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An equivalent representation of the Brown-Resnick process

S. Engelké*, Z. Kabluchkd, M. Schlathet

Insitut fur Mathematische Stochastik, Georg-Augustversitat Gottingen, Goldschmidtstr. 7, D-37077 Gdgén, Germany
binstitut fiir Stochastik, Universitat Ulm, Helmholtzst8, D-89069 Ulm, Germany

Abstract

Brown and Resnick (1977) introduce a max-stable proceddgtabtained as a limit of maxima of inde-
pendent Ornstein-Uhlenbeck processes. As shown in Kakduehal. (2009) this process is dissipative and
it therefore admits a mixed moving maxima representatioe. Shbw that the distribution of the spectral
functions in this representation equals a well-knowffiugion, namely a standard Brownian motion with
drift conditional on taking negative values only. This canused for fast simulation methods.

Keywords: Brown-Resnhick process, mixed moving maxima, dissipatieaditional negative Brownian
motion, simulation of max-stable processes

1. Introduction

The Brown-Resnick process was first introduced in Brown aeshitk (1977) as the stochastic process
given by

¥(t) = C/ [Xi +Bi(t)], teR, 1)
i=1

whereB;, i € N, are independent copies of a standard Brownian motion oretiddine with drift—|t|/2 and
lien Ox; IS @ Poisson point process on the real axis with interesitglx, x € R, independent of thg;, i € N.
Moreover, it was shown tha¥ is stationary. This property still holds if the Brownian root is replaced
by any Gaussian process with stationary increments andabtidrift (Kabluchko et al., 2009). The ma-
jor importance of these processes arise from the fact tlegtcbnstitute the limits of maxima of suitably
normalized and rescaled Gaussian processes. This makesthimteresting objective in applications such
as modeling extreme events (Buishand et al., 2008). To tidsieis crucial to obtain exact andfeient
simulation methods. However, algorithms based on the atandefinition of Brown-Resnick processes
as in (1) yield very slow convergence. Alternative simuaattechniques have already been considered in
Oesting et al. (2011) which are also applicable to the géimatmn of ¥ by Kabluchko et al. (2009). In
the situation of the process in (1) the Markovian structdrBrownian motion can beneficially be used to
establish a mixed moving maxima representatio¥ of
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Definition 1. Let {F(t)}r be a measurable process and suppose H@ exp(F(t))dt < oo. Further, let
Yien Oty be a Poisson point process @x R with intensitydte™dy and let F, i € N, be independent
copies of F. A process of the form

(=\/lp+Ft-u) teRr,
i=1

is called a mixed moving maxima process.

It was shown (Theorem 14 in Kabluchko et al. (2009)) tHatdmits a representation as a mixed moving
maxima process (i.e., it is a dissipative process, cf. WamlgStoev (2010)). The distribution of the process
F in Definition 1 is however still unknown. In this paper we shitat this distribution equals a well known
diffusion process. Namely, it is a standard Brownian motion wfiift —|t|/2 conditioned on not taking
positive values.

2. Theorem and proof

Theorem 1. Let B be a Brownian motion on the real line with drifit|/2 and B0) = 0. Then the following
two processes have the same distribution:

1.
¥it) = \/[X + B(®)], teR, )
i=1
where B, i € N, are independent copies of B afiLy dx, is a Poisson point process on the real axis
with intensity *dx, x€ R, independent of the;Bi € N.
2.

¥o(t) = \/ Vi + R(t-S)I, teR, 3)
i=1

where} iy 6(s,.v) IS @ Poisson point process dhix R with intensity%dt e*dx, t x € R, independent
ofthe R, i € N. The R's are independent copies of the process

R(t) = LicoR-(=1) + 1=0R: (1),

where R and R. are independent processes which follow D the law of the nonpositive fliision
determined by the stochastigfdrential equation for

dR(t) = dw(t) + % coth(R(t)/2) dt, (4)

starting at R (0) = R_(0) = 0, where W is a standard Brownian motion.

Remark 1. Fory < 0, the djfusion defined by4) and started aiR(0) = y has the same distribution as
a Brownian motionB(t)}i-0 with drift —t/2 and B0) = y conditioned on not taking positive values for all
t > 0. For details see Lemma 55.1 in Rogers and Williams (2000).

In fact, for y= 0, it follows from Theorem 3 in Rogers and Pitman (1981) thatdhposite of the giision,
namely—R, has the same distribution as a three dimensional Bessekps of drifting Brownian motion.
More precisely, it can be obtained by taking the radial paracBrownian motion irfR3 with drift 1/2 in
the direction of the first coordinate axis. This is particlyjamportant with regard to ficient simulation
methods.



Remark 2. In fact, we will prove more than the equality in lawBf and¥,. We will show that the random
families of function$X; + Bi(-)}iey and{V; + R(- — Sj)}ieny considered as point processes ofRJ, the space
of continuous functions dR, have the same law.

