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We prove Freidlin-Wentzell Large Deviation estimates under rather minimal assumptions. This allows to derive Wentzell-Freidlin Large Deviation estimates for diffusions on the positive half line with coefficients that are neither bounded nor Lipschitz continuous. This applies to models of interest in Finance, i.e. the CIR and the CEV models, which are positive diffusion processes whose diffusion coefficient is only Hölder continuous.

Introduction

The classical Freidlin-Wentzell Large Deviation estimates are concerned with the asymptotics of a family of Stochastic Differential Equations (SDE) of the type

Y ε t = b ε (Y ε t )dt + εσ ε (Y ε t )dB t , Y ε 0 = x (1.1)
as ε → 0+. Usually (see [START_REF] Dembo | Large Deviations and applications[END_REF] e.g.) they are stated for coefficients b ε ≡ b and σ ε ≡ σ non depending of ε and under the requirement for b and σ to be bounded and (globally) Lipschitz continuous.

Recently applications to finance have attracted the attention to the study of models that are based on diffusion processes whose state space is the positive half line. Instances of these situations are e.g. the CEV model dr t = α(b -r t ) dt + ρ r γ t dB t , r 0 > 0 (1.2)

where 1 2 ≤ γ ≤ 1 and in particular the CIR model that corresponds to the case γ = 1 2 . The coefficients here are neither bounded nor Lipschitz continuous.

The CIR model, in particular, is used in the Heston model in order to describe the evolution of the volatility. Considering the driving noise of the volatility close to 0 is a first step in order to study the convergence of the stochastic volatility model to the classical Black and Scholes one. Also Large Deviation results for the CIR model as those that we obtain in the present paper are used recently in [START_REF] Robertson | Sample path Large Deviations and optimal importance sampling for stochastic volatility models[END_REF] in order to select an optimal importance sampling distribution for the computation of the price of path dependent options in stochastic volatility models.

The problem of deriving Freidlin-Wentzell Large Deviations for diffusions of the form (1.2) has been studied in [START_REF] Donati-Martin | Large Deviations for squares of Bessel and Ornstein-Uhlenbeck processes[END_REF], where the case of a diffusion coefficient of the form σ(x) = ρ √ x and a general drift is taken into account.

In this paper we give two results. First we prove Freidlin-Wentzell estimates for coefficients b ε σ ε possibly depending on ε and under assumptions of local boundedness and local Lipschitz continuity. These results are derived using an extension of the classical transfer technique and are not entirely new, as they are based substantially on the work of [START_REF] Priouret | Remarques sur les petites perturbations de systèmes dynamiques[END_REF] and the refinements of [START_REF] Baldi | An extension of Ventsel-Freidlin estimates[END_REF]. Then, using these extended estimates we obtain Freidlin-Wentzell estimates for positive diffusions including, among others, those of the type (1.2).
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To summarize our results for the case of positive diffusions, let X ε the solution of the SDE with values in R + dX ε t = b(X ε t ) dt + εσ(X ε t ) dB t , X ε 0 = x > 0 (1.3)

We make the following assumption: Remark that Assumption (A1.1) implies the existence of δ > 0, β > 0 such that σ(x) ≤ δ √ x and b(x) ≥ β respectively in a right neighborhood of 0. (A1.1) ensures that (1.3) has a unique pathwise solution (see Theorem 3.5, chap. XIX in [START_REF] Revuz | Continuous martingales and Brownian motion[END_REF]). Our main result is Theorem 1.2 Let X ε be the solution of (1.3) in the time interval [0, T ] with x > 0. Then under (A1.1) it holds

lim sup ε→0 ε 2 log P(X ε ∈ F ) ≤ -inf ψ∈F J(ψ) (1.4) lim inf ε→0 ε 2 log P(X ε ∈ G) ≥ -inf ψ∈G J(ψ) (1.5) for every closed set F ⊂ C x ([0, T ], R + ) and open set G ⊂ C x ([0, T ], R + ), where 
J(ψ) = 1 2 T 0 ( ψt -b(ψ t )) 2 σ(ψ t ) 2 dt (1.6) (with the understanding J(ψ) = +∞ if ψ is not differentiable).
In order to make a comparison with the above mentioned result of [START_REF] Donati-Martin | Large Deviations for squares of Bessel and Ornstein-Uhlenbeck processes[END_REF], we are able to consider a more general class of diffusion coefficients but we need to assume that the starting point x is strictly positive, whereas in [START_REF] Donati-Martin | Large Deviations for squares of Bessel and Ornstein-Uhlenbeck processes[END_REF] the case x = 0 was taken into account. Also we need to assume b(0) > 0, whereas in [START_REF] Donati-Martin | Large Deviations for squares of Bessel and Ornstein-Uhlenbeck processes[END_REF] the weaker assumption b(0) ≥ 0 was required. Recently, Donati-Martin and Robertson have obtained Large Deviation results for diffusion processes (the Wishart model in [START_REF] Donati-Martin | Large Deviations for Wishart processes[END_REF] and the Heston model in [START_REF] Robertson | Sample path Large Deviations and optimal importance sampling for stochastic volatility models[END_REF]) which have good coefficients in the interior of a convex cone (the positive defined matrices in [START_REF] Donati-Martin | Large Deviations for Wishart processes[END_REF] and R × R + in Robertson ( 2010)) but with degeneracies on the boundary. The technique developed here can possibly be applicable in more general situations of this kind. In particular, in situations as in [START_REF] Robertson | Sample path Large Deviations and optimal importance sampling for stochastic volatility models[END_REF] the extension is almost immediate.

