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Effect of Electromagnetic Actuations on the Dynamics of a

Harmonically Excited Cantilever Beam
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J. Der Hogapian and J. Mahfoud
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Abstract

The influence of electromagnetic actuators (EMAs) on the frequency response of a harmonically

excited cantilever beam is investigated analytically, numerically and experimentally in this pa-

per. Specifically, the intensity of the current generating the EMAs force is varied and its effect

on the dynamic behavior of the system is analyzed. Analytical treatment based on perturbation

analysis is performed on a simplified equation modeling the one mode vibration of the cantilever

beam. Results indicated that EMAs produce a softening behavior in the system. Further, it is

shown that as the current intensity of EMAs increases, the resonance curve shifts toward smaller

values of frequency and the nonlinear characteristic of the system becomes softer. The analytical

predictions have been verified numerically and confirmed experimentally using a test rig.

Keywords: Electromagnetic actuator, cantilever beam, hysteresis, perturbation method, ex-

perimentation.
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1 Introduction

Nonlinear behavior of mechanical systems can manifest itself in various forms [1, 2]. For in-

stance, in the automotive sector, the lateral vibrations of drive systems by belts may lead to a

Duffing oscillator with parametric excitations [3]. Reducing this type of behavior requires an un-

derstanding of basic phenomena from analytical and experimental viewpoint. Therefore, it is of

great importance to develop a strategy for reducing vibrations with large amplitudes, determine

stability criteria and controlling nonlinear phenomena leading to large amplitude oscillations and

hysteresis in the systems. Recent analytical results have shown that the introduction of a fast

harmonic excitation in pendulum-like systems can have an effect on the elimination of hysteresis

[4, 5]. On the other hand, active magnetic bearings (AMBs) have proved their effectiveness in

many industrial applications; they have the advantage to operate without contact and can be

used in applications requiring clean or corrosive environments [6]. AMBs also have the advan-

tage of being able to act on the shaft directly or indirectly by associating them with conventional

bearings. In this case AMBs act as actuators [7,8].

In the same context, electromagnetic actuators, considered as simple means of excitation [9],

can be exploited positively in industrial applications where attracting forces are needed. The

systems actuated by electromagnetic forces exhibit generally complicated behavior due to the

nonlinearities generated by the force. For instance, nonlinear dynamics and chaos control for

an electromagnetic system has been considered in [10], while active electromagnetic damping of

lateral vibration of a cantilever beam, which is suitable for nonlinear systems, has been investi-

gated in [11].

The objective of this paper is to study analytically, numerically and experimentally, the influ-

ence of EMAs on the frequency response of an excited cantilever beam. Specifically, the effect of

varying the intensity of the current generating the EMAs force on the dynamic behavior of the

system is analyzed. The aim is to assess the possibility of tuning the first resonance frequency

value of the structure by using actuators with constant current.

First, in order to capture basic phenomena and to qualify the effect of electromagnetic forces on

the nonlinear behavior, an analytical treatment of a one degree of freedom system consisting of

2



a nonlinear oscillator subjected to a periodic excitation is performed. The analytical treatment

based on a perturbation analysis leads to an approximation of the amplitude-frequency response

equation allowing the analysis of the influence of EMAs on the frequency response. Then, the

numerical simulations by using finite element method were performed for several configurations

as close as possible to the experiments. The objective is to examine the range of variation of the

important parameters in order to choose the required air gap and current intensity leading to

the suitable behavior. In order to validate the analytical and numerical predictions, experiments

are realized using a test rig composed of a clamped-free beam subjected to an external forcing

and submitted to EMAs forces.

2 Equation of motion and perturbation analysis

The one mode motion of a cantilever beam submitted to a harmonic external excitation and to

symmetric EMAs is modelled as a linear mass-spring system and written in the dimensionless

from as

z
′′

+ cz
′
+ z = f cos ωτ + Fem (1)

where Fem is the electromagnetic actuations given by

Fem = a0(
1

(1− z)2
− 1

(1 + z)2
) (2)

with z = δa

λ
, c = α

mω0
, ω0 =

√
k
m
, ω = ν

ω0
, f = F

λmw2
0
, a0 = C1

λ3mω2
0
and τ = ω0t. Here m is

the mass, ω0 is the natural frequency, α is the damping coefficient, k is the stiffness, F and

