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An equivalent representation of the Brown-Resnick process

S. Engelkea,∗, Z. Kabluchkob, M. Schlathera
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Abstract

Brown and Resnick (1977) introduce a max-stable process that is obtained as a limit of maxima of inde-
pendent Ornstein-Uhlenbeck processes. As shown in Kabluchko et al. (2009) this process is dissipative and
it therefore admits a mixed moving maxima representation. We show that the distribution of the spectral
functions in this representation equals a well-known diffusion, namely a standard Brownian motion with
drift conditional on taking negative values only. This can be used for fast simulation methods.

Keywords: Brown-Resnick process, mixed moving maxima, dissipative,conditional negative Brownian
motion, simulation of max-stable processes

1. Introduction

The Brown-Resnick process was first introduced in Brown and Resnick (1977) as the stochastic process
given by

Ψ(t) =
∞∨

i=1

[Xi + Bi(t)] , t ∈ R, (1)

whereBi, i ∈ N, are independent copies of a standard Brownian motion on thereal line with drift−|t|/2 and∑
i∈N δXi is a Poisson point process on the real axis with intensitye−xdx, x ∈ R, independent of theBi, i ∈ N.

Moreover, it was shown thatΨ is stationary. This property still holds if the Brownian motion is replaced
by any Gaussian process with stationary increments and a suitable drift (Kabluchko et al., 2009). The ma-
jor importance of these processes arise from the fact that they constitute the limits of maxima of suitably
normalized and rescaled Gaussian processes. This makes them an interesting objective in applications such
as modeling extreme events (Buishand et al., 2008). To this end, it is crucial to obtain exact and efficient
simulation methods. However, algorithms based on the standard definition of Brown-Resnick processes
as in (1) yield very slow convergence. Alternative simulation techniques have already been considered in
Oesting et al. (2011) which are also applicable to the generalization of Ψ by Kabluchko et al. (2009). In
the situation of the process in (1) the Markovian structure of Brownian motion can beneficially be used to
establish a mixed moving maxima representation ofΨ.
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Definition 1. Let {F(t)}t∈R be a measurable process and suppose thatE
∫
R exp(F(t))dt < ∞. Further, let∑

i∈N δ(ti ,yi) be a Poisson point process onR × R with intensitydt e−ydy and let Fi , i ∈ N, be independent
copies of F. A process of the form

ζ(t) =
∞∨

i=1

[
yi + Fi(t − ti)

]
, t ∈ R,

is called a mixed moving maxima process.

It was shown (Theorem 14 in Kabluchko et al. (2009)) thatΨ admits a representation as a mixed moving
maxima process (i.e., it is a dissipative process, cf. Wang and Stoev (2010)). The distribution of the process
F in Definition 1 is however still unknown. In this paper we showthat this distribution equals a well known
diffusion process. Namely, it is a standard Brownian motion withdrift −|t|/2 conditioned on not taking
positive values.

2. Theorem and proof

Theorem 1. Let B be a Brownian motion on the real line with drift−|t|/2 and B(0) = 0. Then the following
two processes have the same distribution:

1.

Ψ1(t) =
∞∨
i=1

[Xi + Bi(t)] , t ∈ R, (2)

where Bi, i ∈ N, are independent copies of B and
∑

i∈N δXi is a Poisson point process on the real axis
with intensity e−xdx, x∈ R, independent of the Bi, i ∈ N.

2.

Ψ2(t) =
∞∨
i=1

[Vi + Ri(t − Si)] , t ∈ R, (3)

where
∑

i∈N δ(Si ,Vi) is a Poisson point process onR × R with intensity1
2dt e−xdx, t, x ∈ R, independent

of the Ri , i ∈ N. The Ri ’s are independent copies of the process

R(t) = 1t≤0R−(−t) + 1t≥0R+(t),

where R− and R+ are independent processes which follow t≥ 0 the law of the nonpositive diffusion
determined by the stochastic differential equation for

dR̃(t) = dW(t) +
1
2

coth(R̃(t)/2) dt, (4)

starting at R+(0) = R−(0) = 0, where W is a standard Brownian motion.

