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Abstract- This paper presents a dynamic behaviour study of non-linear friction systems subject to 

uncertain friction laws. The main aspects are the analysis of the stability and the associated non-linear 

amplitude around the steady-state equilibrium. As friction systems are highly sensitive to the 

dispersion of friction laws, it is necessary to take into account the uncertainty of the friction coefficient 

to obtain stability intervals and to estimate the extreme magnitudes of oscillations. Intrusive and non-

intrusive methods based on the polynomial chaos theory are proposed to tackle these problems. The 

efficiency of these methods is investigated in a two degree of freedom system representing a drum 

brake system. The proposed methods prove to be interesting alternatives to the classic methods such as 

parametric studies and Monte Carlo based techniques.  

Key word: Dry friction systems, Nonlinear dynamic systems, stability, limit cycle, robustness, 

uncertainty propagation, polynomial chaos, Lyapunov function, SOS programming. 

1. Introduction 

     Dry friction systems play a key role in numerous industrial applications such as braking, wiping 

and clutch systems (Sinou and Jezquel, 2007). The analysis of stability and dynamic behaviour 

associated with this particular class of nonlinear dynamic systems is of major importance (Sinou et. al, 

2004).  

Several parametric studies have shown the great sensitivity of the dynamic behaviour of friction 

systems to design parameters, in particular to friction laws (Ibrahim, 1994a, 1994b; Hoffmann and 
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Gaul, 2003; Shin et. al, 2002a, 2002b; Sinou et. al, 2006a, 2006b; Sinou and Jezequel, 2007). 

However, the friction coefficient admits strong dispersions (Chevennement et. al, 2005, 2007). 

Therefore, it becomes necessary to take into account these uncertainties in order to ensure the 

robustness of the analysis. A robust study of non-linear dynamic behaviour will help to analyze 

stability and to predict the vibration levels according to the parameters variability. Several methods are 

proposed in the literature. They are called “methods of uncertainty propagation” in which the 

probabilistic approach occupies a dominating place. Monte Carlo (MC) simulation is a well known 

technique in this field (Fishman, 1996). It can give the entire probability density function of any 

system variable, but it is often too costly since a great number of samples are required for reasonable 

accuracy. Parallel simulation (Papadrakakis and Papadopoulos, 1999), Latin Hypercube Sampling 

(Helton and Davis, 2003) and proper orthogonal decomposition (Lindsley and Beran, 2005) are some 

solutions proposed to circumvent the computational difficulties of the MC method.  

    Polynomial chaos expansion (PCE) is presented in the literature as a more efficient probabilistic 

tool for uncertainty propagation. It was first introduced by Wiener and pioneered by Ghanem and 

Spanos who used Hermite orthogonal polynomials to model stochastic processes with Gaussian 

random variables (Wiener, 1938; Ghanem and spanos, 1991). The exponential convergence of such 

expansion has been shown (Cameron and Martin, 1947) and generalized to various continuous and 

discrete distributions using orthogonal polynomials from the so called Askey-scheme (Askey and 

Wilson, 1985; Xiu and Karniadakis, 2003; Wan and Karniadakis, 2006).  

Polynomial chaos (PC) gives a mathematical framework to separate the stochastic components of a 

system response from the deterministic ones. The stochastic Galerkin method (Babuska et. al, 2004; 

Ghanem and Spanos, 1991; Le Maître et. al, 2001), collocation and regression methods (Babuska et.al, 

2007; Crestaux et. al, 2009) are used to compute the deterministic components called stochastic modes 

in an intrusive and non intrusive manner while random components are concentrated in the polynomial 

basis used. Non intrusive procedures prove to be more advantageous for stochastic dynamic systems 

since they need no modifications of the system model, contrary to the intrusive method. In the latter, 

Galerkin techniques are used to generate a set of deterministic coupled equations from the stochastic 

system model, then a suitable algorithm is adapted to obtain stochastic modes.  
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The capabilities of polynomial chaos expansion have been tested in numerous applications, such as 

treating uncertainties in environmental and biological problems (Isukapalli et. al, 1998; Isukapalli and 

Georgopoulos, 1998) and in multibody dynamic systems (Sandu et. al, 2006a, 2006b), solving 

ordinary and partial differential equations (Williams, 2006; Xiu et. Al, 2003; Xiu and Karniadakis, 

2002, 2003), sensitivity analysis (Crestaux et. al, 2009; Sudret, 2007), parameter estimation (Saad et. 

al, 2007; Li and Xiu, 2009; Blanchard et. al, 2009, 2010a, 2010b; Smith et. al, 2007) and controller 

design problems, (Hover and Triantafyllou, 2006; Nagy and Bratz, 2006). In the particular case of the 

problem dealt with in this paper, recent research work has been carried out. Indeed, the intrusive 

approach is a new one to analyze the stability of uncertain dynamic systems (Fischer and 

Bhattacharya, 2008). Fisher analyzes the stability of equilibrium in stochastic linear and polynomial 

dynamic systems by checking - with direct Lyapunov approach - the stability of the deterministic 

dynamic systems resulting from the application of intrusive polynomial chaos. Polynomial chaos has 

also been proposed recently for limit cycle oscillations (LCOs). Beran and co-authors consider in 

particular uncertain aerodynamic systems. In this study, the authors use the Wiener-Hermite  

polynomial expansion to analyze the variability of the limit cycle oscillations of an aerodynamic 

system according to Gaussian uncertainties in physical parameters, (Beran et. al, 2006) . The same 

problem is dealt with in other studies (Millman et. al, 2003; Pettit and Beran, 2006; Witteveen et. al, 

2007). All come to the same conclusion: polynomial chaos gives good approximations of short term 

statistics (in terms of mean value and variance of LCO amplitudes) but presents a number of 

difficulties and limits to well approximate long term statistics.   

