
HAL Id: hal-00753945
https://hal.science/hal-00753945

Submitted on 20 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A general criterion to determine the number of
change-points
Gabriela Ciuperca

To cite this version:
Gabriela Ciuperca. A general criterion to determine the number of change-points. Statistics and
Probability Letters, 2011, �10.1016/j.spl.2011.03.027�. �hal-00753945�

https://hal.science/hal-00753945
https://hal.archives-ouvertes.fr


Accepted Manuscript

A general criterion to determine the number of change-points

Gabriela Ciuperca

PII: S0167-7152(11)00110-6
DOI: 10.1016/j.spl.2011.03.027
Reference: STAPRO 5962

To appear in: Statistics and Probability Letters

Received date: 24 June 2010
Revised date: 14 March 2011
Accepted date: 14 March 2011

Please cite this article as: Ciuperca, G., A general criterion to determine the number of
change-points. Statistics and Probability Letters (2011), doi:10.1016/j.spl.2011.03.027

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in
its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.spl.2011.03.027


AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

A general criterion to determine the number

of change-points

Gabriela CIUPERCA 1

Université Lyon 1, France

Abstract

A general criterion is proposed to determine the number K of the change-points

in a parametric nonlinear multi-response model. Schwarz criterion is a particular

case. The change-points depend of regressors values and not of measure instant.

We prove that the proposed estimator for K is consistent. Simulation results, using

Monte Carlo technique, for nonlinear models which have numerous applications,

support the relevance of the theory.

keywords: selection criterion, multiple change-points, M-estimator, consistency.

1 Introduction

This paper continues the article of Ciuperca (2009) where the properties of

the M-estimator in a multi-phase random nonlinear model are studied when

the number of change-points is fixed(known). The consistency, convergence

rate, asymptotic distribution of regression parameters and change-points M-

estimators were obtained. In this paper we propose a information criterion,
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that is a generalization of Schwarz criterion, for the choice of the number

of breaks in a nonlinear random model, using M-estimation method in or-

der to estimate the model parameters. The maximum likelihood(ML), least

squares(LS) are particular cases of estimation method. Once the number of

change-points is determined, their locations and the regression parameters on

the segments defined by the change-points can be estimated using the results

of Ciuperca (2009).

The interest of the proposed criterion is that the change-points τj depend on

the regressors X (i.e. τj < X ≤ τj+1), which was no more handled in the

literature for the nonlinear parametric models. What was previously proposed

are criteria for models with change τj in the time (i.e. τj < i ≤ τj+1). From

practical view point this is a different matter: the changes in the model are

due to the values of the regressor X and not to the measure instant.

The BIC (Schwarz) criterion for a model without change-points is: BIC =

−2 log(Ln(θ̂n)) + dim(θ̂n) log n, where Ln(θ) is likelihood function and θ̂n is

the maximizer of Ln(θ). If X1, · · · , Xn is a sequence of independent ran-

dom variables with a change in their density: g(x, θ1) density of Xi when

i ≤ k and g(x, θ2) for i > k, the Schwarz information criterion is: BIC(k) =

−2 logLn(θ̂1k, θ̂2k, k)+[2dim(θ1)+1] logn, where θ̂1k, θ̂2k maximize Ln(θ1, θ2, k)

for given k. Chen et al. (2006) consider the following criterion to detect the

change in a sequence of independent random variables: S(n) = MIC(n) −

min1≤k≤nMIC(k) + dim(θ) logn, with MIC(k) = −2 logLn(θ̂1k, θ̂2k, k) +
[
2dim(θ1) +

(
2k
n
− 1

)2
]
log n, MIC(n) = −2 logLn(θ̂n, θ̂n, n) + dim(θ) log(n),

θ̂n = arg maxθ Ln(θ, θ, n). This criterion was generalized by Pan and Chen

(2006) to detect multiple changes in the density of a sequence of indepen-

dent random variables. In the case of a parametric model with change-points

we can give the following references. For a constant model with K change-
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points, a consistent estimator for K is proposed by Yao and Au (1989), using

LS estimation method. Bai (1999) proposes a test based on the likelihood

for a linear model. Always to detect a change in a linear model we can re-

mind papers of Osorio and Galea (2005), Wu (2008) or still Nosek (2010).

For a parametric nonlinear model, to the author’s knowledge, the only avail-

able criterion is the one of Ciuperca (2011a) but for deterministic instant of

measure: Yi = hβ1(Xi)11τ1<i +hβ2(Xi)11τ1<i≤τ2 + · · ·+hβK+1
(Xi)11i>τK

. A mod-

ified Schwarz criterion is proposed using L1 method for estimation. After, the

method is ameliorated in Ciuperca (2011b) by penalization.

This paper is organized as follows. Model, assumptions, criterion and its con-

sistency are presented in Section 2. Section 3 reports some simulation results

in order to illustrate the theoretical results. The proofs of results are given in

Section 4.

