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Abstract 

Lung barrier protection by Sphingosine-1 Phosphate (S1P) has been demonstrated 

experimentally, but recent evidence suggests barrier-disruptive properties of high 

systemic S1P concentrations. The S1P analog FTY720 recently gained an FDA 

approval for treatment of multiple sclerosis. In case of FTY720 treated patients 

experiencing multiple organ dysfunction syndrome the drug may accumulate due to 

liver failure, and the patients may receive ventilator therapy. Whereas low doses of 

FTY720 enhanced endothelial barrier function, data on effects of increased FTY720 

concentrations are lacking. We measured transendothelial resistance (TER) of 

human umbilical vein endothelial cell (HUVEC) monolayers, performed morphologic 

analysis and measured apoptosis by TUNEL staining and procaspase-3 degradation 

in HUVECs stimulated with FTY720 (0.01-100 µM). Healthy C57BL/6 mice and mice 

ventilated with 17ml/kg tidal volume and 100% oxygen for 2 h were treated with 0.1 

or 2 mg/kg FTY720 or solvent, and lung permeability, oxygenation and leukocyte 

counts in BAL and blood were quantified. Further, electron microscopic analysis of 

lung tissue was performed. We observed barrier protective effects of FTY720 on 

HUVEC cell layers at concentrations up to 1 µM while higher concentrations induced 

irreversible barrier breakdown accompanied by induction of apoptosis. Low FTY720 

concentrations (0.1 mg/kg) reduced lung permeability in mechanically ventilated 

mice, but 2 mg/kg FTY720 increased pulmonary vascular permeability in ventilated 

mice accompanied by endothelial apoptosis, while not affecting permeability in non-

ventilated mice. Moreover, hyperoxic mechanical ventilation sensitized the pulmonary 

vasculature to a barrier disrupting effect of FTY720, resulting in worsening of 

ventilator induced lung injury. In conclusion, the current data suggest FTY720-

induced endothelial barrier dysfunction, which was probably caused by proapoptotic 

effects and enhanced by mechanical ventilation. 
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1. Introduction 

Multiple organ dysfunction syndrome accounts for high morbidity and mortality rates 

and is frequently associated with vascular leakage. In the lung, the loss of vascular 

barrier integrity evokes pulmonary edema formation, surfactant dysfunction, and 

impaired lung compliance, resulting in deterioration of pulmonary gas exchange and 

eventually the requirement of hyperoxic mechanical ventilation (MV). Although being 

a life saving intervention in acute respiratory failure without an alternative, MV may 

evoke ventilator-induced lung injury (VILI), which conjointly with hyperoxia further 

enhances inflammation and lung permeability, thereby aggravating the initial lung 

injury. 

FTY720 [2-amino-2-(2-[4-octylphenyl]ethyl)-1,3-propanediol] is a structural analog of 

the endogenous sphingolipid Sphingosine-1 Phosphate (S1P). The five known S1P 

receptors (S1PR1-5) are ligated by FTY720, with relatively low affinity to S1P2 and 

S1P3. Comparable with S1P, FTY720 has potent immunomodulatory effects by 

reducing total numbers of circulating lymphocytes via inhibition of T- and B-Cell 

egress from lymphoid tissues[1]. Thereby, FTY720 prevented acute graft rejection 

and destruction in animal studies[2] as well as in clinical trials in renal transplant 

patients[3-5]. Notably, a therapeutic effect of FTY720 for the treatment of multiple 

sclerosis has been evidenced by clinical trials and FTY720 only recently gained FDA 

approval (NDA 022527) for the treatment of multiple sclerosis [6-9]. 

Beside immunomodulatory properties, S1P and FTY720 may impact on the 

regulation of pulmonary endothelial barrier function[1,10]. Vascular endothelial cells 

primarily express S1P1, S1P2 and S1P3. In the lungs, physiologic S1P 
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concentrations (0.5-1 µM) may increase microvascular barrier integrity via ligation of 

S1P1[10] by promoting actin cytoskeletal regulatory protein recruitment to membrane 

lipid rafts and Gi-coupled signalling to cytoskeletal elements via Rac GTPase[11-13]. 

