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Abstract. The paper presents a procedure for the formulation of constitutive equations for rate-independent 

pseudoelastic SMA material models. The procedure applies a rheological scheme representing mechanical 

properties of the material. An additive decomposition of strains into two parts is proposed. The first part 

describes strains of a perfectly elastic body while the second part may be represented by a combination of a rigid 

perfectly elastic body and a rigid perfectly plastic body. It is demonstrated that the key problem of formulation of 

constitutive relationships is to derive the 1st order differential equation with respect to the tensor describing the 

second part of the strain field. This equation may be obtained in explicit form starting from the variational 

inequalities defining non-elastic parts of rheological model. The uniqueness of the obtained differential equation 

has been proved. A numerical implementation of the constitutive relationships of SMA material was done 

through the user subroutine module VUMAT within the FE commercial code ABAQUS/Explicit. As an example 

we analyzed the problem of vibration of a simple 3D structure made of SMA. 
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1. Introduction 

 

A strong non-linear response of the shape memory alloys (SMAs) is associated with the 

two special effects: shape memory and pseudoelasticity. The shape memory effect allows 

material to recover its shape upon heating. The pseudoelasticity phenomenon makes the 

material capable of experiencing large inelastic strains recoverable upon unloading. In the 

literature there is a comprehensive description of SMA behaviour associated with the stress- 

or temperature-induced transformations of their crystalline structure [1, 2]. 

The response of the structures made of SMA is characterized by the energy dissipation 

capabilities as well as by the shape recovery along the loading path. As a result, SMA 

materials are now widely used in engineering. The main non-medical applications of SMA, 
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recently explored are: protection of civil constructions against earthquake damages [3-5] and 

control of space structures such as antennas and satellites [6]. 

The mathematical modelling of 1D and 3D systems based on SMA has received a great 

deal of attention in the literature. The model presented by Lubliner and Auricchio [7] uses the 

notion of theory of plasticity. An additional internal variable, so called phase fraction, was 

used there. The problem of numerical implementation of 3D thermomechanical SMA material 

was considered by Auricchio and Petrini [8]. A robust integration algorithm was adopted 

there for finite element method (FEM) implicit applications. Bernardini and Vestroni [9] 

investigated a non-linear dynamic behaviour of a pseudoelastic oscillator. Another 1D 

dynamical system made of the SMA bar with an additional mass was analyzed by Feng and Li 

[10]. Auricchio and Fugazza and DesRoches [11] presented an uniaxial rate-dependent 

viscous model suited for seismic applications.  

The objective of our paper is to formulate the constitutive equations of pseudoelastic 

SMA material model suited for reproducing its hysteretic behavior. The model is purely 

phenomenological without considering any phase transformation properties. The problem will 

be defined within the notion of classical small strain theory of plasticity [12]. The rate-

dependency phenomenon will not be considered. The main advantage of the method being 

proposed herein is that the differential equations defining the behavior of the material are of 

explicit type. Thus, the existence of the solution as well as its uniqueness may be proved. On 

the other hand, it allows straightforward implementations in the FEM commercial codes. 

Another novel finding of our approach is that the 3D constitutive equations of SMA are 

formulated using a rheological scheme representing its mechanical properties. We 

demonstrate the procedure comparing the SMA scheme with the classical elastoplastic 

scheme (a combination of a spring element and a slider element joined in series). After 

introduction of an additional non-classical element describing so called rigid perfectly elastic 

material, the variational description is proposed. The rheological scheme being used herein 

was implemented previously for 1D beam’s dynamics by Zbiciak [13]. 

It will be demonstrated that the procedure of formulation of constitutive equations needs 

the differential successions to be applied. Differential successions define additional relations 

which should be satisfied by the time derivatives of variables, describing the constitutive 

relation. The notion of differential successions was introduced by Grzesikiewicz [14] for 

dynamic analysis of discrete mechanical systems exhibiting dry friction and locking. Then, 

the procedure was generalized for 3D elastoplastic solids in [15]. 
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2. Stress and strain state description 

 

In order to describe the stress and the strain state of a body, the symmetrical 2nd order 

tensors are used. Let S  and E  be the Euclidean linear spaces, for stress and strain 

respectively. The elements belonging to the above spaces can be represented as a 33×  

matrixes. 