ν are the amplitude and the frequency of the external forcing, respectively. The parameter a0

is proportional to the current squared (see section 3). The other parameters λ and C1, which

depend on the geometrical characteristics relating the actuators to the structure, as well as the

colocalized displacement δa are given in section 3. The primes in Eq. (1) represent differentiation

with respect to the time τ . In the case under consideration, the vibrations of the cantilever beam

are assumed to have small amplitudes around the trivial equilibrium. As the form of the right

hand side of Eq. (2) is not suitable to be analyzed directly, it is convenient to use a truncated
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Taylor series expansion, according to

1

(1− z)2
− 1

(1 + z)2
� 4z + 8z3 (3)

which results in the approximate equation of motion given by

z
′′

+ cz
′
+ Ω2

0z − γz3 = f cos ωτ (4)

where Ω2
0 = 1 − 4a0 and γ = 8a0. The analysis of the dynamics of Eq. (4) can be carried out

by performing a perturbation technique. To approximate periodic solutions to Eq. (4) near the

primary resonance, we introduce a small bookkeeping parameter ε in the nonlinear component

and we express the resonance condition according to

Ω2
0 = ω2 + εσ (5)

where σ is the detuning from the resonance. Assuming that damping, nonlinearity and forcing

are small, Eq. (4) can be scaled as follows

z
′′

+ ω2z = ε(f cos ωτ − cz
′ − σz) + ε2γz3 (6)

Using the multiple scales technique [2], we seek a two-scale expansion of the solution in the

form

z(τ) = z0(τ0, τ1, τ2) + εz1(τ0, τ1, τ2) + ε2z2(τ0, τ1, τ2) + 0(ε3) (7)

where τi = εiτ define the different time scales. In terms of the variables τi, the time derivatives

become d
dτ

= D0 + εD1 + ε2D2 + O(ε3) and d2

dτ2 = D2
0 + 2εD01 + ε2D2

1 + 2ε2D02 + O(ε3), where

Di = ∂
∂τi

and Dij = ∂2

∂τi∂τj
. Substituting (7) into (6) and equating terms of the same power of ε,

we obtain the following hierarchy of problems

D2
0z0 + ω2z0 = 0 (8)

D2
0z1 + ω2z1 = −(2D01 + cD0 + σ)z0 + f cos ωτ (9)

D2
0z2 + ω2z2 = −(2D01 + cD0 + σ)z1 − (2D02 + D11 + cD1)z0 + γz3

0 (10)
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The solution to the first order is given by

z0(τ0, τ1, τ2) = r(τ1, τ2)cos(ωτ + θ(τ1, τ2)) (11)

Substituting (11) into (9) and (10) and removing secular terms, we obtain the equations of

amplitude and phase

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dr

dτ
= Ar + H1 sin θ + H2 cos θ

r
dθ

dτ
= Br + Cr3 + H1 cos θ −H2 sin θ

(12)

where r and θ are, respectively, the amplitude and the phase. Here A = −c
2
, H1 = ( fσ

8ω3 − f
2ω

),

H2 = fc
8ω2 , B = σ

2ω
− c2

8ω
− σ2

8ω3 and C = − 3γ
8ω
. Eliminating the phase θ from (12), we obtain the

following amplitude-frequency response (third order equation in r2) equation

C2r6 + 2BCr4 + (A2 + B2)r2 − (H2
1 + H2

2 ) = 0 (13)

Figure 1 illustrates the frequency response curves as expressed by Eq. (13) for the given param-

eters c = 0.05, f = 0.1 and for different values of a0 which is directly related to the current in

the EMAs. The parameters c and f are chosen as small parameters (small damping and small

amplitude of the external excitation) in order to be consistent with the perturbation analysis and

the experimental conditions. The solid branches indicate stable solutions, whereas the dashed

ones indicate unstable ones. Note that only solutions on the solid curves can be observed in the

experiment. For validation, analytical approximations are compared to numerical integration

(circles) using Runge-Kutta method. It can be seen from Fig. 1 that the nonlinear characteristic

of the system is softening and as the intensity of the current a0 increases, the resonance curve

shifts left and the softening behavior increases. For values of a0 approaching zero, the resonance

curve meets the linear behavior as shown in Fig. 1a.

