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Analysis of comb transducers with sliding teeth

Eugene J. Danicki

Polish Academy of Sciences, IPPT, 5B Pawińskiego Str., Warsaw, 02-106 Poland

Abstract

Ultrasonic comb transducer generates surface acoustic waves on an elastic

substrate by periodic traction exerted by its vibrating periodic teeth on the

substrate surface. In this paper, the comb teeth are actually sliding elastic

spacers between an acoustic buffer and the substrate. The incident wave

in acoustic buffer scatters on periodic spacers producing interface waves in

the system which transform into Rayleigh waves at the transducer edges.

The full-wave theory of interface wave generation is presented, concluded by

efficiency estimation of transformation of the incident wave into the surface

wave in the substrate and of the surface waves back to bulk waves in the

acoustic buffer. Numerical examples presented for all aluminium substrate,

buffer and teeth show the 11-teeth comb combined efficiency for generation

and detection on the level of -40dB for optimized teeth height.
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1. Introduction

In ultrasonic nondestructive testing of planar structures, surface acoustic

Rayleigh or Lamb waves need to be efficiently generated and detected by

dedicated ultrasonic transducers. Comb transducers are found advantageous

in such applications (Hurley, 1999). Originally (Victorov, 1967), it is a comb

with teeth etched in a solid acoustic buffer that delivers bulk longitudinal

incident waves to teeth. Applied to the substrate, the vibrating teeth excite

surface waves in it.

In fact, an interface wave is generated at the comb-substrate interface

which can be quite different from Rayleigh, both in velocity and in the modal

shape; it is transformed into Rayleigh wave at the transducer edges only in

typical scattering phenomenon; certain part of the the interface power is

lost for the scattered bulk waves in the substrate. This loss is smaller if

the interface wave differs less in velocity and modal shape from the surface

wave propagating on the free substrate surface. The optimal comb should

efficiently generate interface waves and provide conditions for their efficient

transformation into surface waves.

Typical comb transducer is a quite complicated, asymmetric waveguide

for interface waves which, naturally, propagate in both the substrate and the

acoustic buffer (in which the comb is etched). The complicated interaction

between the comb and the substrate results in both the complicated disper-

sive relation and the modal shape of interface waves, which generally are

difficult for physical interpretation, what should rather be avoided in mea-

surement systems. For this reason, a symmetric system (a modified comb

transducer) is proposed and investigated here, where sliding periodic spacers
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are applied instead of the etched comb teeth; spacers are in sliding contact

with both the substrate and the acoustic buffer.

For presentation clarity, the substrate, the buffer (both being elastic half-

spaces z < −h/2 and z > h/2, respectively, Fig. 1), and also the spacers

(of rectangular cross-section of width w and height h) are assumed to be

of the same material characterized by the same Lamé constants λ, µ and

mass density ρ. The time-harmonic wave-fields are considered with angular

frequency ω (the term exp(jωt) will be generally omitted in the presented

equations); the corresponding wave-numbers of longitudinal and transversal

waves are: kl = ω
√

ρ/(λ+2µ), kt = ω
√

ρ/µ, respectively, and the Rayleigh

wave-number is kR > kt (its wavelength is λR = 2π/kR). According to the

above discussion, we will seek interface waves with wave-number ko ≈ kR.

The analyzed system is infinite in y direction and the plane interface waves

propagate along x-axis.������������	
����� �
���������	����� ���	������ ����	
������
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Figure 1: A modified comb transducer with sliding periodic spacers inserted between the

acoustic buffer and the substrate. Normal incident longitudinal wave excites interface

waves in the system, which transform into Rayleigh waves (SAW) at the comb edges

in the scattering/reflection phenomenon, depicted on the right-hand side drawing (to be

discussed in Sec. 6; arrows shows the propagation directions of wave-modes).

