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Large-time asymptotics for an uncorrelated stochastic

volatility model

Martin Forde

Department of Mathematical Sciences, Dublin City University, Glasnevin, Dublin 9,
Ireland 1. 2

Abstract

We derive a large-time large deviation principle for the log stock price un-
der an uncorrelated stochastic volatility model. For this we use a Donsker-
Varadhan-type large deviation principle for the occupation measure of the
Ornstein-Uhlenbeck process, combined with a simple application of the con-
traction principle and exponential tightness.

Key words: Stochastic volatility, Donsker-Varadhan large deviations for
occupation measures, Large time implied volatility asymptotics.

1. The uncorrelated Ornstein-Uhlenbeck model with σ bounded

We work on a model (Ω,F , P) with a filtration (Ft)t≥0 supporting two
Brownian motions which satisfies the usual conditions.

Set f(y) = σ2(y), and assume that 0 < fmin ≤ f ≤ fmax < ∞. We
consider an uncorrelated stochastic volatility model for a log stock price
process Xt = log St defined by the following stochastic differential equations

{
dXt = −1

2
σ2(Yt)

2dt + σ(Yt)dW 1
t ,

dYt = −αYtdt + dW 2
t ,

(1)

for α > 0, X0 = x0, Y0 = y0, where W1,W2 are two independent standard
Brownian motions and Y is an Ornstein-Uhlenbeck process. We set S0 = 1
(i.e. x0 = 0) without loss of generality, because Xt − x0 is independent of x0

as the SDEs have no dependence on x .
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1.1. Large deviations for the occupation measure of the OU process

For each t > 0 and A ∈ B(R), let

µt(A) =
1

t

∫ t

0

1A(Ys)ds (2)

denote the proportion of time up to t that the sample path of Y spends
in A. For each t > 0 and ω, µt(ω, .) is a probability measure on R. Let
P(R) denote the space of probability measures on R. Then µt(A) satisfies
a large-time large deviation principle in the topology of weak convergence,
with convex, lower semicontinuous rate function given by

IB(µ) =
1

2

∫ ∞

−∞
|∂y

√
dµ

dµ∞
(y)|2 µ∞(dy) (3)

for µ ∈ P(R), where µ∞(y) = (α
π
)

1
2 e−αy2

is the unique stationary distribution
for Y , i.e. N(0, 1/2α) (see Donsker and Varadhan (1975a, 1975b, 1975c,
1976), Stroock (1984) and pages 367-8 in Feng and Kurtz (2006)). If µ is not
absolutely continuous with respect to µ∞, then IB(µ) = ∞.

Remark 1.1. Clearly IB(µ) attains it minimum value of zero at µ = µ∞.
Moreover, any measure which makes the rate function zero is a stationary
distribution, and Y has a unique stationary distribution, so µ∞ is the unique
minimizer of IB(µ).

We note that F : P(R) 7→ [fmin, fmax] given by

F (µ) = 〈f, µ〉 =

∫ ∞

−∞
f(y)µ(dy) (4)

is a bounded, continuous functional.

1.2. The Prokhorov metric

Given two measures µ and ν in P(R), the Prokhorov metric is defined by
d(µ, ν) = inf{δ > 0 : µ(C) ≤ ν(Cδ) + δ, ν(C) ≤ µ(Cδ) + δ for all closed C ⊂
R} . P(R) then becomes a compact metric space (note that d(µ, ν) ≤ 1), so
the rate function IB(µ) is good. Convergence of measures in the Prokhorov
metric is equivalent to weak convergence of measures.
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1.3. Contraction principle

By the contraction principle, the quantity

At =
1

t

∫ t

0

f(Ys)ds =

∫ ∞

−∞
f(y)µt(dy)

also satisfies the LDP, with good lower semicontinuous rate function given
by

If (a) = inf
µ∈P(R):〈f,µ〉=a

IB(µ) , a ∈ [fmin, fmax] . (5)

Remark 1.2. IB(.) is non-negative and IB(µ∞) = 0, so

If (σ̄
2) = 0 ,

where

σ̄2 = 〈f, µ∞〉 =

∫ ∞

−∞
σ2(y)µ∞(y)dy . (6)

Moreover, µ∞ is the unique minimizer of IB, so σ̄2 is the unique minimizer
of If .