    In the particular case of friction systems, there are only few studies on this class of systems and no 

applications with polynomial chaos have been recorded.  For instance, in the study of Ragot and co-

authors, the interval theory is used to surround the dispersion of limit cycle oscillations due to the 

uncertainty of the friction coefficient (Ragot et. al, 2008); an overestimation problem is revealed 

which is due to accumulations of errors in time leading to the divergence of the envelopes of limit 

cycle amplitudes.   
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    The main originality of the present paper is that the uncertainty of the friction coefficient in the 

dynamic behaviour study of friction systems is taken into account. The main objective is to investigate 

the capabilities of the polynomial chaos approach concerning the stability and limit cycle analysis of 

this important class of nonlinear dynamic systems subject to uncertain friction laws. So, a two-degree 

of freedom system modelling the dynamic behaviour of a drum brake is considered (Hultèn, 1993; 

Sinou and Jezquel, 2007).  The theoretical basis of both the polynomial chaos and the Lyapunov 

approach are presented in Section 2. Intrusive and non-intrusive methods are detailed as well as how 

to search for a Lyapunov function using sum of square polynomials.  Section 3 is devoted to the study 

of the dynamic behaviour of the two degree of freedom friction system. The system is first presented, 

its stability is investigated and the LCO dispersion is estimated.  Conclusions and perspectives are 

given at the end of the paper.   

2. Theoretical methods   

2.1. Polynomial chaos  

    Polynomial chaos establishes a separation between the stochastic components of a random function 

and its deterministic components. Here is the mathematical framework of this approach. From the 

Wiener theory and the generalized Cameron-Martin theorem, any second order random process x  can 

be expanded in a convergent (in the mean square sense) polynomial function series as:  

                                        
( )

0
j j

j

x x φ ξ
∞

=

=∑                                                                                              (1)     

ξ is a vector of d independent random variables with a known joint density function ( )W ξ , jx are 

the stochastic modes of the random process x and jφ are orthogonal polynomial functions 

satisfying the following relations: 

 

                                        

( ) ( ) ( )

2

,

0

i j i j

i

W d

i j

i j

φ φ φ ξ φ ξ ξ ξ

φ

=

≠=  =

∫
                                                               (2) 
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� being the internal product operator.  

In practice, polynomial chaos expansion is truncated to a finite number of terms P  which is 

demonstrated to be dependent on the polynomial chaos order r  and stochastic dimension d  denoting 

the number of uncertain parameters.   

                                                   
( )

0

P

j j
j

x x φ ξ
=

≈∑                                                                            (3) 

and 

                                                  ( )( )!/ ! ! 1P d r d r= + −                                                               (4) 

Then, computing x
 
is turned into the problem of finding the coefficients jx  of its truncated 

expansion. Two main approaches are defined to calculate these coefficients called stochastic modes. 

The non-intrusive approach includes some techniques (non-intrusive spectral projection (NISP), 

regression) which use simulations corresponding to particular samples of the random parameters. The 

principal advantage of these techniques is related to the fact that no modification is performed on the 

system model contrary to the intrusive approach which needs the Galerkin techniques to generate a set 

of coupled deterministic equations from the uncertain system model. To explain how to use intrusive 

and nonintrusive techniques, consider the class of polynomial dynamic systems with a control 

parameterµ , described by the following smooth vector field: 

                                                           
( ) ( )
:

, ,

n nf

x f xµ µ
ℜ ×ℜ → ℜ

→
 

such that           ( ) ( )( ),x t f x t µ=&                                                                                                       (5)     

Equivalently: 

                                                  
( ) ( ) ( )( )1 ,..., , , 1,...,i i nx t f x t x t i nµ= =&                                        (6) 

Note that choice of polynomial dynamic systems is not restrictive since any smooth nonlinear function 

can be approximated by a polynomial function, using Taylor’s series expansion.  
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Consider a uniform distribution for parameterµ . As a consequence, the state variables also become 

uncertain. According to the Askey scheme (Askey and Wilson, 1985), Legendre polynomials ( )jL ξ  

are more suitable for uniform uncertainties. So, all random variables can be expanded in terms of 

Legendre polynomials. As the control parameter µ  is a constant, the first order Wiener-Legendre 

expansion is sufficient to describe it while the random state variables can be approximated by:  

                                                 
( ) ( ) ( ),

0

, , 1,...,
P

i i j j
j

x t x t L i nξ ξ
=

≈ =∑                                               (7)               

where [ ]1,1ξ ∈ − is the new stochastic variable uniformly distributed on [ ]1,1−
 
which is the 

orthogonality interval of the Legendre polynomials.  

 

Stochastic modes ( ),i jx t  are then computed, using the intrusive or non-intrusive spectral projection or 

regression methods. 

2.1.1. Intrusive approach  

The intrusive approach can be summarized in four steps.  

1. Substitute the truncated Wiener Legendre expansion (7) in the system equations (6).  

( ) ( ) ( ) ( ) ( ) ( ) ( ), 1, ,
0 0 0

, , , , 1,...,
P P P

i j j i j j n j j
j j j

x t L f x t L x t L i nξ ξ ξ µ ξ
= = =

 
= = 

 
∑ ∑ ∑& K              (8)    

2. Compute the Galerkin projection as follows: 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

,
0

1, ,
0 0

,

, , , , , 1,..., , 0,...,

P

i j j l
j

P P

i j j n j j l
j j

x t L L

f x t L x t L L i n l P

ξ ξ

ξ ξ µ ξ ξ

=

= =

=

 
= = 

 

∑

∑ ∑

&

K

      

(9)        

Using the orthogonal property of Legendre polynomials, a system of 1P + deterministic 

coupled equations is derived.  

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )2

, , ,
0 0

1,...,
1/ ,..., , , ,

0,...,

P P

i l l i i j j n j j l
j j

i n
x t L f x t L x t L L

l P
ξ ξ ξ µ ξ ξ

= =

  =
=   = 

∑ ∑&

                                                                                                                                                 (10)  
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3. Resolve the deterministic system using an appropriate algorithm. 