2 Main results

Consider the nonlinear random design model with K change-points:

Yi = f(θ1,K ,θ2,K)(Xi) + εi, i = 1, · · · , n, (1)

where (Xi, εi)1≤i≤n is a sequence of continuous independent random variables

with the same joint distribution as (X, ε). Function f(θ1,K ,θ2,K)(.) : R → R is

defined, for x ∈ R, by:

f(θ1,K ,θ2,K)(x) = hβ1(x)11x≤τ1 + hβ2(x)11τ1<x≤τ2 + · · ·+ hβK+1
(x)11x>τk

,

with the functions hβk
known up to the parameters βk. Therefore, the in-

stant of measure coincides with the regressor X which is random. For every
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k = 1, · · · , K+1, we suppose that the parameter βk belongs to some compact

Γ ⊆ Rp, p ≥ 1. Let us denote the regression parameters θ1,K = (β1, · · · , βK+1)

and the change-points θ2,K = (τ1, · · · , τK) with τ1 < · · · < τK . We consider

that the vector θ2,K ∈ RK and we set θK = (θ1,K , θ2,K) ∈ Ω = ΓK+1 × RK .

In the case K = 0 the model is without change-point. For θK ∈ Ω, let us

denote by
.

f θK
(x) = ∂fθK

(x)/∂θ1,K . If the number of change-points is known

(K = K0), in Ciuperca (2009)’s paper, under following assumptions for ε, X

and function h, the parameter θK0 is estimated by M-estimation method when

n observations of (Y,X) are available.

(A1) X has a density absolutely continuous and positive everywhere on R.

Moreover, IE(X2) <∞;

(A2) ε has a density absolutely continuous and positive everywhere on R.

Moreover, IE(ε) = 0, IE(ε2) <∞;

(A3) the random variables Xi and εi are independent.

For the true valueK0 ofK, to simplify notations, we denote by θ0
1 = (β0

1 , β
0
2 , ..., β

0
K0+1)

and θ0
2 = (τ 0

1 , ..., τ
0
K0

), respectively, the true values of the regression parame-

ters and of the change-points. Let be also θ0 = (θ0
1, θ

0
2).

Nonlinear function hβ satisfies the conditions:

(B1) for all x ∈ R, hβ(x) is three times differentiable with respect to β;

(B2) for all x ∈ R, k ∈ {1, ...K0, K0 + 1}, ‖∂hβ0
k
(x)/∂β‖ 6= 0;

(B3) the derivatives ∂3hβ(x)/∂β3, exist for x ∈ R and there exists the func-

tions F0, F1, F2 ∈ L2(ϕ) such that: supβ∈Γ |hβ(x)| ≤ F0(x), supβ∈Γ ‖∂jhβ(x)/∂βj‖ ≤

Fj(x), j = 1, 2.

We suppose that model (1) make a non-zero jump at each true change-point

τ 0
k : d(βk+1,βk)(τ

0
k ) 6= 0, ∀βk, βk+1 ∈ Γ, βk 6= βk+1, k ∈ {1, ...K0}, where we de-

noted d(βk,βj)(x) = hβk
(x)− hβj

(x), x ∈ R, βk, βj ∈ Γ.

In practice, the number of breaks K is unknown. In order to estimate the

4
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true value K0 and afterwards the regression parameters, the location of the

change-points, let us consider the function ρ : IR→ IR+. Associated M-process

for model (1) is defined as: Mn(θ) =
∑n

i=1 ρ (Yi − fθ(Xi)), with the following

assumptions for function ρ:

(C1) ρ is convex on IR with right-continuous non-decreasing almost every-

where derivative ψ satisfying IEε[ψ
2(ε + y)] < ∞, ∀y ∈ IR. The function

λ(y) = IEε[ψ(ε + y)], y ∈ IR, is strictly increasing on IR and λ is continuous

at 0 with λ(0) = 0.

(C2) forK fixed, for all c ∈ IR, IE(ε,X)[ψ
2(ε+c supθK ,θ∗K∈Ω̄(fθK

(X)−fθ∗
K
(X)))] <

∞, where Ω̄ is the closure of Ω.

(C3) the function y → IE[|ψ(ε+ c+ y)− ψ(ε)|] is continuous at 0, ∀c ∈ IR.

(C4) the function λ is differentiable in a neighborhood of 0, with derivative

λ′ satisfying λ′(0) 6= 0, and lima→0 a
−1
∫ a
0 |λ′(s)− λ′(0)|ds = 0.

(C5) the random variables ρ(ε±d(β0
k+1

,β0
k
)(τ

0
k ))−ρ(ε), ∀k = 1, ..., K0, are con-

tinuous.

(C6) the function ψ is differentiable on IR.

For a fixedK, the M-estimator is defined by: θ̂n,K = (θ̂1n,K , θ̂2n,K) = arg minθK∈Ω̄Mn(θK)

a.s. For the true value K0 of K, under assumptions (A1)-(A3), (B1)-(B3),

(C1)-(C6), θ̂n,K0 is strongly consistent. The change-points M-estimator θ̂2n,K0

converges with n−1 rate to the vector whose components are the left end points

of the minimizing interval of independent compound Poisson process (see Ciu-

perca (2009)). The regression parameters M-estimator θ̂1n,K0 has a Gaussian

asymptotic distribution.

