrates the decision process for determining initial slip or stick behavior corresponding to any given initial conditions and parameter values. It should be noted that these bounds are obtained from the criteria of section 3.3.

Simulations and discussions for Painlevé paradox in oblique impact

Here, the hybrid analytical model introduced in Section 3 is used to study the Painlevé paradox of oblique impact that was discussed in section 2.2. The impact system is same as those of section 2; i.e., an inclined rigid uniform bar striking
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obliquely with one tip C against a rough half-space as shown in Figure 1. For the oblique impact system, this gives inertia parameters θ π = -. At time 0 t = , the bar is translating with uniform velocity and it has a normal relative velocity at the contact point that is negative (i.e., 0

θ = & , 3 (0) 0 V < ).
A large ratio of tangential to normal incidence velocity is chosen to ensure that the contact is initially sliding in a positive direction (i.e.,

2 1 3 (0) / (0) V V µη - ≥ , 1 (0) 0 V > and 1 s = ).
In this case, it has 32 A β = . Hence, if 32 0 β ≤ (i.e., θ and µ are located in the region of Painlevé paradox shown in Figure 3) and 0 b ≠ , the Painlevé paradox occurs if impact response of a system consisting of a rigid bar striking a rigid half-space is analysed.

Unique solution by hybrid analytical model

For parameters in the region where Painlevé's paradox occurs (i.e., 32 0 β ≤ ) and b < 0, the LCP predicts no solution for these parameters based on a rigid body model. However, the hybrid analytical model that incorporates local contact compliance obtains unique solutions for these cases as shown in Figure 7. f µ that is obtained by dividing non-dimensional tangential contact force

1 1 0 3 ( ) / (0) f F t m V ω
by the coefficient of friction µ , respectively. When the coefficient of friction µ is sufficiently small, (e.g.

/ 3 µ =

), there is gross slip; i.e., initial slip persists throughout the contact process. But a larger µ will bring contact
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into an initial stick state where 32 0 β ≤ . Nevertheless, there is again terminal slip as the normal force decreases during the final period of contact. For instance if 5 / 3 µ = or 8 / 3 a contact process of initial slip-stick-terminal slip occurs as shown in Figure 7. Sometimes the sliding direction will not vary (see Figure 7(a)), but in other cases initial sliding will be stopped and then reverse (see Figure 7(b)). A larger coefficient of friction µ also results in a larger normal component of contact force. As the impact configuration and friction coefficient approach and pass into the Painleve region, there is only a gradual increase in the normal reaction force. f µ , respectively. The results show that for 32 0 β < , the variation of the angle of incidence

1 1 3 tan [ (0) / (0)] V V --
does not change the sequence of tangential behaviour which always goes through three phases: sliding, stick, and terminal (reversal depends on 2 η and * e ) sliding. This is different from the case of 32 0 β > , where the sequence of tangential behaviour can be gross sliding when the tangential relative velocity is large. As the angle of incidence

1 1 3 tan [ (0) / (0)] V V -- increases,
oblique impact approaches a grazing impact. For 32 0 β < , irrespective of the angle of incidence, the impact has a similar dynamic behaviour. When 1

3 (0) / (0) 224 V V - = ,
the oblique impact can be seen as approaching grazing impact. By observing Figure 8, it should be noted that grazing impact also always goes through the three phases of initial slip, stick, and terminal slip when 32 0 β < (i.e., Painlevé phenomenon). 

Figure 10 shows the non-dimensional normal relative velocity between contact point C and particle P for angles of incidence approaching grazing incidence; i.e., the speed of sliding. Here the typical property of self-locking is obvious, i.e., with an
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increase of the tangential relative velocity, the initially compressive normal relative velocity increases due to compressive acceleration. The duration of contact also increases as the angle of incidence increases.

The non-dimensional rate of extension of tangential compliant element,

1 3 ( ) / (0) t v V
, the sliding velocity of particle P on body B′ , 1

1 3 [ ( ) ( )] / (0) V t v t V - , as
well as the tangential relative velocity between C and C′ , 1

( ) / (0) V t V 1 
, are shown in β > ) results in gross slip with an initial sliding speed that is monotonously increasing whereas large friction results in Painlevé behaviour (i.e., 32 0 β < ). For the case of large friction where Painlevé behaviour occurs during an initial period of sliding, this is followed by a period of stick. There is a final, brief period of terminal slip as the normal contact force reduces to zero. For this system where the contact particle P is massless, the tangential relative velocity across the compliant element, 1 ( ) t v , is discontinuous at the transition from stick to terminal sliding. The critical value 32 0

β = results in 1 3 ( ) / (0) t v V
being a constant during the initial sliding phase.

