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PRICING BASKET DEFAULT SWAPS IN A TRACTABLE
SHOT-NOISE MODEL

ALEXANDER HERBERTSSON, JIWOOK JANG, THORSTEN SCHMIDT

Abstract. We value CDS spreads and kth-to-default swap spreads in a tractable shot
noise model. The default dependence is modelled by letting the individual jumps of the
default intensity be driven by a common latent factor. The arrival of the jumps is driven
by a Poisson process. By using conditional independence and properties of the shot noise
processes we derive tractable closed-form expressions for the default distribution and the
ordered survival distributions. These quantities are then used to price kth-to-default swap
spreads. We calibrate a homogeneous version of the model to the term structure on market
data from the iTraxx Europe index series sampled during the period 2008-01-14 to 2010-
02-11. We perform 435 calibrations in this turbulent period and almost all calibrations
yields very good fits. Finally we study kth-to-default spreads in the calibrated model.

1. Introduction

In recent years the market for portfolio credit derivatives, which are derivatives with
a payoff linked to the credit loss in a portfolio, has seen a rapid growth and increased
liquidity. This has been followed by an intense research for understanding and modelling
the main feature driving these products, namely default dependence. The current credit
crisis undermines the necessity of models which can calibrate to market data on one side
and also capture contagion effects on the other side. The model proposed in this paper
is an affine model with a jump component. This allows to introduce a high dependence
between different obligors which is of immense importance for practical applications.

Affine models have been widely used in modelling of interest rates and credit risk, but
typically the jump component plays a minor role. However, the main driver of contagion
effects1 is the jump component. In this paper we concentrate on the jump component only,
while the results easily can be enriched by adding a diffusion component.

As an illustration of the tractability of the model we present a number of numerical
studies. We calibrate the model to market data from the iTraxx Europe index series in
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the period 2008-01-14 to 2010-02-11. During this turbulent period the term structure and
the market spreads have a very wide spectrum of different values and relationships. We
perform 435 calibrations in this period and almost all calibrations yields very good fits.
This demonstrates the flexibility and the robustness of this remarkably simple model.

The rest of this paper is organized as follows. In Section 2 we introduce the shot noise
model that is used in the paper. Section 3 derives the formulas that are needed for pricing
portfolio credit derivatives and thereafter consider the case of inhomogeneous portfolios.
In Section 4 we study an explicit example of the model. Section 6 present how to price
credit default swaps (CDS) and kth-to default swaps. We also show that the index-CDS
spread and the CDS spread coincide in a homogeneous portfolio which will be used in the
calibration. Finally, in Section 7 we calibrate the model to the term structure on market
data from the iTraxx Europe index series. An analysis of kth-to default swaps in the
calibrated model completes the numerical section.

2. The model

Consider a filtered probability space (Ω, F , F, Q) where the filtration F satisfies the usual
conditions. In this paper Q is a martingale measure equivalent to the objective measure
P, and below all expectations are done with respect to the risk neutral measure Q.

Let {Xi,j, Yj : 1 ≤ i ≤ m, j ≥ 1} be independent nonnegative random variables where
Xi,j has distribution function Fi and Yj has distribution function FY . Furthermore, let M
be a Poisson process with constant intensity ρ and denote its jump times by S1, S2, . . . .
Let λi = (λt,i)t≥0, 1 ≤ i ≤ m be m processes where λi satisfies the SDE

dλt,i = −δiλt,idt + dCt,i ,

Ct,i =

Mt∑

j=1

YjXi,j.
(2.1)

The intuitive interpretation of (2.1) is that at the each jump time Sj of M , the process
λi jumps by the amount YjXi,j. Otherwise it decays exponentially with rate δi. This
process is a Markovian shot-noise process (compare, e.g. Dassios & Jang (2003) and
Gaspar & Schmidt (2011)). Furthermore, the dependence structure of the multivariate shot
noise process (λ1, λ2, . . . , λm) is determined by the process M and the random variables
{Yj : j ≥ 1}. If Yj is a deterministic constant same for all j ≥ 1, then λt,1, . . . , λt,m are
independent conditional on M .

Consider a portfolio consisting of m obligors. The default time of obligor i is denoted
by τi. Let E1, . . . , Em be independent random variables, exponentially distributed with
parameter one, which are also independent of the processes λ1, . . . , λm and assume that

τi = inf

{
t > 0 :

∫ t

0

λs,ids ≥ Ei.