The paper is organized as follows. Next section presents the model of

comb teeth as a h-long piece of free elastic plate of thickness w (Danicki,
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2008). A pseudo-acoustic impedance H (in the applied notations, boldface

letters are reserved for matrices), yields the relation between Fourier com-

ponents of displacements and stress at both ends of a spacer. The matrix

g provides analogous characterization of elastic half-spaces sufficient for this

analysis: the dependence of normal surface displacements on the normal

surface stress. The boundary-value problem for interface waves and the scat-

tering problem for normall incident longitudinal wave-beam on the spacers

is considered next, including discussion of numerical examples. Finally, the

simplified scattering problem for interface waves at the comb edges is formu-

lated and the comb transducer efficiency is estimated.

In numerical examples presented in Sec. 4 and later, the acoustic buffer

and teeth, as well as the substrate are all of aluminium, for which kl/kt =

0.4723. Taking into account earlier results (Danicki, 1999), we applied narrow

teeth of w equal to a quarter Rayleigh wavelength, because narrow teeth

makes the interface waves closer to Rayleigh waves, what is favorable for

mutual conversion of these waves at the comb edges.

2. Planar wave-fields

The considered harmonic wave-fields exp(jωt− jpx− jqz) are considered

to be independent of axis y = x2 in the Cartesian coordinate system x =

x1, z = x3, and satisfying the radiation conditions at z → ±∞. The system

under consideration consists of three distinct layers: acoustic buffer (z >

h/2) that supports the incident wave propagating downwards from infinity

toward the periodic system of spacers occupying the layer −h/2 < z < h/2,

and the substrate z < −h/2 (Fig. 1). It is convenient for this analysis to
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describe these structural components by surface wave-fields at the surfaces

of layers, that is at both contact planes of spacers with acoustic buffer and

the substrate.

2.1. Wave-field at the substrate surface

Assuming the normal surface traction T33 = t33 exp(jωt − jpx) at z =

−h/2 while T31 = 0, one can easily evaluate the normal surface displacement

at this surface as u3 exp(jωt− jpx), where (Danicki, 1999):

u3 =
j

µ
gt33, g(p) =

qtk
2
t

(2p2 − k2
t )2 + 4p2qlqt

, (1)

and where ql,t =
√

k2
l,t − p2 = −j

√
p2 − k2

l,t have signs chosen to satisfy the

radiation condition at z =→ −∞ by the assumed wave-field exp(jql,tz) in

the substrate.

Substrate loading by surface traction t33 = µζu3 yields a convenient tool

(Ingebrigtsen, 1969) for evaluation of normalized surface displacements. Let

ζ = z0 + jε with ε → 0 and ḡ = jg(p), being a real-valued function for real

p > kt. The dispersive equation for the perturbed surface wave is: ḡ−1 = ζ,

with solution p = k′R + jδ, where δ = ε/ġ, and:

ḡ−1(k′K + jδ) = ḡ−1(k′R) + jδġ,

ġ = dḡ−1/dr |k′R ;
(2)

k′R can be found numerically from ḡ−1(k′R) = z0; for z0 → 0, the limit of k′R

is kR, the wave-number of Rayleigh wave.

The imaginary part of surface wave-number jδ indicates the wave damp-

ing due to the power loss in the surface loading: P = −Re{t∗33(jωu3)}/2 =

−µεω|u3|2/2, which can be compared with the SAW power decaying Π(x) =
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0.5|a|2 exp(−2δx), where the initial SAW amplitude is defined by Π = |a|2/2.

This comparison yields:
dΠ

dx
= P, finally:

|a|2 = | ġ
2
|µω|u3|2,

(3)

presenting the dependence of surface displacement u3 on SAW amplitude for

given k′R. According to Eq. (1), u3 ∼ t33/(p − kR) indicating that only a

surface traction of wave-number close to kR contributes significantly to the

SAW power; the same holds for the corresponding spatial spectra of u3.

2.2. Wave-field at the buffer surface

In acoustic buffer, the incident wave close to normal and characterized

by particle displacement uI
3 and traction tI33, satisfies the radiation condi-

tions at z → ∞. The scattered wave-field us
3, t

s
33 depends on z differently:

exp(−jql,tz), what results in different sign of the dependence of us
3 on ts33.

