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We value CDS spreads and kth-to-default swap spreads in a tractable shot noise model. The default dependence is modelled by letting the individual jumps of the default intensity be driven by a common latent factor. The arrival of the jumps is driven by a Poisson process. By using conditional independence and properties of the shot noise processes we derive tractable closed-form expressions for the default distribution and the ordered survival distributions. These quantities are then used to price kth-to-default swap spreads. We calibrate a homogeneous version of the model to the term structure on market data from the iTraxx Europe index series sampled during the period 2008-01-14 to 2010-02-11. We perform 435 calibrations in this turbulent period and almost all calibrations yields very good fits. Finally we study kth-to-default spreads in the calibrated model.

Introduction

In recent years the market for portfolio credit derivatives, which are derivatives with a payoff linked to the credit loss in a portfolio, has seen a rapid growth and increased liquidity. This has been followed by an intense research for understanding and modelling the main feature driving these products, namely default dependence. The current credit crisis undermines the necessity of models which can calibrate to market data on one side and also capture contagion effects on the other side. The model proposed in this paper is an affine model with a jump component. This allows to introduce a high dependence between different obligors which is of immense importance for practical applications.

Affine models have been widely used in modelling of interest rates and credit risk, but typically the jump component plays a minor role. However, the main driver of contagion effects 1 is the jump component. In this paper we concentrate on the jump component only, while the results easily can be enriched by adding a diffusion component.

As an illustration of the tractability of the model we present a number of numerical studies. We calibrate the model to market data from the iTraxx Europe index series in the period 2008-01-14 to 2010-02-11. During this turbulent period the term structure and the market spreads have a very wide spectrum of different values and relationships. We perform 435 calibrations in this period and almost all calibrations yields very good fits. This demonstrates the flexibility and the robustness of this remarkably simple model.

The rest of this paper is organized as follows. In Section 2 we introduce the shot noise model that is used in the paper. Section 3 derives the formulas that are needed for pricing portfolio credit derivatives and thereafter consider the case of inhomogeneous portfolios.

In Section 4 we study an explicit example of the model. Section 6 present how to price credit default swaps (CDS) and kth-to default swaps. We also show that the index-CDS spread and the CDS spread coincide in a homogeneous portfolio which will be used in the calibration. Finally, in Section 7 we calibrate the model to the term structure on market data from the iTraxx Europe index series. An analysis of kth-to default swaps in the calibrated model completes the numerical section.

The model

Consider a filtered probability space (Ω, F , F, Q) where the filtration F satisfies the usual conditions. In this paper Q is a martingale measure equivalent to the objective measure P, and below all expectations are done with respect to the risk neutral measure Q.

Let {X i,j , Y j : 1 ≤ i ≤ m, j ≥ 1} be independent nonnegative random variables where X i,j has distribution function F i and Y j has distribution function F Y . Furthermore, let M be a Poisson process with constant intensity ρ and denote its jump times by S 1 , S 2 , . . . . Let λ i = (λ t,i ) t≥0 , 1 ≤ i ≤ m be m processes where λ i satisfies the SDE

dλ t,i = -δ i λ t,i dt + dC t,i , C t,i = Mt j=1 Y j X i,j .
(2.1)

The intuitive interpretation of (2.1) is that at the each jump time S j of M, the process λ i jumps by the amount Y j X i,j . Otherwise it decays exponentially with rate δ i . This process is a Markovian shot-noise process (compare, e.g. [START_REF] Dassios | Pricing of catastrophe reinsurance & derivatives using the cox process with shot noise intensity[END_REF] and [START_REF] Gaspar | Credit risk modelling with shot-noise processes[END_REF]). Furthermore, the dependence structure of the multivariate shot noise process (λ 1 , λ 2 , . . . , λ m ) is determined by the process M and the random variables {Y j : j ≥ 1}. If Y j is a deterministic constant same for all j ≥ 1, then λ t,1 , . . . , λ t,m are independent conditional on M. Consider a portfolio consisting of m obligors. The default time of obligor i is denoted by τ i . Let E 1 , . . . , E m be independent random variables, exponentially distributed with parameter one, which are also independent of the processes λ 1 , . . . , λ m and assume that