Proof of Theorem 1Let us first set up some notation. For the Brownian mofowith drift —|t|/2 and
B(0) = 0 letY = sup. B(s) andT = arg sup. B(s). Moreover, denote b¥(t) = B(t + T) — Y the process
B whose supremum is shifted into the origin.

Consider the Poisson point procggsy d(x,s) ONRXC(R) with intensitye ™dxPg(df), whereC(R) denotes
the space of continuous functions BrandPg is the law ofB. The mapping

n:RxC(R) » C(R) x R xR, (u, f) = (f ((-) + arg supf) — supf, arg supf, supf + u)

is measurable (see proof of Lemma 2.13 in Oesting et al. (Hot @ietails), where the arg sup is the infimum
of all points where the supremum is attained. The key ideh@®ptoof is to compute the intensity measure
@ of the Poisson point process @fR) x R x R induced byy, namely

Z 5(Bi((-)+arg supB;)-supB;,arg sumB;,supB;+X;) - (5)
ieN
The main dificulty here is to find the distribution of the random elemehfl( Y) which is essential in the
later calculations. More precisely, far< ... <t € R, v1,...,¥n < 0,ne N, t € R andy € R, we will later
establish the equation

dP(Z(t1) = y1....Z(t0) =Y, T =1, Y =y) = dP(R(t2) = y1.....R(tn) = yn, R(-t) = -y) %, (6)

whereR is the two-sided dfusion process which satisfies (4) and starts in 0. Thus, sighdition of the
shifted Brownian motioZ essentially equals the one of the reweightetldionR. In order to compute the
measured let M x | x D € B(C(R)) ® B(R) ® B(R) be a measurable set wiM = C;, _ (E) ={g € C(R) :
(9(t1), ..., 0(tn)) € E}, whereE € B(R"). Furthermore, denote bf( A, P) the underlying probability space.

Od(M x| x D)

fe‘XIP’((Z, argsuB, supB) e M x | x D - (0,0, x))dx
R

fe‘xP ((Z(t1),...,Z(tn) € E,argsuB € I, supB € D — x) dx
R

fe‘xfff]P’(Z(tl)=y1,...,Z(tn)=yn,argsu|cB=t,supB=y—x)
R | JD JE
d(y,...,Yn) dydtdx

N = v RD) = —(v— X)) S0
fRe [LLP(RGD—YL...,R(tn)—yn,R( t) = —(y - X)) Se y
d(y17---ayn)dydtdx

fD %efv fl fE fR P (R(t1) = Y1, ..., R(tn) = yn, R(=t) = =(y = X))

dxd(ys,...,yn) dtdy
1
fEe-yffMR(tl)=y1,...,R(tn):yn) dWs.....yn) dtdy
D | JE



where the fourth equality follows from (6) aftk is the law ofR on C(R).

Therefore, the intensitg of the Poisson point process (5) is giveniy(df) % dt e *dx. On the other hand,
if we consider a Poisson point procgsgy (s, v;) with intensity% dt e *dx and independent mark$ ~ P,

i € N, then we also obtain a Poisson point procgss, dr,s,v) With intensity Pr(df) % dte*dx. This
implies the equality in distribution of (2) and (3).

Let us now proceed with the proof of equation (6). To this emd,will first relate the distribution of
(T, Y) to the one-dimensional distributions of theéfdsionR. In a second step, we then compute the distri-
bution of the shifted Brownian motiaf conditional on T, Y).
By formulae 2.1.1.4 and 2.1.13.4 in Borodin and Salmine®@)® follows that the bivariate random vari-
able [T, Y) has the density

dP(T =t Y =y) = f(lty)(1-e”)dtdy, teR,yeR,, 7
wheref is given by
2
Y ox (_ (y+1/2)
\2nt3/2 2t
Note that (1- e7Y) is the probability tha{B(s) : s > 0} never hitsy € R,. On the other hand, we can
explicitly compute the entrance law and the transition dessof the difusion{R(t)}-o satisfying (4) and
started aR(0) = 0. Forx,y < 0 let
pi(X, y) dy = dP(sup B(s) < 0, B(t) = y|B(0) = x), t>0.

O<s<t

fity) =

) = —eVf(t,-y).

By Lemma 55.1 in Rogers and Williams (2000) we conclude that

(% y) = (2nt)~Y/2g 0-0/2-t/8 [e—(y—x)z/(zo _ e—(y+x)2/(2t)]
and

Pux.Y) = € p(y, ). (®)
Thus, formula 2.1.1.4(1) in Borodin and Salminen (1996 shthat the transition density &has the form

a(x, y) dy = dP(B(t) = y|B(0) = X, sup B(s) <0)= (1-e) Ip(x y)(1-€&)dy, t>0,xy<O.
0

<S<co

Consequently, the entrance lay(0, -) of R, i.e.,q:(0,y) dy = dP(R(t) = y) for t > 0 andy < O is given by
e %%/(20) _ g=(r+X%/(20)