Explicitly, for a full wave-field at the buffer surface being the superposition

of both the incident and scattered fields u3 = us
3 + uI

3 on t33 = ts33 + tI33, one

obtains:

u3 − uI
3 =

−j

µ
g(t33 − tI33),

that is: u3 =
−j

µ
gt33 + 2uI

3.
(4)

2.3. Wave-fields at the spacer’s ends

A spacer of width w and height h (Fig. 1) has its side surfaces stress-free.

Its end surfaces at z = ±h/2, contacting either with the substrate or acoustic

buffer, are loaded by stress Tu,b = T33(x) |z=±h/2; the resulting displacements

are Uu,b = U3(x) |z=±h/2 (capital letters are used for wave-fields in teeth,

while small letters for wave-fields concern the substrate or acoustic buffer;
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note that at sliding contact, T31 = 0 and U1 is arbitrary). These surface wave-

fields are expanded in natural Fourier series over the domain (−w/2, w/2)

like:

F (x) =
∑
n

F (n) exp(−jnWx), W = 2π/w. (5)

In applications, the Fourier series is truncated at |n| = N , with N chosen

sufficiently large to obtain numerically stable final results, weakly dependent

on variation of N . The above can be rewritten in the matrix form: F (x) =

FT diag{exp(−jnWx)} (we use boldface letters for matrices, superscript T

means matrix transposition).

The dependence of U on T results from the intrinsic dynamics of the strip.

Here, we use modal expansion of the wave-field in infinite plate to evaluate

both at the plate normal cross-sections z. Assuming the amplitude of the

mth mode am, its wave-number qm and the modal shape F (x) exp(−jqmz),

the Fourier expansion of the planar wave-field of interest are (consider diag{·}
as a square matrix where values of n were specified earlier in Eq. (5)):

Uu,b(x) =
∑
m

UT
u,bdiag{exp(−jnWx)} e−jqm(±h/2)am,

Tu,b(x) =
∑
m

TT
u,bdiag{exp(−jnWx)} e−jqm(±h/2)am.

(6)

Elimination of am from these two equations yields explicit dependence of Uu,b

on Tu,b in the matrix pseudo-impedance form (Danicki, 2010), U = HT:



Uu

Ub


 = − j

µ




D d

−d −D







Tu

Tb


 . (7)

The column vectors Uu,b and Tu,b include 2N +1 of the lowest Fourier coeffi-

cients each, with wave-numbers nW, |n| ≤ N ; matrices D and d are evaluated

numerically (Danicki, 2008).
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3. The scattering problem

The surface wave fields in the periodic system of spacers, at their con-

tact planes with acoustic buffer or the substrate is searched in the form of

truncated Bloch expansion:

f(x) =
∑

k

f (k)e−j(r+kK)x = fT diag{e−j(r+kK)x}, (8)

where Λ is the period of spacers, K = 2π/Λ, and r ∈ (−K/2, K/2) is the

reduced wave-number belonging to the first Brillouin zone; it is the spec-

tral variable evaluated in the boundary-value problem as the reduced wave-

number of interface wave ro, or is given by the incident wave-form exp(−jrx);

hence for p = r+kK, the vector uI(p) is uI(r)[δ0k]; δlk is the Kronecker delta.

In what follows, f is the column vector of Bloch components of either the

surface displacements u3 or surface traction t33, in the acoustic buffer (uu, tu)

or the substrate (ub, tb). In this notation, the Eqs. (1) and (4) are:

uu = gtu + 2uI , ub = −gtb, (9)

where g = diag{g(r + kK)} and uI is the corresponding column vector

uI(r)[δ0k]; the domain of k is that chosen in Eq. (8).