τ i = inf t > 0 : t 0 λ s,i ds ≥ E i . ,
This framework is typically called intensity-based modelling, see [START_REF] Filipović | Term Structure Models: A Graduate Course[END_REF] and λ i is called intensity of τ i . With the filtration defined by

G t = σ(λ s,i : 0 ≤ s ≤ t, 1 ≤ i ≤ m) it follows that Q [τ i > t | G ∞ ] = Q [τ i > t | G t ] = exp - t 0 λ s,i ds .
(2.2)

Lemma 2.1. Let H i (x) := δ -1 i (1 -e -δ i x ). Then t 0 λ s,i ds = λ 0,i H i (t) + Mt j=1 Y j X i,j H i (t -S j ).
Proof. First, observe that the solution of the SDE (2.1) is given by

λ t,i = Mt j=0 Y j X i,j exp -δ i (t -S j ) ,
where we use Y 0 = 1, X 0 = λ 0,i and S 0 = 0 to simplify the notation. Hence

t 0 λ s,i ds = t 0 Ms j=0 Y j X i,j e -δ i (s-S j ) ds = t 0 Mt j=0 Y j X i,j e -δ i (s-S j ) 1 {S j ≤s} ds = Mt j=0 Y j X i,j e δ i S j 1 δ i e -δ i S j -e -δ i t
and the conclusion follows.

Note that Lemma 2.1 purely results from the shot-noise assumptions and can easily be generalized to non-exponential decay, compare for example [START_REF] Gaspar | Credit risk modelling with shot-noise processes[END_REF]. It moreover holds for arbitrary random variables η j replacing Y j X i,j .

Pricing credit derivatives in a homogeneous model

Consider a portfolio consisting of m obligors with default times τ 1 , τ 2 . . . , τ m and identical recovery rates φ 1 = φ 2 = . . . = φ m = φ. The credit loss L t for this portfolio at time t, in percent of the nominal portfolio value at t = 0, is given by

L t = 1 -φ m m i=1 1 {τ i ≤t} = 1 -φ m N t (3.1)
where N t := m i=1 1 {τ i ≤t} counts the number of defaults in the portfolio. It is well known that in order to price portfolio credit derivatives -such as basket default swaps or CDO tranches -on portfolios with homogeneous recoveries, it is enough to find the distribution {Q (N t = k)} m k=0 at different time points t, see e.g. [START_REF] Herbertsson | Pricing synthetic CDO tranches in a model with Default Contagion using the Matrix-Analytic approach[END_REF].

In order to simplify computations further, one often assumes that the portfolio is homogeneous, which means that all default times are exchangeable. To this regard, consider

Q (N t = k) = M ⊂{1,...,m},|M |=k Q τ i ≤ t : i ∈ M, τ i > t : i ∈ M .
Exchangeability means that the probability on the r.h.s. does only depend on the number of defaults being smaller than t. Then

Q (N t = k) = m k Q k i=1 {τ i ≤ t} , m i=k+1 {τ i > t} . (3.2)
Therefore we need to compute the probabilities on the r.h.s in (3.2). In this section we consider exchangeable portfolios which is equivalent to the following assumption regarding (2.1)

λ i,0 = λ 0 , δ i = δ and F i = F for 1 ≤ i ≤ m. (3.3) Denote H(x) = δ -1 (1 -e -δx
). We can then state the following useful lemma.

Lemma 3.1. Under (3.3) we have that

Q (N t = k) = m m -k G(m -k) - m m -k + 1 G(m -k + 1) (3.4) where G(k) := E e -k i=1 t 0 λ s,i ds . (3.5)
Proof. First, observe that N t ≤ mk implies that at least k companies have survived up to time t. Hence, the homogeneity assumption (3.3) then yields

Q (N t ≤ m -k) = m k E e -k i=1 t 0 λ s,i ds (3.6) and since Q(N t = k) = Q(N t ≤ k) -Q(N t ≤ k -1)
we conclude the lemma.

Thus, in order to find Q (N t = k) it is sufficient to compute G(k) for any k = 1, . . . , m. Throughout we denote by X a prototype for X i,j , for example X 1,j and similarly Y for Y j . Furthermore, denote by ϕ X (z) = E e -zX the Laplace transform of the non-negative random variable X. The following result gives the necessary quantities for finding {G(t, j)}.