2.1.2. Non-intrusive approach 

a. Non-intrusive spectral projection (NISP) 

The NISP method uses the internal product of ( ),ix t ξ with ( )jL ξ
 
and the orthogonality of Legendre 

polynomials to compute the stochastic modes ( ),i jx t  from (7) as follows:

                   

 

                                        

( ) ( )( ) ( ) ( ) ( )
1

2
,

1

1/ ,i j j i jx t L x t L W dξ ξ ξ ξ ξ
−

= ∫                                      (11)    

The denominator of expression (11) is an internal product between the same orthogonal polynomial. It 

can be calculated analytically, then may be tabulated. The problem, however, is related to the 

calculation of the numerator.    Numerical techniques are used for integral computing such as the 

Monte Carlo or collocation methods (Crestaux et. al, 2009). Note that there are sparse grid collocation 

techniques used for multidimensional integral computation in cases of multiple uncertain parameters 

(Ganapathysubramanian and Zabaras, 2007). In the present paper, the studied system (5) possesses one 

uncertain parameter, so the stochastic modes ( ),i jx t  are computed from mono-dimensional integrals. 

The Gauss collocation is used for this, (Crestaux et. al, 2009; Jakerman and Roberts, 2009). 

b.  Regression method  

        The regression method consists in calculating the stochastic modes ,i jx by minimizing the 

following least square criterion: 

                         

( )( ) ( ) ( )( )
2

,
1 0

, , 1,...,
q P

k k
i i j j

k j

x t x t i nε ξ φ ξ
= =

 
= − = 

 
∑ ∑                                            (12)  

with q  denoting a number of system deterministic simulations such that 1P q+ <  .  

 

The regression method does not use the orthogonality property of polynomial chaos contrary to the 

collocation and intrusive methods. It just needs a sample set of the random parameters ( ){ }kξ
 
and the 
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corresponding set of simulation outputs ( )( ){ }, k
ix t ξ . The first one can be constructed using Monte 

Carlo techniques while the simulation outputs are obtained following the model describing the 

physical system (5).  

2.1.3. Statistical characteristics 

Once the stochastic modes have been obtained, they are processed to extract the statistical 

characteristics of the interest. The first and second order moments are given by: 

 

                                   

( ) ( )

( ) ( )( ) ( ) ( )( )
,0

222 2
, ,0

0

, 1,...,

mean
i i

P

i i j j i
j

x t x t

i n
t x t L x tσ ξ

=

 =
 = = −


∑
                            

  (13)

                                     

The instantaneous histograms describing the probabilistic laws of the system’s variables can be built 

from the truncated polynomial chaos expansion (7) using an MC method. No simulation of the system 

(5) is needed. The procedure simply consists in evaluating the polynomials used in the different 

samples generated following the distribution law of the random parameter.  This procedure is clearly 

less costly than the MC method applied to the system (5).   

2.2. Lyapunov theory 

        As mentioned above, this paper deals with the behaviour of the dynamic system described by (5). 

An important axis in this topic is the stability analysis of the system. The Lyapunov approach to 

nonlinear systems stability is the most general and most useful tool. It consists in searching for a 

positive definite function called Lyapunov function, so that its derivative along the system trajectory is 

negative definite (Slotine, 1999). The main difficulty in this method is to find a suitable Lyapunov 

function.  Sum of square programming has recently entered the literature as a powerful tool to search 

for polynomial Lyapunov functions for polynomial dynamic systems (Prajna et. al, 2005).  As the 

polynomial system (5) is stochastic, the Lyapunov method combined with sum of square (SOS) 

programming cannot be used directly. An interesting result is given by Fisher who says that the 

stability of stochastic dynamic systems with polynomial non-linearities can be analyzed by checking 
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for the stability of the deterministic system resulting from the application of intrusive chaos (Fisher 

and Bhattacharya, 2008). The deterministic system resulting from (5) and given by equation (10) is 

expressed in the following general form: 

                                                               ( ) ( )( )x t g x t=&                                                                    (14) 

Where ( ) ( )1n Px t × +∈ℜ denotes the vector of the stochastic modes of all the state variables of the 

system (5).  It represents the vector of the state variables of the new deterministic dynamical system 

(14). g  is a vector of polynomial functions in ( )x t such that ( )1 1

T

n Pg g g × +
 =  L .  

Fisher’s statement will be used to analyze the stability of (5). So, the Lyapunov direct method will be 

summed up, then the sum of square (SOS) polynomials will be described and followed by an 

illustration about how to use it to construct a polynomial Lyapunov function for a second order cubic 

system. 

2.2.1. Lyapunov direct method 

Let ( )1n PD × +⊂ ℜ   be a given neighbourhood containing the origin of (14). According to the Lyapunov 

theorem, if there is a strict positive definite function ( 1): n PV +ℜ → ℜ such that:                                                                                                                              

                                    ( ) ( )( ) ( )/ 0,V x V x x g x x D− = − ∂ ∂ ≥ ∀ ∈&                                                 (15) 

then the origin is a stable equilibrium point.  

 

The main problem is to find a suitable Lyapunov function. Sum of square polynomials can be used to 

do so. 

2.2.2. Sum of square polynomial     

A multivariate polynomial ( )p x of even degree is said to be a sum of squares (SOS), and so positive 

definite, if there exists a finite number m  of polynomials ( )1p x ,..., ( )mp x  such that:  

                                                     
( ) ( )2

1

m

i
i

p x p x
=

=∑                                                                          (16)                                                                                                              
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The existence of such decomposition is shown to be equivalent to the existence of a real positive semi-

definite matrix Q  such that : 

                                                 ( ) ( ) ( )Tp x Z x QZ x=                                                                      (17)
                                

 where ( )Z x  is the vector of monomials of a degree less than or equal to  ( )( )( )deg / 2d ree p x= :                        

                                                 ( )
( )

( )

( )
( )

11 2

11 2

1 2 1

1 2 1

...

...

n P

n P

n P

n P

x x x

Z x x x x

αα α

ββ β

× +

× +

× +

× +

 
 
 =
 
 
  

M
 

 

where iα and iβ  are positive numbers such that 
( )1

1

n P

i
i

dα
× +

=

≤∑ and 
( )1

1

n P

i
i

dβ
× +

=

≤∑  . 

                                          

As a consequence of the above definition, SOS decomposition is reduced to the calculation of matrix 

Q  with an SOS program which can be solved using SOSTOOLS specifically developed software 

(Prajna et. al, 2005). 