Plan of the paper. In §2 we prove general Freidlin-Wentzell estimates for coefficients that are not necessarily Lipschitz continuous and bounded. They are also allowed to depend on ε. In §3 we apply the results of §2 and prove Freidlin-Wentzell estimates for diffusions on the half-line as stated in Theorem 1.2. Finally, in order to be self-contained, we put some proofs in §4.

Large Deviation estimates

In this section we give a proof of the Freidlin-Wentzell Large Deviation estimates with the aim of making the assumptions as weak as possible. The idea [START_REF] Azencott | Grandes Déviations et applications[END_REF]) reduces to the remark that Ito's mapping, associating the Brownian path to the corresponding path of the solution of a SDE, is not, in general, continuous but is regular enough to develop a kind of contraction procedure.

The main result

For T > 0, let C m = C ([0, T ], R m ) denote the space of continuous paths [0, T ] → R m endowed with the topology of uniform convergence. We set C m x as the closed hyperplane of the paths starting at x ∈ R m .
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Let H m = H ([0, T ], R m ) be the subspace of C m 0 of paths that are absolutely continuous and whose derivative is square integrable on [0, T ] and endowed with the Hilbert norm | | 1 , that is

|h| 2 1 = ḣs 2 L 2 = T 0 | ḣs | 2 ds.
Let us set, for h ∈ C m x For h ∈ H k we set

I(h) = 1 2 |h| 2 1 if h ∈ H k +∞ otherwise
The classical Schilder's theorem in [START_REF] Schilder | Some asymptotic formulas for Wiener integrals[END_REF] states that I is the rate function of the Large Deviation Principle on C k 0 satisfied by a Brownian motion with a small parameter. Let, for

f ∈ C m , f t = sup 0≤s≤t |f s |, f = f T , B(f, ρ) = {g, g -f ≤ ρ}
For ε > 0, let b ε : R m → R m and σ ε : R m → R m × R k families of vector and matrix fields respectively. Let B a k-dimensional Brownian motion on some probability space (Ω, F , (F t ) t , P) and Y ε the solution of the SDE (1.1). Let us consider the following assumption.

(A2.3) There exist a vector field b : R m → R m and a matrix field σ : R m → R m × R k such that a) for every h ∈ H k and x ∈ R m the ordinary differential equation

ġt = b(g t ) + σ(g t ) ḣt , g 0 = x (2.7) has a unique solution on [0, T ]. b) Let S x (h) denote the solution of (2.7). Therefore S x : H k → C m x .
For any a > 0, the restriction of S x to the compact set K a = {|h| 1 ≤ a} is continuous with respect to the uniform norm: for any

{h n } n ⊂ K a such that h n -h → n→∞ 0 with h ∈ K a then S x (h n ) -S x (h) → n→∞ 0.
c) (The quasi-continuity property) For every R > 0, ρ > 0, a > 0, c > 0 there exist

ε 0 > 0, α > 0 such that, if ε < ε 0 , P Y ε -g > ρ, εB -h ≤ α ≤ e -R/ε 2 (2.8)
uniformly for |h| 1 ≤ a and |x| ≤ c, where g = S x (h).

Assumption (A2.3) c) means that if the Brownian path is such that εB -h ≤ α, then the corresponding path of the diffusion Y ε is near the path g = S x (h) with a probability converging to 1 as ε → 0 at a high exponential rate. If b ε , σ ε do not depend of ε then (A2.3) c) would be trivially true if Ito's mapping, associating the Brownian path to the corresponding path of the solution of a SDE were continuous, which is the case in some situations, mostly in dimension 1. It can be viewed as a weak continuity property of Ito's mapping. For this property to be true it will be necessary that the coefficients b ε , σ ε converge suitably to b, σ respectively. Then Theorem 2.4 Suppose that b ε , σ ε are locally Lipschitz continuous and the SDE (1.1) has a strong solution for every ε > 0. Then if (A2.3) holds, the family {Y ε } ε satisfies a Large Deviation Principle on C m x with inverse speed ε 2 and (good) rate function

λ(g) = inf I(h); S x (h) = g , with the understanding λ(g) = +∞ if I(h); S x (h) = g is empty. This means that lim sup ε→0 ε 2 log P(X ε ∈ F ) ≤ -inf ψ∈F λ(ψ) (2.9) lim inf ε→0 ε 2 log P(X ε ∈ G) ≥ -inf ψ∈G λ(ψ) (2.10) for every closed set F ⊂ C x ([0, T ], R m ) and open set G ⊂ C x ([0, T ], R m
) and that the level sets of λ are compact.

The idea of exploiting the quasi-continuity properties of Ito's mapping goes back to [START_REF] Azencott | Grandes Déviations et applications[END_REF].

For a proof of Theorem 2.4 at this level of generality one can refer to [START_REF] Priouret | Remarques sur les petites perturbations de systèmes dynamiques[END_REF] or [START_REF] Baldi | An extension of Ventsel-Freidlin estimates[END_REF]. In order to be self contained we give a sketch of the proof in §4.

In the next section we give exlicit conditions on the coefficients b ε , σ ε that ensure that Assumption (A2.3) is satisfied.
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The Large Deviation transfer

Let us first give conditions ensuring that (A2.3) a) and b) hold.