1
— i - ~Y/2-t/8(1 _ N\ [i
®x(O0.y) = lma(xy) = me (1-e)lim o
—2Y 2R
= ——eW* 1-¢
Vot (1-¢)
= =2f(ty)(1-#). 9)
Note that this together with (7) implies
dP(T =tY= y) 3 f(|t|, y)(l - eﬁy) dt dy
-y
= —f(t, -y)(1-e?)eYdtdy = dP(R(-t) = —y)%, teRyeR,. (10)



We now look more closely at the distribution @fconditional on the maximumT(Y). To this end,
without loss of generality, leDyy = {T =t,Y = y} with t,y > 0. By Williams’ path decomposition of
Brownian motion (Theorem 55.9 in Rogers and Williams (200@(s) : -t < s < 0|Dy,} is independent
of {Z(s) : s> 0|Dyy} and the latter has the same distributior{R&) : s > O|R(0) = 0}, whereR satisfies
(4). Furthermore, by the construction dfwe have that the proce$&(s) : s < —t|Dy,} is independent of
{Z(9) : s> —t|Dyy}.

Forp,I,meNandr; <...<rp<-t<g <...<§<0<u <... <updefine random events
Ay {Z(r1) =Wy, ..., Z(rp) = Wp},
Ay = {Z(s1) = X1,...,2Z(8) = X},
A3 = {Z(U]_) =17,..., Z(Um) = Zm},
wherews, ..., Wp, X1, ..., X,Z1,...,Zn < 0. The above considerations yield
dP(Ar N Az N Ag|Dyy) = dP(Aq|Dyy) dP(As|Dyy) dP(Az|Dyy). (11)
As already mentioned above, we have
dP(AgIDyy) = dP (R(Uy) = 21, ..., R(Um) = Zn| R(0) = O).
Moreover,
dP(Aq|Dyy)

dP (B(ry+1t) =wy+Y,...,B(rp+1) = W, +yiB(0) = 0,B(s) < y¥s < 0)
= dP(B(ry+1t) =w,...,B(rp +1) = w|B(0) = -y, B(s) < 0¥s < 0)

= dp (R(r1 +1) =wy,...,R(rp +1) = Wp|R(0) = —y)

= dP(R(ry) = wa,..., R(rp) = WplR(-1) = -y),

where we used Remark 1 and the fact tRé& Markov.
For the second factor in (11) we first compute explicitB(&, N Dyy). To this end, puty = —t, Xo = -,
As =5 —S-1andé = (Xg,..., X, t,Y).

dP(A2 N Dyy) dP(Z(s) = X1, ..., 2(8) =%, T =t,Y =Y)

= f(|3|,-x.)(1—ex°)l_l1[ms(xa1,xa)d<f

= f(sl,—x)(1 - €°)e li[ Pas (X, Xi-1) d&
- —f(|s||,)(|)(l—e)(°)ex°ll—l[pAs.(Xi,Xi—l)df

= —f(|S4|,X|)(1—ex')exoll_l[QAs(Xi,Xi—l)df

-y I
= %qm(o,xol_[qu(Xi,Xi—l)df
i=1

»4

= dP(R(s) = X1.....R(8) = %, R(~1) = —y)%,



where we used (8) and (9). The second equation follows by emesitary computation of the transition
probabilities for the shifted Brownian motiah Starting from the pointg, xo) it moves to §, x) and then
attains the one-sided maximum at the origin (with probgbili(|s|, —X), see (7)). At the same time, the
processB stays below levey on the negative half-axis, which has probability{(#*). Thus, (10) yields

dP(AglDyy) = dP(R(s1) = X4, ..., R(s) = XIR(-t) = -y).
Putting the parts together, formula (6) follows from (10§ &fm1).

3. Simulation method

The representation of the Brown-Resnick process in (3)stout to be a promising basis for simula-
tions. Schlather (2002) gives an algorithm for the simaola®f mixed moving maxima processes where
the spectral functions have finite support. Here, this agpgtacan be adopted, the onlyfférence being
that in our case the spectral function, i.e., the condilioregative Brownian motion, does not have finite
support. Difusions from anywhere outside the simulation window canetfoge influence the value of the
Brown-Resnick process inside the simulation window. Hasvesince the diusions quickly tend to neg-
ative infinity, the probability of this event is exponeniyatlecreasing with the size of the interval which
is added on both sides of the simulation window. This errobpbility can therefore be made arbitrarily
small. In fact, calculations show that, independent of the ef the simulation window, additional intervals
of length 45 on both sides ensure that the probability of matvthg a path from the desired distribution is
less than (%. Furthermore, paths starting in these additional irtisrdo not need to be simulated on the
whole enlarged area since knowing th&ukion entrance law enables us to directly jump into the satiar
window. Owing to these facts, the algorithm based on the dhireving maxima representation is about 60
times faster than the more general algorithms consider€esting et al. (2011).

Another advantage of this simulation method is its flexiilln particular, the technique is not restricted to
grids but can easily be performed on any set of points. Ma@e@iso large simulation windows are feasible
since the computational costs increase first quadratj¢hy linearly, for increasing simulation intervals.
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