The inner product of the two 2nd order tensors is denoted 1(2)(1) R∈⋅σσ  where 

S∈(2)(1) , σσ .  It can be defined as follows 

 

3,2,1,;(2)(1)(2)(1) ==⋅ jiijij σσσσ        (1a) 

 

The summation convention is assumed over the repeated indices. The norm of a tensor is 

denoted 1R∈σ  and is defined by 

 

ijijσσ=⋅= σσσ :          (1b) 

 

The space of the stress and strain tensors may be decomposed into two orthogonal sub-

spaces. The first sub-space constitutes the sub-space of spherical tensors. The second one is 

the sub-space of deviatoric tensors. Let us assume the following symbols to be used for the 

stress and strain state description 

 

spσ += ; eaε +=  where ( ) Iσp tr 
3
1

=  and ( ) Iεa tr 
3
1

=     (2) 

 

Here p  and a  denote spherical tensors, s  and e  are deviators and I  denotes identity 2nd 

order tensor. In the above equations the operation 1tr R∈= iiσσ  denoting the trace of a 

tensor was used additionally.  

 Mathematical description of elastic properties of isotropic bodies can be formulated 

separately for the spherical and deviatoric sub-spaces. For example the Hooke’s law may be 

written in the form of two linear equations 

 

ap K3= ; es G2=          (3) 
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where K  and G  denote bulk modulus and shear modulus respectively.  

 Analyzing the constitutive properties of elastoplastic material, the hypothesis stating that 

the deviatoric part of the strain tensor is decomposed into two components may be assumed 

 

oel eee +=           (4a) 

 

where the deviators ele  and oe  are related to the elastic and the plastic part of the strain state. 

The decomposition rule given by Eq. (4a) may be visualized using classical rheological 

scheme shown in Fig. 1a. The spring element represents elastic properties (Hooke body) 

while the slider represents so called rigid perfectly plastic model (Saint Venant body).  

  
Fig. 1. Rheological models of elastoplastic material (a) and SMA material (b) (deviatoric sub-spaces). 

 

 The deviatoric stress state in elastic perfectly plastic material model shown in Fig. 1a is 

described as follows (see Eq. (3)) 

 

( )o2 ees −= G           (4b) 

  

 The constitutive properties of the plastic pressure-independent material may be described 

in the form of the following inclusion and variational inequality [16] 

 

( ) plo

pl
~0~ Θ∈∀≥−⋅

Θ∈

ssse

s
         (5) 
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where the set plΘ  determines admissible stresses in deviatoric sub-space and the superposed 

dot denotes differentiation with respect to the time coordinate. The Eqs. (5) should be treated 

as constitutive definition of the slider element. The relationship (5)2 is well-known as 

Drucker’s stability postulate or Hill’s principle of maximum plastic work.  

 Based on (3), (4) and (5) the following relation between the strains and strain rates can be 

obtained 

 

( )eeee ,,oepo f=           (6) 

 

 The detailed form of the mapping epf  depends on the description of the set plΘ . Taking 

into account the Huber-Mises-Hencky’s (HMH) yield criterion the set plΘ  is described as 

 

{ }plpl 2:: k≤∈=Θ ss S         (7) 

 

Here plk  denotes the value of yield limit obtained via pure shear test.  

As a consequence of introduction Eq. (7), the relations (5) may be rewritten in the following 

form 

( ) 02;0

;2
2
pl

2
plpl

2
pl

2

pl0

=−≥

≤

=

k

k

s

s

se

λλ

λ

        (8) 

 

where the Eq. (8)1 is well-known associated flow rule while the relations (8)2  and (8)3 are 

loading/unloading or Kuhn-Tucker conditions. The scalar plλ  denotes so called Lagrange 

multiplier. The procedure of evaluation of Lagrange multiplier for elastic-perfectly plastic 

material is a classical problem [12]. Thus, it will not be explained in this section. In the next 

section, analyzing the constitutive relationships of SMA material the similar problem will 

occur. In that case we will use the notion of differential successions in order to evaluate 

Lagrange multipliers. 