2.2.2.1. Construction of Lyapunov function with SOS decomposition 

        SOS programming has been used to search for polynomial Lyapunov functions in polynomial 

dynamic systems (Prajna et. al, 2005). His main idea is to replace checking for positivity conditions on 

( )V x and ( )V x− &  of the Lyapunov theorem by equivalent SOS conditions. Then, for the polynomial 

system (14), the origin is stable if there exists a polynomial function ( 1): n PV +ℜ → ℜ such that it 

satisfies the following two conditions: 

                                               ( ) ( )V x xϕ−  is SOS 

                                              ( ) ( )( ) ( )/V x V x x g x− = − ∂ ∂&  is SOS 

where ( )xϕ  is a strict positive polynomial function used to ensure the strict positivity of ( )V x . Let 

2d  be the degree of ( )V x . A simple choice of ( )xϕ  is given by (18). 
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( )

( )1
2

1 1

n P d
j

ij i
i j

x xϕ ε
× +

= =
= ∑ ∑                                                                      (18) 

where 0ijε ≥  are constants for all i  and j , (Prajna et. al, 2005). 

 

General example 

        In order to understand how the SOS programming based method is used to search for a 

polynomial Lyapunov function, consider a second order polynomial dynamic system expressed by the 

following general form:     

     
2 2 3 2 2 3

1 11 1 12 2 11 1 12 1 2 13 2 11 1 12 1 2 13 1 2 14 2

2 2 3 2 2 3
2 21 1 22 2 21 1 22 1 2 23 2 21 1 22 1 2 23 1 2 24 2

x a x a x b x b x x b x c x c x x c x x c x

x a x a x b x b x x b x c x c x x c x x c x

 = + + + + + + + +


= + + + + + + + +

&

&
                     (19) 

                       

 

For simplicity’s sake, a quadratic Lyapunov function is searched for, with no constant and no linear 

terms. This ensures the positivity of the function searched. Such a Lyapunov function can be 

expressed by:  

                                           ( ) 2 2
20 1 11 1 2 02 2V x d x d x x d x= + +                                                         (20)      

Note that in the following the polynomial function ( )xϕ  is not used, so as to make the procedure 

easier to understand.                                                           

 

The Lyapunov function (20) can be written in an SOS representation as given by (17): 

                                                      
( ) ( ) ( )1

2
TV x Z x G Z x=                                                             (21)                                                                                                            

where ( )Z x is the vector of monomials of a degree less than 2 (degree of ( )V x ); consequently,  

( )Z x  is the same as the state vector ( ) [ ]1 2

T
Z x x x= , and 20 11

11 02

2

2

d d
G

d d

 
=  
 

. The condition for 

the existence of a SOS representation for ( )V x is that  0G ≥ . 
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The Lyapunov function derivative can be found as follows: 

( ) 2 2 3 2 2 3 4 3 2 2
20 1 11 1 2 02 2 30 1 21 1 2 12 1 2 03 2 40 1 31 1 2 22 1 2

3 4
13 1 2 04 2

V x t x t x x t x t x t x x t x x t x t x t x x t x x

t x x t x

= + + + + + + + + + +

+

&

    (22)
                                                                                                                                              

where ijt
 
are linear functions of the system parameters { }, ,ij ij ija b c

 
and the Lyapunov function 

coefficients { }20 11 02, ,d d d  . They are obtained as follows: 

11 11 11 11 22 20 12 02 212 2t d a d a d a d a= + + + ,                                 12 20 13 11 12 11 23 02 222 2t d b d b d b d b= + + + , 

13 20 14 11 13 11 24 02 232 2t d c d c d c d c= + + + ,                                  04 02 24 11 142t d c d c= + ,  

03 02 23 11 132t d b d b= + ,                                                              20 20 11 11 212t d a d a= + , 

30 20 11 11 212t d b d b= + ,                                                              40 20 11 11 212t d c d c= + , 

02 02 22 11 122t d a d a= + ,                                                             21 20 12 11 11 11 22 02 212 2t d b d b d b d b= + + + , 

22 20 13 11 12 11 23 02 222 2t d c d c d c d c= + + + ,                                 31 20 12 11 11 11 22 02 212 2t d c d c d c d c= + + + . 

 

An SOS representation of the Lyapunov function derivative can then be considered as follows: 

 

                                                   ( ) ( ) ( ) ( )1/ 2V x H x R H x= −&                                                       (23)                                                                                              

 

where ( ) 2 2
1 2 1 1 2 2

T
H x x x x x x x =   and matrix R  is obtained as follows: 

 

                                 

20 30 21 1 12 2 11

30 40 31 3 1

21 1 31 22 3 13 2

12 2 3 13 04 03

11 1 2 03 02

2

2

2 2

2

2

t t t t t

t t t

R t t t t

t t t t

t t t

ν ν
ν ν

ν ν ν
ν ν

ν ν

+ + 
 − − 
 = + + −
 + − 
 − − 

                                           (24)                  

where ( )1,2,3i iν = are arbitrary real parameters. See (Prajna et. al, 2005) for further discussion about how 

to introduce these parameters. 
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It must be noted that the constant term in the monomial vector ( )H x  is omitted as there is no 

constant and no linear term in the derivative obtained. 

By replacing ijt  with the linear functions obtained above, matrix R will be dependent on the system 

parameters, the Lyapunov function coefficients and the iν  arbitrary parameters. 

According to the Lyapunov theorem, the origin will be stable if ( )V x− &  is positive semi definite. The 

SOS condition 0R ≥ must then be fulfilled. 

The problem is then to search for the Lyapunov function coefficients 02 11 02, ,d d d  and the arbitrary 

iν parameters, such that the matrices G and R  will be positive and semi positive definite respectively. 

The resolution process represents the feasibility problem of an SOS program which is implemented 

and solved, using the Sostools toolbox under Matlab, (Prajna et. al, 2005). Note that for polynomial 

dynamic systems of a higher order, the same problem with more unknowns must be solved.  