}
,

This framework is typically called intensity-based modelling, see Filipović (2009) and λi is
called intensity of τi. With the filtration defined by Gt = σ(λs,i : 0 ≤ s ≤ t, 1 ≤ i ≤ m) it
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follows that

Q [τi > t | G∞] = Q [τi > t | Gt] = exp

(
−
∫ t

0

λs,ids

)
. (2.2)

Lemma 2.1. Let Hi(x) := δ−1
i (1 − e−δix). Then

∫ t

0

λs,ids = λ0,iHi(t) +

Mt∑

j=1

YjXi,jHi(t − Sj).

Proof. First, observe that the solution of the SDE (2.1) is given by

λt,i =

Mt∑

j=0

YjXi,j exp
(

− δi(t − Sj)
)
,

where we use Y0 = 1, X0 = λ0,i and S0 = 0 to simplify the notation. Hence

∫ t

0

λs,ids =

∫ t

0

Ms∑

j=0

YjXi,je
−δi(s−Sj)ds

=

∫ t

0

Mt∑

j=0

YjXi,je
−δi(s−Sj)1{Sj ≤s}ds

=
Mt∑

j=0

YjXi,je
δiSj

1

δi

(
e−δiSj − e−δit

)

and the conclusion follows. �

Note that Lemma 2.1 purely results from the shot-noise assumptions and can easily be
generalized to non-exponential decay, compare for example Gaspar & Schmidt (2011). It
moreover holds for arbitrary random variables ηj replacing YjXi,j .

3. Pricing credit derivatives in a homogeneous model

Consider a portfolio consisting of m obligors with default times τ1, τ2 . . . , τm and identical
recovery rates φ1 = φ2 = . . . = φm = φ. The credit loss Lt for this portfolio at time t, in
percent of the nominal portfolio value at t = 0, is given by

Lt =
1 − φ

m

m∑

i=1

1{τi ≤t} =
1 − φ

m
Nt (3.1)

where Nt :=
∑m

i=1 1{τi ≤t} counts the number of defaults in the portfolio.
It is well known that in order to price portfolio credit derivatives – such as basket default

swaps or CDO tranches – on portfolios with homogeneous recoveries, it is enough to find
the distribution {Q (Nt = k)}m

k=0 at different time points t, see e.g. Herbertsson (2008).
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In order to simplify computations further, one often assumes that the portfolio is homo-
geneous, which means that all default times are exchangeable. To this regard, consider

Q (Nt = k) =
∑

M ⊂ {1,...,m},|M |=k

Q
(
τi ≤ t : i ∈ M, τi > t : i 6∈ M

)
.

Exchangeability means that the probability on the r.h.s. does only depend on the number
of defaults being smaller than t. Then

Q (Nt = k) =

(
m

k

)
Q

(
k⋂

i=1

{τi ≤ t} ,
m⋂

i=k+1

{τi > t}
)

. (3.2)

Therefore we need to compute the probabilities on the r.h.s in (3.2). In this section we
consider exchangeable portfolios which is equivalent to the following assumption regarding
(2.1)

λi,0 = λ0, δi = δ and Fi = F for 1 ≤ i ≤ m. (3.3)

Denote H(x) = δ−1(1 − e−δx). We can then state the following useful lemma.

Lemma 3.1. Under (3.3) we have that

Q (Nt = k) =

(
m

m − k

)
G(m − k) −

(
m

m − k + 1

)
G(m − k + 1) (3.4)

where

G(k) := E
(
e−∑k

i=1

∫ t
0 λs,ids

)
. (3.5)

Proof. First, observe that Nt ≤ m − k implies that at least k companies have survived up
to time t. Hence, the homogeneity assumption (3.3) then yields

Q (Nt ≤ m − k) =

(
m

k

)
E
(
e−∑k

i=1

∫ t
0

λs,ids
)

(3.6)

and since Q(Nt = k) = Q(Nt ≤ k) − Q(Nt ≤ k − 1) we conclude the lemma. �
Thus, in order to find Q (Nt = k) it is sufficient to compute G(k) for any k = 1, . . . , m.

Throughout we denote by X a prototype for Xi,j, for example X1,j and similarly Y for
Yj. Furthermore, denote by ϕX(z) = E

(
e−zX

)
the Laplace transform of the non-negative

random variable X. The following result gives the necessary quantities for finding {G(t, j)}.