Infusion of S1P or FTY720 reduced lung microvascular leakage in different models of 

lung injury, including intratracheal Lipopolysaccharide (LPS) application in mice[14], 

murine and canine ventilator induced lung injury[15], acute necrotizing pancreatitis-

associated lung injury in rats[16], and ischemia/reperfusion injury following syngeneic 

rat lung transplantation[17]. In accordance, Sphingosine-Kinase 1 (SphK1) deficient 

mice were more susceptible to LPS-induced lung injury as compared to their wild 

type littermates[18]. Moreover, even a S1P receptor independent increase of 

endothelial barrier function by FTY720 has been observed in vitro[19]. However, S1P 

at higher concentration (>5 µM) mediates RhoA dependent barrier disruption through 

ligation of S1P2 and S1P3, which couple to Gi, Gq and G12/13[10,20]. Of note, even 

the selective S1P1 agonist SEW-2871 produced concentration-dependent barrier-

regulatory responses in murine lungs, evoking significant alveolar-capillary barrier 

disruption in higher concentrations[21].  

FTY720 has a long half life of approximately 8 days, exclusively employs hepatic 

metabolism via the cytochrome p450 4F2 (CYP4F2) and has a huge volume of 

distribution. Thus, accumulation of FTY720 is probable in patients with multiple organ 

dysfunction syndrome [22-25]. Considering the complex role of S1P receptor 

signaling in the regulation of endothelial barrier function, relevant risks for critically ill 

FTY720-treated patients need to be envisioned. 

In the current study, we analyzed concentration-dependent effects of FTY720 on 

endothelial barrier function in vitro and in healthy mice, and investigated the impact of 

different FTY720 dosing on lung injury evoked by mechanical ventilation and 

hyperoxia in mice. 
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2. Methods 

2.1. Transcellular Electrical Resistance (TER) of Endothelial Cells 

 Human umbilical cord vein endothelial cells (HUVEC) were isolated as described[26] 

and grown on evaporated gold electrodes, connected to an electrical cell-substrate 

impedance system (Applied Biophysics, Troy, USA NY). Cells were exposed to 

different concentrations of FTY720 (Cayman, Ann Arbor, USA) ranging from 0.01 to 

100 µM and TER values from each microelectrode were continuously monitored and 

normalized as the ratio of measured resistance to baseline resistance. 

 

2.2. Preparation of human endothelial cells and F-actin staining 

HUVEC obtained from collagenase digestion were washed, resuspended, cultivated 

in MCDB 131-10% FCS and seeded onto 24-well Thermanox slides (Nunc, 

Germany) [26]. Studies were performed using confluent endothelial cell monolayers 

in their second passage. HUVEC were incubated with 1 or 100 µM FTY720 for 1 h. 

Slides were fixed for 20 min in 3% paraformaldehyde. Permeabilization of cell 

membranes was performed using 1% Triton X100, and F-actin was stained with 

phalloidin Alexa 488 (Molecular Probes, Invitrogen) as described previously[26]. 

Slides were analyzed using a Pascal 5 confocal scanning laser microscope (Zeiss, 

Jena, Germany) equipped with an air-cooled argon laser (Axioskop 2 Mot 

microscope, Zeiss). Alexa 488 fluorescence was excited with 488 nm argon-ion laser 

beam and imaged using a NT80/20/488 beam splitter and a 505 nm longpass 

emission filter.  