In the problems considered, the particle displacements continuity is re-

quired at the contact domains of spacers, x ∈ (−w/2, w/2)+ lΛ (l - arbitrary

integer). Also the surface traction on the spacers ends must be equal that

occurring at the spacers contact with substrate and buffer. Note however

that the traction between spacers vanish. Hence, the boundary conditions

8
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are:

uu,b(x) = Uu,b(x), x ∈ (−w/2, w/2) + lΛ,

Tu,b(x) = tu,b(x), x ∈ (−w/2, w/2) + lΛ,

tu,b(x) = 0, x 6∈ (−w/2, w/2) + lΛ,

where tu,b = t3 |z=±h/2. Applying Eqs. (6,8), they can be presented in the

form:

UT
u,bdiag{e−jnWx} = uT

u,bdiag{e−j(r+kK)x}
tT
u,bdiag{e−j(r+kK)x} = TT

u,bdiag{e−jnWx},
(10)

for x ∈ (−w/2, w/2) + lΛ (and tu,b = Tu,b = 0 outside this domain).

These equations can be solved with respect to uu,b and Tu,b by applying

simple Fourier integrals over x ∈ (−w/2, w/2), what yields (Danicki, 2010):

Uu,b = Vuu,b, tu,b = βVTTu,b,

Vkn =
sin{(r + kK)w/2− nπ}

(r + kK)w/2− nπ
,

(11)

where β = K/W and V = [Vkn], the matrix which transforms the wave-fields

from natural Fourier representations on strips to the Bloch representations

on the substrate and buffer. It has the following property (Danicki, 2008) (I

is a unitary matrix of corresponding dimension):

βVTV ≈ I. (12)

Now, after simple transformations of Eqs. (9) and (11) accounting for

Eq. (7), the scattering problem is formulated by (0uI is the corresponding

vector of zeros):

(βVDVT − g)tu + βVdVT tb = 2uI ,

βVdVT tu + (βVDVT − g)tb = 0uI .
(13)
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There are two separated systems of equations for symmetric and antisym-

metric wave-fields in the considered symmetric system, where the substrate

and acoustic buffer are made of the same material. Solving these equations,

one easily obtains normal traction on the substrate tb and normal displace-

ment from Eq. (1), particularly its Bloch components with wave-number

r + kK ≈ ±kR determining the acoustic power transportation along the

substrate, Eq. (3).

4. Interface wave-modes

It is evident that perhaps two interface modes can exist; their reduced

wave-numbers ro can be evaluated from Eqs. (13) which, after applying

Eq. (12), yield:

det(D± d− βVTgV) = 0. (14)

In the applied teeth geometry (w = λR/4 and h ≤ w), only one mode exists

with r2
o(K) well approximated by:

r2
o = (K −K1)(K −K2 + jχ), (15)

where K1,2 are the stopband edges where Re{r2
o} = 0, the stopband width is

K2−K1, and χ, representing the SAW damping due to the radiation of bulk

waves into the substrate, describes the linear dependence of Im{r2
o}(K) for

the considered domain of K in vicinity of the stopband. In all the presented

examples, wave-numbers are scaled down by 2π, the applied kt = 2π is

presented as 1, and kl = 0.4723kt as 0.4723, similarly for K and r2
o, etc.; and

h is scaled down by w (h = w is presented as 1) where w is a quarter of the

Rayleigh wavelength.

10
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Figure 2: Characterization of the interface mode. Solid lines represent numerical results

evaluated directly from Eqs. (13), (14), and crosses show approximations evaluated from

Eq. (15) and (17). Left: pseudo-dispersive curves r2
o(K) presenting stopbands where

Re{r2
o} < 0. Presented for different h, the nearly parabolic curves of Re{r2

o} and the

corresponding linear Im{r2
o} move to the right for growing h. Wave-numbers ro are scaled

down by 2π (note that r2
o is of an order 10−4) and h is presented respective to w. Right:

the modal shape γ1; thin lines show the ‘ideal’ γ1 when χ = 0, with |γ1| = 1 in stopband.

The modal shape in the substrate is determined by the corresponding null

vector [tu; tb] of the matrix of Eqs. (13), the most important components of

which (Bloch orders) involved in acoustic power transfer, ref. Eq. (3), are

t
(±1,0)
b and

u
(±1)
b =

j

µ
g(ro ±K)t

(±1)
b ,

u
(0)
b =

j

µ
g(ro)t

(0)
b .