 Finally, based on Eqs. (4b) and (8) the mapping epf  becomes  
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( ) [ ]
⎪
⎩

⎪
⎨

⎧

=
⋅

<
= +

pl2
pl

pl

oep 2  if
2

 2  if
,,

k
k

k
f

sses
s0

eee       (9a) 

 

where the function [ ] 1R∈• +  denotes projection onto the set of non-negative numbers 

 

[ ]
⎩
⎨
⎧ >

=+

otherwise0
0  if

:
zz

z          (9b) 

 

 The constitutive relations (4) and (6) and (9) are the well-known Prandtl-Reuss equations 

for elastic-perfectly plastic material. 

  

3. SMA material model 

 

3.1. Rheological scheme 

 

A rheological model of SMA material is shown in Fig. 1b. Comparing the models shown 

in Fig. 1, we can see an additional element which represents so called rigid perfectly elastic 

material (Hencky body). This element plays a crucial role in the model. Thanks to the Hencky 

element, the model does not exhibit any permanent strains after unloading (see Fig. 2). 

The Hencky element is characterized by the set of admissible stresses peΘ . Let us assume 

the constitutive description of the Hencky material in the following form [16] 

 

( ) pepeo

pepe
~0~ Θ∈∀≥−⋅

Θ∈

ssse
s

        (10) 

 

where oe  and pes  denote strain and stress deviators respectively. 

It should be strongly emphasized that the variational inequality (10)2 relates stresses and 

strains oe  while in Eq. (5)2 the applied variables are the stress and the strain rate oe . 

Let us analyze the complete set of relations describing the properties of the SMA 

rheological model shown in Fig. 1b. Based on these relations the constitutive equations of 

SMA can be established in the form of a relationship between the stress tensor σ  and the 
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strain state ε  and its rate ε . In order to describe the strain state of the model, the tensors ε  

and oe  will be used (see Fig. 1b). The strain tensor ε  can be decomposed into spherical and 

deviatoric part as it was presented in Eq. (2). The stress state of the model will be described 

using the tensors p , s , pls  and pes , where the p  and the s  determine the spherical and 

deviatoric part of the stress tensor, that is spσ += . The tensors pls  and pes  denote the 

stresses related to the parts: rigid perfectly plastic and rigid perfectly elastic. 

 There is only one relation describing the constitutive properties of the SMA model in the 

spherical sub-space 

 

ap K3=            (11a) 

 

On the other hand in the deviatoric sub-space we should write 

 

( )o2 ees −= G           (11b) 

pepl sss +=           (11c) 

( ) plploplpl
~0~; Θ∈∀≥−⋅Θ∈ ssses       (11d) 

( ) pepeopepe
~0~; Θ∈∀≥−⋅Θ∈ ssses       (11e) 

 

 Further investigations deal with the determination of the constitutive relations of the SMA 

in the following form, based on the relations (11) 

 

( )eeee ,,oSMAo f=           (12) 

 

 The mapping SMAf  is determined using the sets of admissible stresses plΘ  and peΘ  in the 

form 

 

{ }plplpl 2:: k≤∈=Θ ss S         (13) 

{ }pepepe 2:: k≤∈=Θ ss S         (14) 
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The parameters plk  and pek  denote limit stresses in the rigid perfectly plastic and rigid 

perfectly elastic parts respectively, and can be determined based on a pure shear 

loading/unloading test (see Fig. 2). 

 
Fig. 2. Pure shear test idealization to determine the values of limit stresses plk  and pek  

 

Taking into account the presented above form of the admissible stresses, the relations 

(11b)÷(11e) become 

 

( )opepl 2 eess −=+ G          (15a) 

( ) 02;2;0; 2
pe

2

pepe
2
pe

2

pepepepeo =−≤≥= kk ssse λλλ     (15b) 

( ) 02;2;0; 2
pl

2

plpl
2
pl

2

plplplplo =−≤≥= kk ssse λλλ     (15c) 

 

where peλ  and plλ  denote scalar multipliers. 

 The detailed form of the mapping SMAf  is specified on the basis of additional theorems 

and conclusions resulting from (15) presented in the next section.  

 

3.2. Theorems and auxiliary conclusions 

 

The stress and strain tensors, we use in order to analyze the problem, are time-dependent 

functions. Let us denote these functions as right-hand continuous and possessing right-hand 

derivate being continuous as well. 