Proposition 3.2. Under (3.3) we have that

G(k) = e -kλ 0 H(t)-ρt • exp ρt R 1 0 ϕ X yH(tz) k dzF Y (dy) . (3.7) Proof. First, by Lemma 2.1 E exp - k i=1 t 0 λ s,i ds = E exp - k i=1 λ 0,i H(t) + Mt j=1 Y j X i,j H(t -S j ) . (3.8)
To compute the right hand side in (3.8) we use the following observations: Conditional on M t = ℓ the jump times {S i } ℓ i=1 are distributed like the order statistics of uniform random variables over the interval, see for example p.502 in [START_REF] Rolski | Stochastic Processes for Insurance and Finance[END_REF]. More precisely, let η 1 , η 2 , . . . , η ℓ be ℓ independent random variables all with distribution U[0, t], then L(S 1 , . . . , S ℓ |M t = ℓ) = L(η 1:ℓ , . . . , η ℓ:ℓ ) where {η n:ℓ } ℓ n=1 is the ordering of {η n } ℓ n=1 . Thus,

E e -k i=1 M t j=1 Y j X i,j H(t-S j ) M t = ℓ = E e -k i=1 ℓ j=1 Y j X i,j H(t(1-η j:ℓ )) = E e -k i=1 ℓ j=1 Y j X i,j H(t(1-η j )) (3.9)
where the last equality follows because all Y j , X i,j are independent of η 1 , . . . , η j and since all X i,j are exchangeable as they are independent and have identical distributions. By (3.3) we have that λ 0,i = λ 0 and thus,

E exp - k i=1 λ 0,i H(t) + Mt j=1 Y j X i,j H(t -S j ) M t = ℓ = e -kλ 0 H(t) E exp - k i=1 ℓ j=1 Y j X i,j H(t(1 -η j )) . (3.10)
Next, we compute the expectation in (3.10). First,

E e -k i=1 ℓ j=1 Y j X i,j H(t(1-η j )) Y 1 = y 1 , . . . , Y ℓ = y ℓ , η 1 = z 1 , . . . , η ℓ = z ℓ = E k i=1 ℓ j=1 e -y j X i,j H(t(1-z j )) = k i=1 ℓ j=1 E e -y j X i,j H(t(1-z j )) = k i=1 ℓ j=1 ϕ X y j H(t(1 -z j )) = ℓ j=1 ϕ X y j H(t(1 -z j )) k , (3.11)
where we used that {Y j } and {η j } are independent of {X i,j }. Hence, by (3.11)

E e -k i=1 ℓ j=1 Y j X i,j H(t(1-η j )) = E ℓ j=1 ϕ X Y j H(t(1 -η j )) k = E ϕ X Y 1 H(t(1 -η 1 )) k ℓ = R 1 0 ϕ X yH(tz)) k dzF Y (dy) ℓ
where the first and second equality follows from (3.11) and the last equality is due to the fact that 1η is uniformly distributed on [0, 1]. Finally, using the above results together with (3.10) and the definition of G(k) in (3.5) and (3.8) we get

G(k) = E e -k i=1 t 0 λ s,i ds = ∞ ℓ=0 E e -k i=1 t 0 λ s,i ds M t = ℓ Q (M t = ℓ) = ∞ ℓ=0 e -ρt (ρt) ℓ ℓ! e -kλ 0 H(t) R 1 0 ϕ X yH(tz) k dzF Y (dy) ℓ = e -ρt-kλ 0 H(t) • exp ρt R 1 0 ϕ X yH(tz) k dzF Y (dy)
which concludes the proposition.

As already mentioned, the quantity Q (N t = k) is central for pricing portfolio credit derivatives, and the fact that we are able to derive Q (N t = k) explicitly up to the quantity 1 0 (ϕ X yH(tz) ) k dzF Y (dy) is highly remarkable. Depending on ϕ X this quantity can be computed explicitly.

An explicit example

In this section we give an tractable and explicit example of the model presented in (2.1) under the assumption (3.3). To be more specific, we assume that

Y ∈ {y 1 , y 2 , . . . , y K } where Q (Y = y j ) = q j and X ∼ χ 2 (2) (4.1)
where K ≥ 2 is an integer and y j , q j ≥ 0 for each j = 1, . . . , K and K j=1 q j = 1. Hence, Y is a K-point distributed random variable and X has chi-squared distribution with 2 degrees of freedom. This result can be generalized in a number of ways. For example, any distribution for X with has an closed form expression for its Laplace transform still leads to tractable formulas, e.g. a Gamma distribution. We chose the stated formulation for simplicity and it is remarkable that it provides a good fit in our numerical examples.