(16)

For ro ≈ 0, the corresponding SAWs of amplitudes a±1 ∼ u
(±1)
b evaluated

from Eq. (3) at wave-numbers ro±K ≈ ±kR, carry acoustic power to the right

and to the left on the substrate surface, while u
(0)
b , having small wave-number

below the cut-off wave-numbers of bulk waves, indicate power leakage, what

causes interface wave damping and ro to be complex-valued.

11
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For ro with imaginary part rI = Im{ro} > 0, as presented in the computed

examples, the wave-field vanishes on the substrate surface at x → −∞,

indicating that this is the interface wave propagating to the left. Naturally,

the wave component u
(−1)
b , having wave-number ro−K ≈ −kR, is responsible

for the power transport to the left. The other component, u
(+1)
b , having

wave-number ro + K ≈ kR, carries the power to the right. The net power

transported by the considered mode to the left is the difference between these

two; this phenomenon was thoroughly investigated in the theory of SAW

interdigital transducers (Danicki, 2007). The exact relation derived there

between the forward and backward Bloch components suggests the following

approximation (which verification is presented in Fig. 3):

γ1 =
u

(+1)
b

u
(−1)
b

≈ k′ − ro

k′ + ro

,

γ0 =
u

(0)
b

u
(−1)
b

,

(17)

where k′ = K −K1. In the considered symmetric structure, Eq. (17) holds

for u(±1)
u , as well. Note that |γ1| → 0 for growing k′ and |γ1| ≈ 1 for close to

imaginary valued ro (in stopband).

As discussed above, the 0th Bloch component, u
(0)
b , excites the bulk waves

(primarily longitudinal for small ro) that carries power P down the substrate,

naturally at the cost of the interface wave power, making it decaying. Re-

peating the considerations based on the power balance, Eq. (3), but account-

ing for the fact that the interface wave power Π is the difference of powers

Π±1 carried in opposite directions by ±1 Bloch orders, and introducing the

12
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Figure 3: Left: the interface wave leakage (lines) compared with the wave damping

(crosses), verifying Eq. (18). Right: excitation strength τ and verification of τ(1− γ1) ≈
const (dashes). In all drawings, the curves from left to right correspond to growing h (cf.

Fig. 2), taking values of 0.5, 0.8 and 1, respective to w.

notation ro = rR + jrI (rI > 0), we obtain:

2rI(Π−1 − Π+1) = P,

Π±1 = | ġ±1

2
|µω|u(±1)

b |2/2, ġ±1 = |ġ(rR ±K)|,
P = Zl(k

2
l − r2

R)−1/2|ωu
(0)
b |2/2

(accounting for slightly off-normal outgoing bulk waves excited by the dis-

cussed leakage phenomenon and represented by wave-vector x-component

rR 6= 0; although any rR can be achieved in a periodic systems, the comb

period Λ is chosen approximately equal the Rayleigh wavelength in order to

obtain small value of rR). Finally:

|γ0|2 =
rI

√
k2

l − r2
R

k2
t

(ġ−1 − ġ+1|γ1|2), (18)

which equation is nicely satisfied in our computations presented in Fig. 3.

This verifies our understanding of the discussed leaky interface waves and

shows the computation accuracy; numerical details are presented in (Danicki,

2010).
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5. Excitation of interface waves

Having satisfactory approximations for free-propagating interface wave

amplitudes and powers, we seek only the amplitude of the generated interface

wave (sufficiently characterized by u
(0)
b , for instance) by scattering of incident

bulk waves on spacers. This is governed by Eq. (13), from which it follows

that:

ub(r) = M\[δ0k]u
I(r) ⇒ u

(0)
b (r) = uI(r)f(r), (19)

where f , corresponding to the inverse matrix M−1, is singular at ro, that is

f−1(ro) = 0.

In typical cases, the normal incident wave-beam aperture width A is

large and its spatial spectrum uI(r) = 2 sin(rA/2)/r is well confined in

(−K/2, K/2) (its higher Bloch orders involved in Eq. (19) are negligible).