 



 9

Lemma 1. If the relations (15a) and (15b) are satisfied and if 0o ≠e , then the following 

equations are true 

 

o
o

pe
pe

2
e

e
s

k
=           (16) 

( ) o
o

pe
opl

2
2 e

e
ees

k
G −−=         (17) 

 

Proof. If 0o ≠e , then applying (15b) gives  

0pe ≥λ , pepe 2 k=s , pepeo 2 kλ=e .  

Thus, we obtain  

pe

o
pe 2 k

e
=λ  and o

pe
pe

1 es
λ

= .  

This gives the Eq. (16). Using Eqs. (15a) and (16) we obtain the Eq. (17). ■ 

 

Lemma 2. If plpl 2 k=s  and the relations (15c) are satisfied, then the following 

relations constitute the differential successions of (15c) 

 

0;0;0; plplplplplplplplo =⋅≤⋅≥= ssssse λλλ      (18) 

 

Proof. The relations (18)1 and (18)2 are the same as (15c)1 and (15c)2. The third condition 

(18)3 0plpl ≤⋅ss  constitutes the succession of 2
plplpl 2k≤⋅ss  if 2

plplpl 2k=⋅ss . The last relation 

(18)4 is obvious if 0plpl =⋅ ss . On the other hand, if 0plpl <⋅ ss  then considering an 

infinitesimal time increment τ  we obtain  

( ) 2
pl

2

pl 2kt <+τs  and ( ) 0pl =+τλ t .  

Thus, the assumption about the right-hand continuity of the analyzed functions gives 

( ) 0pl =tλ  what finally shows that the relation (18)4 is satisfied. ■ 

 

Lemma 3. If the relations (15) are satisfied and 0o ≠e  and plpl 2 k=s  then 
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⎪
⎪
⎩

⎪⎪
⎨

⎧

>⋅
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ⋅
−+

⋅

≤⋅

=
−

0   if
2

1
2

2
1

2

0   if0

pl

12

plpe

plpe

o

pe
2
pl

pl

pl

pl es
ss

e
es

es

kkG
k

k
λ     (19) 

 

Proof. Differentiating Eq. (16) with respect to time we obtain 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ ⋅
−= o3

o

oo

o

o
pepe 2 e

e
ee

e
es k   

and using (15c) gives  

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ ⋅
−= o3

o

plo

o

pl
plpepe 2 e

e

se
e
s

s λk   

what may be transformed into  

( )
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ ⋅
−=⋅ 3

o

2
plo

o

2

pl
plpepepl 2

e
se

e
s

ss λk .  

Then, using (15b) the last above equation takes finally the form 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ⋅
−=⋅

2

plpe

plpe2
pl

pe

pl
pepl 2

12
kk

k
ss

ss
λ
λ

.  

Let the equation (15a) be differentiated with respect to time  

esse GG 22 peplo =++ .  

Calculating the inner product with the tensor pls  over each component of the above equation 

and using the formulated before formula for pepl ss ⋅  , we finally get 

 

 esss
ss

s ⋅=⋅+
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ⋅
−+ plplpl

2

plpe

plpe

pe

2
pl2

plpl 2
2

1
2

2 G
kk

k
G

λ
λ     (20) 

 

Additionally, using relations (18) 0,0,0 plplplplplpl =⋅≤⋅≥ ssss λλ  we finally obtain the 

relation (19) defining the multiplier plλ . ■ 

 

Now, let us formulate two theorems to be used in order to determine the strain rate tensor oe . 
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Theorem 1. If 0o ≠e , then  

i) if ( ) plo
o

pe
o 2

2
2 k

k
G >−− e

e
ee , then the equation (15a) cannot be satisfied, so 

the analyzed problem does not possess a solution, 

ii) if ( ) plo
o

pe
o 2

2
2 k

k
G <−− e

e
ee , then 0e =o , 

iii) if ( ) plo
o

pe
o 2

2
2 k

k
G =−− e

e
ee , then ( ) ⎥

⎦

⎤
⎢
⎣

⎡
−−= o

o

pe
oplo

2
2 e

e
eee

k
Gλ . 