3. Application 

        In order to check the capabilities of the polynomial chaos approach in the analysis of dynamic 

behaviours of stochastic nonlinear friction systems, a simple self-excited mechanism (Fig.1) proposed 

by Hultén and Sinou will be used to study squeal vibrations in drum brakes (Hultén, 1993; Sinou and 

Jezequel, 2007). The aim is to use the polynomial chaos approach in two complementary problems: 

the stability analysis and limit cycle dispersion analysis. The two problems are considered according 

to uniform dispersions of the friction coefficient within two uncertain intervals: stable and unstable 

intervals. The polynomial chaos is used to analyze the stability of the system in the first interval and    

to estimate the amplitudes of oscillations in the second interval in which the system presents flutter 

instability. 

 

Location of Fig.1. 
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3.1 Description of the mechanical model 

        Hultèn’s model is composed of a mass m  held against a moving band; the contact between the 

mass and the band is modelled by two plates supported by two different springs. For simplicity’s sake, 

it is assumed that the mass and band surfaces always keep in contact. This assumption is justified by a 

preload applied to the system. The contact can be expressed by two cubic stiffnesses. Damping is 

integrated as shown in Fig.1. The friction coefficient at contact is assumed to be constant and the band 

moves at a constant velocity. Then it is assumed that the direction of the friction force does not change 

because the relative velocity between the band speed and 1X& or 2X& is assumed to be positive.  

The friction coefficient is assumed to be constant but uncertain. This uncertainty is related in general 

to the manufacturing process which yields uncertain tribological characteristics for the contact 

surfaces. So for two manufactured systems, the corresponding friction coefficients are constant but 

with different values since the tribological characteristics are different.   

The tangential force TF due to friction contact is assumed to be proportional to the normal force NF  as 

given by Coulomb’s law:T NF Fµ= . Assuming that the normal NF  is linearly related to the 

displacement of the mass normal to the contact surface, the resulting equations of motion can be 

expressed as: (Sinou and Jezequel, 2007). 

          
2 2 3 3

1 1 11 1 1 2 1 1 2 2
2 2 3 3

2 2 22 2 1 2 1 1 2 2

01 0

00 1

NL NL

NL NL

XX X X X

XX X X X

η ω ω µω ϕ µϕ
η ω µω ω µϕ ϕ

       − − +    
+ + =           − −            

&& &

&& &
     (25) 

where  /i i ic mkη =
 
are the relative damping coefficients , /i ik mω = are the natural pulsations 

and /NL NL
i ik mϕ =  for 1,2i =  

For numerical application: 1 2 100ω π= × rad/s , 2 2 75ω π= × rad/s , 1 2 0.02η η= = , 2
1 1
NLϕ ω= and 

2 0NLϕ = . 

Considering 1 1 1 2 2 3, ,X x X x X x= = =& and 2 4X x=& , the system model is expressed with a state space 

representation as: 

                                                 ( ) ( ) ( ) ( )( ),NLx t A x t f x tµ µ= +&                                                     (26)   
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where  ( ) ( ) ( ) ( ) ( )1 2 3 4

T
x t x t x t x t x t =   , ( )

2 2
1 1 1 2

2 2
1 2 2 2

0 1 0 0

0

0 0 0 1

0

A
ω η ω µω

µ

µω ω η ω

 
 − − =
 
 − − − 

and  

( )( ) ( ) ( )

( ) ( )

3 3
1 1 2 3

3 3
1 1 2 3

0

,
0

NL NL

NL

NL NL

x t x t
f x t

x t x t

ϕ µϕ
µ

µϕ ϕ

 
 − + =
 
 − − 

 

 

3.2. Stability analysis 

        For a designer, the main objective of a robust stability analysis is to define with certainty that the 

system studied is stable for an uncertain parameter defined within an uncertain interval (such as the 

dispersion interval of the friction coefficient). Therefore, the classic deterministic approach is often 

used. This parametric study consists in calculating the eigenvalues of the linearized system at each 

value of the uncertain parameter, then stability is analyzed by testing the sign of the real parts of the 

eigenvalues obtained. This procedure becomes difficult and prohibitive for nonlinear systems of a 

higher order, since the calculation of the corresponding eigenvalues goes through the resolution of 

characteristic equations of higher order and numerous samples of the uncertain parameter are 

necessary. Two main limits characterize the deterministic approach. The first one is that in practice 

there is no possibility to test all possible values of an uncertain parameter; the second one is that the 

method is not conclusive about stability when eigenvalues are imaginary. So, the parametric approach 

gives no certainty on the system stability. 

 

        The principal objective of using intrusive chaos combined with the direct Lyapunov approach is 

to define the intervals of stability with certainty. This method is proposed by Fisher. (2008) and has 

been tested on numerical examples only. The main idea is that the stability of a stochastic dynamic 
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system with polynomial non-linearities can be analyzed through the stability analysis of the 

deterministic dynamic system resulting from applying intrusive polynomial chaos. 

3.2.1.  Parametric study of stability 

The stability of the friction system equilibrium is investigated using a classic parametric method. The 

friction coefficient is assumed to have dispersions within the interval [ ]0 0.6 .  

The equilibrium ex  of the system (26) is obtained by solving the non-linear static equation: 

                                                 ( ) ( ), 0e e NL ex A x f xµ µ= + =& .                                                        (27) 

The non-linear static solution corresponds to the origin of the system (26).  So, the eigenvalues λ  of 

the linearized system can be found by solving the characteristic equation: 

                                                     
( )( )det 0A Iµ λ− =                                                                      (28)

        
 

The evolution of the system eigenvalues is plotted against the values of the friction coefficient in 

Fig.2. 

Location of Fig.2. 

 

As long as the real parts of all the eigenvalues remain negative, the static solution of the system is 

stable. When at least one of the eigenvalues has a positive real part, the static solution is unstable. The 

imaginary parts of these eigenvalues represent instability frequencies.  

 

The later study of the stability consisted in creating a vector of values from the support of the 

uncertain friction coefficientµ . The conditions for the stability have been tested for each 

point in the vector. For the tested values of µ  which belong to [0, 0.28], the origin is stable 

while for the values greater than 0.28, the origin is unstable. This conclusion is true for the 

created vector but, in fact, cannot be extended to the whole interval [0, 0.6] in which there 

exist values for which stability have not been tested since they do not belong to the generated 

vector. So no certainty can be obtained for the stability conclusions in the considered interval. 
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The size of the generated vector can be increased to have more certainty on the stability 

analysis. However, this yields in practice considerable computational difficulties in particular 

when dealing with more complex dynamic systems. 