We shall give a criterion to find the number of change-points, under the con-

dition that, for K fixed, two breaking points are a far distance:

Ck,n = Card{i; τk−1 < Xi ≤ τk}, min
1≤k≤K+1

Ck,n = An, An
IP−→

n→∞∞, (2)

5
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with τ0 = −∞ and τK+1 = ∞. For every fixed change-points number K,

consider the sum:

S(τ1, · · · , τK) = inf
θ1,K∈ΓK+1

n∑

i=1

K+1∑

r=1

ρ(Yi − f(θ1,K ,θ2,K)(Xi))11τr−1<Xi≤τr (3)

and corresponding the change-point M-estimator: (τ̂1,K , · · · , τ̂K,K) = arg minθ2,K∈R S(θ2,K).

Following lemma gives the behaviour of (3) when the model is estimated sup-

posing that there is no change-points but in reality there is a point of break.

Lemma 2.1 We suppose that K0 = 1. Under assumptions (A1)-(A3), (B1),

(B3), (C1), (C2), (C4), if K = 0 then we have with arbitrarily large probabil-

ity for all sufficiently large n:

infβ∈Γ

[∑n
i=1 ρ(εi + d(β0

1 ,β)(Xi))11Xi≤τ0
1

+
∑n

i=1 ρ(εi + d(β0
2 ,β)(Xi))11Xi>τ0

1

]
−∑n

i=1 ρ(εi) ≥

CAn, with C a positive constant.

We consider an additional assumption, needed for the estimator consistency

of the change-points number.

(C7) 0 < IE[ρ2(ε)] <∞.

This condition, together Bienaymé-Tchebychev inequality, imply that random

variable ρ(ε) is bounded with probability close to one: ∀γ > 0, ∃γ1 > 0 such

that IP [ρ(ε) > γ1] < 1− γ.

Particular cases. 1) If ρ(y) = y2 we obtain the criterion for the LS estima-

tor. When a linear model is considered hβ(x) = βtx, assumption (C7) holds if

IE(ε4) <∞.

2) If ρ(y) = − logϕε(y), the ML method is considered. If for example er-

ror density is ϕε(y) = exp(−U(y)), with U a function U : R → R, then if

V ar(U(ε) <∞), assumption (C7) holds. Example, other one than the normal

distribution: double exponential(Laplace) density ϕε(y) = exp(−|y|).

In order to find the change-points number, let us consider the criterion, that

6
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we are going to call M-criterion:

B(K) = n log ŝK +G(K, p)Cn, (4)

with ŝK = n−1S(τ̂1,K , · · · , τ̂K,K), (Cn) any sequence satisfying Cn → ∞ and

(Cn/An) → 0 as n→∞. Assumption (C7) is necessary so that ŝK0 is bounded:

∀ǫ > 0, ∃Mǫ > 0 such that IP [ŝk0 ≥ Mǫ] ≤ ǫ. Function G is such that

G(K1, p) > G(K2, p) for K1 > K2. This function depend of p to take into

account the model complexity. Remind that p is the dimension of space Γ.

The criteria proposed by Yao and Au (1989), Nosek (2010) are particular

cases, using LS method estimation and G(K, p) depending only of K. Other

particular cases are in Wu (2008), Osorio and Galea (2005), to test the presence

of a change-point in a linear model always by LS method, respectively ML

method, with G depending of p.

Let K̂n be the value of K that minimizes criterion B(K):

K̂n = arg min
0≤K≤KU

B(K),

with KU the possible upper bound for K. Next result shows the consistency

of estimator K̂n.

Theorem 2.1 Under assumptions (A1)-(A3), B1)-(B3), (C1)-(C7), we have

IP [K̂n = K0] → 1 for n→∞.

3 Simulations

In order to illustrate the theoretical result, a simulation study is realized using

R language. The programs in R for computing K̂n and the M-estimations of

the parameters are available to author. The M-criteria B(0), B(1), B(2), B(3)

7
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are calculated using LS method and Cn = log n. For each model, 1000 Monte

Carlo samples of size n are generated for regressor X and error ε.

3.1 Nonlinear models

Let us consider growth function, or more exactly the mono-molecular model

(see Seber and Wild (2003)): hβ(x) = b1 − exp(−b2x) with β = (b1; b2). Then

p = 2. We generate M replications of size n = 500 for regressor X ∼ N (1, 1)

and for errors ε ∼ N (0, 0.5) or Laplace ε ∼ L(0, 1). The model have a change-

point (K0 = 1) in τ 0
1 = 1:

Yi = hβ0
1
(Xi)11Xi<1 + hβ0

2
(Xi)11Xi≥1 + εi, i = 1, · · · , n (5)

with β0
1 = (0.5, 1), β0

2 = (1,−0.5). For the criterion B(K) of (4) we consider

G(K, p) = K(K+1)p. In Figures 1 and 2 a simulation of this model is plotted

for ε ∼ N (0, 0.5) and L(0, 1), respectively. In order to point out the change in

the model, we represented by ’•’ the values of Y on the second segment and

by ’△ the values of Y without change-point. For the 1000 replications of the

model with the size of sample n = 500 we obtain that minj∈{0,1,2}B(j) = B(1)

in both cases ε ∼ N (0, 0.5) or ε ∼ L(0, 1).