 

2.3. TUNEL staining 

For the assessment of apoptosis, HUVECs grown on gelatin-coated Thermanox 

slides were stimulated as indicated, washed twice, and incubated in a humidified 
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atmosphere. Cells were fixed in paraformaldehyde 4%, washed, and DNA strand 

breaks were labeled by Fluorescein (FITC)-dUTPnick-endlabeling (TUNEL), and 

enhanced by application of Alexa 488 anti FITC antibody (1:1,000, 1 h at 37°C) as 

described previously[27]. F-actin was visualized by marking with Alexa 546-labeled 

phalloidin (1:200, 30 min). Staurosporin 10µM was used as a positive control for 

apoptosis. Staurosporin treated cells, in which the enzymatic reaction leading to a 

positive signal of fluorescence was not performed served as negative controls, 

confirming the TUNEL signal as specific. Analysis of the slides was performed by 

using a Zeiss Pascal 5 confocal microscope (objective lens: Plan-Apochromat 

63x/1.4) (Zeiss, Jena, Germany). 

 

2.4. Pro Caspase 3 degradation 

HUVECs were grown to confluent cell layers and incubated with indicated 

concentrations of FTY720 or buffer for 1 h. After trypsination, cells were washed and 

lysed in buffer containing Triton X-100, subjected to SDS-PAGE, and blotted on 

Hybond-ECL membrane (Amersham Biosciences, Freiburg, Germany). 

Immunodetection of procaspase 3 was carried out with specific antibody (Upstate 

Biotechnology, Lake Placid, USA). In all experiments, actin (Santa Cruz 

Biotechnologies, Santa Cruz, USA) was detected simultaneously to confirm equal 

protein load. Both proteins were visualized by incubation with secondary IRDye800- 

or Cy5.5-labeled antibodies (Odyssey infrared imaging system, LI-COR). 

 

2.5. Mice 

All procedures were approved by local and governmental (LAGeSo, Berlin) 

authorities. VILI was induced as decribed[28]. In summary, female C57BL/6 mice 

(11-15 weeks; Charles River, Sulzfeld, Germany) were anesthetized by repetitive 
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intraperitoneal injections of xylazine every 50 min (25 µg/g) and ketamine (125 µg/g). 

Body temperature was measured continuously using a rectal probe and maintained 

at 37°C by a heating pad. After tracheotomy and int ubation, mice were ventilated 

(MiniVent, Harvard Apparatus, March, Germany), and airway pressure was raised to 

35 cmH2O for 5 seconds for lung recruitment, followed by ventilation with 7 ml/kg tidal 

volume (VT), positive endexspiratory pressure (PEEP) = 6 cmH2O, and inspiratory 

fraction of oxygen (FiO2) = 1. A carotid artery catheter was placed for blood pressure 

monitoring and continuous infusion of sodium chloride 0.9% containing 100 mmol/l 

HCO3
- at 350 µl/h during the ventilation period.  

When baseline conditions were established, ventilator settings were changed to 

17ml/kg tidal volume and PEEP = 0 cmH2O. At termination of experiments mice were 

sacrificed by exsanguination via the carotid artery catheter. Non-ventilated mice did 

not undergo surgery and were spontaneously breathing (FiO2=0.21).  

Mice were injected with either solvent or 0.1 mg/kg or 1 mg/kg FTY720, dissolved in 

0.9% saline, 30 min before preparation. Mice in the high dose group received a 

second dosage of 1 mg/kg after one hour of ventilation while the other groups 

received injections of solvent. Non-ventilated mice were injected with same dosages 

in matched intervals when indicated.  

 

2.6. Measurement of oxygenation 

PaO2 was quantified in arterial blood of all animals subjected to MV (ABL700, 

Radiometer-Copenhagen). Oxygenation was expressed as paO2/FiO2 (P/F ratio).  

 

2.6. Lung vascular permeability 

Human serum albumin (HSA; 1 mg; Baxter, Unterschleißheim, Germany) was 

injected via the carotid artery catheter or the tail vein in ventilated or non-ventilated 
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mice, respectively, 90 min before termination of the experiment. Mice were sacrificed 

and bronchoalveolar lavage (BAL) was performed with 2x800 µl phosphate buffered 

saline (PBS). BAL and plasma HSA levels were quantified by ELISA (Bethyl 

Laboratories, USA). Permeability was assessed by calculating HSA BAL/plasma 

ratio. 