3.2.2. Robust approach  

        In order to obtain a certain interval of stability with Fisher’s method, stability analysis is 

considered not on a single interval but on several intervals. This is to reduce computational 

difficulties. In fact, as the order of the Wiener-Legendre expansion required to well approximate the 

statistics of the system (26) augments with the increase of the uncertain interval bandwidth, the 

dimension of the deterministic system resulting from the application of the intrusive chaos becomes 

important. Consequently, the number of monomials in the polynomial Lyapunov function to be 

searched for is so large that the necessary memory size of storage must be higher. So, three intervals 

[ ]a b are considered:[ ]0 0.1 , [ ]0.1 0.2 and[ ]0.2 0.28 . For each interval, a uniform dispersion of 

the friction coefficient is assumed which helps to express it as: 

                                                       ( ) moyµ ξ µ α ξ= +                                                                       (29)                                       

where  ( ) / 2moy a bµ = + , α is a suitable constant and [ ]1 1ξ ∈ −
 
is a uniform stochastic variable.  

Once the Wiener-Legendre expansion is applied, a deterministic system of dynamic equations is 

obtained following the procedure described in Section 2.2. For each interval, the order of the 

development is validated by comparing the mean values and the variances of the system variables 

(displacement and velocity) obtained from the Wiener-Legendre expansion to MC solutions. SOS 

programming is then used to build the polynomial Lyapunov functions proving the stability of the 

system origin.  

The deterministic system resulting from the application of the Wiener-Legendre expansion is given 

by:  
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( )

( )

( )

1, 2,

3, 4,

2 2 2
2, 1 1 2, 1 1, 2 3, 1 1, 1, 1,

0 0 0 0

2
2 3, 3, 3,

0 0 0

2 2 2
4, 2 2 4, 2 3, 1 1,

1/

/

1/

l l

l l

P P P P
NL

l l l l j j l j k q j k q l
i j k q

P P P
NL

l j k q j k q l
j k q

l l l l j j l

x x

x x

x x x L x L L x x x L L L L

L x x x L L L L

x x x L x L L

η ω ω ω µ ϕ

ϕ µ

η ω ω ω µ ϕ

= = = =

= = =

=

=

 
= − − + − 

 

−

= − − + −

∑ ∑∑∑

∑∑∑

&

&

&

&

( )

1 1, 1, 1,
0 0 0 0

2
2 3, 3, 3,

0 0 0

/

0,1,...,

P P P P
NL

j k q j k q l
i j k q

P P P
NL

l j k q j k q l
j k q

x x x L L L L

L x x x L L L L

l P

µ

ϕ

= = = =

= = =














 
 
 


−


 =



∑ ∑∑∑

∑∑∑

(30)  

The results corresponding to the interval [ ] [ ]0 0.1a b =  are shown below.  

For 3P =  mean values ( ) ( )
1 1

ˆ ˆ,X X
t tµ µ &  and variances ( ) ( )

1 1

2 2,X X
t tσ σ &  respectively of the 

displacement ( )1X t and the velocity ( )1X t&  are computed after resolving the differential system (30). 

The latter operation is performed using Matlab’s ODE45 solver. The computed mean values and 

variances are represented in Fig.3 and Fig.4 respectively as functions of time [ ]max0t t∈  with 

max 3t s= . Moreover, they are compared with a MC solution obtained from simulations with 

10,000N = uniformly distributed samples within the given interval.  

Location of Fig.3 

Location of Fig.4 

As shown in Fig.3 and Fig.4, the mean values ( ) ( )
1 1

ˆ ˆ,X X
t tµ µ &  

and variances ( ) ( )
1 1

2 2,X X
t tσ σ &  

obtained from the third order Wiener-Legendre expansion, are as accurate as the referential solutions 

obtained by the MC method. The two statistic moments show oscillatory transients until they damp to 

steady state.  Asymptotic decay of the mean values and the variances is well approximated by the third 

order Wiener-Legendre expansion. The deterministic system (30) is used to analyze the stability of the 

stochastic dynamic system (26). SOS programming and Sostools help to obtain a quadratic Lyapunov 

function is given by: 
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( ) 2 2 2 2 2 1 1
10 30 31 32 33 10 12 11 13

1 1 1 1 1
13 32 31 32 12 33 13 33 10 31

1 1 1 1
11 31 30 31 11 32 12 3

0.38 1.39 1.37 1.38 1.34 0.78 0.68

0.10 0.18 0.44 0.29 0.38

0.34 0.22 0.20 0.29

V x x x x x x e x x e x x

e x x e x x e x x e x x e x x

e x x e x x e x x e x x

− −

− − − − −

− − − −

= + + + + − −

− − − − −

− − − − 1
2 10 30

1 1 2 2 2
11 30 32 33 13 11 12

0.43

0.11 0.16 0.23 0.28 0.22

e x x

e x x e x x x x x

−

− −

−

− − + + +

               (31) 

  

This proves the stability of the origin for a friction coefficient within[ ]0 0.1 . The same conclusion is 

obtained for the two other intervals. The results are given in Annex. So, stability can be established for 

the considered dispersion interval of the friction coefficient[ ]0 0.28 .  

 

        A more general conclusion can be drawn on the complementarity of both the parametric study 

and the intrusive chaos based approach. As mentioned previously, the first method presents some 

limits which do not provide full certainty on stability. The second method cannot be conclusive either 

on the stability if there are instability points within the uncertain interval of the control parameter. So, 

in practice both methods can be combined for greater efficiency and more certainty. Indeed, the 

parametric study can be carried out with a small number of samples in a given dispersion interval to 

determine an interval in which no instability points appear, then the intrusive chaos based method can 

be used to confirm stability within the totality of the given interval.   