Lemma 2.5 If b and σ are locally Lipschitz continuous and have a sublinear growth at infinity, then (A2.3) a) and (A2.3) b) hold. Moreover, for every compact set K ⊂ R m and a > 0 there exists H > 0 such that sup

x∈K sup h : |h|1≤a S x (h) ≤ H.
(2.11)

Proof. Existence and uniqueness of the solutions of (2.7) are standard facts. Let us prove (2.11), which will follow from a standard application of Gronwall lemma. Let

C 0 ≥ 0 be such that |b(x)| ≤ C 0 (1 + |x|), |σ(x)| ≤ C 0 (1 + |x|). Setting g = S x (h),
we have by the Cauchy-Schwarz inequality

|g t | ≤ |x| + C 0 t 0 (1 + |g s |) ds + C 0 t 0 (1 + |g s |)| ḣs | ds ≤ ≤ |x| + C 0 √ T t 0 (1 + |g s |) 2 ds 1/2 + C 0 a t 0 (1 + |g s |) 2 ds 1/2
.

Taking the square and denoting by R the radius of a sphere centered at the origin and containing the compact set K,

|g t | 2 ≤ 2|x| 2 + 2C 2 0 ( √ T + a) 2 t 0 (1 + |g s |) 2 ds ≤ ≤ 2R 2 + 4C 2 0 T ( √ T + a) 2 + 4C 2 0 ( √ T + a) 2 t 0 |g s | 2 ds
so that Gronwall lemma gives the bound, valid for every t ∈ [0, T ],

|g t | 2 ≤ 2R 2 + 4C 2 0 T ( √ T + a) 2 exp 4C 2 0 ( √ T + a) 2 T := H . Let us prove (A2.3) b). Let h 1 , h 2 ∈ K a = {|h| 1 ≤ a} and g i = S x (h i ), i = 1, 2.
From (2.11) we have g i ≤ H. Recall also that in the ball of radius H and centered at the origin b and σ are bounded (constant M ) and Lipschitz continuous (constant L). Then,

g 1 (t) -g 2 (t) = = t 0 (b(g 1 (s)) -b(g 2 (s))) ds + t 0 (σ(g 1 (s)) -σ(g 2 (s))) ḣ1 (s) ds+ + t 0 σ(g 2 (s))( ḣ1 (s) -ḣ2 (s)) ds (2.12) By the next Lemma 2.6 if |h 1 | 1 ≤ a, |h 2 | 1 ≤ a, for every ε > 0 there exists δ > 0 such that if h 1 -h 2 < δ t 0 σ(g 2 (s))( ḣ1 (s) -ḣ2 (s)) ds < ε Therefore |g 1 (t) -g 2 (t)| ≤ ≤ ε + L t 0 |g 1 (s) -g 2 (s)| ds + L t 0 |g 1 (s) -g 2 (s)| • | ḣ1 (s)| ds ≤ ≤ ε + L t 0 |g 1 (s) -g 2 (s)| ds + L t 0 |g 1 (s) -g 2 (s)| ds 1/2 t 0 | ḣ1 (s)| ds 1/2 ≤ ≤ ε + L( √ T + a) t 0 |g 1 (s) -g 2 (s)| 2 ds 1/2 (2.13) Therefore, if h 1 -h 2 < δ, |g 1 (t) -g 2 (t)| 2 ≤ 2ε 2 + 2L 2 ( √ T + a) 2 t 0 |g 1 (s) -g 2 (s)| 2 ds (2.14)
and by Gronwall lemma

|g 1 (t) -g 2 (t)| 2 ≤ 2ε 2 e 2L 2 ( √ T +a) 2 t which allows to conclude. ACCEPTED MANUSCRIPT Lemma 2.6 Let Ψ be a bounded (constant M ) Lipschitz function (constant L) and h 1 , h 2 ∈ H k , g 2 = S x (h 2 ) with |h 1 | 1 ≤ a, |h 2 | 1 ≤ a. Then for every ε > 0 there exists δ > 0 such that if h 1 -h 2 < δ t 0 Ψ(g 2 (s))( ḣ1 (s) -ḣ2 (s)) ds < ε
Proof. Let us assume first that Ψ is differentiable. As |Ψ ′ (x)| ≤ L, Ψ being Lipschitz continuous, we have integrating by parts,

t 0 Ψ(g 2 (s))( ḣ1 (s) -ḣ2 (s)) ds = = Ψ(g 2 (t))(h 1 (t) -h 2 (t)) - t 0 d ds Ψ(g 2 (s))(h 1 (s) -h 2 (s)) ds ≤ ≤ M h 1 -h 2 + L h 1 -h 2 t 0 | ġ2 (s)| ds ≤ ≤ h 1 -h 2 M + L t 0 b(g 2 (s)) + σ(g 2 (s)) ḣ2 (s) ds ≤ ≤ h 1 -h 2 M + LM T + LM t 0 | ḣ2 (s)| ds ≤ ≤ M h 1 -h 2 1 + LT + L √ T |h 2 | 1 ≤ M h 1 -h 2 1 + L(T + a √ T )
and the statement is proved. In general Ψ is not differentiable but it is easy to approximate it with a regular function.