 

2.8. BAL and blood leukocyte counts 

BAL cells were counted by hemocytometer and differentiated by flow cytometry 

(FACSCalibur, BD, Heidelberg, Germany) analyzing forward and side scatter 

characteristics and expression of surface antigens CD45, Gr-1 and F4-80. Blood 

leukocytes were counted and differentiated by flow cytometry analyzing CD45 and 

Gr-1 surface expression using TruCount tubes (BD, Heidelberg, Germany). 

 

2.9. Electron microscopy 

Lungs  were  flushed  via  the  pulmonary  artery,  cut, immersion-fixed (1.5% 

glutaraldehyde, 1.5% paraformaldehyde in 0.15 M HEPES), rinsed (0.1 mmol/l 

HEPES, 0.1  mmol/l  cacodylate  buffer)  and  osmicated  (1% osmium tetroxide in 

0.1 mmol/l cacodylate buffer). After rinsing in 0.1 mmol/l cacodylate buffer and dis- 

tilled water, specimens were stained in half-saturated aqueous uranylacetate solution 

(1:1). Samples were dehydrated  in  ascending  acetone  concentrations, embedded 

in epon, cut (70 nm), stained with lead citrate and uranyl-acetate, and analyzed as 

described previously[29]. 

 

2.8. Statistical analyses 

Data are expressed as mean +/- SEM. For comparism between groups Man-Whithey 

u-test was used. P values <0.05 were considered statistically significant. 
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3. Results 

3.1. FTY720 enhanced or disrupted endothelial cell monolayer integrity, depending 

on the employed concentration. 

Confluent monolayers of human umbilical vein endothelial cells (HUVECs) stimulated 

with 0.01, 0.1 or 1 µM FTY720 showed a dose-dependent increase in TER, and 

endothelial barrier function was continuously improved during the observation period 

of 180 min (Fig. 1a). In contrast, 100 µM FTY720 rapidly impaired endothelial barrier 

function. Notably, 10 µM FTY720 initially increased TER, which declined below the 

baseline values during the further observation period. Area under curve (AUC) 

analysis of TER confirmed this observation (Fig. 1b). Absolute TER values at 60, 90, 

120, 180 min revealed increased values when HUVECs were stimulated with 0.01, 

0.1 or 1 µM FTY720, whereas 10 and 100 µM FTY720 reduced TER (Fig. 1c) as 

compared to untreated HUVEC monolayers.  

 

3.2. High FTY720 concentration causes endothelial cell stress and damage 

To further analyze the endothelial barrier-increasing effect of low FTY720 

concentrations and the barrier-disrupting effects of high concentrations, cell 

morphology of endothelial cells was evaluated. Taking the results of the TER 

experiments in account HUVECs were stimulated with 1 or 100 µM FTY720 or 

solvent for 60 min. HUVECs stimulated with 1 µM FTY720 displayed a morphology 

indistinguishable from non stimulated HUVECs. Stimulation with 100 µM FTY720 led 

to severe cell detachment from the endothelial cell layer (Fig. 2a). 
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3.3. High FTY720 concentration induces apoptosis in endothelial cells 

HUVECs were incubated with solvent or 1, 10 or 100 µM FTY720 for 60 min and 

TUNEL staining was performed to evaluate for apoptosis. In cells stimulated with 

solvent, 1 or 10 µM FTY720, no TUNEL positive stained cells were detectable while 

incubation with 100 µM induced apoptosis (Fig 2b). To further enhance evidence of 

FTY720 induced apoptosis, HUVECs were incubated with 0.1, 10 or 100 µM FTY720 

for 60 min, and caspase 3 activation was assessed by analyzing the degradation of 

procaspase 3 by western blot technique. After 60 min, 100 µM FTY720 induced 

degradation of procaspase 3, which was not detected after incubation with solvent or 

0.1 or 10 µM FTY720, suggesting apoptosis to be one underlying mechanism of 

FTY720 induced barrier breakdown (Fig. 2c). 