3.3. Limit cycle analysis 

        For friction systems, it is not always sufficient to obtain stable and instable zones (Sinou et.al, 

2006a, 2006b). Indeed, for a good design, it must be possible to determine the amplitudes of limit 

cycle oscillations (LCO) to know if they can be neglected or not. The main objective of this study is to 

quantify the resulting dispersion of the LCOs.  

For an uncertain friction coefficient (defined by a uniform law on a given interval), it is necessary to 

estimate the mean value, the standard deviation, the minimum and the maximum values of 

displacements and velocities with the intrusive and the non-intrusive approaches.  
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Consider an interval [ ]a b  for µ  in which the system (26) presents flutter instability. For example 

[ ] [ ]0.3 0.33a b = . First, the sensitivity of LCO amplitudes to small variations of the friction 

coefficient is investigated. The solutions of the system (26) corresponding to 0.3µ =  and 0.31µ =  

are computed using the ODE45 solver.  The corresponding instantaneous displacements ( )1X t  and 

the limit cycles ( )1 1,X X&  are plotted in Fig.5 and Fig.6 respectively. As the stationary behaviour 

(LCO) is reached after a half second (Fig. 5), simulation of the system (26) is stopped at3sec.  

 

Location of Fig.5 

Location of Fig.6 

 

In Fig.5 and Fig.6, a variation of 3.3% of the friction coefficient involves a variation of almost 40% in 

the amplitude of the LCOs ( )1 1,X X& .  

3.3.1. Study with intrusive approach 

        Statistics in terms of mean value and standard deviation of LCO are estimated using (13) after 

solving the system (30) using ODE45. As the stationary behaviour (LCOs) is reached after a half 

second (Fig. 5), simulation of (30) is also reached after three seconds. All these operations are carried 

out for 10P = , 15P =  and 20P =  to observe the influence of the order of the Wiener-Legendre 

expansion used. The mean values of responses ( )1X t
 
and ( )1X t&  obtained with the different orders 

are shown in Fig.7 as functions of time t  and they are compared with the referential solutions 

obtained with the MC method by using 10,000 uniformly distributed samples within[ ]0.3 0.33 . 

 

Location of Fig.7 

         

        The uncertainty of the friction coefficient affects the amplitude and the frequency of the system 

responses (displacements and velocities). The effect on the frequency is observed from the variations 
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of the phase difference between the system responses corresponding to the samples of the friction 

coefficient.  These responses are functions of time and are of opposite signs so that they cancel each 

other when the mean value is computed with the MC method. Consequently, the mean value is a 

damped oscillation as shown in Fig.7. It can be noted that this damping and the amplitudes of the 

mean values are approximated more accurately with the 20th Wiener-Legendre expansion than the 10th 

and 15th Wiener-Legendre expansions. The accuracy of the Wiener-Legendre expansion decreases 

with time and thus requires a higher order. The same observation applies to Fig.8 where the 

probabilistic distribution of ( )1X t is reconstructed at different times 1sect = , 2sect = and at 

3sect = . Note that no simulation of the system is needed to construct the probabilistic distribution. It 

just needs the evaluation of the Legendre polynomial at the given samples of the stochastic variable 

used.   

Location of Fig.8 

 

The 95%  confidence interval estimated for the mean value of ( )1X t  obtained from the MC method is 

represented in Fig.9.   

 

Location of Fig.9 

 

The referential mean value is always included in the constructed confidence interval contrary to the 

mean value obtained by the intrusive PC with 20P = . So, it appears that the PC solution for the mean 

value with 20P =  is not suitable.  

3.3.2. Non-intrusive approach 

        To improve the accuracy of the intrusive Wiener-Legendre approximation, the expansion order 

can be increased. The large size of the resulting deterministic system makes this operation difficult. 

Indeed, the intrusive application of the Wiener-Legendre expansion with an order greater than 20 gives 

a deterministic system with more than 80 dynamic equations, so implementation and resolving become 
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difficult tasks.  The non-intrusive approach can be seen as an alternative to circumvent these 

drawbacks since no modifications of the system model are needed. The NISP and regression methods 

with 20P =  are applied. The number of simulations required for the first method is given by 

1P + and corresponds to the zeros of the 21st order Legendre polynomial. For the regression method, 

the number is fixed arbitrarily to 25 and corresponds to the zeros of the 25th order Legendre 

polynomial. Both numbers are much smaller than the one necessary for an MC method with good 

accuracy.  

 

The mean values obtained with all the methods are shown in Fig.10 as functions of time t  and the 

distributions of ( )1X t  at 1t s= , 2t s= and 3t s=  are constructed  and represented in Fig.11.  

 

Location Fig.10 

Location of Fig.11 

        In Fig.10, the mean values of ( )1X t  computed from non-intrusive methods (collocation and 

regression) are almost similar to that of the MC method for all times [ ]0, 3sect ∈ , contrary to the 

intrusive solution for which the relative error rises to a higher level (from 16.94% at 1t s= to more 

than 100% at 3t s= ). The probability distributions of ( )1X t
 
at different times obtained with non 

intrusive methods are the best approximations, as illustrated in Fig.11. The regression method gives 

the most accurate results with smaller maximal relative errors (7.14 % for the mean value and 0.11% 

for the standard deviation.  From Fig.12, the mean values obtained with both the collocation and 

regression methods belong to the 95% confidence interval. This confirms the improvement of the 

accuracy given by the non-intrusive methods.  

Location of Fig.12 

        In a previous step, polynomial chaos was used intrusively and non-intrusively to estimate the first 

and second order statistics of the dynamic behaviour of the friction system (26).  The second manner 

was shown to be more efficient and more accurate than the first one. The second objective of the study 
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is to estimate the minimum and maximum of the LCO amplitudes. Therefore, the 20th and the 30th 

Wiener-Legendre expansions are used to construct the minimum and maximum distributions of the 

LCO amplitudes with 10,000 samples distributed uniformly within the orthogonality interval of the 

Legendre polynomial.  The global minimum and maximum obtained with 20P =  and 30P =  are 

given in Tab.1 and Tab.2, respectively. Note that this method is less costly than the MC procedure. 