Let φ ∈ C ∞ such that R m φ = 1, φ(x) = 0 if |x| > 1 and 0 ≤ φ ≤ 1. For η > 0, set φ η (x) = 1 η m φ( x η ). Then φ η is a mollifier and if Ψ η (x) := Ψ * φ η (x) = R m Ψ(z)φ η (x -z) dy = R m Ψ(x -z)φ η (z) dz , then Ψ η is differentiable (C ∞ , actually). Ψ η is still Lipschitz continuous with Lipschitz constant equal to L, as |Ψ η (x) -Ψ η (y)| ≤ R m |Ψ(x -z) -Ψ(y -z)|φ η (z) dz ≤ L|x -y| R m φ η (z) dz = L|x -y|
and also bounded with the same bound M as Ψ, so that by the first part of the proof

t 0 Ψ η (g 2 (s))( ḣ1 (s) -ḣ2 (s)) ds ≤ M h 1 -h 2 1 + L(T + a √ T ) . (2.15)
Remark that the bound in the right hand side only depends on L and M (and not on η).

It is straight- forward that |Ψ η (x) -Ψ(x)| ≤ Lη so that t 0 (Ψ(g 2 (s))( ḣ1 (s) -ḣ2 (s)) ds - t 0 Ψ η (g 2 (s))( ḣ1 (s) -ḣ2 (s)) ds ≤ ≤ t 0 |Ψ(g 2 (s)) -Ψ η (g 2 (s))| • | ḣ1 (s) -ḣ2 (s)| ds ≤ L √ T η|h 1 -h 2 | 1 ≤ 2ηLa √ T
therefore, by the first part of the proof,

t 0 Ψ(g 2 (s))( ḣ1 (s) -ḣ2 (s)) ds ≤ M h 1 -h 2 1 + L(T + a √ T ) + 2ηLa √ T
and η being arbitrary the proof is complete.

We now tackle the problem of giving reasonable conditions under which Assumption (A2.3) c) holds. A natural set of hypotheses (we dot claim that it is the only one) is uniformly on compact sets.

We prove now that Assumption (A2.7) implies Assumption (A2.3) c). In order to do this we recall the following result.

Lemma 2.8 Let c, c ε : [0, T ] × R m → R be vector fields such that |c ε (s, x)| + |c(s, x)| ≤ φ(s), 0 ≤ s ≤ T (2.17) |c(s, y) -c(s, z)| ≤ ψ(s)|y -z|, 0 ≤ s ≤ T (2.18)
for some function φ ∈ L 2 ([0, T ]) and ψ ∈ L 1 ([0, T ]) respectively and such that

lim ε→0 T 0 sup y |c ε (s, y) -c(s, y)| ds = 0 (2.19)
Let σ ε , σ be k × m matrix fields such that σ is Lipschitz continuous, bounded (bound M ) and such that (2.16) holds uniformly in y ∈ R m . Let X ε , γ the solutions of

X ε t = x + t 0 c ε (s, X ε s ) ds + ε t 0 σ ε (s, X ε s ) dB s γ t = x + t 0 c(s, γ s ) ds (2.20)
respectively. Then for every R > 0, ρ > 0, a 1 > 0 there exists ε 0 > 0, α > 0 such that for every x ∈ R m and φ, ψ such that φ L 2 ≤ a 1 , ψ L 1 ≤ a 1 we have, for every ε < ε 0 ,

P X ε -γ > ρ, εB ≤ α ≤ e -R/ε 2 .
Lemma 2.8 is actually Proposition 1.2 in [START_REF] Baldi | An extension of Ventsel-Freidlin estimates[END_REF]. In order to be self contained we sketch its proof in §4.

The following theorem is an extension of Theorem III 2.4 of [START_REF] Azencott | Grandes Déviations et applications[END_REF] (see also [START_REF] Priouret | Remarques sur les petites perturbations de systèmes dynamiques[END_REF] or [START_REF] Baldi | An extension of Ventsel-Freidlin estimates[END_REF].

Theorem 2.9 Under (A2.7), for every R > 0, ρ > 0, a > 0, c > 0 there exist

ε 0 > 0, α > 0 such that, if ε < ε 0 , P Y ε -g > ρ, εB -h ≤ α ≤ e -R/ε 2 (2.21)
where h ∈ H k and g = S x (h), uniformly for |h| 1 ≤ a and |x| ≤ c. Moreover if b and σ are bounded and the convergence in (2.16) is uniform in y, then (2.8) is uniform in (the starting point) x.

Proof. Let

L ε = exp 1 ε T 0 ḣs dB s - 1 2ε 2 T 0 | ḣs | 2 ds
and P ε the probability on (Ω, F T ) having density L ε with respect to P. By Girsanov's theorem, under P ε the process 

B ε t = B t -1 ε h t is a Brownian motion for 0 ≤ t ≤ T and Y ε solves dY ε t = c ε (t, Y ε t ) dt + εσ ε (Y ε t )dB ε t , Y ε 0 = x where c ε (t, y) = b ε (y) + σ ε (y)
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Then the hypotheses of Lemma 2.8 are verified and for every R ′ > 0 there exists ε 0 > 0, α > 0 such that if ε < ε 0 and

A ε = { Y ε -g > ρε, εB ε ≤ α} then P ε (A ε ) < exp - R ′ ε 2 . (2.22) As dP dP ε = L -1 ε = exp - 1 ε T 0 ḣs dB s + 1 2ε 2 T 0 | ḣs | 2 ds = exp - 1 ε T 0 ḣs dB ε s - 1 2ε 2 T 0 | ḣs | 2 ds
from Cauchy-Schwarz's inequality

P(A ε ) = Aε L -1 ε dP ε ≤ P ε (A ε ) 1/2 E ε [(L -1 ε ) 2 ] 1/2 , (2.23) E ε being the expectation under P ε . Now E ε [(L -1 ε ) 2 ] = E ε exp - 2 ε T 0 ḣs dB s + 1 ε 2 T 0 | ḣs | 2 ds = = E ε exp - 2 ε T 0 ḣs dB s + 2 ε 2 T 0 | ḣs | 2 ds =1 × exp 1 ε |h| 2 1 = exp 1 ε |h| 2 1 (2.24)
Therefore, for every h with |h| 1 ≤ a,

P(A ε ) < exp - R ′ -a 2 2 1 ε 2
which actually gives (2.8).