Naturally, only this part of the spectrum excites the interface wave which is

closer to the wave-number rR ≈ 0. Other part of the wave-beam spectrum

excites only the localized vibration around teeth. We neglect the localized

part of the generated wave-field, seeking only the propagating part of the

spatial solution to u
(0)
b (x) which is the inverse Fourier transform of u

(0)
b (r):

u
(0)
b (x)=

1

2π

∫ K/2

−K/2
u

(0)
b (r)e−jrxdr≈ 1

2π

∫ ∞

−∞
u

(0)
b (r) e−jrxdr, (20)

where we extend the integration limits to infinity (the added integration path

can only contribute to the localized wave-field, being of least interest to us),

the interesting solution at x < −A/2 (just outside the incident wave-beam)

14
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is (note that for Im{ro} > 0, the integral (20) converges if x < −A/2):

u
(−1)
b (x) = u

(0)
b /γ0 = jτuI(ro)e

−j(ro−K)x,

τ =[d f−1(r)/dr]−1
ro

= ktb/(1− γ1), b ≈ const,

u
(+1)
b = γ1u

(−1)
b , aG

±1 = u
(±1)
b

√
µω|ġ±1/2|.

(21)

The parameter τ characterizes the generation of interface wave in the system.

Analogous results can be obtained for x > A/2, that is for the interface wave

propagating to the right, one only has to replace ro by −ro and u
(±1)
b by

u
(∓1)
b . The numerically evaluated excitation strengths of interface waves τ

are presented in Fig. 3 for several spacers’ height h (again presented relative

to w = λR/4≈Λ/4). The results confirm that b = τ(1−γ1)/kt≈ const what

will be exploited in the next section.

6. Comb transducer efficiency

The above results concern generation of interface waves by the plane

incident wave. Now, they are exploited for modeling comb of finite width,

what is equivalent to the incident wave-beam of the finite aperture width,

characterized at the interface plane by its spatial spectrum. Later below,

we will analyze finite comb working as surface wave receiver by means of

conversion of SAWs into interface waves which by the leaky mechanism excite

bulk waves in the comb buffer at the comb-substrate finite contact area.

These bulk waves are eventually detected at the other end of the buffer

by piezoelectric transducer. In both cases we meet very difficult scattering

problem at the comb edges. Here, we apply useful approximation verified

in theory of shallow groove-grating reflectors (Field et al, 1975), which we

believe is also sufficient for estimation of comb transducer efficiency.
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6.1. Generation of surface waves

An incident bulk wave of aperture width A (propagating in the comb

buffer of the same dimension), symmetric with respect to central spacer

(Fig. 1), excites the interface wave-fields at the left comb end on the strength

of Eq.(19) and later:

aG
−1 = aG exp(−j(ro −K)x), and

aG
+1 = γaG exp(−j(ro + K)x) at x = −A/2,

where γ = γ1[ġ(ro+K)/ġ(ro−K)]1/2. These Bloch components carry acoustic

power along the substrate surface correspondingly to the left and to the right.

Similarly at the right comb end x = A/2 the excited wave-fields are:

aG
+1 = aG exp(j(ro −K)x), and

aG
−1 = γaG exp(j(ro + K)x),

analogously carrying power correspondingly to the right and to the left. In

both cases, the power transfer by the wave components with amplitude aG

prevails, so that aG exp(j(ro − K)A/2)) transfers larger acoustic power out

of the comb area than the power of γaG exp(j(ro + K)A/2) that is reflected

back into the comb domain (cf. schematic diagram in Fig. 1).

Additionally, inside the comb area (−A/2 < x < A/2), free propagating

interface waves may exist (propagating either to the left with wave-number

ro, or to the right with wave-number −ro as presented by the diagram in

Fig. 1), both composed of the forward and backward Bloch components:

a∓ exp(±j(ro−K)x), γa∓ exp(±j(ro+K)x).

