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The aims of this short note are two-fold. First, it shows that, for a random variable X, the area under the curve of its folded cumulative distribution function equals the mean absolute deviation from the median (MAD). Such an equivalence implies that the MAD is the area between the cumulative distribution function (CDF) of X and that for a degenerate distribution which takes the median as the only value. Secondly, it generalises the folded CDF to a p-folded CDF, and derives the equivalence between the area under the curve of the p-folded CDF and the weighted mean absolute deviation from the p-quantile (MAD p ). In addition, such equivalences give the MAD and MAD p simple graphical interpretations. Some other practical implications are also briefly discussed.

Introduction 1

The folded cumulative distribution function for a random variable can be 2 easily obtained by folding down the upper half of the cumulative distribution 3 function (CDF). It is a simple graphical method for summarising distribu-4 tions, and has been used for the evaluation of laboratory assays, clinical trials 5 and quality control [START_REF] Monti | Folded empirical distribution function curves-mountain plots[END_REF][START_REF] Krouwer | A simple, graphical method to evaluate laboratory assays[END_REF].

6

The mean absolute deviation from the median (MAD) is obtained by averaging the absolute deviations over a population from its median. It is a summary statistic for measuring the variability or dispersion of a distribution. This short note first shows that the area under the curve of the folded CDF equals the MAD, and then generalises the folded CDF to a p-folded CDF and derives the equivalence between the area under the curve of the p-folded CDF and the weighted mean absolute deviation from the p-quantile, which has been used as a risk measure for portfolio optimisation [START_REF] Ogryczak | Dual stochastic dominance and related mean-risk models[END_REF][START_REF] Ruszczyński | Frontiers of stochastically nondominated portfolios[END_REF].

Relationship between the folded CDF and the MAD

Consider a univariate, continuous random variable X, with probability density function (PDF) f (x), with CDF F (x) and with the support of f (x) being the interval [a, b]. For a discrete X, a derivation similar to the one below can be obtained and is thus omitted here.

The theoretical case

The CDF F (x) is a real-valued function in the range of [0, 1], defined as

F (x) = x a f (y)dy .
(1)

The folded CDF, denoted by G(x) hereafter, is obtained by folding down the upper half of the CDF. It is therefore a real-valued function in the range of [0, 1 2 ], defined by

G(x) = F (x), if F (x) ≤ 1 2 , 1 -F (x), otherwise . (2) 
A folded CDF is also termed a mountain plot, in view of its shape.

The MAD is defined by

MAD = b a |x -m|f (x)dx , ( 3 
)
where m is the median of the distribution

F (x) such that m a f (x)dx = b m f (x)dx = 1 2 . ( 4 
)
By elementary algebra and interchange of variables for integration, it follows that the area under the curve of G(x) is (5)

That is, the area under the curve of G(x) equals the MAD.

The empirical case

Suppose that we have a sample of N observations from the distribution F (x) and that, among the N observations, there are n distinct values {x i } n i=1 with corresponding proportions p(x i ). Without loss of generality, let

x 1 < x 2 < . . . < x n .
By abuse of notation, we use the same symbols for F (x), G(x), m, MAD and their empirical versions, when there is no ambiguity in the context.

The empirical CDF, F (x), can be defined as

F (x) = x i ≤x p(x i ) . (6) 
Empirically, the median m is any point such that

F (m) ≥ 1 2 and x i ≥m p(x i ) ≥ 1 2 . ( 7 
)
If m = x K and m = x K+1 both satisfy ( 7) then any x-value such that

x K ≤ x ≤ x K+1 qualifies to be the sample median. Otherwise, m is the unique x K for which [START_REF] Choi | A risk-averse newsvendor with law invariant coherent measures of risk[END_REF] holds and in this case both inequalities are strict;

this argument includes the case in which all the N observations are distinct.

Hence, the area under the curve of G(x) can be expressed as

K-1 i=1 {G(x i )(x i+1 -x i )} + G(x K )(m -x K ) + G(m)(x K+1 -m) + n-1 i=K+1 {G(x i )(x i+1 -x i )} = K-1 i=1 {F (x i )(x i+1 -x i )} + F (x K )(m -x K ) + {1 -F (m)} (x K+1 -m) + n-1 i=K+1 [{1 -F (x i )} (x i+1 -x i )] . (8)
If we substitute equation ( 6) into equation ( 8), the area becomes

K-1 i=1 (x i+1 -x i ) i j=1 p(x j ) + (m -x K ) K j=1 p(x j ) + (x K+1 -m) n j=K+1 p(x j ) + n-1 i=K+1 (x i+1 -x i ) n j=i+1 p(x j ) = K j=1 {(m -x K + x K -x K-1 + . . . + x j+1 -x j )p(x j )} + n j=K+1 {(x K+1 -m + x K+2 -x K+1 + . . . + x j -x j-1 )p(x j )} = K j=1 {(m -x j )p(x j )} + n j=K+1 {(x j -m)p(x j )} = n j=1 {|x j -m|p(x j )} . (9) 
As the MAD can be defined as

MAD = n i=1 {|x i -m|p(x i )} , (10) 
equation ( 9) shows that the area under the curve of G(x) equals the MAD.