Let us drop the hypotheses of boundedness, global Lipschitz continuity for b and σ and of uniformity for the convergence in (2.16). This is done easily using a localization argument. The idea is simple: the event { Y ε -g > ρ} only depends on the value of the coefficients in a neighborhood of the path g, therefore in a bounded set where they are Lipschitz continuous and bounded.

Indeed, by Lemma 2.5, the paths g that solve (2.7) as h varies in {|h| 1 ≤ a} and x in a compact set K ⊂ R m , remain inside an open ball of radius H and centered at the origin in R m . Now let bε

(y) = b ε (y) if |y| < H + 2ρ b ε ( y |y| H) if |y| ≥ H + 2ρ
and in a similar way b, σε and σ. The new coefficients b, bε σε and σ are obviously bounded, Lipschitz continuous and of course lim

ε→0+ | bε (y) -b(y)| = lim ε→0+ |σ ε (y) -σ(y)| = 0
uniformly in y ∈ R m . Moreover, let Ỹ ε and g denote the solutions of

Ỹ ε t = x + t 0 bε ( Ỹ ε s )ds + t 0 εσ ε ( Ỹ ε s )dB s gt = x + t 0 b(g s )ds + t 0 σ(g s ) ḣs ds
respectively. Then of course g ≡ g and, as bε ≡ b ε and σε ≡ σ ε in the ball of radius H + 2ρ, Y ε and Ỹ ε coincide up the exit from this ball and

{ Y ε -g > ρ} = { Ỹ ε -g > ρ}. Therefore, { Y ε -g > ρ, εB -h ≤ δ} = { Ỹ ε -g > ρ, εB -h ≤ δ}
which concludes the proof.
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It should be stressed that in this section we proved Freidlin-Wentzell estimates under rather minimal assumptions. In particular • it is not necessary for the coefficients to be bounded or globally Lipschitz continuous. Only local Lipschitz continuity is needed. Of course some additional assumptions are needed in order to ensure the existence of global solutions. The assumption of sublinear growth for b can be removed in presence of assumptions (of the type of contractivity) ensuring that there is no explosion and that the solutions of the system (2.7) remain inside a compact set as h remains in a bounded set of H k and x in a compact set of R m .

• Both coefficients of Y ε can depend on ε and it is not required for them to enjoy uniform (in ε) properties of regularity or of boundedness or of sublinear growth. They only need to be locally Lipschitz continuous and to ensure that the SDE (1.1) has a unique strong solution for every ε.

Pathwise Large Deviations for positive diffusions

In this section we prove Theorem 1.2. Under Assumption (A1.1) it is clear that the rate function

λ(g) = inf{ 1 2 |h| 1 , S x (h) = g} is given by (1.6), as S x (h) = g is equivalent to ḣt = ( ġt -b(g t ))/σ(g t ).
Theorem 1.2 is therefore a consequence of Theorem 2.4, as soon as we show that (A2.3) is satisfied.

Proposition 3.10 Let X ε the solution of (1.3) and assume that Assumption (A1.1) is satisfied. Then Assumption (A2.3) holds.

Proof. Suppose that we can prove that there exists a compact set K ⊂]0, +∞[ such that for every h ∈ H 1 ([0, T ]) with |h| 1 ≤ a and for every x in some compact set of ]0, +∞[ the corresponding solutions g of (2.7) remain in K. Let δ > 0 such that the neighborhood of radius δ, K δ , of K is such that K δ ⊂]0, +∞[, then the same localization argument as at the end of the proof of Theorem 2.9 would allow to conclude. We already know (Lemma 2.5) that these solutions remain in a bounded set. We must therefore only prove that there exists η > 0 such that g t ≥ η for every t ≤ T . This is proved in the next Proposition 3.11.

Proposition 3.11 Under (A1.1) the equation

ψt = b(ψ t ) + σ(ψ t ) ḣt , ψ 0 = x 0 (3.25) for h ∈ H 1 [0, T ],
x 0 > 0, admits a unique solution for t ∈ [0, T ] for every T > 0. Moreover for every compact set K ⊂ R + and a > 0 there exists η > 0 such that ψ t ≥ η for every x 0 ∈ K, and |h| 1 ≤ a.

The proof of this proposition follows from the following elementary computations of calculus of variations.