On the other hand, if we consider small sample sizes n=50, always for

G(K, p) = K(K + 1)p, the number of change-points is very well detected

in the case of Normal errors, but, due to the presence of outliers, the results

are worst for Laplace errors (see Table 1).

Another very interesting nonlinear model, with numerous applications, is

the compartmental model. Examples and references of important applications

for these models are given in Seber and Wild (2003) (see also the references

therein): it describes the movement of lead in the human body, the kinetics

8
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Fig. 1. A simulation for growth model

with a change-point, for εi ∼ N (0, 0.5).
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Fig. 2. A simulation for growth model

with a change-point, for εi ∼ L(0, 1).

Table 1

Model (5), n=500 or n=50, M=1000 Monte Carlo replications.

K=0 K=1 K=2

n = 500 50 500 50 500 50

ε ∼ N (0, 0.5) 0 5 1000 995 0 0

ε ∼ L(0, 1) 0 447 1000 553 0 0

of drug movement when the drug is injected at an intramuscular site, etc...

Consider two-compartment function: hβ(x) = b1 exp(−b1x) + b2 exp(−b2x),

β = (b1, b2) ∈ Γ ⊆ R2 (p = 2). We first generate samples of size n = 500 for

X ∼ N (1, 1), ε ∼ N (0, 0.5) for a model with a change-point:

Yi = hβ0
1
(Xi)11Xi<1 + hβ0

2
(Xi)11Xi>1 + εi, i = 1, · · · , n,

for β0
1 = (1.2, 1), β0

2 = (−0.5, 2) (see Figure 3, where ’△’ is for model without

change-point and ’•’ for model with a change in τ 0
1 = 1). As the theory

predicts, for all 1000 replications we obtain minj∈{0,1,2}B(j) = B(1).

9
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Fig. 3. Compartmental model with one

change-point, Gaussian error.

When we consider small sample sizes, n=50, the M-criterion detects 88% of

cases one change-points and in 12% of cases it chooses a model without change-

points.

3.2 Linear model

We simulate samples of size n = 150 for following linear model with two

change-points:

Yi = (a0
1 + b01Xi)11Xi≤0 + (a0

2 + b02Xi)110<Xi<2 + (a0
3 + b03Xi)112≤Xi

+ εi (6)

with Xi ∼ N (1, 1), εi ∼ N (0, 0.5) or εi ∼ L(0, 1). The true values of parame-

ters are: (a0
1, b

0
1) = (−1, 1), (a0

2, b
0
2) = (1, 2.5), (a0

3, b
0
3) = (2, 3), τ 0

1 = 0, τ 0
2 = 2.

We consider G(K, p) = Kp or G(K, p) = K(K+1)p, with p = 2. In Table 2 we

report the occurrence number when every number K ∈ {0, 1, 2, 3} was chosen

by the criterion, when ε is Gaussian or Laplace for model (6). We observe that

if the errors are Gaussian, the change-points number is very well estimated,

10
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Table 2

Model (6), occurrence numbers for each K, G1 = Kp, G2 = K(K + 1)p, n=150.

K=0 K=1 K=2 K=3

G = G1 G2 G1 G2 G1 G2 G1 G2

ε ∼ N (0, 0.5) 0 0 0 0 975 1000 5 0

ε ∼ L(0, 1) 0 0 9 96 972 904 19 0

Table 3

Model (6), occurrence numbers for each K, G1 = Kp, G2 = K(K + 1)p, n=50.

K=0 K=1 K=2 K=3

G = G1 G2 G1 G2 G1 G2 G1 G2

ε ∼ N (0, 0.5) 0 0 0 59 987 941 13 0

ε ∼ L(0, 1) 0 0 23 847 945 153 22 0

while for Laplace errors, the estimation is less good due to a bigger variability

of data, especially in the case of function G(K, p) = K(K + 1)p.

This tendency becomes more marked when we consider small sample size:

n=50 (see Table 3). Nevertheless, the results remain satisfactory since we

detect correctly more than 9/10 change-points number for G(K, p) = Kp.

Consider now a linear model with one change-point:

Yi = (a0
1 + b01Xi)11Xi≤1 + (a0

2 + b02Xi)111<Xi
+ εi, i = 1, · · · , n (7)

with Xi ∼ N (1, 1), εi ∼ N (0, 0.5) or εi ∼ L(0, 1) and different values for

the parameters β0
1 = (a0

1, b
0
1), β

0
2 = (a0

2, b
0
2). For β0

1 = (−2, 1) and β0
2 = (1, 0)

we compare our results with the results obtained by a Schwarz information

11
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Table 4

Model (7), occurrence numbers for each K, G1 = Kp, G2 = K(K + 1)p, n=50.