 

3.4. FTY720 treatment did not evoke lung injury in non-ventilated mice 

To evaluate the impact of increasing FTY720 dosage on lung permeability in vivo, 

healthy mice were treated with 0.1 mg/kg or 2 mg/kg FTY720. Pulmonary vascular 

permeability was quantified, and differential white blood cell count was performed. In 

healthy mice, FTY720 (0.1 and 2 mg/kg) did not alter lung permeability (Fig. 3a), 

decreased circulating lymphocytes, and did not affect monocyte and PMN counts 

(Fig. 3b).  

 

3.5. High dose FTY720 aggravated lung injury in mechanically ventilated mice 

MV with 17 ml/kg VT increased pulmonary permeability in healthy mice, and 

treatment with 0.1 mg/kg FTY720 significantly attenuated pulmonary permeability 

provoked by MV. In contrast, mice treated with 2 mg/kg FTY720 developed 

dramatically increased pulmonary permeability as compared to untreated ventilated 
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mice (Fig. 4a). FTY720 did not alter mean systemic arterial blood pressure (data not 

shown). 

As permeability edema may impair pulmonary gas exchange, arterial pO2 (paO2) after 

120 min of MV was quantified. Treatment with 2 mg/kg FTY720 impaired gas 

exchange reflected by a lower paO2 in this group, as compared to other groups (ctr. 

376.8 ± 28.9, 0.1 mg/kg FTY720 393,6 ± 23,63, 2 mg/kg FTY720 342,5 ± 29,86 

[mmHg]; mean ±SD) (Fig. 4b). MV evoked accumulation of neutrophils in BAL fluid. 

Treatment with FTY720 did not alter recruitment of neutrophils to the lung in VILI 

(Fig. 4c). 

 

3.6. High dose FTY720 induced endothelial apoptosis in VILI 

In solvent treated mice, MV evoked edema of the alveolar epithelium, while 

endothelial injury was observed only sporadically. Non-ventilated mice treated with 

0.1 mg/kg FTY720 showed intact endothelium and epithelium. After 2h of MV, mice 

treated with 0.1 mg/kg FTY720 developed epithelial edema, while endothelial 

apoptosis was noticed occasionally. Non-ventilated mice subjected to 2 mg/kg 

FTY720 displayed intact epithelium and overall intact endothelial integrity, while few 

endothelial cells underwent apoptosis. In contrast, 2h of MV evoked pronounced 

endothelial injury in mice treated with 2 mg/kg FTY720, as displayed by endothelial 

disintegrity and frequent endothelial apoptosis. Moreover, epithelial injury was 

observed in lungs of mechanically ventilated mice after treatment with 2 mg/kg 

FTY720 (Fig. 5). 

 

4. Discussion 

The current study provided evidence that the S1P analog FTY720, which has 

recently been approved by the FDA as a novel treatment for multiple sclerosis (NDA 
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022527) and has been evaluated as immunosuppressant following renal 

transplantation may impair endothelial barrier function due to induction of apoptosis 

at high concentrations in vitro. Moreover, our findings suggested that hyperoxic 

mechanical ventilation may pave the way for detrimental effects of FTY720 on 

pulmonary endothelial barrier function by induction of endothelial apoptosis in vivo, 

thereby further impairing pulmonary gas exchange in mice. 