Lemma 3.12 For any absolutely continuous paths ψ with a square integrable derivative, let

J T (ψ) = T 0 L (ψ t , ψt ) dt, L (ψ, ψ) = ( ψ -b(ψ)) 2 2σ(ψ) 2
where b and σ are strictly positive continuous functions on ]0, +∞[ (J T = +∞ possibly). Let

V (x) = inf T >0 inf ψ0=x0 ψT =x J T (ψ) (3.26)
the associated free time cost function, where x 0 > 0 is a fixed starting point. Then for 0 < x < x 0

V (x) = -2 x x0 b(z) σ(z) 2 dz (3.27) ACCEPTED MANUSCRIPT Proof. Let H(x, p) = sup v∈R vp -L (x, v) = sup v∈R vp - (v -b(x)) 2 2σ(x) 2 (3.28)
the associated Hamiltonian. A straightforward computation yields

H(x, p) = b(x)p + 1 2 σ(x) 2 p 2
the supremum in the right hand side of (3.28) being attained at v * = σ(x) 2 p + b(x). This implies that

H(x, p) + L (x, v) ≥ vp, for every v, p and x > 0 (3.29) and H(x, p) + L (x, v) = vp, if v = v * = σ(x) 2 p + b(x) (3.30)
Let us denote by V 1 the right hand side of (3.27). Then it is immediate that, for x ≤ x 0 , V 1 is the largest solution of the Hamilton-Jacobi equation

H(x, w ′ ) = 0, w(x 0 ) = 0 (3.31) that is w ′ (x) b(x) + 1 2 σ(x) 2 w ′ (x) = 0, w(x 0 ) = 0 (3.32) Let 0 < x < x 0 and let us first prove that V 1 (x) ≤ V (x).
Let ψ an absolutely continuous path such that ψ 0 = x 0 , ψ T = x. We can assume that ψ t = x 0 for every t > 0. Otherwise we replace ψ by the path ψ defined by ψ t = ψ t+t * , t * being t * = max{t, ψ t = x 0 }. Then the new path ψ satisfies ψ 0 = ψ t * = x 0 , ψ T -t * = x, ψ t = x 0 for t > 0 and J T -t * ( ψ) ≤ J T (ψ), as the integrand L is positive. By the same argument we can also assume that ψ t = x for every t < T . As ψ takes its values in the interval [x, x 0 ] and V 1 is differentiable with bounded derivative in this interval, the function

t → V 1 (ψ t ) is absolutely continuous for t ∈ [0, T ] and d dt V 1 (ψ t ) = V ′ 1 (ψ t ) ψt . Thanks to (3.29) applied to x = ψ s , p = V ′ 1 (ψ s ), v = ψs , V 1 (x) = T 0 d ds V 1 (ψ s ) ds = T 0 V ′ 1 (ψ s ) ψs ds ≤ ≤ T 0 H(ψ s , V ′ 1 (ψ s ) =0 +L (ψ s , ψs ) ds = J T (ψ) (3.33)
This being true for every absolutely continuous path ψ with a square integrable derivative and such that ψ 0 = x 0 , ψ T = x and for every T > 0, this proves that

V 1 (x) ≤ inf T >0 inf ψ0=x0 ψT =x J T (ψ) = V (x) .
In order to obtain the opposite inequality, let ξ the solution of ξt = -b(ξ t ),

As b > 0, there exists T > 0 such that ξ T = x (recall that x < x 0 ). It is immediate that

σ(ξ s ) 2 V ′ 1 (ξ s ) + b(ξ s ) = -b(ξ s ) = ξs so that, thanks to (3.30), V ′ 1 (ξ s ) ξs = H(ξ s , V ′ 1 (ξ s )) + L (ξ s , ξs
) . The same argument as in (3.33) gives now an equality, that is

V 1 (x) = J T (ξ). Therefore V 1 (x) ≥ V (x)
which completes the proof of (3.27).

A C C E P T E D M A N U S C R I P T
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In particular, if b(x) ≡ β > 0 and σ

(x) = ρ √ x, V (x) = -2 β ρ 2 log x x 0
which implies that for every absolutely continuous path ψ joining x 0 to x < x 0 in the time interval [0, T ], we have 1 2

T 0 ( ψt -β) 2 ρ 2 ψ t dt ≥ -2 β ρ 2 log x x 0 • (3.34)
Remark that this quantity diverges as x → 0 + .

Proof of Proposition 3.11. We must prove that the solutions of (3.25) for |h| 1 ≤ a stay away from 0. This will be a consequence of Lemma 3.12 (and in particular of (3.34)) and of a comparison argument. Let x > 0 such that b(x) ≥ β > 0 and σ(x) ≤ δ √ x for some β > 0, δ > 0 and for x ∈ [0, x] (recall Assumption (A1.1)). For a compact set K ⊂]0, +∞[, possibly taking a smaller value for x, we can assume also that x < x 0 for every x 0 ∈ K.

Let ξ, 0 < ξ < x, such that -2 β δ 2 log x ξ > a 2 and let us prove that if |h| 1 ≤ a then ψ t > ξ for every t ≤ T . Actually, otherwise, there would exist two times t 1 < t 2 such that ψ t1 = x for some t 1 ≤ T , ψ t2 = ξ and ψ t ≤ x for t 1 ≤ t ≤ t 2 (recall that ξ ≤ x < x 0 ). Then

|h| 2 1 = 1 2 T 0 ( ψt -b(ψ t )) 2 σ(ψ t ) 2 dt ≥ 1 2 t2 t1 ( ψt -b(ψ t )) 2 σ(ψ t ) 2 dt .
As b(x) ≥ β > 0 and σ(x) ≤ δ √ x for x ≤ x, by Lemma 3.12,

1 2 t2 t1 ( ψt -b(ψ t )) 2 σ(ψ t ) 2 dt ≥ -2 ξ x b(y) σ(y) 2 dy ≥ 2 x ξ β δ 2 y dy = -2 β δ 2 log x ξ > a 2
which is in contradiction with the assumption |h| 1 ≤ a. This proves also that the solution ψ stays away from 0, so that it has a unique solution, as the coefficients b and σ are assumed to be Lipschitz continuous on ]0, +∞.