For 0 µ = , there is no extension or compression of the tangential spring element because there is no frictional force. In this case 1

( ) / (0) t v V 3 
equals zero throughout the entire contact process. Different contact processes such as stick-slip, slip-stick-slip or gross slip can be obtained from the parameter limits shown in Figure 6. The non-dimensional rate of extension of tangential compliant element,

1 3 ( ) / (0) t v V
, the sliding velocity of particle P on body B′ , 1

1 3 [ ( ) ( )] / (0) V t v t V - , as
well as the tangential relative velocity between C and C′ , 1 1 ( ) / (0) V t V are shown in Figure 13 and 14 for different angles of incidence. In these figures, all cases represent jam phenomenon which is related to Painlevé paradox. As the angle of incidence increases, oblique impact approaches the state of grazing impact. From Figure 13(c) and 14(c), we find that for grazing impact, the terminal tangential relative velocity of contact points 1 f ( ) V t is equal to zero at separation time f t . Also, similar to oblique impact, the duration of impact is very short. These conclusions can be used to support the shock assumption [START_REF] Pfeiffer | Multibody dynamics with unilateral contacts[END_REF][START_REF] Leine | Periodic motion and bifurcations induced by the Painlevé paradox[END_REF]Zhao et al., 2008b) where there is a velocity jump that eliminates the tangential relative velocity between the contact points. Some authors have adopted the shock assumption to overcome the Painlevé paradox in grazing impact for analytical models of collision between two rigid bodies. But for oblique impact with contact compliance, the terminal tangential relative velocity of contact points 1 f ( ) V t depends on the initial condition 1 3 (0) / (0) V V because of terminal slip. The terminal tangential relative velocity is not equal to zero.

Conclusion

This paper investigates the dynamical behaviour that gives rise to the Painlevé paradox -this phenomenon occurs when an elongated body is sliding in an asymmetric configuration and there is large friction. Painlevé's paradox has been explained from 3 aspects including the mathematical expression of the displacement constraint, the governing equations and the physical behaviour. It has been shown that the source of paradoxical behaviour results from the assumption of Amontons-Coulomb friction and a completely rigid body; these assumptions do not allow the physically required behaviour. Based on a hybrid analytical model which incorporates contact compliance, unique solutions are obtained for the case of Painlevé paradox.

M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT

The Painlevé paradox in oblique impact can be resolved by either the present method or by considering the entire system to be flexible. . † For 32 0 β < and small ratio of initial velocity (i.e.,

The dynamic properties that result in the

2 1 3 (0) / (0) V V s µ η - <
) the contact initially sticks. For larger angle of incidence within this range (i.e.,

(0) / (0) C V V s µ η < - < 2 1 3 c 
), the system experiences Painlevé phenomenon while for small angles it has usual system response. The transition velocity ratio c C is obtained

from 2 2 3 (0) / 0 d V dt = . ‡ For 32 0 β < and 2 1 3 (0) / (0) V V s µ η - ≥
, the contact initially slips as the system experiences Painlevé phenomenon. 
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  the bar and the normal to the tangential plane θ . The Painlevé phenomenon can occur only if there is friction and the configuration is such that the center of mass of the bar trails the contact point C; i.e., for a negative orientation angle θ . The Amontons-Coulomb friction law is assumed to hold at the contact point C with a constant friction coefficient µ > 0. Let G=(x, y) T and C=(x C , y C ) T be the Cartesian coordinates, with respect to a Galilean frame, of the center of mass and the contact point, respectively. The system has three degrees of freedom, which are represented in a position vector for the center of mass q=(x, y, θ)T . The distance between the contact point on the bar and the half-space is C cos y y l θ = -. The relative tangential displacement between contact point C and a reference point on the surface of the halfspace is C sin x x l θ = -. As shown in Fig. 1, the tangential and normal relative velocity between the contact point C on the bar and the half-space are 1 C

  rigid bar is initially sliding on a rough rigid half-space in the positive direction, i.e., C 0 y = , C 0y = & and C 0 x > & .In accord with the Amontons-Coulomb law of friction, the normal and tangential components of the contact force are related by time t = 0 there is a small perturbation which causes the bar to accelerate. The equation of motion of the system in this positive sliding regime can be expressed as a function of the normal contact force,

  complementarity problem transforms into a vibration problem. This system of differential equations has a unique solution. Thus the existence and uniqueness of the solution for oblique impact of a rigid-body with local contact compliance has been proved by the above discussions. The use of compliance at the contact point in the analysis of otherwise rigid body impact has the following three advantages: (1) It overcomes the Painlevé paradox (the occurrence of nonexistence and indeterminacy) in the formulation of LCP based on a rigid-body model. The oblique impact problem with friction has a unique solution;

  al., 2001.