Remark 1. For y ≤ 0, the diffusion defined by(4) and started atR̃(0) = y has the same distribution as
a Brownian motion{B(t)}t≥0 with drift −t/2 and B(0) = y conditioned on not taking positive values for all
t ≥ 0. For details see Lemma 55.1 in Rogers and Williams (2000).
In fact, for y= 0, it follows from Theorem 3 in Rogers and Pitman (1981) that the opposite of the diffusion,
namely−R̃, has the same distribution as a three dimensional Bessel process of drifting Brownian motion.
More precisely, it can be obtained by taking the radial part of a Brownian motion inR3 with drift 1/2 in
the direction of the first coordinate axis. This is particularly important with regard to efficient simulation
methods.
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Remark 2. In fact, we will prove more than the equality in law ofΨ1 andΨ2. We will show that the random
families of functions{Xi + Bi(·)}i∈N and{Vi +Ri(· −Si)}i∈N considered as point processes on C(R), the space
of continuous functions onR, have the same law.

Proof of Theorem 1.Let us first set up some notation. For the Brownian motionB with drift −|t|/2 and
B(0) = 0 let Y = sups∈R B(s) andT = arg sups∈R B(s). Moreover, denote byZ(t) = B(t + T) − Y the process
B whose supremum is shifted into the origin.
Consider the Poisson point process

∑
i∈N δ(Xi ,Bi) onR×C(R) with intensitye−xdxPB(d f ), whereC(R) denotes

the space of continuous functions onR andPB is the law ofB. The mapping

η : R ×C(R)→ C(R) × R × R, (u, f ) 7→ ( f
(
(·) + arg supf

) − sup f , arg supf , supf + u)

is measurable (see proof of Lemma 2.13 in Oesting et al. (2011) for details), where the arg sup is the infimum
of all points where the supremum is attained. The key idea of the proof is to compute the intensity measure
Φ of the Poisson point process onC(R) × R × R induced byη, namely∑

i∈N
δ(Bi((·)+arg supBi)−supBi ,arg supBi ,supBi+Xi). (5)

The main difficulty here is to find the distribution of the random element (Z,T,Y) which is essential in the
later calculations. More precisely, fort1 ≤ . . . ≤ tn ∈ R, y1, . . . , yn < 0, n ∈ N, t ∈ R andy ∈ R+ we will later
establish the equation

dP (Z(t1) = y1 . . . ,Z(tn) = yn,T = t,Y = y) = dP (R(t1) = y1, . . . ,R(tn) = yn,R(−t) = −y)
e−y

2
, (6)

whereR is the two-sided diffusion process which satisfies (4) and starts in 0. Thus, the distribution of the
shifted Brownian motionZ essentially equals the one of the reweighted diffusionR. In order to compute the
measureΦ let M × I × D ∈ B(C(R)) ⊗ B(R) ⊗ B(R) be a measurable set withM = Ct1,...,tn(E) = {g ∈ C(R) :
(g(t1), . . . , g(tn)) ∈ E}, whereE ∈ B(Rn). Furthermore, denote by (Ω,A,P) the underlying probability space.

Φ(M × I × D) =

∫
R

e−xP
(
(Z, argsupB, supB) ∈ M × I × D − (0, 0, x)

)
dx

=

∫
R

e−xP
(
(Z(t1), . . . ,Z(tn)) ∈ E, arg supB ∈ I , supB ∈ D − x

)
dx

=

∫
R

e−x
∫

I

∫
D

∫
E

P
(
Z(t1) = y1, . . . ,Z(tn) = yn, arg supB = t, supB = y− x

)
d(y1, . . . , yn) dydt dx

=

∫
R

e−x
∫

I

∫
D

∫
E

P (R(t1) = y1, . . . ,R(tn) = yn,R(−t) = −(y− x))
1
2

e−(y−x)

d(y1, . . . , yn) dydt dx

=

∫
D

1
2

e−y
∫

I

∫
E

∫
R

P (R(t1) = y1, . . . ,R(tn) = yn,R(−t) = −(y− x))

dxd(y1, . . . , yn) dt dy

=

∫
D

1
2

e−y
∫

I

∫
E

P (R(t1) = y1, . . . ,R(tn) = yn) d(y1, . . . , yn) dt dy

= PR
(
Ct1,...,tn(E)

) ∫
I

1
2

dt
∫

D
e−y dy,

3
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where the fourth equality follows from (6) andPR is the law ofRonC(R).
Therefore, the intensityΦ of the Poisson point process (5) is given byPR(d f ) 1

2 dt e−x dx. On the other hand,
if we consider a Poisson point process

∑
i∈N δ(Si ,Vi) with intensity1

2 dt e−x dx and independent marksRi ∼ PR,
i ∈ N, then we also obtain a Poisson point process

∑
i∈N δ(Ri ,Si ,Vi) with intensityPR(d f ) 1

2 dt e−x dx. This
implies the equality in distribution of (2) and (3).