Endothelial barrier function is tightly regulated by various mechanisms including S1P-

related effector systems, and FTY720 acts as a S1P analog[1,10]. In line with 

previous observations[19,30], low FTY720 concentrations stabilized endothelial 

barrier function of HUVEC monolayers in the current investigation. However, it has 

also been reported that particular structural analogs of FTY720 caused endothelial 

barrier breakdown, indicating a more complex and concentration-dependent effect of 

FTY720 on the regulation of vascular integrity[31]. Indeed, FTY720 at high 

concentrations (10-100µM) seriously impaired endothelial barrier function in the 

current study. Barrier disruptive properties have been reported for S1P2 dependent 

signaling pathways[32], but FTY720 has virtually no affinity to S1P2 up to 

concentrations of 10 µM [33]. Thus, an additional mechanism for barrier breakdown, 

possibly in synergism with S1P2 ligation at FTY720 concentrations higher than 10µM 

may underlie the observed impairment of endothelial barrier function. Here we 

observed that endothelial barrier disruption by high concentrations (100µM) of 

FTY720 was accompanied by induction of apoptosis suggesting apoptosis to be one 

possible underlying effect of FTY720 induced barrier dysfunction. These findings are 

in line with studies reporting induction of caspase 3 dependent apoptosis by FTY720 

in different cell types[34,35].  

In humans FTY720 has an elimination half life of more than 8 days under 5 mg daily 

dosing, and a high volume of distribution exceeding 1000 l [22]. Hepatic impairment 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 13

and interference with CYP4F2 metabolism, which can be confined by other drugs 

including ketokonazole, led to reduced FTY720 clearance and increase of systemic 

FTY720 levels[23-25]. Thus, in critically ill patients who suffer from multiple organ 

dysfunction and receive complex drug therapy, FTY720 levels may likely exceed the 

aimed therapeutic tissue concentration. Moreover, it is tempting to speculate that 

FTY720 and endogenous S1P may have particular additive effects. Importantly, 

enhanced SphK1 activity was observed in phagocytes of septic patients, and SphK1 

inhibition augmented the course of fatal sepsis in mice[36]. Therefore, detrimental 

effects of enhanced SphK1 activity may possibly be further aggravated by increasing 

FTY720 tissue concentrations in sepsis with multiple organ dysfunction syndrome.  

After discovering a barrier disruptive effect of high FTY720 concentrations in primary 

human endothelial cells we intended to investigate the impact of different FTY720 

doses on endothelial barrier function in vivo, and thus decided to quantify pulmonary 

vascular leakage in mice. In line with various studies in which mice treated with 

comparable FTY720 doses did not develop serious side effects[37-39], no impact of 

FTY720 on pulmonary permeability was observed in healthy mice. Notably, in mice 

treated with 2 mg/kg FTY720 apoptotic endothelial cells and endothelial barrier 

disruption were noted by electron microscopic evaluation occasionally, which 

obviously remained without measurable consequences for overall vascular integrity 

in healthy mice. However, to model the clinical situation of FTY720 accumulation, 

use of healthy mice may not be appropriate as accumulation of FTY720 may 

predominantly occur in critically ill patients. One third of patients in intensive care 

units are receiving MV[40], frequently with a high fraction of inspiratory oxygen, and 

increased pulmonary permeability is a hallmark of both ventilator-induced and 

hyperoxic lung injury[41,42]. Thus, we tested the impact of FTY720 on pulmonary 

vascular permeability simultaneously affected by MV and hyperoxia. According to 
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studies evaluating FTY720 in other models of ALI[14,16] we observed that low 

dosing (0.1 mg/kg) of FTY720 protected against MV-induced pulmonary 

hyperpermeability. In contrast to this observation, but in consistence with our findings 

in FTY720 challenged HUVEC monolayers, 2 mg/kg FTY720 evoked a dramatic 

increase of pulmonary permeability in VILI. In the 2 mg/kg FTY720 group ventilated 

for 2 h, but not in the VILI control group marked endothelial injury and in particular 

endothelial apoptosis was detected by electron microscopy. In mice being treated 

with 0.1 mg/kg FTY720 and ventilated for two hours, a small proportion of endothelial 

cells also revealed signs of damage and apoptosis. These findings suggested that 

apoptosis might be one underlying mechanism for endothelial barrier breakdown 

observed in ventilated and FTY720-treated mice. 