Proposition 3.2. Under (3.3) we have that

G(k) = e−kλ0H(t)−ρt · exp

(
ρt

∫

R

∫ 1

0

(
ϕX

(
yH(tz)

))k

dzFY (dy)

)
. (3.7)

Proof. First, by Lemma 2.1

E

(
exp

(
−

k∑

i=1

∫ t

0

λs,ids

))
= E

(
exp

(
−

k∑

i=1

(
λ0,iH(t) +

Mt∑

j=1

YjXi,jH(t − Sj)
)))

.

(3.8)
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To compute the right hand side in (3.8) we use the following observations: Conditional
on Mt = ℓ the jump times {Si}ℓ

i=1 are distributed like the order statistics of uniform
random variables over the interval, see for example p.502 in Rolski, Schmidli, Schmidt &
Teugels (1999). More precisely, let η1, η2, . . . , ηℓ be ℓ independent random variables all
with distribution U [0, t], then L(S1, . . . , Sℓ|Mt = ℓ) = L(η1:ℓ, . . . , ηℓ:ℓ) where {ηn:ℓ}ℓ

n=1 is
the ordering of {ηn}ℓ

n=1. Thus,

E
(

e−∑k
i=1

∑Mt
j=1 YjXi,jH(t−Sj)

∣∣∣Mt = ℓ
)

= E
(
e−∑k

i=1

∑ℓ
j=1 YjXi,jH(t(1−ηj:ℓ))

)

= E
(
e−∑k

i=1

∑ℓ
j=1 YjXi,jH(t(1−ηj ))

)
(3.9)

where the last equality follows because all Yj, Xi,j are independent of η1, . . . , ηj and since
all Xi,j are exchangeable as they are independent and have identical distributions. By (3.3)
we have that λ0,i = λ0 and thus,

E

(
exp

(
−

k∑

i=1

(
λ0,iH(t) +

Mt∑

j=1

YjXi,jH(t − Sj)
))∣∣∣Mt = ℓ

)

= e−kλ0H(t)E

(
exp

(
−

k∑

i=1

ℓ∑

j=1

YjXi,jH(t(1 − ηj))
))

. (3.10)

Next, we compute the expectation in (3.10). First,

E
(

e−∑k
i=1

∑ℓ
j=1 YjXi,jH(t(1−ηj ))

∣∣∣Y1 = y1, . . . , Yℓ = yℓ, η1 = z1, . . . , ηℓ = zℓ

)

= E

(
k∏

i=1

ℓ∏

j=1

e−yjXi,jH(t(1−zj ))

)
=

k∏

i=1

ℓ∏

j=1

E
(
e−yjXi,jH(t(1−zj ))

)

=

k∏

i=1

ℓ∏

j=1

ϕX

(
yjH(t(1 − zj)) =

ℓ∏

j=1

(
ϕX

(
yjH(t(1 − zj))

)k

, (3.11)

where we used that {Yj } and {ηj } are independent of {Xi,j }. Hence, by (3.11)

E
(
e−∑k

i=1

∑ℓ
j=1 YjXi,jH(t(1−ηj ))

)
= E

(
ℓ∏

j=1

(
ϕX

(
YjH(t(1 − ηj))

)k
)

=

[
E
((

ϕX

(
Y1H(t(1 − η1))

)k
)]ℓ

=

[∫

R

∫ 1

0

(
ϕX

(
yH(tz))

)k
dzFY (dy)

]ℓ

where the first and second equality follows from (3.11) and the last equality is due to the
fact that 1 − η is uniformly distributed on [0, 1]. Finally, using the above results together



6 ALEXANDER HERBERTSSON, JIWOOK JANG, THORSTEN SCHMIDT

with (3.10) and the definition of G(k) in (3.5) and (3.8) we get

G(k) = E
(
e−∑k

i=1

∫ t
0 λs,ids

)

=

∞∑

ℓ=0

E
(

e−∑k
i=1

∫ t
0 λs,ids

∣∣∣Mt = ℓ
)

Q (Mt = ℓ)

=

∞∑

ℓ=0

e−ρt (ρt)ℓ

ℓ!
e−kλ0H(t)

[∫

R

∫ 1

0

(
ϕX

(
yH(tz)

))k
dzFY (dy)

]ℓ

= e−ρt−kλ0H(t) · exp

(
ρt

∫

R

∫ 1

0

(
ϕX

(
yH(tz)

))k
dzFY (dy)

)

which concludes the proposition. �

As already mentioned, the quantity Q (Nt = k) is central for pricing portfolio credit
derivatives, and the fact that we are able to derive Q (Nt = k) explicitly up to the quantity∫ ∫ 1

0
(ϕX

(
yH(tz)

)
)kdzFY (dy) is highly remarkable. Depending on ϕX this quantity can be

computed explicitly.