4 Appendix: proofs of Theorem 2.4 and Lemma 2.8

Proof of Theorem 2.4. Thanks to Assumption (A2.3) b) in the definition

λ(g) = inf 1 2 |h 1 ; S x (h) = g ,
the infimum is attained unless λ(g) = +∞. Actually if λ(g) = a, then we have also

λ(g) = inf 1 2 |h 1 ; S x (h) = g, 1 2 |h 1 ≤ a + 1 ,
and it suffices now to remark that in the uniform norm the set {S x (h) = g} is closed thanks to (A2.3) b), {|h 1 ≤ a + 1} is compact and h → 1 2 |h 1 is lower semi continuous. The same argument proves that λ is lower semi-continuous with compact level sets, as {λ ≤ a} turns out to be the image of C a = { 1 2 |h 1 ≤ a}, which is compact in the uniform norm, through the transformation S x , whose restriction to C a is continuous in the uniform norm.

We must prove the lower and upper bounds: if, for every Borel set A ⊂ C x ([0, T ], R + ), Λ(A) := inf g∈A λ(g), then we must prove that lim sup

ε→0 ε 2 log P(Y ε ∈ F ) ≤ -Λ(F ) (4.35) lim inf ε→0 ε 2 log P(Y ε ∈ G) ≥ -Λ(G) (4.36) for every closed set F ⊂ C x ([0, T ], R + ) and open set G ⊂ C x ([0, T ], R + )
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Lower bound. Let δ > 0 and g ∈ G such that λ(g) ≤ Λ(G) + δ and h ∈ H k such that S x (h) = g and

1 2 |h| 2 1 = λ(g). Thus if ρ > 0 is such that the neighborhood of radius ρ of g in C m x is contained in G, then for every α > 0 P(Y ε ∈ G) ≥ P Y ε -g < ρ ≥ P Y ε -g < ρ, εB -h < α = = P εB -h < α -P Y ε -g > ρ, εB -h < α
Now for every α > 0, thanks to the classical Schilder estimate in [START_REF] Schilder | Some asymptotic formulas for Wiener integrals[END_REF],

lim ε→0 ε 2 log P εB -h < α ≥ - 1 2 |h| 2 1 = -λ(g) ≥ -Λ(G) -δ . By (A2.3) c), for α > 0 small enough, lim sup ε→0 ε 2 log P Y ε -g > ρ, εB -h < α < -R with R > Λ(G) + 1, so that lim ε→0 ε 2 log P(Y ε ∈ G) ≥ -Λ(G) -δ
which, δ being arbitrary, allows to conclude.

Upper bound. If Λ(F ) = 0 there is nothing to prove. Otherwise let 0 < a < Λ(F ) and consider the compact sets (in C m x and C k 0 respectively)

K a = {g ∈ C m x ; λ(g) ≤ a}, C a = {h ∈ C k 0 ; 1 2 |h| 2 1 ≤ a}
Then K a ∩ F = ∅ and, F being closed and K a compact, for every g ∈ K a there exists ρ = ρ g such that B(g, ρ) ∩ F = ∅. For every h ∈ C a the path g = S x (h) belongs to K a and, by (A2.3) c), there exists

α = α h such that P Y ε -g > ρ, εB -h < α ≤ e -R/ε 2 for ε ≤ ε 0 = ε 0,h . The balls B(h, α h ), h ∈ C a ,
form an open cover of C a which is compact, so that there exist h 1 , . . . , h r such that B(h i , α i ), i = 1, . . . , r is a finite subcover of C a . Let A = r i=1 B(h i , α i ) and

g i = S x (h i ). Then P(Y ε ∈ F ) ≤ P Y ε ∈ F, εB ∈ A + P εB ∈ A c (4.37)
Now, again thanks to Schilder estimates [START_REF] Schilder | Some asymptotic formulas for Wiener integrals[END_REF]), as A c is a closed set such that 1 2 |h| 2 1 > a for every h ∈ A, P εB ∈ A c ≤ e -a/ε 2 for small ε whereas, if

g i = S x (h i ), P Y ε ∈ F, εB ∈ A ≤ r i=1 P Y ε ∈ F, εB -h i < α i ≤ r i=1 P Y ε -g i > ρ i , εB -h i < α i
so that, again for small ε and a possibly smaller α i , P Y ε ∈ A ≤ re -R/ε 2 + e -a/ε 2 which, for R > a gives lim sup ε→0 ε 2 log P Y ε ∈ A ≤ -a for every a < Λ(F ), which allows to conclude.

Proof of Lemma 2.8. We have

X ε t -γ t = t 0 c ε (s, X ε s ) -c(s, X ε s ) ds + t 0 c(s, X ε s ) -c(s, γ s ) ds + ε t 0 σ ε (X ε s ) dB s For small ε, thanks to (2.19), t 0 c ε (s, X ε s ) -c(s, X ε s ) ds ≤ ρ 2 e -a1T A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT whereas (2.18) gives t 0 c(s, X ε s ) -c(s, γ s ) ds ≤ t 0 |ψ(s)||X ε s -γ s | ds ≤ t 0 |ψ(s)| • X ε -γ s ds (recall that X ε -γ s = sup u≤s |X ε s -γ s |). Therefore, if U ε (t) = ε t 0 σ ε (X s ) dB s , X ε -γ t ≤ ρ 2 e -a1T + U ε + t 0 |ψ(s)| • X ε -γ s ds and from Gronwall Lemma, for ψ L 1 ≤ a 1 , X ε -γ ≤ ρ 2 + U ε e a1T . Thus P X ε -γ > ρ, εB ≤ α ≤ P U ε > ρ 2 e -a1T , εB ≤ α
The conclusion comes now from Lemma 4.13 below.