  Restitution period: 

( 12 . 1 )

 121 or equation(12.2). The selection of an equation of motion depends on whether the contact is in initial stick or in slip. If the contact is in stick, the equation of motion is equation (12.1) and the transition condition is condition (17.1), or otherwise equation (12.2) and condition (17.2) are chosen.

  In the following, the Painlevé paradox which arises in cases of rigid body impact with sufficient friction is investigated using the compliant contact analytical model. It is assumed that the contact end of the colliding bar has a spherical surface; for contact with an elastic half-space that has Poisson's ratio 01985). Unless noted otherwise, the configuration angle / 4

Figure 7

 7 Figure 7 illustrates the non-dimensional contact forces as functions of time for different coefficients of friction that are either less than, on the boundary or within the region of Painlevé paradox in Figure 3. The positive light curves and negative heavy curves are non-dimensional normal contact forces 3

Figure 8

 8 Figure 8 shows the variation of non-dimensional contact forces calculated by the hybrid analytical model for an increasing angle of incidence. The positive light curves and the negative heavy curves are non-dimensional normal contact forces 3 f and the quotient 1 /

Figure 8 4. 2 Figure 9 and 10 .

 82910 Figure 8

Figure 9 3 (

 93 Figure9is the non-dimensional normal relative velocity between contact point C and particle P for different values of the coefficient of friction. As shown in Figure10, during oblique impact the conditions for jam are the same as the conditions of Painlevé paradox except for the limiting case of 32 0 β = ; i.e., for a positive direction

Figure 11 and

 11 Figure 11 and 12 for different coefficients of friction. These figures illustrate that for a configuration where Painlevé phenomenon can occur, small friction

Figure 11 (

 11 Figure 11(b) and 12(b) clearly show whether the contact is in slip or stick. The sliding velocity of particle P on body B′ , 1

Figure 11 Figure 12 M

 1112 Figure 11Figure12

  Painlevé paradox have been investigated by the hybrid analytical model. Theoretical analysis indicates that the Painlevé paradox which has been identified by the LCP based on a rigid-body model occurs only in the region where jam (self-locking) occurs for the hybrid model of oblique impact; i.e., 32 0 A β = < . Irrespective of the magnitude of the initial tangential relative velocity, if there is tangential compliance the jam process always goes through three phases: initial slip, stick, and terminal slip. The final phase of terminal slip occurs in a direction that depends on 2 necessary to generate jam; the jam process generates a somewhat larger normal contact force than occurs outside the Painlevé region.
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 123456 Figure1Bar with one end sliding on a rigid half-space
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 4556 Figure 4 Hybrid analytical model for planar impact with friction: (a) global impact model, (b) local compliant contact model

  system experiences Painlevé phenomenon while for small angles it has usual system response. The transition velocity ratio c C is obtained from initially slips as the system experiences Painlevé phenomenon.
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 337 Figure 7 Normal and tangential components of non-dimensional contact force during oblique impact of an inclined rigid bar against a rough half-space with 1 3

  indicates slip-stick transition, indicates stick-slip transition. (a) * 0θ = -π/4, e * = 0.5 µ = -8/3,β 32 <0

  θ = -π/4, e * = 1.0 µ = 8/3,β 32 < 0
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 8 Figure 8 Normal and tangential components of non-dimensional contact force during oblique impact of an inclined rigid bar against a rough half-space with 8 / 3 µ = , / 4 θ π = -, 2 1.21
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 93 Figure 9 Non-dimensional normal relative velocity during oblique impact of an inclined rigid bar against a rough half-space with 1 3 (0) / (0) 3.5 V V -= , / 4 θ π = -, 2 1.21 η =
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 105 Figure 10 Non-dimensional normal relative velocity during oblique impact of an inclined rigid bar against a rough half-space with 8 / 3 µ =
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 113 Figure 11 Non-dimensional relative velocity during oblique impact of an inclined rigid bar against a rough half-space with 1

  time, ω 0 t µ = 0, β 32 > 0 (a) θ = -π/4, e * = 1.0 -V 1 (0)/V 3 (0) = 3.5 µ = 2/3, β 32 > 0 µ = 4/3, β 32 > 0 µ = 5/3, β 32 = 0 µ = 6/3, β 32 < 0 µ = 8/3,
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 12312 Figure 12 Non-dimensional relative velocity during oblique impact of an inclined rigid bar against a rough half-space with 1
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 1312114 Figure 13 Non-dimensional relative velocity during oblique impact of an inclined rigid bar against a rough half-space with 8 / 3 µ =
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(0) / (0) 3.5 

sliding velocity of particle P on body B′ , 1 (a) rate of extension of tangential compliant element, 1

, (b) sliding velocity of particle P on body B′ , 1