Let us now proceed with the proof of equation (6). To this end,we will first relate the distribution of
(T,Y) to the one-dimensional distributions of the diffusionR. In a second step, we then compute the distri-
bution of the shifted Brownian motionZ conditional on (T,Y).
By formulae 2.1.1.4 and 2.1.13.4 in Borodin and Salminen (1996) it follows that the bivariate random vari-
able (T,Y) has the density

dP(T = t,Y = y) = f (|t|, y)(1− e−y) dt dy, t ∈ R, y ∈ R+, (7)

where f is given by

f (t, y) =
y√

2πt3/2
exp

(
− (y+ t/2)2

2t

)
= −e−y f (t,−y).

Note that (1− e−y) is the probability that{B(s) : s ≥ 0} never hitsy ∈ R+. On the other hand, we can
explicitly compute the entrance law and the transition densities of the diffusion{R(t)}t≥0 satisfying (4) and
started atR(0) = 0. Forx, y < 0 let

pt(x, y) dy = dP( sup
0≤s≤t

B(s) ≤ 0, B(t) = y|B(0) = x), t > 0.

By Lemma 55.1 in Rogers and Williams (2000) we conclude that

pt(x, y) = (2πt)−1/2e−(y−x)/2−t/8
[
e−(y−x)2/(2t) − e−(y+x)2/(2t)

]
and

pt(x, y) = e−(y−x)pt(y, x). (8)

Thus, formula 2.1.1.4(1) in Borodin and Salminen (1996) shows that the transition density ofRhas the form

qt(x, y) dy = dP(B(t) = y|B(0)= x, sup
0≤s≤∞

B(s) ≤ 0) = (1− ex)−1pt(x, y)(1− ey) dy, t > 0, x, y < 0.

Consequently, the entrance lawqt(0, ·) of R, i.e.,qt(0, y) dy = dP(R(t) = y) for t > 0 andy < 0 is given by

qt(0, y) = lim
x→0

qt(x, y) =
1√
2πt

e−y/2−t/8(1− ey) lim
x→0

e−(y−x)2/(2t) − e−(y+x)2/(2t)

1− ex

=
−2y√
2πt3/2

e−(y+t/2)2/(2t)(1− ey)

= −2 f (t, y)(1− ey). (9)

Note that this together with (7) implies

dP(T = t,Y = y) = f (|t|, y)(1− e−y) dt dy

= − f (|t|,−y)(1− e−y)e−y dt dy = dP(R(−t) = −y)
e−y

2
, t ∈ R, y ∈ R+. (10)
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We now look more closely at the distribution ofZ conditional on the maximum (T,Y). To this end,
without loss of generality, letDt,y = {T = t,Y = y} with t, y ≥ 0. By Williams’ path decomposition of
Brownian motion (Theorem 55.9 in Rogers and Williams (2000)), {Z(s) : −t ≤ s ≤ 0|Dt,y} is independent
of {Z(s) : s > 0|Dt,y} and the latter has the same distribution as{R(s) : s > 0|R(0) = 0}, whereR satisfies
(4). Furthermore, by the construction ofZ we have that the process{Z(s) : s ≤ −t|Dt,y} is independent of
{Z(s) : s> −t|Dt,y}.
For p, l,m∈ N andr1 ≤ . . . ≤ rp ≤ −t ≤ s1 ≤ . . . ≤ sl ≤ 0 ≤ u1 ≤ . . . ≤ um define random events

A1 = {Z(r1) = w1, . . . ,Z(rp) = wp},
A2 = {Z(s1) = x1, . . . ,Z(sl) = xl},
A3 = {Z(u1) = z1, . . . ,Z(um) = zm},

wherew1, . . . ,wp, x1, . . . , xl , z1, . . . , zm ≤ 0. The above considerations yield

dP
(
A1 ∩ A2 ∩ A3|Dt,y

)
= dP

(
A1|Dt,y

)
dP

(
A2|Dt,y

)
dP

(
A3|Dt,y

)
. (11)

As already mentioned above, we have

dP
(
A3|Dt,y

)
= dP (R(u1) = z1, . . . ,R(um) = zm|R(0) = 0).