In the area outside the comb, free propagating Rayleigh waves may exist:

the propagating to the left or to the right on the left or right-hand side of
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the comb,

ã∓L =a∓L exp(±jkRx), x < −A/2, and

ã±R =a±R exp(∓jkRx), x>A/2,

respectively. We assume here that there is no power loss at the comb edges

(as may be caused by scattering into bulk waves, for instance) and that all

wave-mode shapes are similar (that is ġ evaluated at rR ±K, kR are close to

each other). This enables us to apply the following conservative boundary

conditions (Field et al., 1975) at x = −A/2 (again, ref. Fig. 1):

aGej(ro−K)A/2 + a−ej(ro−K)A/2 + γa+ej(ro+K)A/2 = ã−L ,

γaGej(ro+K)A/2 + γa−ej(ro+K)A/2 + a+ej(ro−K)A/2 = ã+
L ;

(22)

the equations at x = A/2 are similar; one needs only to replace superscripts

+,− by −, + and subscripts L,R by R,L.

0.08 0.1 0.12 0.14
0.01 

0.015

0.02 

0.025

0.3

0.08 0.1 0.12 0.14
0.1 

0.15

0.2 

0.25

0.3 

0.35

 

0.08 0.1 0.12 0.14
0    

0.002

0.004

0.006

0.008

0.01 

ηg η ηr

K−k
t

K−k
t

K−k
t

h=0.5

h=0.8

h=1
h=0.8 h=1

Figure 4: Estimated properties of combs with 11 teeth and different teeth heights:

0.5w, 0.8w and 1w (for curves from left to right in all figures). Left: generation efficiency.

Middle: comb receiver efficiency. Right: approximated combined efficiency η = ηgηr of a

pair of generating and receiving combs.

Evaluation (from Eq. (19) and earlier) of the free interface waves a±

bouncing between the comb edges yields the generated Rayleigh wave ampli-
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tude at the left-hand side of the comb:

ã−L = jbuI(ro)kt

√
µωġ−1/2

ej(ro−K)A/2

1− γ1

1− γ2

1 + γejroA
,

γ = γ1

√
ġ+1/ġ−1,

(23)

where uI(ro) = 2uI sin(roA/2)/ro for uniform normal incident wave-beam

of aperture width A and displacement amplitude uI , carrying the incident

power P I = AZl|ωuI |2/2, where Zl = ρω/kl is acoustic impedance of the

comb buffer. For small ro, particularly at the stopband where rR ≈ 0, γ ≈ γ1,

the comb transducer generation efficiency is:

ηg =

√
|aR|2
2P I

= |b|
√

klA
ġ−1

2
|(1− ejroA)(1 + γ1)

roA(1 + γ1ejroA)
|. (24)

Note however that there are equal generated SAW in both the substrate and

the acoustic buffer, the latter assumed to be entirely scattered and damped

in the buffer. This, naturally, lowers the transducer efficiency presented in

(Fig. 4), yielding only about 10% of the incident wave power transformed into

SAWs in the substrate. It is worth to note here that the generated SAWs in

both the substrate and the buffer have the symmetry of the existing interface

mode (the only one in the applied range of values of h in this paper).

6.2. Detection of surface waves

Eqs. (22) allow us to evaluate the outgoing SAWs: a−L , a+
R, for example

resulting from the incident SAW a+
L :

a−L = γa+
L

ejroA − e−jroA

γ2ejroA − e−jroA
,

a+
R = a+

L

γ2 − 1

γ2ejroA − e−jroA
.

(25)
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Note however that they are evaluated under the assumption that there are

incident SAWs in both the substrate and the acoustic buffer of the corre-

sponding symmetry mentioned above. If there is only the incident SAW of

amplitude aL in the substrate, it must be split into symmetric and antisym-

metric SAW pairs propagating in both the half-spaces. The symmetric pair

meets a barrier in the comb-substrate interface because no interface wave of

this symmetry exists. Hence this pair of SAWs must be entirely reflected and

scattered at the comb edge. We neglect this pair entirely in the following

discussion by applying an equivalent incident SAW amplitude a+
L = aL/

√
2

in Eq. (25).