Lemma 4.13 (Assumptions and notations of Lemma 2.8) Let U ε (t) = ε t 0 σ ε (X s ) dB s as above. Then for every R > 0, ρ > 0 there exist ε 0 , α > 0 such that, if ε < ε 0 ε 2 log P U ε > ρ, εB ≤ α ≤ -R Proof. For every n > 0 let t 0 = 0, t 1 = T n , . . . , t k = kT n , . . . t n = T be a discretization of [0, T ] and define the approximations

X ε,n t = X ε t k if t k ≤ t < t k+1 . We have U ε > ρ, εB ≤ α ⊂ A ∪ B ∪ C where A = X ε -X ε,n > β B = sup t≤T ε t 0 σ ε (X ε s ) -σ ε (X ε,n s ) dB s > ρ 2 , X ε -X ε,n ≤ β C = sup t≤T ε t 0 σ ε (X ε,n s ) dB s > ρ 2 , X ε -X ε,n ≤ β, εB ≤ α
In order to give an upper bound for P(B) we split B = B 1 ∪ B 2 ∪ B 3 where

B 1 = sup t≤T ε t 0 σ ε (X ε s ) -σ(X ε s ) dB s > ρ 6 , B 2 = sup t≤T ε t 0 σ(X ε s ) -σ(X ε,n s ) dB s > ρ 6 , X ε -X ε,n ≤ β B 3 = sup t≤T ε t 0 σ ε (X ε,n s ) -σ(X ε,n s ) dB s > ρ 6 ,
As, thanks to (2.16), for every η > 0 there exists ε 0 > 0 such that for ε < ε 0 
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Then, as σ is supposed to be Lipschitz continuous (constant K L ) on B 2 it holds |σ(X ε s )-σ(X ε,n s )| ≤ K L β and again the exponential inequality gives, for small β, 

P(B 2 ) ≤ 2m exp - ρ 2 72T K 2 L β 2 1 ε 2 < e -R/
ε t t k σ ε (X ε s ) dB s > β 2 ≤ 2m exp - nβ 2 8M 2 T 1 ε 2 .
Thus, for n > n 0 and ε > 0,

ε 2 log P X ε -X ε,n > β ≤ ε 2 log(2mn) - nβ 2 8M 2 T
and the quantity in the right hand side, for a possibly larger value of n 0 , is smaller than -R for every ε ≤ 1. This together with (4.38) allows to conclude.

(

  A1.1) a) σ : [0, +∞[→ R + is Hölder continuous with exponent γ ≥ 1 2 , is locally Lipschitz continuous on ]0, +∞[, vanishes at 0 and has a sublinear growth at ∞. b) b : [0, +∞[→ R is locally Lipschitz continuous, has a sublinear growth at ∞ and b(0) > 0.

  b and σ are locally Lipschitz continuous, have a sublinear growth at infinity and are such that lim ε→0+ |b ε (y) -b(y)| = 0, lim ε→0+ |σ ε (y) -σ(y)| = 0 (2.16)

  ḣt . Let c(t, y) = b(y) + σ(y) ḣt and assume first that σ, b are bounded (constant M ), Lipschitz continuous (constant L) and that the convergence in (2.16) is uniform. Then |c ε (s, x)| + |c(s, x)| ≤ 2M (1 + | ḣs |) |c(s, y) -c(s, z)| ≤ L(1 + | ḣs |)|y -z| sup y |c ε (s, y) -c(s, y)| ≤ (1 + | ḣs |) sup y {|b ε (y) -b(y)| + |σ ε (y) -σ(y)|}

  y) -σ(y) ≤ η , the exponential inequality gives for small ηP(B 1 ) ≤ 2m exp -ρ 2 72T η 2 1 ε 2 < e -R/ε 2 P(B 3 ) ≤ 2m exp -ρ 2 72T η 2 1 ε 2 < e -R/ε 2 A C C E P T E D M A N U S C R I P T

  ε 2 Thus P(B) ≤ 3e -R/ε 2 (4.38)for ε < ε 0 and small β, independently of n. As for C, on the set{ εB ≤ α} it holds )(B t k+1 ∧t -B t k ∧t ) ≤ 2M nα which gives C = ∅ if α < ρ 4Mn0 . As for A P( X ε -X ε,n > β) = P

		t					n-1		
	ε	0	σ ε (X ε,n s ) dB s = ε	k=0 t k n-1 σ(X ε
							k=0	sup t k ≤t<t k+1	|X ε t -X ε t k | > β	≤
	≤ σ By Cauchy-Schwarz inequality n-1 k=0 P sup t k ≤t<t k+1 t t k t c ε (s, X ε s ) ds + sup t k ≤t<t k+1 ε t k
			t t k	c ε (s, X ε s ) ds ≤	T n	0	T	|φ(s)| 2 ds	1/2	≤ a 1	T n
	so that for n ≥ n 0 large enough, independently of ε, the events
			sup t k ≤t<t k+1	t t k	c ε (s, X ε s ) ds >	β 2	, k = 0, . . . , n -1
	are empty. Moreover, from the exponential inequality of martingales
	P		sup					
		t k ≤t<t k+1					

ε (X ε s ) dB s > β .