Furthermore, equations ( 5) and ( 9) suggest that the MAD is the area, or a measure of absolute difference, between F (x) and the CDF for a degenerate distribution which takes the median m as the only value.

Generalisations to the p-folded CDF and the MAD p

The folded CDF can be generalised to a p-folded CDF, denoted by G p (x)

hereafter and given by

G p (x) = F (x), if F (x) ≤ p , 1 -F (x), otherwise , (11) 
where p ∈ (0, 1).

Similarly, the MAD can also be generalised to a mean absolute deviation from the p-quantile, denoted by MAD p hereafter and given by

MAD p = b a |x -m p |f (x)dx , (12) 
where, for p ∈ (0, 1), m p = F -1 (p) is the p-quantile.

Then, as implied by equation ( 5), the p-folded CDF is related to the MAD p through b a G p (x)dx = MAD p . In addition, the MAD p is a measure of absolute difference between F (x) and the CDF for a degenerate distribution which takes m p as the only value.

However, when p is a value other than 1/2, G p (x) is not continuous at m p . Hence, here we define G p (x) as a weighted version of that in equation ( 11):

G p (x) = 1-p p F (x), if F (x) ≤ p , 1 -F (x), otherwise , (13) 
for p ∈ (0, 1), such that G p (x) is continuous at m p with G p (m p ) = 1p.

Accordingly, the MAD p is defined as a weighted version of that in equation ( 12): From equation ( 14), we can make the following observations. First, when p = 1/2, the MAD p reverts to the MAD. Secondly, the relative weight received by the values of X larger than

MAD p = b a max 1 -p p (m p -x), x -m p f (x)dx , (14) 
m p is p 1-p . When p > 1/2, p 1-p > 1;
hence, the values of X larger than m p receive a heavier weight than that received by the values smaller than m p , and the larger the p, the larger the relative weight p 1-p . Such a pattern reverses if p < 1/2 . In both cases, it indicates that, roughly speaking, a deviation from m p to a more extreme situation receives a heavier weight than a deviation from m p to a less extreme situation, when the overall variability is summarised by the MAD p .

Therefore, such an MAD p can be used as a measure of risk, as adopted in mean-risk models for portfolio optimisation by [START_REF] Ogryczak | Dual stochastic dominance and related mean-risk models[END_REF], [START_REF] Ruszczyński | Frontiers of stochastically nondominated portfolios[END_REF], [START_REF] Miller | Risk-adjusted probability measures in portfolio optimization with coherent measures of risk[END_REF] and [START_REF] Choi | A risk-averse newsvendor with law invariant coherent measures of risk[END_REF], for example. These studies have discussed the relationship between the MAP p and expected shortfall, sometimes termed conditional value at risk, average value at risk or expected tail loss.

Implications for practice

Our results have a number of practical implications.

First, analogously to the Bland-Altman difference plot [START_REF] Altman | Measurement in medicine: the analysis of method comparison studies[END_REF]Bland andAltman, 1986, 1999), which is popular in medical statistics and analytic chemistry, the folded CDF is also a graphical tool for assessing agreement between two assays or methods, often by representing the difference between the two assays by a random variable X. Both plots can be readily understood by the users who may not be statisticians or operations research analysts.

Compared with the Bland-Altman difference plot, the folded CDF stresses more the median and tails of the difference. If the two assays are 'unbiased'

with each other [START_REF] Krouwer | A simple, graphical method to evaluate laboratory assays[END_REF], the median would be close to zero. If the variability between the two assays is large, the width near the bottom of the folded CDF would be large, analogously to a confidence interval.

Complementary to such a width, the area under the curve of the folded CDF is another measure of the variability between the two assays, roughly through visual inspection or precisely through quantitative computation.

Therefore, the equivalence between the under-curve area and the MAD suggests, and provides a theoretical justification of, this measure.

Secondly, the weighted mean absolute deviation from the p-quantile, shown as the MAD p in equation ( 14), includes the MAD as a special case and, more importantly, has been adopted as a risk measure in mean-risk models for portfolio optimisation. It is well defined and investigated [START_REF] Ruszczyński | Frontiers of stochastically nondominated portfolios[END_REF]. Moreover, it is a very generic measure of dispersion or risk, and can be used in other risk-management practice.

Lastly but importantly, the equivalences give the MAD and MAD p simple graphical interpretations for practitioners from outside the statistics and operations research communities.

  m|f (y)dy .

  y), ym p f (y)dy; . (15) that is, the weighted MAD p equals b a G p (x)dx, the area under the curve of G p (x).
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