Neutrophil accumulation and activation may also contribute to the development of 

lung failure in pulmonary inflammation. Of note, TNFα induced, integrin mediated 

neutrophil recruitment has recently been shown to be SphK1 dependent[43]. 

However, neutrophil adhesion to TNFα-activated endothelium was independent of 

the G-protein coupled S1P receptors[43], and we did not observe increased 

neutrophil accumulation in the lungs of ventilated mice after treatment with FTY720. 

As 2 mg/kg FTY720 did not increase permeability or evoke significant endothelial 

apoptosis in non-ventilated mice, our findings suggested a sensitization of the 

pulmonary vasculature by hyperoxia and VILI towards the barrier disrupting effect of 

FTY720. Cyclic stretch in VILI as well as hyperoxia may mediate proapoptotic signals 

[44]. However, several further mechanisms of the sensitization process may be 

proposed in the current context, including increased affinity of S1P2 or S1P3 to 

FTY720, and further studies are warranted to elucidate the interplay of hyperoxic VILI 

and FTY720. 
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Some limitations of the current study have to be considered. Mice were ventilated 

with relatively high tidal volumes and without PEEP, which does not reflect 

recommended lung protective ventilation. Notably, the observation period in mouse 

models is usually limited to few hours as compared to ventilation of humans for days 

or weeks. In the applied model key mechanisms of VILI including pulmonary 

leukocyte recruitment and increase in lung permeability developed within the 

observation period, displaying suitability of the model for analysis of FTY720 effects 

in particular on pulmonary permeability within the limited observation period of 2h. 

Moreover, according to the baby lung concept of the acute respiratory distress 

syndrome (ARDS) [45], the forces affecting healthy lungs when being ventilated with 

17 ml/kg bodyweight may apply in ventilated areas of inhomogeneously injured 

ARDS lungs even under lung protective ventilation.  

 

5. Conclusion 

The results of this study may have significant impact on the consideration of FTY720 

dosing in humans. Different clinical studies analyzed FTY720 pharmacokinetics, 

pharmacodynamics[22] and the use of FTY720 for the treatment of graft 

rejection[3,5] or multiple sclerosis[6-9], and adverse effects related to impaired 

endothelial barrier integrity have not been reported. Notably, in none of these trials 

critically ill patients receiving MV were included. Although conclusions from in vitro 

findings and mouse experiments should be drawn carefully with respect to human 

patients, it is tempting to speculate that in ventilated, critically ill patients a lowered 

pulmonary toxicity threshold of FTY720 by VILI combined with systemic FTY720 

accumulation may aggravate VILI evoked lung permeability. As FTY720 is a 

promising new drug candidate which gained FDA approval for the treatment of 

relapsing multiple sclerosis recently and is thus expected to enter clinical practice in 
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the near future, it may be necessary to consider this possible side effect, to conduct 

appropriate clinical studies, and to revise optimal dosing of FTY720 for critically ill 

and mechanically ventilated patients.  
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9. Figure legends 

Fig. 1 Transcellular electrical resistance of FTY720 treated endothelial cell 

monolayers  

HUVECs, grown to confluence on gold microelectrodes to measure transendothelial 

electrical resistance (TER) were stimulated with FTY720 in concentrations of 0.01, 

0.1, 1, 10, 100 µM or with solvent (ctr.). a) One representative experiment is shown. 