K=0 K=1 K=2 K=3

G = G1 G2 G1 G2 G1 G2 G1 G2

ε ∼ N , β0
1 = (−2, 1), β0

2 = (1,−2.5) 0 0 638 1000 358 0 4 0

ε ∼ N , β0
1 = (−2, 10), β0

2 = (1,−2.5) 0 0 700 1000 295 0 5 0

ε ∼ N , β0
1 = (−2, 1), β0

2 = (1, 0) 0 0 625 1000 369 0 6 0

ε ∼ L, β0
1 = (−2, 1), β0

2 = (1,−2.5) 2 94 580 905 417 1 1 0

ε ∼ L, β0
1 = (−2, 10), β0

2 = (1,−2.5) 0 0 625 1000 374 0 1 0

ε ∼ L, β0
1 = (−2, 1), β0

2 = (1, 0) 110 630 445 370 440 0 5 0

criterion(SIC) proposed in the paper of Nosek (2010).

For this, we calculate: σ̂2
T = n−1∑T

i=1(Yi − b̂TXi − âT ) with âT et b̂T the

coefficients of the straight line fitted to the first T points by the least squares

method. Consider also: SIC(n) = −n/2 log(2π)−n/2 log(σ̂2
n)−n/2−3/2 logn,

SIC(T ) = −n/2 log(2π)−n/2 log(σ̂2
T )−n/2−(3+n−T )/2 log n. If there exists

T ∈ {2, · · · , n−1} such that SIC(n) < SIC(T ) then the model have a change-

point. Remark that the SIC criterion proposed by Nosek (2010) supposes that

the errors ε ∼ N (0, σ2), the regressors are deterministic and especially the

change-point depends of observation i not of values of X .

In Table 4, we give the results for n = 50 and three values for the regression

parameters. In the third case, for Normal errors, the SIC criterion gives only

185/1000 one change-points and for Laplace errors it detects 1000/1000 one

change-point. More the parameters of the two segments are different, better

12
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Table 5

Model (7), occurrence numbers for each K, G1 = Kp, G2 = K(K + 1)p, n=150.

K=0 K=1 K=2 K=3

G = G1 G2 G1 G2 G1 G2 G1 G2

ε ∼ N (0, 0.5) 0 0 756 1000 234 0 10 0

ε ∼ L(0, 1) 0 0 686 1000 300 0 16 0

M-criterion detects the number of the change-points. On the other hand, the

function G(K, p) = K(K+1)p gives generally better results(except in the last

example for Laplace errors).

For β0
1 = (−1, 1), β0

2 = (1,−2.5), consider now n = 150. Results by M-criterion

are given in Table 5. Since there are more observations, the M-criterion for

G(K, p) = Kp better detects the number of change-points than in the case

n = 50. For G(K, p) = K(K + 1)p the results are excellent in both cases of

laws for ε. When ε ∼ N (0, 0.5), the SIC criterion chooses 23/1000 a model

with one change-point and when ε ∼ L(0, 1) it chooses 1000/1000. The fact

that there are more observations has a negative effect on the SIC criterion.

Consider now, a model without change-point:

Yi = (a0 + b0Xi) + εi, i = 1, · · · , n (8)

for β0 = (a0, b0) = (−2, 1), G(K, p) = Kp or G(K, p) = K(K + 1)p. We

compare our results with SIC criterion. For n = 50, the results are in Table 6

and for n = 150 in Table 7. For ε ∼ Normal or Laplace, for all 1000 Monte-

Carlo replications, the M-criterion chooses a model without change-points.
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Table 6

Model (8), occurrence numbers for each K, G1 = Kp, G2 = K(K + 1)p, n=50.

K=0 K=1 K=2 K=3

G = G1 G2 G1 G2 G1 G2 G1 G2

ε ∼ N , M-crit. 1000 1000 0 0 0 0 0 0

ε ∼ N , SIC 994 6 – –

ε ∼ L, M-crit. 1000 1000 0 0 0 0 0 0

ε ∼ L, SIC 0 1000 – –

Table 7

Model (8), occurrence numbers for each K, G1 = Kp, G2 = K(K + 1)p, n=150.

K=0 K=1 K=2 K=3

G = G1 G2 G1 G2 G1 G2 G1 G2

ε ∼ N , M-crit. 900 1000 105 0 45 0 0 0

ε ∼ N , SIC 1000 0 – –

ε ∼ L, M-crit. 750 1000 95 0 135 0 20 0

ε ∼ L, SIC 0 1000 – –

3.3 Conclusion on the simulations

The simulation results show that, for large sample size(n = 500 for nonlin-

ear models and n = 150 for linear models) the proposed M-criterion detects

very well the change-points number, when the errors are Normal or Laplace.

When we consider small sample size, n = 50, for nonlinear models, K0 is well

14
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estimated in the case of Normal errors, but, due to the presence of outliers,

the results are less good for Laplace errors. For linear model, simulations were

realized for K0 = 0, 1, 2, function G(K, p) = Kp or G(K, p) = K(K + 1)p,

n = 150 or n = 50 and different values of β and τ . The results are not affected

be the number of observations when G(K, p) = K(K + 1)p, but they slightly

degrade when the model presents outliers. From Tables 2 and 3, remark that

for small sample sizes, there are few observations such that Xi > 2 = τ 0
2 ,

then result of M-criterion is less good. This is not the case when K0 = 1 and

τ 0
1 = 0(see Tables 4 and 5). The best choice for G is G(K, p) = K(K + 1)p,

for nonlinear but also for linear models.