The latter requires the system’s simulation for each sample of the uncertain parameter contrary to the 

polynomial chaos based approach which requires only the evaluation of the Legendre polynomials at 

the generating samples.   

 

Location of Tab.1 

Location of Tab.2 

 

For 20P = , all methods suitably estimate the reference values of the global minimum and maximum 

obtained with the Monte Carlo method. Non intrusive methods give estimations with smaller relative 

errors than the ones obtained by the intrusive method.  

For 30P = , only non intrusive methods are used since the intrusive method is, as shown previously, 

less accurate. Moreover, the latter is more difficult to implement. The results given by the non-

intrusive methods show great accuracy which consists of small relative error (< 0.6%).  

4. Conclusion: 

       An approach based on the polynomial chaos theory has been proposed to study the dynamic 

behaviour of friction systems which are highly sensitive to dispersions of the friction laws. A complete 

study of the dynamic behaviour including stability and vibratory analyses has been carried out for a 

two degree of freedom model describing a drum brake system characterized by an uncertain friction 

coefficient. The intrusive and non-intrusive methods based on the Wiener-Legendre expansion have 

been used to determine stability intervals and to predict the amplitudes of limit cycle oscillations in a 

flutter instability zone. Both problems have been dealt with according to an uncertain friction 

coefficient. The efficiency of the proposed methods compared with the prohibitive Monte Carlo 
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method has been highlighted.  The main results of the present study show that the polynomial chaos 

may be an efficient tool to take into account the dispersions of the friction coefficient in the dynamic 

behaviour study of friction systems. First, the direct Lyapunov method combined with the intrusive 

Wiener-Legendre expansion can be used efficiently to analyze stability according to the dispersion of 

the friction coefficient. In fact, this method helps to overcome the limits of the parametric approach 

based on the sample per sample stability analysis. The first step is to apply the polynomial chaos 

intrusively to obtain a deterministic system of dynamic equations corresponding to an uncertain 

interval; then the second step is to use the direct Lyapunov method in particular SOS decompositions 

to find a Lyapunov function for the system obtained. The second problem dealt with in this paper is 

the estimation of the extreme of LCO amplitudes according to a given uncertain interval of the friction 

coefficient in which the system presents flutter instability. In this field, the polynomial chaos approach 

in particular, the non-intrusive methods have also given satisfaction in terms of accuracy of the 

estimations. Finally, it is important to note that the limit cycles are reached rapidly, so the LCO 

analysis is related to the global problem which consists in the analysis of short term statistics in 

stochastic dynamic systems. An interesting perspective is to investigate the case were LCOs are 

reached after a longer time.  Further work in this context is in progress.  

Annex 

In the stability study presented in Subsection 3.2.2, the quadratic Lyapunov functions found for the 

intervals [ ]0.1 0.2
 
and [ ]0.2 0.28  are obtained respectively as:  

 

( ) 2 2 2 2 2 2 2
2 11 13 11 13 12 30 31 32 33 10 30

12 30 10 31 11 31 13 31 30 31 10 32 12 32

31 32 12 33 13 33

0.27 0.22 0.06 0.22 1.24 1.23 1.23 1.21 0.11

0.01 0.02 0.08 0.01 0.05 0.01 0.07

0.04 0.03 0.07 0

V x x x x x x x x x x x x

x x x x x x x x x x x x x x

x x x x x x

= + − + + + + + −
+ − − + − + −

− − − − 2
32 33 33.03 1.23x x x+
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( ) 2 2 2 2
3 31 33 31 30 33 32 10 12 30 11 30 12

2
30 10 11 13 32 12 32 10 13 31 10 31 11

2 2 2
31 13 32 12 10

1.07 1.05 0.04 0.03 0.07 1.08 0.27 0.01

0.14 _ 0.06 0.09 0.01 0.22 0.01 0.11

0.01 1.07 0.22 0.37 0.

V x x x x x x x x x x x x x

x x x x x x x x x x x x x

x x x x x

= + − − − + + +

− − + + − − +

− + + + − 32 31 33 12 33 11 33 13004 0.02 0.01 0.09x x x x x x x x+ − + −
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 MC  Intrusive PC  Error (%) Collocation Error (%) Regression  Error (%) 

Global min(X1) -0.3309 -0.3444  4.08 -0.3347  1.15 -0.3359  1.51 

Global max(X1)  0.3309  0.3440  3.96  0.3353  1.13  0.3363  1.63 

Global min(dX1/dt) -180.9520 -188.6896  4.28 -181.9281  0.54 -183.6523  1.49 

Global max(dX1/dt) 180.9983  188.8801  4.35  182.1842  0.66  183.8365  1.57 

 

Tab.1. Relative errors, MC solutions as reference results with 20P =  

 MC  Collocation  Error (%) Regression Error (%) 

Global min(X1) -0.3309 -0.3307  0.06 -0.3309  0.00 

Global max(X1)  0.3309  0.3307  0.06  0.3309  0.00 

Global min(dX1/dt) -180.9520 -181.9158  0.53 -181.2867  0.18 

Global max(dX1/dt) 180.9983  181.8950  0.50  181.3285  0.21 

  

Tab.2. Relative errors, MC solutions as reference results with 30P =  

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

30 
 

 

Fig.1. Mechanical model 
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Fig.2. Evolution of the real part of eigenvalues according to the friction coefficient values 
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Fig.3. Instantaneous mean value( )1X t and ( )1X t&
  

 

Fig.4. Instantaneous variance of ( )1X t  and  ( )1X t&  
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Fig.5. Instantaneous displacement ( )1X t  corresponding to two values of the friction coefficient 
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Fig.6. Limit cycle corresponding to two values of the friction coefficient 
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Fig.7. Instantaneous mean value of ( )1X t and ( )1X t&  
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Fig.8. Distribution of ( )1X t  at 1t s= , 2t s= and 3t s=  
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Fig.9. 95% confidence interval for the instantaneous mean value of ( )1X t  

 

Fig.10. Instantaneous mean value of displacement( )1X t  
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Fig.11. Distribution of ( )1X t  at 1t s= , 2t s=  and 3t s=  

 

Fig.12. 95% confidence interval for the instantaneous mean value of ( )1X t  


