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We prove some analogs of results from renewal theory for random walks in the case when there is a drift, more precisely when the the mean of the kth summand equals k γ µ, k ≥ 1, for some µ > 0 and 0 < γ ≤ 1.

Introduction

Let Y, Y 1 , Y 2 , . . . be i.i.d. random variables with finite mean 0 and set X k = Y k + k γ µ for k ≥ 1, and some µ > 0. Further, set T n = n k=1 Y k and S n = n k=1 X k , n ≥ 1, and define the family of first passage times τ (t) = min{n : S n > t}, t ≥ 0.

(

If γ < 0, then

n k=1 k γ      < ∞, for γ < -1, ∼ log n, for γ = -1, ∼ 1 
γ+1 n γ+1 , for -1 < γ < 0, from which it follows that S n = T n + o(n) as n → ∞, which means that {S n , n ≥ 1} is a perturbed random walk , cf. [START_REF] Gut | Stopped Random Walks[END_REF], Chapter 6. We therefore assume in the following that γ > 0, and we begin by showing that the stopping times are finite almost surely, and provide conditions for finiteness of moments. For the statements of the latter we introduce the standard notation x + = max{x, 0} and x -= -min{x, 0} for all real x. Set X ′ k = Y k + µ, k ≥ 1, and let primed objects refer to this sequence. Since S ′ n ≤ S n for all n, it follows that

τ ′ (t) ≥ τ (t) for all t, (1.2) 
and thus, in particular, that P (τ (t) < ∞) = 1. Now, from [START_REF] Gut | On the moments and limit distributions of some first passage times[END_REF], Theorem 3.1 (cf. also [START_REF] Gut | Stopped Random Walks[END_REF], Theorem 3.3.1) we know that, for

r ≥ 1, E(τ ′ (t)) r < ∞ ⇐⇒ E(X - 1 ) r < ∞. This, together with (1.2) and the fact that E(X - 1 ) r < ∞ ⇐⇒ E(Y -) r < ∞ establishes the following result. Theorem 1.1 Let r ≥ 1. If E(Y -) r < ∞, then E(τ (t)) r < ∞.
The analogous result for the stopped sum and the stopping summand turn out as follows.

Theorem 1.2 Let r ≥ 1. If E(Y -) (rγ)∨1 < ∞ and E(Y + ) r < ∞, then E(X τ (t) ) r < ∞ and E(S τ (t) ) r < ∞.
Proof. We first note that

X τ (t) = X + τ (t) ≤ Y + τ (t) + (τ (t)) γ µ, (1.3) 
where the equality is due to the fact that P (X τ (t) > 0) = 1. Secondly, by Minkowski's inequality and [START_REF] Gut | Stopped Random Walks[END_REF], Lemma 1.8.1 and Remark 1.8.2, we therefore obtain

X + τ (t) r ≤ Y + τ (t) r + (τ (t)) γ r µ ≤ E τ (t) 1/r • Y + r + µ τ (t) γ γr ,
where • r denotes the norm of order r. This takes care of the stopping summand. Integrability of the stopped sum then follows via the "sandwich inequality"

t < S τ (t) ≤ t + X τ (t) (1.4) (cf. Gut (2009), formula (3.3.2)). 2 
Remark 1.1 The moment condition E(Y + ) r < ∞ for the stopped sum is, in fact, necessary, since

S τ (t) ≥ X + 1 ≥ Y + 1 . 2 
The first case that comes to mind is the case γ = 1.

Theorem 1.3 For γ = 1 we have τ (t) √ t a.s. → 2 µ as t → ∞. Proof. Since E S n = n(n + 1)µ 2 ,
the strong law of large numbers tells us that

S n -n(n+1)µ 2 n = 1 n n k=1 Y k a.s.
→ 0 as n → ∞, from which it follows that S n n(n + 1)

a.s. → µ 2 , S n n 2 a.s. → µ 2 , X n n 2 a.s. → 0 as n → ∞. (1.5)
Since, in view of (1.4), τ (t) ր ∞ a.s. as t → ∞ we may replace n by τ (t) (cf. [START_REF] Gut | Stopped Random Walks[END_REF], Theorem 1.2.3(i)), which yields

S τ (t) (τ (t)) 2 a.s. → µ 2 and X τ (t) (τ (t)) 2 a.s. → 0 as n → ∞. (1.6)
With the aid of (1.4) it now follows via "the usual procedure" (cf. [START_REF] Gut | On the moments and limit distributions of some first passage times[END_REF], [START_REF] Gut | Stopped Random Walks[END_REF]

), Chapter 3) that t (τ (t)) 2 a.s. → µ 2 as t → ∞. 2 
By combining the theorem with (1.6) the following corollary is immediate.

Corollary 1.1 S τ (t) t a.s. → 1 and X τ (t) t a.s. → 0 as t → ∞. 2 
Note also that there is no central limit theorem for τ (t) available in this case, since

X n n = Y n n + µ a.s. → µ = 0 as n → ∞.
After these introductory results we have reduced the domain of γ to the case 0 < γ < 1, which will be our concern for the remainder of the paper. As we shall see in the following section, there exist a strong law for τ (t) in this case, a Marcinkiewicz-Zygmund strong law of order r ∈ (1, 2) when γ ∈ (0, 1/r), and a central limit theorem when γ ∈ (0, 1/2). Section 3 is devoted to the more general family of first passage times τ (t) = min{n : S n > t•n α }, t > 0, where 0 < α < 1. A final section contains an analog of the elementary renewal theorem.