Other very important conclusion is that the M-criterion outperforms the SIC

criterion proposed by Nosek (2010). This last one prefers to choose system-

atically a model without change-points when the errors are Gaussian and a

model with one change-point when the errors are Laplace. A possible expla-

nation would be that the change-point depends on random design Xi while

the SIC criterion proposed by Nosek (2010) is studied under assumption that

it depends of the number of observation i.

4 Appendix: proofs

We give proofs for the results in Section 2. In the followings, we denote by C

a generic positive finite constant not dependent on n, that may changes from

line to line.

Proof of Lemma 2.1 In this case θ0 = ((β0
1 , β

0
2); τ

0
1 ) = (θ0

1; θ
0
2). Let β̂n be the

value of β that minimizes the sum of S given by (3) for K = 0. Since β0
1 6= β0

2 ,

there exists a constant c > 0 such that: ‖β̂n − β0
1‖ > c or ‖β̂n − β0

2‖ > c with

15
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probability 1. Without loss of generality, we take ‖β̂n − β0
2‖ > c.

For x ∈ R let us consider the function: l(x) = IE[ρ(ε + x) − ρ(ε)] positive

for all x 6= 0. Then the function e(β) = IE[l(d(β0
2 ,β)(X))] > 0 for all β 6= β0

2 .

Under (A1), (B1), (B3), (C2), continuity on Γ of function e (see Lemma 3.1

of Ciuperca (2009)) and compactness of Γ, by an argument similar to the

one used in the proof of Theorem 3.1 in Koul et al. (2003), we obtain that

there exists a neighborhood V(β0
2) of β0

2 such that: infβ∈Vc(β0
2) e(β) = δ0 >

0. Hence, for all β ∈ Vc(β0
2), there exists a neighborhood V(β) of β such

that: IE
[
infβ∗∈V(β)[ρ(ε+ d(β0

2 ,β∗)(X))− ρ(ε)]
]
≥ 2δ0. Thus, there exists a finite

number m, such that βj ∈ Vc(β0
2), j = 1, · · · , m and by the strong law of large

number, we have almost surely for sufficiently large n:

inf
β∈V(βj)

1

C0
2,n

n∑

i=1

[ρ(εi+d(β0
2 ,β)(Xi))−ρ(εi)]11Xi>τ0

1
≥ IE

[
inf

β∈V(βj)
[ρ(ε+ d(β0

2 ,β)(X))− ρ(ε)]

]
−δ0

≥ δ0, where C0
2,n =

∑n
i=1 11Xi>τ0

1
. Thus, using also assumption (2):

n∑

i=1

[
ρ(εi + d(β0

2 ,β̂n)(Xi))− ρ(εi)
]
11Xi>τ0

1
≥ OIP (C0

2,n) ≥ An. (9)

If ‖β0
1 − β̂n‖ > c, with c a positive constant, then, by a similar proof of (9) we

have:
∑n

i=1

[
ρ(εi + d(β0

1 ,β̂n)(Xi))− ρ(εi)
]
11Xi≤τ0

1
≥ CAn. If ‖β0

1 − β̂n‖ = oIP (1),

by Taylor’s expansion combined with (B3), (C1), (C4), we have :

∣∣∣∣∣
n∑

i=1

[
ρ(εi + d(β0

1 ,β̂n)(Xi))− ρ(εi)
]
11Xi≤τ0

1

∣∣∣∣∣ ≤ ‖β̂n−β0
1‖

n∑

i=1

‖
.

hβ0
1
(Xi)‖ψ(εi)11Xi≤τ0

1
(1+oIP (1))

= oIP (An). Lemma follows. �

Proof of Theorem 2.1 We will show that for K 6= K0, IP [K̂n = K] → 0

as n → ∞. We will prove the Theorem in two steps: IP [K̂n < K0] → 0 and

IP [K̂n > K0] → 0 as n→∞. Let us set S0 =
∑n

i=1 ρ(εi).

Case K < K0. In this case there exists at least a true change-point τ 0
k which
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cannot be estimated. We consider the j ∈ {1, · · · , K} such that τ̂j,K and τ̂j+1,K

are the most close of τ 0
k . Then

∑n
i=1 11τ̂j,K<Xi≤τ0

k
> An/2 and

∑n
i=1 11τ0

k
<Xi≤τ̂j+1,K

>

An/2 with probability 1. By a similar argument used in the proof of Lemma

2.1, we obtain:

inf
β∈Γ

[
n∑

i=1

ρ(εi + d(β0
k
,β)(Xi))11τ̂j,K<Xi≤τ0

k
+

n∑

i=1

ρ(εi + d(β0
k+1

,β)(Xi))11τ0
k
<Xi≤τ̂j+1,K

]

−
n∑

i=1

ρ(εi)11τ̂j,K<Xi≤τ̂j+1,K
≥ CAn,

almost surely for sufficiently large n, and in general:

S(τ̂1,K , · · · , τ̂K,K)− S0 ≥ CAn. (10)

Let us now study: S(τ̂1,K0 , · · · , τ̂K0,K0)−S0 = min(θ1,K0
,θ2,K0

)[Mn(θ1,K0, θ2,K0)−

Mn(θ0
1, θ

0
2)]. Since the convergence rate of the M-estimators is n−1/2 for regres-

sion parameters estimator and n−1 for change-points estimator, using Lemma

3.3 and relation (11) of Ciuperca (2009), we get:

S(τ̂1,K0, · · · , τ̂K0,K0)− S0 = [minw1∈ΓK0+1

(
−n−1/2wt

1

∑n
i=1

.

f θ0(Xi)ψ(εi) + λ′(0)
2
w1V0w

t
1

)

+ mint∈RK0

∑n
i=1

∑K0
k=1 zn,k(Xi, εi)11τ0

k
<Xi≤τ0

k
+tk/n](1 + oIP (1)),

(11)

with V0 = IE[
.

f θ0(X)
.

f
t

θ0(X)], t = (t1, · · · , tK0) and zn,k(Xi, εi) = ρ(εi +

d(β0
k+1

,β0
k
)(Xi))− ρ(εi). The quadratic form in w1 has its minimum:

n−1

(∑n
i=1

.

f θ0(Xi)
.

f
t

θ0(Xi)ψ
2(εi)

)
[λ′(0)]−1V −1

0 which is OIP (1) by (A3), (C4),

(B3), (C1). Then

min
w1∈ΓK0+1

(
−n−1/2wt

1

n∑

i=1

.

f θ0(Xi)ψ(εi) +
λ′(0)

2
w1V0w

t
1

)
= OIP (1). (12)

Using, the Cauchy-Schwarz inequality, assumptions (C1) and (B3), we have:

IE[zn,k(X, ε)] ≤ IE[|d(β0
k+1

,β0
k
)(X)| · | supy ψ(ε+ y)|]

17



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

≤ IE1/2[d2
(β0

k+1
,β0

k
)(X)]IE1/2[supy ψ

2(ε+y)] ≤ C and since ε is independent of X :

IE[z2
n,k(X, ε)] ≤ IE[d2

(β0
k+1

,β0
k
)(X)]IE[supy ψ

2(ε + y)] ≤ C. Then by Bienaymé-

Tchebychev inequality we obtain that zn,k(Xi, εi) is bounded with probability

close to one for Xi ∈ [τ 0
k , τ

0
k + tk/n]. Since n−1∑n

k=1 11|Xi−τ0
k
|≤B/n = OIP (n−1):

min
t∈RK0

n∑

i=1

K0∑

k=1

zn,k(Xi, εi)11τ0
k
<Xi≤τ0

k
+tk/n = OIP (1). (13)

Taking into account (11), (12), (13), we obtain:

S(τ̂1,K0, · · · , τ̂K0,K0)− S0 = OIP (1). (14)

Moreover, this last relation together the strong law of large number for n−1∑n
i=1 ρ(εi),

using assumption (C7) imply:

ŝK0 = n−1 [S(τ̂1,K0, · · · , τ̂K0,K0)− S0]+n−1
n∑

i=1

ρ(εi)
a.s.−→

n→∞ IE[ρ(ε)] 6= 0. (15)

Thus, when K < K0:

B(K)− B(K0) = n log
(
1 +

ŝK−ŝK0

ŝK0

)
+ [G(K, p)−G(K0, p)]Cn

=
(
n

ŝK−ŝK0

ŝK0
+ [G(K, p)−G(K0, p)]Cn

)
(1 + oIP (1)).

On the other hand, using (10), (14) and (15), we have with arbitrarily large

probability, for all sufficiently large n:

n(ŝK − ŝK0)/ŝK0 = ([S(τ̂1,K , · · · , τ̂K,K)− S0]− [S(τ̂1,K0, · · · , τ̂K0,K0)− S0]) /ŝK0

≥ (CAn − OIP (1)) /IE[ρ(ε)] ≥ CAn.

Since limn→∞(Cn/An) = 0, we have for all K < K0, B(K) − B(K0)
IP−→

n→∞ ∞.

Then IP [K̂n < K0] → 0 for n→∞.
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Case K > K0. In this case we have, with probability one:

S0 ≥ S(τ 0
1 , · · · , τ 0

K0
) ≥ S(τ̂1,K0, · · · , τ̂1,K0)

≥ S(τ̂1,K , · · · , τ̂K,K) ≥ S(τ̂1,K , · · · , τ̂K,K, τ
0
1 , · · · , τ 0

K0
).

(16)

The last sum can be written: S(τ̂1,K , · · · , τ̂K,K , τ
0
1 , · · · , τ 0

K0
) =

∑K0+1
r=1 Tr

= minθ̃1

∑n
i=1

∑K0+1
r=1 ρ(εi − f(θ̃1,K+K0

,θ̃2,K+K0
)(Xi) + fθ0(Xi))11τ0

r−1<Xi≤τ0
r
, with

θ̃2,K+K0 = (τ̂1,K , · · · , τ̂K,K, τ
0
1 , · · · , τ 0

K), θ̃1,K+K0 ∈ ΓK+K0+1 and Tr contains

all observations between τ 0
r−1 and τ 0

r . For r = 1, · · · , K0 + 1 let us consider:

k1,r < · · · < kJ(r),r the elements of the set {τ̂1, · · · , τ̂K,K} which are strictly

between τ 0
r + 1 and τ 0

r+1, the points where function f(θ̃1,θ̃2)(Xi) changes. Ob-

viously 0 ≤ J(r) ≤ K0. If J(r) = 0, then, using (2), IE[ψ(ε)] = 0, as-

sumption (B3), we have: minβ∈Γ
∑n

i=1[ρ(εi + d(β0
r ,β)(Xi))− ρ(εi)]11τ0

r−1<Xi≤τ0
r

=

(β̃r,K+K0 − β0
r )
∑n

i=1

.

hβ0
r
(Xi)ψ(εi)11τ0

r−1<Xi≤τ0
r
(1 + oIP (1)) = OIP (1).