Proposition 4.1. Under (3.3) and (4.1) we have that

G(k) = exp -kλ 0 H(t) + ρt K j=1 q j I(y j , k, t) -1 (4.2)
where

I(y, k, t) := 1 0 1 (1 + 2yδ -1 (1 -e -δtz )) k dz. (4.3) Furthermore, Q (τ i > t) = e -λ 0 H(t)+ct K j=1 1 + 2y j δ -1 (1 -e -δt ) ρq j δ+2y j (4.4)
where c is given by

c = ρ K j=1 q j 1 + 2y j δ -1 -1 . Proof. Recall that if X ∼ χ 2 (2) then ϕ X (s) = (1 + 2s) -1 and since H(x) = δ -1 1 -e -δx we have ϕ X (yH(tz)) = 1 1 + 2yδ -1 (1 -e -δtz ) . (4.5)
Since Y is a K-point distributed random variable with {y 1 , . . . , y K } and Q (Y = y j ) = q j we get

R 1 0 ϕ X yH(tz) k dzF Y (dy) = K j=1 q j I(y j , k, t) (4.6)
where we define I(y, k, t) as in (4.3). Hence, plugging (4.6) into (3.7) in Proposition 3.2 yields (4.2). It is possible to obtain analytical expressions for the integrals I(y, k, t), however as k increases these become quite long and tedious. In practice we evaluate I(y, k, t) using numerical quadrature. However, for k = 1, we can simplify (4.2). To see this, note that (2.2) and (3.5) imply

Q (τ i > t) = E exp - t 0 λ s,i ds = G(1)
and by (4.2) with k = 1 we have

G(1) = e -λ 0 H(t) exp ρt K j=1 q j I(y j , 1, t) -1 (4.7)
where I(y, 1, t) is given by (4.3) with k = 1. Furthermore, note that (see e.g. p.171 in [START_REF] Råde | Mathematics Handbook for Science and Enginneering[END_REF] )

1 b + ce az dz = z b - 1 ab ln |b + ce az |
and this observation with (4.3) and k = 1 yields

I(y, 1, t) = 1 1 + 2yδ -1 + 1 t(δ + 2y) ln 1 + 2yδ -1 (1 -e -δt ) . (4.8)
Next, some calculations renders

ρt K j=1 q j I(y j , 1, t) -1 = ρt K j=1 q j 1 + 2y j δ -1 -ρt + K j=1 ρq j δ + 2y j ln 1 + 2y j δ -1 (1 -e -δt )
and plugging this into (4.7) yields (4.4).

Proposition 4.1 will be used in Section 7 to calibrate the model to market data.

A homogeneous group approach

It is sometimes natural to consider extensions of the homogeneous framework presented in Section 3. One example is to obtain a higher degree of heterogeneity in the model. This can easily be achieved by splitting the portfolio into several different homogeneous subportfolios and then apply the results of Section 3 to each subportfolio. To show this in more detail, we here follow the outline presented in [START_REF] Papageorgiou | Multiscale intensity models and name grouping for valuation of multi-name credit derivatives[END_REF]. Assume that the m obligors consist of g homogeneous groups, and each firm belongs to one group only. The number of firms in group j is denoted by m j > 0. We assume there exists a common factor W , such that given W , the intensities are independent and they are exchangeable in each group. Denoting by N t,j the number of losses in group j, we obtain as in Lemma 3.1 that

Q(N t,j = k|W = w) = m j m j -k G j (m j -k) - m j m j -k + 1 G j (m j -k + 1) (4.1)
where G j = G j (w) can be determined as in Proposition 3.2. From (2.2) we obtain the probability of having k defaults in the whole portfolio as

Q(N t = k) = k k 1 =0 • • • k-k 1 -•••-k g-1 kg=0 Q(N t,1 = k 1 , . . . , N t,g = k g ) and Q(N t,1 = k 1 , . . . , N t,g = k g |W ) = Q(N t,1 = k 1 |W ) • • • Q(N t,g = k g |W ).
Computing the sum in (4.1) is quite intensive, and following [START_REF] Papageorgiou | Multiscale intensity models and name grouping for valuation of multi-name credit derivatives[END_REF] it may be improved by using Fourier-inversion methods. To this note that