4. An explicit example

In this section we give an tractable and explicit example of the model presented in (2.1)
under the assumption (3.3). To be more specific, we assume that

Y ∈ {y1, y2, . . . , yK } where Q (Y = yj) = qj and X ∼ χ2(2) (4.1)

where K ≥ 2 is an integer and yj, qj ≥ 0 for each j = 1, . . . , K and
∑K

j=1 qj = 1. Hence,
Y is a K-point distributed random variable and X has chi-squared distribution with 2
degrees of freedom. This result can be generalized in a number of ways. For example,
any distribution for X with has an closed form expression for its Laplace transform still
leads to tractable formulas, e.g. a Gamma distribution. We chose the stated formulation
for simplicity and it is remarkable that it provides a good fit in our numerical examples.

Proposition 4.1. Under (3.3) and (4.1) we have that

G(k) = exp

(
−kλ0H(t) + ρt

[
K∑

j=1

qjI(yj, k, t) − 1

])
(4.2)

where

I(y, k, t) :=

∫ 1

0

1

(1 + 2yδ−1 (1 − e−δtz))k
dz. (4.3)

Furthermore,

Q (τi > t) = e−λ0H(t)+ct
K∏

j=1

[
1 + 2yjδ

−1(1 − e−δt)
] ρqj

δ+2yj (4.4)
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where c is given by

c = ρ

(
K∑

j=1

qj

1 + 2yjδ−1
− 1

)
.

Proof. Recall that if X ∼ χ2(2) then ϕX(s) = (1 + 2s)−1 and since H(x) = δ−1
(
1 − e−δx

)

we have

ϕX (yH(tz)) =
1

1 + 2yδ−1 (1 − e−δtz)
. (4.5)

Since Y is a K-point distributed random variable with {y1, . . . , yK } and Q (Y = yj) = qj

we get
∫

R

∫ 1

0

(
ϕX

(
yH(tz)

))k

dzFY (dy) =

K∑

j=1

qjI(yj, k, t) (4.6)

where we define I(y, k, t) as in (4.3). Hence, plugging (4.6) into (3.7) in Proposition
3.2 yields (4.2). It is possible to obtain analytical expressions for the integrals I(y, k, t),
however as k increases these become quite long and tedious. In practice we evaluate
I(y, k, t) using numerical quadrature. However, for k = 1, we can simplify (4.2). To see
this, note that (2.2) and (3.5) imply

Q (τi > t) = E
(

exp

(
−
∫ t

0

λs,ids

))
= G(1)

and by (4.2) with k = 1 we have

G(1) = e−λ0H(t) exp

(
ρt

[
K∑

j=1

qjI(yj, 1, t) − 1

])
(4.7)

where I(y, 1, t) is given by (4.3) with k = 1. Furthermore, note that (see e.g. p.171 in
R̊ade & Westergren (1995) )

∫
1

b + ceaz
dz =

z

b
− 1

ab
ln |b + ceaz |

and this observation with (4.3) and k = 1 yields

I(y, 1, t) =
1

1 + 2yδ−1
+

1

t(δ + 2y)
ln
[
1 + 2yδ−1(1 − e−δt)

]
. (4.8)

Next, some calculations renders

ρt

(
K∑

j=1

qjI(yj, 1, t) − 1

)
= ρt

K∑

j=1

qj

1 + 2yjδ−1
− ρt +

K∑

j=1

ρqj

δ + 2yj
ln
[
1 + 2yjδ

−1(1 − e−δt)
]

and plugging this into (4.7) yields (4.4). �

Proposition 4.1 will be used in Section 7 to calibrate the model to market data.
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5. A homogeneous group approach

It is sometimes natural to consider extensions of the homogeneous framework presented
in Section 3. One example is to obtain a higher degree of heterogeneity in the model.
This can easily be achieved by splitting the portfolio into several different homogeneous
subportfolios and then apply the results of Section 3 to each subportfolio. To show this in
more detail, we here follow the outline presented in Papageorgiou & Sircar (2010). Assume
that the m obligors consist of g homogeneous groups, and each firm belongs to one group
only. The number of firms in group j is denoted by mj > 0. We assume there exists
a common factor W , such that given W , the intensities are independent and they are
exchangeable in each group. Denoting by Nt,j the number of losses in group j, we obtain
as in Lemma 3.1 that