 

Proof. The propositions (i) and (ii) result directly from (15a) and (15c). The proposition 

(iii) results from Lemma 3 along with the conditions (15c). ■ 

 

Theorem 2. If 0o =e  and the conditions described by (15) are satisfied, then 

 

( )
[ ] ( )⎪

⎩

⎪
⎨

⎧

+=⋅

+<
= +

pepl2

pepl

o 22   if

22   if

kkG

kkG

ee
e
ee

e0
e       (21) 

 

and if ( )pepl22 kkG +>e , then the solution of the problem does not exist. 

 

 Proof. Taking into account the assumption 0o =e , the equation (15a) becomes 

 

ess G2pepl =+           (22a) 

 

The differential succession of (15b) gives 

 

( )pepepepepepe 2;0;2 kk −≥≤ ss λλ       (22b) 

pepeo se λ=           (22c) 

 



 12

where the relation (22c) results from the formula pepeo se λ=  in the case 0o =e . Using a 

truncated Taylor series expansion gives  

 

 ( ) ( ) ( )ττλτοτ ++=++ tt pepeo0 se   

 

and can be transformed into  

 

 
( ) ( )tt

pe
pe

0o lim se ⎥
⎦

⎤
⎢
⎣

⎡ +
=

→ τ
τλ

τ
 and finally pepeo se λ= .  

 

Let us note that sss =+ pepl  (see Eq. (11c)). Thus the (15c) and (22c) gives 

 

 ( )peplo sse −= λ  and pepeo se λ= .  

 

Using the last two expressions we obtain 

 ss
pepl

pl
pe λλ

λ
+

= .  

Now, the equation describing the strain rate oe  has the following form  

 se into λ= , where 
pepl

pepl
int :

λλ
λλ

λ
+

= . 

Taking into account the assumption 0o =e , the relations (15) become 

 

es G2=            (23a) 

( ) ( )[ ] 02;2;0; 2
pepl

2
int

2
pepl

2
intinto =+−+≤≥= kkkk ssse λλλ   (23b) 

 

If  ( )pepl2 kk +=s , then using (15a) and (23b) the following differential successions are 

obtained 

 

( )o2 ees −= G , what gives ( )o2 esesss ⋅−⋅=⋅ G      (24a) 

0;0;0; intintinto =⋅≥≤⋅= ssssse λλλ       (24b) 
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Finally, applying the conditions (23) and (24) gives 

 

( )
[ ] ( )⎪

⎩

⎪
⎨

⎧

+<⋅

+<
= +

pepl2

pepl

int 22   if
2

22   if0

kkG
G

kkG

e
e

ee
e

λ        (25) 

 

what in fact states the proposition of the theorem 2. ■ 

 

3.3. Constitutive relationships 

 

 Based on the theorems we proved above, the following form of the mapping SMAf  can be 

formulated 

 

( )

( )

[ ] ( )
⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=≠

+==
⋅

<≠
+<=

= +

plploplpl

peplo2

plplo

peplo

oSMA

2  and  0   if

22  and  0   if

2  and  0   if
22  and  0   if

,,e

k

kkG

k
kkG

f

ses

eee
e
ee

se0
ee0

ee

λ

   (26) 

 

where  

[ ]

( )

.
2

;
2

2

;
2

1
2

2
1

2

o
o

pe
pe

o
o

pe
opl

12

plpe

plpe

o

pe
2
pl

pl
pl

e
e

s

e
e

ees

ss
e

es

k

k
G

kkG
k

k

=

−−=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ⋅
−+

⋅
=

−
+

λ

     (27) 

 

 Finally, the following description of the analyzed SMA material model is formulated 

 

( )
( )eeee

ees
ap

,,
2
3

oSMAo

o

f
G
K

=
−=

=
          (28) 
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Thus, for given strain tensor eaε +=  and its rate eaε += , the stress state described by 

spσ +=  can be determined using the equations (28). 

 

4. Numerical simulations 

 

 The constitutive model of SMA has been implemented in the Finite Element code 

ABAQUS/Explicit which is suited for non-linear transient dynamic problems. Although the 

ABAQUS constitutive library is extensive the model of SMA is missing. Additional material 

models can be introduced to the system via user subroutine VUMAT. The subroutine is 

typically written in Fortran language. 