5



0.85 0.9 0.95 1 1.05 1.1
0

0.5

1

1.5

2

2.5

ω

r
(a) a

0
=0.0001

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0

0.5

1

1.5

2

2.5

ω

r

(b) a
0
=0.01(b) a

0
=0.01(b) a

0
=0.01

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0

0.5

1

1.5

2

2.5

ω

r

(c) a
0
=0.03(c) a

0
=0.03

Figure 1: Effect of a0 on the frequency-response curve for c = 0.05 and f = 0.1. Case of two

symmetric EMAs.

It is worth noticing that in the case where only one EMA is used, a similar dynamic behavior

of the system can be obtained. Indeed, assume that the system is actuated by asymmetric EMA

in the form

Fem =
a0

(1− z)2
(14)

By using a truncated Taylor series expansion according to

1

(1− z)2
� 1 + 2z + 3z2 + 4z3 (15)

Eq. (1) reads

z
′′

+ cz
′
+ Ω2

0z + βz2 − γz3 + G = f cos ωτ (16)

where Ω2
0 = 1− 2a0, β = −3a0, G = −a0 and γ = 4a0. We express the 1:1 resonance condition

by introducing a detuning parameter σ according to

Ω2
0 = ω2 + σ (17)

Introducing a bookkeeping parameter ε and scaling such that Eq. (16) is written as

z
′′

+ ω2z = ε(f cos ωτ − σz − βz2 − cz
′ −G) + ε2γz3 (18)

6



Using the multiple scales technique, we seek a two-scale expansion of the solution in the form

z(τ) = z0(τ0, τ1, τ2) + εz1(τ0, τ1, τ2) + ε2z2(τ0, τ1, τ2) + 0(ε3) (19)

Substituting and equating terms of the same power of ε, we obtain the following hierarchy of

problems

D2
0z0 + ω2z0 = 0 (20)

D2
0z1 + ω2z1 = −(2D01 + cD0 + σ)z0 − βz2

0 −G + f cos ωτ (21)

D2
0z2 + ω2z2 = −(2D01 + cD0 + σ)z1 − (2D02 + D11 + cD1)z0 − 2βz0z1 + γz3

0 (22)

The solution to the first order is given by

z0(τ0, τ1, τ2) = r(τ1, τ2)cos(ωτ + θ(τ1, τ2)) (23)

Substituting (23) into (21) and (22), removing secular terms, we obtain, respectively, the modula-

tion equations of amplitude and phase (12) and the amplitude-frequency response equation (13) in

which the coefficients are now given by A = −c
2
, H1 = ( fσ

8ω3− f
2ω

), H2 = fc
8ω2 , B = σ

2ω
− c2

8ω
− βG

ω3 − σ2

8ω3

and C = −( 3γ
8ω

+ 5β2

12ω3 ). In Fig. 2 the corresponding frequency response curves are illustrated

for the same parameters as before (c = 0.05, f = 0.1) and for different values of a0. The solid

curves indicate stable solutions, whereas the dashed curves indicate unstable ones. The analytical

approximations are compared to numerical integration (circles) using a Runge-Kutta method.

This figure exhibits the same dynamic as in the previous case (Fig. 1), that is, the nonlinear

characteristic of the system is softening and as a0 increases, the resonance curve shifts toward

small values of the frequency and becomes softer.
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Figure 2: Effect of a0 on the frequency-response curve for c = 0.05 and f = 0.1. Case of

asymmetric EMA.

3 Test rig description

The experimental system illustrated in Fig. 3 is composed of a clamped-free flexible steel beam

with a constant rectangular section (5 mm height and 30 mm width). The beam was clamped

by fixing one end between two masses using bolted assembly. The first deflection resonance fre-

quency is measured at 12.69 Hz, the theoretical calculated value is 12.77 Hz. The nonlinearity is

produced by EMAs with a constant current. Since an EMA can only produce attractive forces,

two identical actuators commanded simultaneously are utilized. The actuators are placed 0.3 m

from the clamped end. This position is chosen as a function of the mode shape and in order to

avoid excessive displacements larger than the air gap.
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Figure 3: Test rig.