Q(Nt,j = k|W = w) =

(
mj

mj − k

)
Gj(mj − k) −

(
mj

mj − k + 1

)
Gj(mj − k + 1) (4.1)

where Gj = Gj(w) can be determined as in Proposition 3.2. From (2.2) we obtain the
probability of having k defaults in the whole portfolio as

Q(Nt = k) =
k∑

k1=0

· · ·
k−k1− · · ·−kg−1∑

kg=0

Q(Nt,1 = k1, . . . , Nt,g = kg)

and

Q(Nt,1 = k1, . . . , Nt,g = kg |W ) = Q(Nt,1 = k1|W ) · · · Q(Nt,g = kg |W ).

Computing the sum in (4.1) is quite intensive, and following Papageorgiou & Sircar (2010)
it may be improved by using Fourier-inversion methods. To this note that

E(eθNt,1) =

∫ ∞

0

Q(Nt,1 ≥ θ−1 ln(x))dx = (eθ − 1)
∑

k≥0

eθkQ(Nt,1 ≥ k),

with an analogous expression for the expectation conditional on W . The probability may
be obtained analogously to Lemma 3.1 as by (3.6) we have

Q(Nt,j ≤ k) =

(
mj

mj − k

)
Gj(mj − k).

As the calibration procedure in Section 7 shows a surprisingly good fit of the homogeneous
model we, however, leave the application of these results to future research.

6. Pricing CDS and basket default swaps

In this section we give a short account on single-name CDS and kth-to default swaps. As
previously, all computations are done under a risk-neutral martingale measure Q. Further,
we assume the that risk-free interest rate is a deterministic constant given by r.
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6.1. Single-name CDS. Consider an obligor C with default time τ and recovery rate R.
A single-name CDS with maturity T where the reference entity is obligor C, is a bilateral
contract between two counterparties, A and B, where B promises to pay A the credit
losses (1 − R) at τ if the obligor defaults before time T . As compensation for this, A pays
S∆ to the protection seller B, at t1 < t2 < . . . < tN = T , at most until τ . We assume that
∆ = tn − tn−1 for any n. The CDS spread S is determined so that expected discounted
cashflows between A and B are equal when the CDS contract is settled at t = 0. Assuming
a constant interest rate r and deterministic recovery rate implies that S is given by

S(T ) =
(1 − R)

∫ T

0
e−rsdF (s)

∆
∑nT

n=1 e−rtn(1 − F (tn))
(6.1.1)

where F (t) = Q (τ ≤ t) is the distribution functions of the default time for the obligor C.

6.2. Pricing kth-to-default swaps. A kth-to default swap offers protection against the
kth default in the portfolio. To be more specific, consider a basket of m bonds each
with notional N , issued by m obligors with default times τ1, τ2, . . . , τm and recovery rates
R1, R2, . . . , Rm. Further, let T1 < . . . < Tm be the ordering of τ1, τ2, . . . , τm. A kth-to-
default swap with maturity T on this basket is a bilateral contract between two counter-
parties, A and B, where B promises A to pay the credit losses that B suffers at Tk if
Tk < T . Just as in the CDS, A pays be B a fee up to the default time Tk or until T ,
whichever comes first. The payments dates are identical to those in the CDS case and the
fee is S(k)∆ where ∆ is as previously tn − tn−1 and we assumed equidistant payment dates.
The main difference lies in the default payment at Tk. If Tk < T , B pays A N(1 − Ri) if
it was obligor i which defaulted at time Tk. However, if

R1 = R2 = . . . = Rm = R, (6.2.1)

the payment at Tk is always N(1−R) if Tk < T . The kth-to-default spread S(k) is expressed
in bp per annum and determined so that the expected discounted cash-flows between A
and B coincide at t = 0. Assuming the same conditions as in the CDS, we therefore have

S(k)(T ) =
(1 − R)

∫ T

0
e−rsdFk(s)

∆
∑nT

n=1 e−rtn(1 − Fk(tn))
.