As an example we present a 3D cantilever beam made of Nitinol alloy subjected to a 

uniform impulsive loading at the top surface. The load intensity equals to 4 MPa. With the 

total analysis time of 0.06 sec. and the loading acting during 0.03 sec. the unloading process 

was also considered. The values of the limit stresses in the plastic and perfectly elastic parts 

(see Table 1) were specified in the way to make the material capable of experiencing the total 

equivalent HMH stress s23=eqσ  in the range of 150 MPa and 350 MPa, when 0o ≠e . 

The material parameters were assumed partially based on experiments presented in the 

literature [17]. 

 
Table 1 

Material parameters of SMA 

Density (kg/m3) )GPa(K  )GPa(G )MPa(pek )MPa(plk  

6500 41.67 19.23 144.34 57.74 

 

 The beam was divided into 3000 brick elements C3D8 as shown in Fig. 3. The contours of 

equivalent stress at the chosen instant of time are visualised in Fig. 3. 

 The time history of the equivalent stress and the norm of the non-elastic strain oe  for an 

element at the clamped section are visualised in Figs. 4 and 5. It can be observed that the 

maximum value of the equivalent stress does not exceed the plastic limit (350 MPa). On the 

other hand, if 0o ≠e , the equivalent stress may not be lower than 150 MPa. This 

phenomenon can be observed comparing Figs. 4 and 6a. 

The hysteretic loop for an element located in the vicinity of the clumped zone (see Fig. 3) 

is shown in Fig. 6. The variables selected for the hysteretic loop construction are the 
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equivalent strain versus equivalent stress (left diagram) and the longitudinal strain versus 

longitudinal stress (right diagram). 

 

  

 
Fig. 3. Contours of equivalent HMH stress and beam’s deformation at chosen instant of time sec. 2-E 75,4=t  

(scale deformation factor 5). 

 

 

 
Fig. 4. Time history of the equivalent stress for an element at the clamped section 
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Fig. 5. Time history of the norm of the non-elastic strain oe  in the clamped section element 

   

 
Fig. 6. Hysteretic loops in the clamped section element 

                                                     

5.  Final remarks 

 

The presented numerical results show validity of the proposed formulation. The main 

objective of this example was to demonstrate the possibility of implementation of SMA 

relationships within commercial FEM software. In this paper small-strain theory was 

considered. Such limitation seems to be reasonable observing results of experimental tests 

showing that the pseudoelasticity phenomenon occurs within the range of strain to be less 

then 5% [18]. Considering a finite strain problem, one has to replace additive decomposition 

of strains oel εεε +=  by multiplicative decomposition of deformation gradients oel FFF =  

[19]. The simplest approximation to capture the behaviour of SMA material can be achieved 
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using hyperelastic model. This becomes necessary if the material is subjected to large strains. 

Besides of this limitation, it is clear from the present study that the theory of plasticity 

used herein, is able to model pseudoelastic behaviour of rate-independent SMAs. Also, the 

computational ease of such type of formulation needs to be emphasized. The rate-dependency 

phenomenon may also be considered based on the methodology presented in the paper. 

Simple modifications of rheological scheme shown in Fig. 1b, by adding viscous elements, 

lead to the models similar to that analyzed in viscoplasticity theory.  

The model presented in this study is suited for simulation of the stress-induced partial 

phase transformation behaviour. The analysis of the fully transformed material can be carried 

out taking into account the rheological scheme shown in Fig. 7a where an additional locking 

element was employed (compare Fig. 1b). Thanks to this element the non-elastic strains are 

limited as it is shown in Fig. 7b.   

 

 
Fig. 7. Rheological model of fully transformed SMA (a) and pure shear test idealization to determine the values 

of limit stresses plk  and pek  and limit strain Δ  (b).  

 

The mathematical description of the locking element is as follows 

 

 ( )
{ }Δ≤∈=Ω

Ω∈∀≥−⋅
Ω∈

2::

~0~

ooloc

locoooloc

loco

ee

eees
e

E

       (29a) 

 

where locΩ  denotes the set of admissible strains, Δ  denotes limit deviatoric strain (see Fig. 

7b) and the locs  is the stress in locking network. 
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Because of the complexity of the mathematical description of the fully transformed SMA 

material we did not analyse this problem in details. The work in this area is currently 

underway. 
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