Moreover,

dP
(
A1|Dt,y

)
= dP

(
B(r1 + t) = w1 + y, . . . , B(rp + t) = wp + y|B(0)= 0, B(s) ≤ y∀s≤ 0

)
= dP

(
B(r1 + t) = w1, . . . , B(rp + t) = wp|B(0)= −y, B(s) ≤ 0∀s≤ 0

)
= dP

(
R(r1 + t) = w1, . . . ,R(rp + t) = wp|R(0) = −y

)
= dP

(
R(r1) = w1, . . . ,R(rp) = wp|R(−t) = −y

)
,

where we used Remark 1 and the fact thatR is Markov.
For the second factor in (11) we first compute explicitly dP

(
A2 ∩ Dt,y

)
. To this end, puts0 = −t, x0 = −y,

∆si = si − si−1 andξ = (x1, . . . , xl , t, y).

dP
(
A2 ∩ Dt,y

)
= dP(Z(s1) = x1, . . . ,Z(sl) = xl ,T = t,Y = y)

= f (|sl |,−xl)(1− ex0)
l∏

i=1

p∆si (xi−1, xi) dξ

= f (|sl |,−xl)(1− ex0)e−(xl−x0)
l∏

i=1

p∆si (xi , xi−1) dξ

= − f (|sl |, xl)(1− ex0)ex0

l∏
i=1

p∆si (xi , xi−1) dξ

= − f (|sl |, xl)(1− exl )ex0

l∏
i=1

q∆si (xi , xi−1) dξ

=
e−y

2
q|sl |(0, xl)

l∏
i=1

q∆si (xi , xi−1) dξ

= dP(R(s1) = x1, . . . ,R(sl) = xl ,R(−t) = −y)
e−y

2
,

5



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

where we used (8) and (9). The second equation follows by an elementary computation of the transition
probabilities for the shifted Brownian motionZ. Starting from the point (s0, x0) it moves to (sl , xl) and then
attains the one-sided maximum at the origin (with probability f (|sl |,−xl), see (7)). At the same time, the
processB stays below levely on the negative half-axis, which has probability (1− ex0). Thus, (10) yields

dP
(
A2|Dt,y

)
= dP(R(s1) = x1, . . . ,R(sl) = xl |R(−t) = −y).

Putting the parts together, formula (6) follows from (10) and (11).

3. Simulation method

The representation of the Brown-Resnick process in (3) turns out to be a promising basis for simula-
tions. Schlather (2002) gives an algorithm for the simulation of mixed moving maxima processes where
the spectral functions have finite support. Here, this approach can be adopted, the only difference being
that in our case the spectral function, i.e., the conditional negative Brownian motion, does not have finite
support. Diffusions from anywhere outside the simulation window can therefore influence the value of the
Brown-Resnick process inside the simulation window. However, since the diffusions quickly tend to neg-
ative infinity, the probability of this event is exponentially decreasing with the size of the interval which
is added on both sides of the simulation window. This error probability can therefore be made arbitrarily
small. In fact, calculations show that, independent of the size of the simulation window, additional intervals
of length 45 on both sides ensure that the probability of not drawing a path from the desired distribution is
less than 0.5%. Furthermore, paths starting in these additional intervals do not need to be simulated on the
whole enlarged area since knowing the diffusion entrance law enables us to directly jump into the simulation
window. Owing to these facts, the algorithm based on the mixed moving maxima representation is about 60
times faster than the more general algorithms considered inOesting et al. (2011).
Another advantage of this simulation method is its flexibility. In particular, the technique is not restricted to
grids but can easily be performed on any set of points. Moreover, also large simulation windows are feasible
since the computational costs increase first quadratically, then linearly, for increasing simulation intervals.
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