Here Fk (t) = Q (Tk ≤ t) is the distribution functions of the ordered default times. The
rest of the notation are the same as in the CDS contract. Under (6.2.1) the kth-to-default
spread is completely determined by the distribution for Nt: recall that

Q (Tk > t) = Q (Nt < k) =

k−1∑

j=0

Q (Nt = j)

where Q (Nt = j) is given in Lemma 3.1. Furthermore, note that for k ≤ m − 1 we have

Q (Tk+1 > t) = Q (Tk > t) + Q (Nt = k)

which is useful from computational point of view when finding the survival distribution
Fk(t) for several k = 1, 2, . . . , ℓ where ℓ ≤ m.
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6.3. The index-CDS spread and its relation to the CDS-spread in a homo-
geneous portfolio. The financial instrument that constitutes a index-CDS spread with
maturity T on a portfolio with m defaultable obligors, is a bilateral contract where the
protection seller B agrees to pay the protection buyer A, all losses that occurs in the
portfolio up to time T , that is LT defined as in Equation (3.1). The payments are made
at the corresponding default times, if they arrive before T , and at T the contract ends.
As compensation for this, A pays B a periodic fee proportional to the current outstanding
(possible reduced due to losses) value of the portfolio up to time T . To make our discussion
more formal, the payments from A to B and from B to A are given by

E
(∫ T

0

e−rsdLs

)
and Sind(T )

nt∑

n=1

e−rtn

(
1 − 1

m
E (Ntn)

)
∆ (6.3.1)

where Lt = 1−R
m

Nt for Nt =
∑m

i=1 1{τi≤t}. The rest of the notation are the same as
in the CDS contract. The index CDS spread Sind(T ) is determined so that the expected
discounted payments between A and B are equal at the inception time 0. This observation
together with the quantities in (6.3.1) implies

Sind(T ) =
E
(∫ T

0
e−rsdLs

)

∑nt

n=1 e−rtn
(
1 − 1

m
E (Ntn)

)
∆

. (6.3.2)

The spread Sind(T ) is quoted in bp per annum and is independent of the nominal size of
the portfolio.

We can now state the following lemma for a homogeneous portfolio.

Lemma 6.1. Consider a homogeneous credit portfolio. Then, with notation as above,
Sind(T ) = S(T ), that is the index-CDS spread is equal to the individual CDS-spread.

Proof. Since Lt = 1−R
m

Nt where Nt =
∑m

i=1 1{τi ≤t} we have that

∫ T

0

e−rsdLs =
1 − R

m

∫ T

0

e−rsdNs =
1 − R

m

m∑

i=1

e−rτi1{τi ≤T }

so

E
(∫ T

0

e−rsdLs

)
=

1 − R

m

m∑

i=1

E
(
e−rτi1{τi≤T }

)
= (1 − R)

∫ T

0

e−rsdF (s) (6.3.3)

where F (t) = Q (τi ≤ t) is the distribution functions of the default time for the obligor i,
and the last equality in (6.3.3) is due to the exchangeability in the portfolio. Furthermore,
we also have that

1

m
E (Ntn) =

1

m

m∑

i=1

Q (τi ≤ tn) = F (tn) (6.3.4)
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where the last equality in (6.3.4) again is due to the exchangeability in the portfolio.
Inserting (6.3.3) and (6.3.4) into (6.3.2) yields that

Sind(T ) =
(1 − R)

∫ T

0
e−rsdF (s)

∆
∑nT

n=1 e−rtn(1 − F (tn))

and comparing this expression with the formula for the CDS-spread in Equation (6.1.1)
shows that Sind(T ) = S(T ) which proves the lemma. �

From Lemma 6.1 we conclude that if we want to calibrate the CDS-spread in a homo-
geneous model, then we can instead calibrate the index-CDS spread. This is very useful
since there exists very liquidly traded index-CDS spreads on standardized portfolios such
as iTraxx Europe, iTraxx Asia, iTraxx Europe financial, the North American CDX series
etc.

7. Some numerical examples

In this section we use the model (4.1) presented in Section 4 with K = 2 and calibrate
it to the term structure on market data from the iTraxx Europe index series sampled
during the period 2008-01-14 to 2010-02-11. We then compute kth-to defaults swaps in
the calibrated model. The data set used in the calibration was collected from Reuters with
a daily sample frequency and the term structure is given by T = 3, 5, 7, 10 years. However,
since several dates in the period 2008-01-14 to 2010-02-11 did not contain the market
quotes SM,ind(T ) for all four maturities, T = 3, 5, 7, 10, the sample-days with incomplete
term-structure quotes were removed from the data. This removal reduced the time-series
to 435 observations of quadruples {SM,ind(T )}T ∈{3,5,7,10} sampled at different days during
the period 2008-01-14 to 2010-02-11, which are displayed in Figure 1.