Each EMA is composed of a ferromagnetic circuit and an electrical circuit. The ferromagnetic

circuit is composed of two parts: an (E) shape part that receives the induction coil and an (I)

shape part fixed on the beam. Both parts are composed of assemblies of insulated ferromagnetic

sheets. The quality of the ferromagnetic circuit alloy is considered high enough and the nominal

air gap between the stator and the beam is small enough such that the magnetic loss can be

considered as negligible. The geometries of the actuators are summarized in Fig. 4.

The actuators are designed to deliver a maximum attraction force of 300 N for a maximum

current of 3.0 A. The delivered attraction forces depend on the applied current that can be

constant or variable. In the present study, we consider only the case of a constant current.
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Figure 4: EMA details.

Based on magnetic circuit theory and assuming negligible eddy current effects and conservative

flux, the relationship between the electromagnetic force Fem, air gap e, colocalized displacement

δa and current I can be expressed as

Fem =
N2μ0agI2

2((e± δa(t)) + b+h+d−2a
μr

)2
(24)

The coefficients a, b, d, g and h correspond to the geometrical characteristics of the actuator,

μ0 is the magnetic permeability of a vacuum (4π×10−7 H/m) and N is the number of coils

per actuator. The coefficient μr is the relative magnetic permeability (dimensionless) that is

a function of the air gap and can be varied according to temperature. Its value is based on

the manufacturer’s specifications and is generally not known with great accuracy. In order to

determine its value experimentally, the force generated by an actuator is measured for several air

gaps and for different increasing and decreasing input currents [12]. The relative permeability is

assumed to be constant for a low flux density and the mean value determined for the model is

740. The results obtained show that the hysteresis effect (due to electromagnetic flux) appears

to be negligible and the generated forces are proportional to the current square value.

Notice that according to (24), the total electromagnetic force produced by the actuators can

be expressed in the form

Fem =
C1

λ2
(

1

(1− z)2
− 1

(1 + z)2
) (25)
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where C1 = N2μ0agI2

2
, λ = e + b+h+d−2a

μr
and z = δa

λ
.

4 Numerical investigations

This step is necessary in order to adjust and evaluate the influence of the actuator characteristics

(current and air gap) on the dynamic behavior of the structure and the possibility to introduce

nonlinear behavior. Numerical simulations are performed in a configuration as similar as possible

to the experiment.

In order to simulate the measured responses, the structure under study is modeled by using

finite elements. The chassis structure and the clamping are modeled as rigid masses, the beam

is represented by 20 equal length Timoshenko beam elements with two nodes and 5 degrees of

freedom, namely, three displacements and two rotations per node (along X and Z direction).

The dynamic behavior of the flexible structure can be expressed in the state system presentation

by
⎡
⎢⎣

δ̇

δ̈

⎤
⎥⎦ = Ẋ = [A]X + [B]F =

⎡
⎢⎣

0 I

−M−1K −M−1C

⎤
⎥⎦

⎡
⎢⎣

δ

δ̇

⎤
⎥⎦ +

⎡
⎢⎣

0

M−1

⎤
⎥⎦ (Fexcitation + Fem) (26)

where [M ] is the mass matrix, [K] is the stiffness matrix, [C] is the damping matrix, X is the

state vector and δ, δ̇, δ̈ are displacement, velocity and acceleration, respectively. [A] is the

dynamic matrix, [B] is the command matrix and Fexcitation is the external excitation. The effect

of the EMAs, Fem, is considered in the second member as a restitution force.

Simulations are carried out under Matlab R© and Simulink R© environment. The main purpose is

to analyze the dynamic behavior of the structure in the vicinity of the first mode. Calculations

are performed by using modal reduction method in order to reduce simulation time. The first

eight modes are considered and the damping factor utilized is 0.005 for all modes.
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Figure 5: Simulation schema.

Figure 5 presents the general schema of simulation. The structure response is calculated at

node � 7 corresponding to the displacement sensor position. The excitation force is a sinusoïdal

sweep of 10Hz (5Hz below and 5Hz above the first resonance frequency) in 300 seconds. The force

of 0.1N amplitude is applied on node � 3 which corresponds to the position of the electromagnetic

shaker.

Figure 6: System response as a function of current and gap distance variations.