E(e θN t,1 ) = ∞ 0 Q(N t,1 ≥ θ -1 ln(x))dx = (e θ -1) k≥0 e θ kQ(N t,1 ≥ k),
with an analogous expression for the expectation conditional on W . The probability may be obtained analogously to Lemma 3.1 as by (3.6) we have

Q(N t,j ≤ k) = m j m j -k G j (m j -k).
As the calibration procedure in Section 7 shows a surprisingly good fit of the homogeneous model we, however, leave the application of these results to future research.

Pricing CDS and basket default swaps

In this section we give a short account on single-name CDS and kth-to default swaps. As previously, all computations are done under a risk-neutral martingale measure Q. Further, we assume the that risk-free interest rate is a deterministic constant given by r.

6.1. Single-name CDS. Consider an obligor C with default time τ and recovery rate R. A single-name CDS with maturity T where the reference entity is obligor C, is a bilateral contract between two counterparties, A and B, where B promises to pay A the credit losses (1 -R) at τ if the obligor defaults before time T . As compensation for this, A pays S∆ to the protection seller B, at t 1 < t 2 < . . . < t N = T , at most until τ . We assume that ∆ = t nt n-1 for any n. The CDS spread S is determined so that expected discounted cashflows between A and B are equal when the CDS contract is settled at t = 0. Assuming a constant interest rate r and deterministic recovery rate implies that S is given by

S(T ) = (1 -R) T 0 e -rs dF (s) ∆ n T n=1 e -rtn (1 -F (t n )) (6.1.1)
where

F (t) = Q (τ ≤ t)
is the distribution functions of the default time for the obligor C.

6.2.

Pricing kth-to-default swaps. A k th -to default swap offers protection against the kth default in the portfolio. To be more specific, consider a basket of m bonds each with notional N, issued by m obligors with default times τ 1 , τ 2 , . . . , τ m and recovery rates R 1 , R 2 , . . . , R m . Further, let T 1 < . . . < T m be the ordering of τ 1 , τ 2 , . . . , τ m . A kth-todefault swap with maturity T on this basket is a bilateral contract between two counterparties, A and B, where B promises A to pay the credit losses that B suffers at T k if T k < T . Just as in the CDS, A pays be B a fee up to the default time T k or until T , whichever comes first. The payments dates are identical to those in the CDS case and the fee is S (k) ∆ where ∆ is as previously t nt n-1 and we assumed equidistant payment dates.

The main difference lies in the default payment at

T k . If T k < T , B pays A N(1 -R i ) if
it was obligor i which defaulted at time T k . However, if k) is expressed in bp per annum and determined so that the expected discounted cash-flows between A and B coincide at t = 0. Assuming the same conditions as in the CDS, we therefore have

R 1 = R 2 = . . . = R m = R, (6.2.1) the payment at T k is always N(1-R) if T k < T . The kth-to-default spread S (
S (k) (T ) = (1 -R) T 0 e -rs dF k (s) ∆ n T n=1 e -rtn (1 -F k (t n ))
.

Here

F k (t) = Q (T k ≤ t)
is the distribution functions of the ordered default times. The rest of the notation are the same as in the CDS contract. Under (6.2.1) the kth-to-default spread is completely determined by the distribution for N t : recall that

Q (T k > t) = Q (N t < k) = k-1 j=0 Q (N t = j)
where

Q (N t = j) is given in Lemma 3.1. Furthermore, note that for k ≤ m -1 we have Q (T k+1 > t) = Q (T k > t) + Q (N t = k)
which is useful from computational point of view when finding the survival distribution F k (t) for several k = 1, 2, . . . , ℓ where ℓ ≤ m.

6.3. The index-CDS spread and its relation to the CDS-spread in a homogeneous portfolio. The financial instrument that constitutes a index-CDS spread with maturity T on a portfolio with m defaultable obligors, is a bilateral contract where the protection seller B agrees to pay the protection buyer A, all losses that occurs in the portfolio up to time T , that is L T defined as in Equation (3.1). The payments are made at the corresponding default times, if they arrive before T , and at T the contract ends.