In the calibration of our model we use Lemma 6.1 which states that in a homogeneous
model, the index-CDS spread will coincide with the individual CDS-spread. Hence, for each
sample date the quoted iTraxx Europe index spreads {SM,ind(T )}T ∈{3,5,7,10} will be a proxy
to the “market”CDS-spread {SM(T )}T ∈{3,5,7,10} of one obligor in the homogeneous portfolio
(recall that all obligors by hypothesis are exchangeable). Thus, the “market”CDS-spread
SM(T ) is defined as SM(T ) = SM,ind(T ) for T = 3, 5, 7, 10. For each sample time in our
dataset displayed in Figure 1, we calibrate our model so that the model spread S(T ) will
coincide with the corresponding market spread SM(T ) for T = 3, 5, 7, 10 at the time point
where the data was retrieved. To be more specific, at each sample point in the time series
the parameters θ = (y1, y2, q, δ, ρ, λ0) are obtained according to

θ = argmin
θ̂

∑

T ∈{3,5,7,10}

(
S(T ; θ̂) − SM(T )

)2

SM(T )2
(7.1)

with the constraint that all elements in θ are nonnegative. In S(T ; θ) we have emphasized
that the model spreads are functions of θ = (y1, y2, q, δ, ρ, λ0) but suppressed the depen-
dence of interest rate, payment frequency, etc. In the calibration, we used a interest rate



12 ALEXANDER HERBERTSSON, JIWOOK JANG, THORSTEN SCHMIDT

of 3%, the payments in the premium leg were quarterly and the integral in the default leg
was discretized on a quarterly mesh.

We performed this calibration for our 435 quadruples {SM,ind(T )}T ∈{3,5,7,10} and the
calibrated parameters (y1, y2, q, δ, ρ, λ0) are displayed in Figure 2. At each sample date,
the initial guess parameters used in the calibration (7.1) was chosen to be the calibrated
parameters from the previous sample date.

Furthermore, the corresponding average absolute errors 1
4

∑
T ∈{3,5,7,10} |S(T ; θ) − SM (T )|

and average relative (i.e. mean) errors 1
4

∑
T ∈{3,5,7,10}

|S(T ;θ)−SM (T )|
SM (T )

are displayed in Figure 3.

From the lower graph in Figure 3 we conclude that a substantial majority of the calibrations
will yield an average relative error which is smaller than 4 %. In fact, a careful study of the
average relative errors in the lower graph of Figure 3 reveals that out of the 435 calibrations,
398 have a mean relative error less than 4%, 331 calibrations have an average relative error
less than 3%, 196 less than 2% and 63 less than 1%. Thus, we can therefore speak of
very good fits and a general robustness of the model. Furthermore, it is also interesting
to note that the calibrations are performed against term structures {SM,ind(T )}T ∈{3,5,7,10}
of market spreads which have a wide spectrum of different relationships, as can be seen
from Figure 1. Note especially that we have an reverse term structure, i.e. SM,ind(3) >
SM,ind(5) > SM,ind(7) > SM,ind(10) for a period from November 2008 to May 2009, while
the rest of time the market data has the much more common appearance of an increasing
term-structure , that is SM,ind(3) < SM,ind(5) < SM,ind(7) < SM,ind(10).
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iTraxx Europre index−CDS spreads. Source: Reuters
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Figure 1. The market spreads for the iTraxx Europe index-CDS with T = 3, 5, 7
and 10 years maturity in the period 2008-01-14 to 2010-02-11.
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(a) The calibrated parameters y1, y2 and q.
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Figure 2. The calibrated parameters y1, y2, q, δ, ρ and λ0 when calibrating the
model against the term-structure of market spreads for the iTraxx
Europe index-CDS with T = 3, 5, 7, 10 years in the period 2008-01-14
to 2010-02-11.
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Figure 3. The average absolute calibration errors and average relative calibration
errors when calibrating the model against the market spreads for the
iTraxx Europe index-CDS with T = 3, 5, 7 and 10 years maturity in
the period 2008-01-14 to 2010-02-11.