First, the system response is calculated for a constant current of 1A and for several air gap

values as shown in Fig. 6 (left). For relatively small air gap values (1 and 1.02 mm), the softening

effects can be clearly observed, the nondimensional value of the resonance frequency shifts from

1 to 0.4. In addition, instability zones appear for low frequencies indicating the occurrence of

complex dynamics due to the nonlinearity generated by the EMAs [10]. As the air gap value
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increases, the instability zones are attenuated and the hysteresis disappears. The curves in Fig.

6 (left) depict a softening system and confirm the shift of the frequency predicted by theory. For

an important air gap value (1.4 mm), the shift of the resonance frequency is still observable and

the jump phenomenon disappears.

Figure 6 (right) illustrates the system response for an air gap of 1.2mm and for different values

of current. It can be seen in this figure that increasing the intensity of the current value amplifies

the jump phenomena and shifts the resonance frequency toward lowest values.

These results obtained by numerical simulations demonstrate the possibility of obtaining a

structure whose dynamic behavior exhibits hysteresis and frequency shift by using electromag-

netic forces. In addition, this nonlinear behavior can be modified and controlled. The results

obtained by numerical simulations are in qualitative and quantitative agreement with the analyt-

ical predictions obtained above. Next, we perform experimental testing to validate the analytical

and numerical findings.

5 Experimental investigations

The displacements are measured by using a proximity sensor (Vibrometer TQ 102, 8 mV/ μm

sensitivity) located along the y axis. The excitation force is applied by using an electromagnetic

shaker (B&K 4810, 20 N maximum force and bandwidth up to 10 KHz). The shaker is suspended

by using flexible support and connected to the beam by using a pushrod near the clamped end

in order to minimize the modification of the structure dynamic behavior. Given the position of

the shaker, the applied force could be considered as constant during the entire experiment. The

data acquisition device used to collect experimental data is Agilent 25670A. It enables real time

data acquisition and signal processing.

In Fig. 7 is illustrated the comparison between the numerical simulations (right) and the

experimental investigations (left) showing a good agreement from quantitative and qualitative

view points. It is worthy to point out that the analytical results are obtained for a nondimensional

single degree of freedom system that leads to qualitative results and hence comparison with
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experimental findings is not consistent. The chosen configuration is 1 mm air gap and 0.5 A

current intensity. The amplitude of the exciting force is 1.5 N. The displacements are measured for

an increasing and decreasing sinusoidal sweep from 5 to 17 Hz in 600 seconds. Large period of time

was required in order to reach the permanent regime for each measurement. Similar conditions

are applied for numerical and experimental investigations. Even though the numerical model was

simple, that is no secondary phenomena noticed experimentally were taken into consideration,

the general trends are still the same. It could be noticed that the first resonance frequency

is shifted towards smaller values from 12.69 Hz to 8 Hz in increasing sweep and to 7.6 Hz in

decreasing sweep. Also the hysteresis phenomenon is clearly observed via the amplitude jumps.

This behavior is more accentuated in the experimental results.

Figure 7: Comparison between numerical (right) and experimental (left) results.

This experimental observation confirms that the EMAs have a softening effect on the dynamic

behavior of the structure under study for the considered frequency range.

The aim of the experiments is to assess the possibility of tuning the first resonance frequency

value of the structure by using actuators with constant current. Only results for 1 mm air gap

are presented. For air gap values smaller than 1 mm, it was difficult to obtain stable behavior

for the considered frequency range. On the other hand, the amplitude jump phenomena were

not easily identified for air gap values greater than 1 mm.
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6 Conclusion

We have investigated analytically, numerically as well as using experimental testing, the effect

of EMAs on the dynamics of a periodically excited cantilever beam. The model adopted in

the analytical treatment is a linear single degree of freedom oscillator subjected to an external

harmonic excitation and to EMAs forces. The multiple scales method was applied to obtain

approximation of the frequency-response curve. It was shown that the force induced by the EMAs

introduces a softening behavior into the system and causes the resonance curve to undergo a shift

of almost forty percent towards smaller frequencies. Further, as the intensity of the current of the

EMAs force is increased, the softening characteristic of the system increases too. These results

indicate that in some mechanical systems, as rotating machinery mounted on active magnetic

bearings, it is possible to tune the resonance frequency in order to avoid the critical speeds during

run-up or run-down.
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