As compensation for this, A pays B a periodic fee proportional to the current outstanding (possible reduced due to losses) value of the portfolio up to time T . To make our discussion more formal, the payments from A to B and from B to A are given by

E T 0 e -rs dL s and S ind (T ) nt n=1 e -rtn 1 - 1 m E (N tn ) ∆ (6.3.1)
where

L t = 1-R m N t for N t = m i=1 1 {τ i ≤t} .
The rest of the notation are the same as in the CDS contract. The index CDS spread S ind (T ) is determined so that the expected discounted payments between A and B are equal at the inception time 0. This observation together with the quantities in (6.3.1) implies

S ind (T ) = E T 0 e -rs dL s nt n=1 e -rtn 1 -1 m E (N tn ) ∆ . (6.3.2)
The spread S ind (T ) is quoted in bp per annum and is independent of the nominal size of the portfolio.

We can now state the following lemma for a homogeneous portfolio.

Lemma 6.1. Consider a homogeneous credit portfolio. Then, with notation as above, S ind (T ) = S(T ), that is the index-CDS spread is equal to the individual CDS-spread.

Proof. Since L t = 1-R m N t where N t = m i=1 1 {τ i ≤t} we have that

T 0 e -rs dL s = 1 -R m T 0 e -rs dN s = 1 -R m m i=1 e -rτ i 1 {τ i ≤T } so E T 0 e -rs dL s = 1 -R m m i=1 E e -rτ i 1 {τ i ≤T } = (1 -R) T 0 e -rs dF (s) (6.3.3)
where

F (t) = Q (τ i ≤ t)
is the distribution functions of the default time for the obligor i, and the last equality in (6.3.3) is due to the exchangeability in the portfolio. Furthermore, we also have that

1 m E (N tn ) = 1 m m i=1 Q (τ i ≤ t n ) = F (t n ) (6.3.4)
where the last equality in (6.3.4) again is due to the exchangeability in the portfolio. Inserting (6.3.3) and (6.3.4) into (6.3.2) yields that

S ind (T ) = (1 -R)
T 0 e -rs dF (s) ∆ n T n=1 e -rtn (1 -F (t n )) and comparing this expression with the formula for the CDS-spread in Equation (6.1.1) shows that S ind (T ) = S(T ) which proves the lemma.

From Lemma 6.1 we conclude that if we want to calibrate the CDS-spread in a homogeneous model, then we can instead calibrate the index-CDS spread. This is very useful since there exists very liquidly traded index-CDS spreads on standardized portfolios such as iTraxx Europe, iTraxx Asia, iTraxx Europe financial, the North American CDX series etc.

Some numerical examples

In this section we use the model (4.1) presented in Section 4 with K = 2 and calibrate it to the term structure on market data from the iTraxx Europe index series sampled during the period 2008-01-14 to 2010-02-11. We then compute kth-to defaults swaps in the calibrated model. The data set used in the calibration was collected from Reuters with a daily sample frequency and the term structure is given by T = 3, 5, 7, 10 years. However, since several dates in the period 2008-01-14 to 2010-02-11 did not contain the market quotes S M,ind (T ) for all four maturities, T = 3, 5, 7, 10, the sample-days with incomplete term-structure quotes were removed from the data. This removal reduced the time-series to 435 observations of quadruples {S M,ind (T )} T ∈{3,5,7,10} sampled at different days during the period 2008-01-14 to 2010-02-11, which are displayed in Figure 1.

In the calibration of our model we use Lemma 6.1 which states that in a homogeneous model, the index-CDS spread will coincide with the individual CDS-spread. Hence, for each sample date the quoted iTraxx Europe index spreads {S M,ind (T )} T ∈{3,5,7,10} will be a proxy to the "market"CDS-spread {S M (T )} T ∈{3,5,7,10} of one obligor in the homogeneous portfolio (recall that all obligors by hypothesis are exchangeable). Thus, the "market"CDS-spread S M (T ) is defined as S M (T ) = S M,ind (T ) for T = 3, 5, 7, 10. For each sample time in our dataset displayed in Figure 1, we calibrate our model so that the model spread S(T ) will coincide with the corresponding market spread S M (T ) for T = 3, 5, 7, 10 at the time point where the data was retrieved. To be more specific, at each sample point in the time series the parameters θ = (y 1 , y 2 , q, δ, ρ, λ 0 ) are obtained according to