To give some more detailed results of the calibrations, we have picked out three different
dates where the market spreads differ substantially. These dates are 2008-03-12, 2008-12-
10 and 2009-10-09. The calibrated model spread and the absolute and relative errors are
displayed in Table 1 while the calibrated parameters are given in Table 2. The mean of
the relative calibration error for these three samples are 1.412%, 0.521256% and 1.26162%.
Furthermore, note that market spreads at 2008-12-10 have a reverse term-structure.
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Table 1. The market and model spreads (in bps) and their corresponding cali-
bration errors at three different time points.

Calibration of iTraxx Europe index-CDS at 2008-03-12
Term Structure T = 3 T = 5 T = 7 T = 10

Market CDS-spread 121.3 146.5 152.4 156.4
Model CDS-spread 122.7 142.7 153.0 158.9
Absolute error in bp 1.427 3.828 0.4017 2.493
Rel. error in percent 1.177 2.613 0.2636 1.594

Calibration of iTraxx Europe index-CDS at 2008-12-10
Term Structure T = 3 T = 5 T = 7 T = 10

Market CDS-spread 225.2 195.8 179.3 169.0
Model CDS-spread 226.2 193.7 179.8 169.5
Absolute error in bp 1.005 2.055 0.5444 0.4816
Rel. error in percent 0.4464 1.050 0.3036 0.2849

Calibration of iTraxx Europe index-CDS at 2009-10-09
Term Structure T = 3 T = 5 T = 7 T = 10

Market CDS-spread 73.41 89.93 96.81 99.62
Model CDS-spread 74.07 88.62 95.74 101.2
Absolute error in bp 0.6570 1.307 1.068 1.589
Rel. error in percent 0.8950 1.453 1.104 1.595

Table 2. The calibrated parameters for the three dates in Table 1.

Date y1 y2 q δ ρ λ0

2008-03-12 0.008254 0.005994 3.327e-011 1.016 2.564 0
2008-12-10 0.03299 0.01097 0.3500 7.756 4.771 0.3320
2009-10-09 0.002531 0.003801 0.9507 0.8482 3.203 0

After the calibration of the model on the dates 2008-03-12, 2008-12-10 and 2009-10-09
we compute the k-th-to default swap spread for 1 ≤ k ≤ 7 where T = 5 and T = 10 years
in a portfolio with m = 10 obligors. We do this by using the results presented in Section 3,
Section 4 and Subsection 6.1. Given the huge differences in the index-CDS spreads Table 1,
it is not surprising that the kth-to default swap spreads greatly differ between these dates,
as can be seen in Table 3. Furthermore, it is interesting to note that for 2008-12-10, the
5-year First-to-default (FtD) spread is bigger than the 10-year FtD-spread. Intuitively, this
is consistent with the fact that the market spreads at 2008-12-10 used in the calibration,
have a reverse term-structure, which means that the 5-year CDS-spread is bigger than the
the 10-year CDS-spread.
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(a) The kth-to-default spreads for k ≤ 4.
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(b) The kth-to-default spreads for k = 5, 6, 7.

Figure 4. The kth-to-default spreads for 1 ≤ k ≤ 7 and T = 5 in a portfolio of 10
obligors, after calibrating the single-name model CDS-spread against
the term-structure of market spreads for the iTraxx Europe index-CDS
with T = 3, 5, 7, 10 in the period 2008-01-14 to 2010-02-11.
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We complement the results in Table 3 by also computing the kth-to default swap spreads
(1 ≤ k ≤ 7 and T = 5) in a portfolio with 10 obligors, for all 435 calibrations of the quoted
market spreads displayed in Figure 1. The computed kth-to default swap spreads follows
the same trend as the market spreads on the iTraxx Europe index series, which is clearly
shown in Figure 4.

Table 3. The kth-to default swap spreads (in bps) for T = 5 and T = 10 years,
computed in the three calibrated models in Table 1. The portfolio
consist of 10 obligors.

2008-03-12
k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

T = 5 1284 420.0 124.8 29.48 5.332 0.7253 0.07227
T = 10 1372 611.2 287.3 119.3 40.45 10.61 2.057

2008-12-10
k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

T = 5 1932 663.2 210.6 54.86 10.93 1.607 0.1693
T = 10 1820 721.5 306.3 118.8 37.82 9.232 1.640

2009-10-09
k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

T = 5 828.9 200.6 40.04 5.971 0.6597 0.05376 0.003166
T = 10 916.5 341.3 122.5 35.74 7.981 1.322 0.1577
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