2. A joint large deviation principle for (Xt/t, At)

Recall the definition of At = 1
t

∫ t

0
f(Ys)ds. The following proposition

estbalishes a joint LDP for Xt/t and At in the large-time limit.

Proposition 2.1. (Xt/t, At) satisfies a joint LDP as t →∞ with good rate

function I(x, a) =
(x+ 1

2
a)2

2a
+ If (a).

Proof. See Appendix.

From this we obtain the following proposition:

Proposition 2.2. (Xt/t) satisfies the LDP as t →∞ with a good rate func-
tion given by

I(x) = inf
a∈[fmin,fmax]

[
(x + 1

2
a)2

2a
+ If (a)] ≤ (x + 1

2
σ̄2)2

2σ̄2

and I attains its minimum value of zero at x = −1
2
σ̄2.
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Proof. The LDP with a good rate function just follows from the contraction
principle. Setting a = σ̄2 defined in 6 and using that If (σ̄

2) = 0, we see that
I(−1

2
σ̄2) = 0.

Remark 2.1 For non-zero correlation and/or unbounded σ, the approach
outlined here will not work. However, we can transform the problem to a
small-noise, fast mean-reverting regime, which is the same scaling used in the
recent paper by Feng et al. (2010), aside from the fact that the drift of the
log Stock price process is not small in this case. This problem then falls into
the class of homogenization and averaging problems for nonlinear HJB type
equations, where the fast volatility variable lives on a non-compact space.
The Feng et al. argument based on viscosity solutions can be easily adapted
to the large-time regime, using Bryc’s lemma combined with exponential
tightness to prove a large deviation principle. The leading order term is the
unique viscosity solution to a HJB equation where the Hamiltonian is given
in terms of the limiting log mgf for the integrated variance; this will be dealt
with in a sequel article. For the well known SABR model with β = 1, we
can derive large-time asymptotics for the correlated case using the Willard
mixing formula, see Forde (2010).
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A. Proof of Proposition 2.1

Let Zt = Xt/t. We first note that (Zt, At)
d
= (WtAt − 1

2
At, At). We first

assume x + 1
2
a > 0. Now choose δ so that 0 < δ < x + 1

2
a. Then

P(|Zt − x| < δ√
2
, |At − a| < δ√

2
) ≤ P(‖(Zt, At)− (x, a)‖ < δ)

≤ P(|Zt − x| < δ, |At − a| < δ) .

From the Gärtner-Ellis theorem, we can verify that
W 1

at− 1
2
at

t
satisfies the LDP

as t →∞ with rate
(x+ 1

2
a)2

2a
. Then ∀ǫ > 0, conditioning on At and using the

LDPs for At and
W 1

at− 1
2
at

t
, we see that there exists a t = t∗(ǫ, δ) such that

P(|Zt−x| < δ, |At−a| < δ) ≤ e−t[−ǫ+infy∈Bδ(x)
(y+1

2 (a−δ))2

2(a+δ)
] e−t[−ǫ+infa1∈B̄a(δ) If (a1)] .

Then

lim sup
t→∞

1

t
log P(|Zt−x| < δ, |At−a| < δ) ≤ − inf

y∈Bδ(x)

(y + 1
2
(a− δ))2

2(a + δ)
− inf

a1∈B̄a(δ)
If (a1) ,
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and by the lower semicontinuity of If (a) we have limδ→0 lim supt→∞
1
t
log P(|Zt−

x| < δ, |At − a| < δ) ≤ −[
(x+ 1

2
a)2

2a
+ If (a)] . Using a similar argument for

the lower bound, we replace the limsup here by a genuine limit, so (Zt, At)

satisfies the weak LDP with rate function
(x+ 1

2
a)2

2a
+ If (a). If (a) is good,

so (At) is exponentially tight; hence for all R > 0, a > 0, there exists a
compact Ka ⊂ R such that lim supt→∞

1
t
log P((Zt, At) ∈ [−R,R] × Kc

a) ≤
lim supt→∞

1
t
log P(At ∈ Kc

a) ≤ −a , so (Zt, At) is exponentially tight, hence
(Zt, At) satisfies the full LDP and the rate function is good. We proceed
similarly for x + 1

2
a ≤ 0.
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