θ = argmin θ T ∈{3,5,7,10} S(T ; θ) -S M (T ) 2 S M (T ) 2 (7.1)
with the constraint that all elements in θ are nonnegative. In S(T ; θ) we have emphasized that the model spreads are functions of θ = (y 1 , y 2 , q, δ, ρ, λ 0 ) but suppressed the dependence of interest rate, payment frequency, etc. In the calibration, we used a interest rate of 3%, the payments in the premium leg were quarterly and the integral in the default leg was discretized on a quarterly mesh. We performed this calibration for our 435 quadruples {S M,ind (T )} T ∈{3,5,7,10} and the calibrated parameters (y 1 , y 2 , q, δ, ρ, λ 0 ) are displayed in Figure 2. At each sample date, the initial guess parameters used in the calibration (7.1) was chosen to be the calibrated parameters from the previous sample date.

Furthermore, the corresponding average absolute errors are displayed in Figure 3. From the lower graph in Figure 3 we conclude that a substantial majority of the calibrations will yield an average relative error which is smaller than 4 %. In fact, a careful study of the average relative errors in the lower graph of Figure 3 reveals that out of the 435 calibrations, 398 have a mean relative error less than 4%, 331 calibrations have an average relative error less than 3%, 196 less than 2% and 63 less than 1%. Thus, we can therefore speak of very good fits and a general robustness of the model. Furthermore, it is also interesting to note that the calibrations are performed against term structures {S M,ind (T )} T ∈{3,5,7,10} of market spreads which have a wide spectrum of different relationships, as can be seen from Figure 1. Note especially that we have an reverse term structure, i.e. S M,ind (3) > S M,ind (5) > S M,ind (7) > S M,ind (10) for a period from November 2008 to May 2009, while the rest of time the market data has the much more common appearance of an increasing term-structure , that is S M,ind (3) < S M,ind (5) < S M,ind (7) < S M,ind (10). Table 1. The market and model spreads (in bps) and their corresponding calibration errors at three different time points.
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 1 Figure 1. The market spreads for the iTraxx Europe index-CDS with T = 3, 5, 7 and 10 years maturity in the period 2008-01-14 to 2010-02-11.

Research of Alexander Herbertsson supported by Jan Wallanders and Tom Hedelius Foundation. The authors would like to thank two anonymous referees for useful comments.

To give some more detailed results of the calibrations, we have picked out three different dates where the market spreads differ substantially. These dates are 2008-03-12, 2008-12-10 and 2009-10-09. The calibrated model spread and the absolute and relative errors are displayed in Table 1 while the calibrated parameters are given in Table 2. The mean of the relative calibration error for these three samples are 1.412%, 0.521256% and 1.26162%. Furthermore, note that market spreads at 2008-12-10 have a reverse term-structure. After the calibration of the model on the dates 2008-03-12, 2008-12-10 and 2009-10-09 we compute the k-th-to default swap spread for 1 ≤ k ≤ 7 where T = 5 and T = 10 years in a portfolio with m = 10 obligors. We do this by using the results presented in Section 3, Section 4 and Subsection 6.1. Given the huge differences in the index-CDS spreads Table 1, it is not surprising that the kth-to default swap spreads greatly differ between these dates, as can be seen in Table 3. Furthermore, it is interesting to note that for 2008-12-10, the 5-year First-to-default (FtD) spread is bigger than the 10-year FtD-spread. Intuitively, this is consistent with the fact that the market spreads at 2008-12-10 used in the calibration, have a reverse term-structure, which means that the 5-year CDS-spread is bigger than the the 10-year CDS-spread. We complement the results in Table 3 by also computing the kth-to default swap spreads (1 ≤ k ≤ 7 and T = 5) in a portfolio with 10 obligors, for all 435 calibrations of the quoted market spreads displayed in Figure 1. The computed kth-to default swap spreads follows the same trend as the market spreads on the iTraxx Europe index series, which is clearly shown in Figure 4.

Calibration of iTraxx

Table 3. The kth-to default swap spreads (in bps) for T = 5 and T = 10 years, in the three calibrated models in Table 1. The portfolio consist of 10 obligors. 

2008-03-12