If J(r) > 0, then Tr = min
∑J(r)+1

j=1

∑kj,r

i=kj1,r+1 ρ(εi + d(β0
r ,βj)(Xi)). Let us con-

sider the interval [kj−1,r, kj,r] for j = 2, · · · , J(r)−1. In this case kj,r−kj−1,r ≥

CAn and similar that for J(r) = 0 we have:

min
β∈Γ

kj,r∑

i=kj−1,r

[
ρ(εi + d(β0

r ,β)(Xi))− ρ(εi)
]

= OIP (1). (17)

Let us consider now both intervals of the end [Ln, k1,r] and [kJ(r),r, Un], with

Ln =
∑n

i=1 11τ0
r−1≥Xi

, Un =
∑n

i=1 11τ0
r≥Xi

. Let Bn = min(k1,r − Ln, Un − kJ(r),r)

be. If Bn → ∞ in probability, for n → ∞, by similar arguments we have a

relation as (17). If there exists c > 0 such that Bn < c with probability 1, for

all n, then, since ρ(ε) is bounded with probability close to one, we have:

−OIP (1) = −
k1,r∑

i=Ln

ρ(εi) ≤ min
β∈Γ

k1,r∑

i=Ln

[
ρ(εi + d(β0

r ,β)(Xi))− ρ(εi)
]
≤ 0.
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Thus, in all cases Tr = OIP (1), for all r = 1, · · · , K0 + 1. Then:

0 ≥ S(τ̂1,K , · · · , τ̂K,K, τ
0
1 , · · · , τ 0

K0
)− S0 = OIP (1). (18)

On the other hand, by relation (15) we have that ŝK0 is bounded and strictly

positive with arbitrarily large probability. Taking into account inequalities (16)

and (18), we obtain: 0 ≤ S(τ̂1,K0, · · · , τ̂K0,K0) − S(τ̂1,K , · · · , τ̂K,K) = OIP (1).

Then 0 ≤ ŝK0 − ŝK = OIP (n−1) and together with 0 6= ŝK0 = OIP (1), we

get: n log ŝK0 − n log ŝK = n(ŝK0 − ŝK)(1 + oIP (1)) = OIP (1). Then, since

G(K, p) > G(K0, p) for K > K0, Cn → ∞, we have B(K) − B(K0) =

OIP (1) + [G(K, p) − G(K0, p)]Cn → ∞ for n → ∞. Hence B(K) > B(K0)

for sufficiently large n. Therefore, IP [K̂n > K0] → 0 when n→∞. �

Acknowledgements The author would like to thank the referee for carefully

reading the paper and for his comments which greatly improved the paper.

References

Bai J.,1999. Likelihood ratio tests for multiple structural changes. Journal of

Econometrics, 91, 299-323.

Chen, J., Gupta, A.K., Pan, J.,2006. Information criterion and change point

problem for regular models. Sankhya 68(2), 252-282.

Ciuperca G.,2009. The M-estimation in a multi-phase random nonlinear

model. Statistics and Probability Letters, 75(5), 573-580.

Ciuperca, G.,2011a. Estimating nonlinear regression with and without change-

points by the LAD-method. Annals of the Institute of Statistical Mathemat-

ics, DOI: 10.1007/s10463-009-0256-y.

20



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Ciuperca, G.,2011b. Penalized least absolute deviations estimation for nonlin-

ear model with change-points. Statistical Papers,10.1007/s00362-009-0236-

6.

Koul, H.L., Qian, L., Surgailis, D.,2003. Asymptotics of M-estimators in two-

phase linear regression models. Stochastic Processes and their Applications,

103, 123-154.

Nosek, K.,2010. Schwarz information criterion based tests for a change-point

in regression models. Statistics and Probability Letters, 75(5), 573-580.

Osorio, F., Galea, M.,2005. Detection of a change-point in student-t linear

regression models. Statistical Papers, 45, 31-48.

Pan, J., Chen, J.,2006. Application of modified information criterion to mul-

tiple change point problems. Journal of Multivariate Analysis 97(10),

2221-2241.

Seber, G.A.F., Wild, C.J.,2003. Nonlinear regression. Wiley Series in Proba-

bility and Statistics, New Jersey.

Yao, Y.C., Au, S.T.,1988. Least-squares estimation of a step function.

Sankhya, 51, pp. 370-381.

Wu, Y.,2008. Simultaneous change point analysis and variable selection in a

regression problem. Journal of Multivariate Analysis 99, 2154-2171.

21