Comparing the incident SAW power |aL|2/2 with the reflected and trans-

mitted wave powers |a−L |/2 + |a+
R|2/2 we notice that there is a certain imbal-

ance resulting from the power leakage into the bulk waves in the comb area

(the interpretation verified earlier in Fig. 3); in the stopband, these waves

propagate almost perpendicularly to the comb-substrate interface (due to

rR ≈ 0, as discussed earlier) to be eventually detected by a piezoelectric

transducer on the other end of the acoustic buffer. Hence, this power im-

balance is a signature of the receiving comb efficiency in transforming the

incident SAWs into bulk waves in the acoustic buffer. The same power prop-

agates down the substrate in the considered system where both media are of

the same material; this power is lost diminishing the comb overall efficiency.

Summarizing, we obtain the approximation for the comb transducer re-

ceiving efficiency:

2η2
r = 1/2− |a−L/aL|2 − |a+

R/aL|2, (26)

where we have accounted for the half-power loss introduced by the symmetric

19



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

SAWs pair discussed above and another half-power loss due to the undetected

scattered bulk waves in the substrate. Fig. 4 presents |ηr| for an example

comb counting 11 teeth, for different teeth height.

In typical applications, the same comb or a pair of combs generate and

receive SAWs in the system. The total efficiency of bulk wave transformation

to surface waves and back to bulk waves can thus be estimated as η = ηgηr,

the examples of which shown in Fig. 4 indicate the best efficiency at stopband.

7. Conclusions

The presented analysis explains certain fundamental phenomena partak-

ing in the bulk to surface wave transformation in comb transducers which

cannot be analyzed on the basis of perturbation theory that assumes weak

mechanical interaction between comb teeth and the substrate, and that the

teeth vibrations generate directly the Rayleigh waves which propagate freely

at the comb-substrate interface.

The presented theory has shown that leaky interface waves are generated

instead, propagating to the left and to the right along the interface. Due to

the teeth periodicity, both these interface waves are composed from forward

and backward Bloch components carrying acoustic powers in different direc-

tions. Moreover, the 0th Bloch order component excite the bulk waves in

both the comb and the substrate media, what is the reason of interface wave

damping. Fig. 3 nicely verifies this physical interpretation.

The interface waves are subjected to Bragg reflection, typical for periodic

systems. It is found that the resulting stopband is best visible in drawing

of r2
o(K), when Re{r2

o} < 0. It is also found that Im{r2
o} > 0 is a linear
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function of K, vanishing at the stopband edge K1 (Fig. 2). This implies that

the 0th Bloch order component vanishes there. The approximate relations

characterizing the Bragg reflection phenomenon presented in Eqs. (15) and

(17) have been found valid (with good accuracy) in the presented numerical

examples.

The last figures (Fig. 4) present a general property of comb transducer

having practical, moderate number of eleven teeth. It is seen that the gen-

erating comb exhibits the best efficiency just above the right stopband edge

K2. The comb working as a receiver of surface waves however, is efficient

at the stopband. In typical arrangement of a pair of combs for generation

and detection of SAWs, the best efficiency η = ηgηr is obtained again at the

stopband. The presented examples show that the insertion loss in such a

measurement arrangement is about 40dB (neglecting the efficiency of piezo-

electric transducers), what is a quite good result.

The passband width of a pair of combs is determined by the interface

wave stopband, that is rather narrow (few per cent) in the presented exam-

ples. Note however, that in this paper we present pseudo-dispersive depen-

dence of ro on K, not on ω. Changing the frequency ω, the relative teeth

height and width will vary along with the relative teeth period with respect

to the SAW wavelength. These changes, when cumulated, may yield some-

what different results concerning passband. Analyzing them all is far beyond

the scope of this paper, dedicated primarily to the fundamental theory of

comb transducers. Future investigation should concern primarily the comb

of different material from the substrate. Plastic, instead of metal spacers

may be interesting as better adhering to a rough substrate surface.
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