Low dose FTY720 (0.01, 0.1 and 1 µM) enhanced endothelial barrier function, 

whereas 100 µM FTY720 induced rapid barrier breakdown. 10 µM FTY720 initially 

enhanced cell layer integrity but evoked barrier breakdown after >60 min of 

stimulation. b) These observations were confirmed by area under the curve (AUC) 

analysis. c) Bar graphs depict mean ± sem of TER values at the time points 60, 90, 

120, 180 min. (* p<0.05 vs ctr., # p<0.05); (n = 4, triplet or quartets were used in each 

replication of the experiment) 

 

Fig. 2 High concentrations of FTY720 induced apoptosis in endothelials cells  

Confluent HUVECs were incubated with FTY720 (1, 10 or 100 µM as indicated) or 

solvent for 60min. a) F-actin staining. HUVECs stimulated with 1 µM FTY720 showed 

no significant changes as compared to control, whereas incubation with 100 µM 

FTY720 induced disruption of HUVEC monolayers with intercellular gap formation 

and detachment of cells from glass slides. b) Apoptosis was detected by TUNEL 

staining in cells stimulated with 100 µM FTY720. Staurosporin (10 µM) was used as 

positive control for apoptosis. Staurosporin treated cells, in which the enzymatic 

reaction evoking fluorescence was not performed, confirmed the TUNEL signal 

specific. c) Apoptosis was induced by 100µM FTY720 as indicated by procaspase-3 

degradation. a-b) representative images of three independent experiments with 

similar results are shown. 
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Fig. 3 FTY720 treatment did not evoke lung injury in non-ventilated mice 

Mice were treated with 0.1 mg/kg or 2mg/kg FTY720, or solvent (ctr.). BAL was 

performed and blood was drawn 2.5 h after the initial dosage, matching the time point 

of sample collection in the MV experiments.(Fig. 4) a) FTY720 did not alter 

pulmonary vascular permeability (n = 5). b) Circulating lymphocytes were decreased 

by FTY720 treatment while neutrophils (PMN) and monocytes were unaffected. 

(*<0.05, n = 5) 

 

Fig. 4 FTY720 aggravated lung permeability in mechanically ventilated mice 

VILI was induced in mice treated with 0.1 mg/kg or 2 mg/kg FTY720, or solvent (ctr.) 

by 2h of mechanical ventilation (MV). (NV: non ventilated mice). a) MV evoked 

pulmonary hyperpermeability. Treatment with 0.1 mg/kg FTY720 reduced 

permeability while 2 mg/kg FTY720 further increased permeability. (## p<0.01 vs. 

NV, *p<0.05, **p<0.01; n = 5-6) b) Oxygenation in mice after 2h of MV (*p<0.05; n = 

5-6) c) BAL neutrophils (PMN) were quantified. FTY720 did not affect VILI induced 

neutrophil invasion to the lung. (*p<0.05 vs. NV, n = 5-6). 

 

Fig. 5 FTY720 induced endothelial damage and apoptosis in mechanically ventilated 

mice 

Non ventilated (NV) and ventilated (MV) mice were treated with 0.1 mg/kg or 2 mg/kg 

FTY720, or solvent (ctr.). Lungs were analyzed by electron microscopy. a) NV ctr. 

mice displayed intact endothelium and epithelium. b) Epithelial edema was observed 

after 2h of MV in ctr. mice while endothelial injury was observed only sporadically. c) 

Intact endothelial and epithelial integrity in NV mice treated with 0.1 mg/kg FTY720. 

d) Epithelial edema and occasional endothelial apoptosis after MV and FTY720 
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treatment (0.1 mg/kg) e) Intact alveolar epithelium and sporadical endothelial 

apoptosis in lungs of NV mice treated with 2mg/kg FTY720. f) MV in mice treated 

with 2mg/kg FTY720 resulted in major endothelial injury and endothelial apoptosis in 

addition to prominent epithelial injury. (AE I = Alveolar epithelial cell type I; AE II = 

Alveolar epithelial cell type II; E = Endothelium; * = Epithelial swelling; + = Endothelial 

swelling; NG = Neutrophil Granulocyte; G = Apoptotic Granulocyte; AP.E = Apoptotic  

Endothelium. Representative images of three independent experiments are shown) 
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