Remark 1.2 For technical simplicity we confine ourselves the case when the mean and the boundary to be crossed, respectively, increase by powers, and leave the extensions to the cases

X k = Y k + b(k)µ, k ≥ 1, with b ∈ RV (γ) and τ (t) = min{n : S n > t • a(n)}, t ≥ 0, with a ∈ RV (α)
to the readers. For the latter case for random walks we refer to [START_REF] Gut | On the moments and limit distributions of some first passage times[END_REF] and [START_REF] Gut | Stopped Random Walks[END_REF]. 2

2 The case 0 < γ < 1

Suppose that Y, Y 1 , Y 2 , . . . are i.i.d. random variables with finite mean 0, and set

X k = Y k + k γ µ
for some µ > 0 and γ ∈ (0, 1). Furthermore, let as before, S n = n k=1 X k , n ≥ 1, and define the family of first passage times τ (t) = min{n : S n > t), t ≥ 0.

Before we continue, here are some auxiliary facts.

Lemma 2.1 For any β > -1,

n β+1 β + 1 ≤ n k=1 k β ≤ n β+1 β + 1 + n β and lim n→∞ n -(β+1) n k=1 k β = 1 β + 1 . 2 
This result is well known; for a proof, see e.g. [START_REF] Gut | Probability: A Graduate Course, Corr. 2nd printing[END_REF], Lemma A.3.1.

Lemma 2.2 Let 1 < r < 2 and suppose that 0 < γ < 1/r. If E|Y | r < ∞, then X τ (t) (τ (t)) 1/r a.s. → 0 as t → ∞.
Proof. An application of [START_REF] Gut | Stopped Random Walks[END_REF], Theorem 1.2.3(i) tells us that

X τ (t) -(τ (t)) γ µ (τ (t)) 1/r = Y τ (t) (τ (t)) 1/r a.s.
→ 0 as t → ∞, from which the conclusion follows in view of the fact that 0 < γ < 1/r.

2

After this we turn our attention to the promised limit theorems.

Theorem 2.1 (The strong law)

τ (t) t 1/(γ+1) a.s. → γ + 1 µ 1/(γ+1)
as t → ∞.

Proof. By Lemma 2.1 the strong law in this setting becomes

S n -µ γ+1 n γ+1 n a.s.
→ 0 as n → ∞, from which we conclude that

S n n γ+1 a.s. → µ γ + 1 and X n n γ+1 a.s. → 0 as n → ∞. (2.1)
Recalling (1.4) it follows as in the proof of Theorem 1.3 that

S τ (t) (τ (t)) γ+1 a.s. → µ γ + 1 , X τ (t) (τ (t)) γ+1 a.s. → 0, t (τ (t)) γ+1 a.s. → µ γ + 1 as t → ∞. 2 
The following analog of Corollary 1.1 is immediate.

Corollary 2.1 S τ (t) t a.s.
→ 1 and X τ (t) t a.s.

→ 0 as t → ∞.

Theorem 2.2 (The Marcinkiewicz-Zygmund strong law) Let 1 < r < 2 and γ ∈ (0, 1/r).

If E|Y | r < ∞, then τ (t) -(γ+1)t µ 1/(γ+1)
t (1-rγ)/(r(γ+1))

a.s.

→ 0 as t → ∞.

Proof. The ordinary [START_REF] Marcinkiewicz | Sur les fonctions indépendantes[END_REF] strong law (see also e.g. [START_REF] Gut | Probability: A Graduate Course, Corr. 2nd printing[END_REF], Theorem 6.7.1), together with Lemma 2.1, us that

S n -µ γ+1 n γ+1 n 1/r a.s. → 0 as n → ∞, (2.2) 
so that, by following the above procedure, we obtain

S τ (t) -µ γ+1 (τ (t)) γ+1 (τ (t)) 1/r a.s. → 0 as t → ∞, (2.3) 
and, hence, via (1.4), Lemma 2.2, and Theorem 2.1, that t -µ γ+1 (τ (t)) γ+1 t 1/(r(γ+1))

a.s.

→ 0 as t → ∞, or, equivalently, that

(τ (t)) γ+1 t - γ + 1 µ • t ρ a.s. → 0 as t → ∞, (2.4) 
where ρ = 1 -(r(γ + 1)) -1 .

To finish off we use Taylor expansion (cf. [START_REF] Gut | On the moments and limit distributions of some first passage times[END_REF], [START_REF] Gut | Stopped Random Walks[END_REF], Theorem 4.5.5) of the function g(x) = x 1/(γ+1) at the point (γ + 1)/µ:

τ (t) t 1/(γ+1) - γ + 1 µ 1/(γ+1) • t ρ = (τ (t)) γ+1 t - γ + 1 µ • t ρ • g ′ (θ t ) , (2.5) 
where θ t lies between (τ (t)) γ+1 /t and (γ + 1)/µ and, by Theorem 2.1, converges almost surely to the latter. The proof of the theorem is completed upon observing that the right-hand side of (2.5) converges almost surely to 0 • g ′ ((γ + 1)/µ) = 0 as t → ∞ in view of (2.4). 2

Theorem 2.3 (The central limit theorem

) Let γ ∈ (0, 1/2). If Var Y = σ 2 < ∞, then τ (t) -(γ+1)t µ 1/(γ+1) t (1-2γ)/(2(γ+1)) d → N 0, σ 2 • (γ + 1) (1-2γ)/(γ+1) µ 3/(γ+1) as t → ∞.
Proof. We follow the general pattern of the previous proof, with the central limit theorem replacing the Marcinkiewicz-Zygmund strong law, and Anscombe's theorem replacing [START_REF] Gut | Stopped Random Walks[END_REF], Theorem 1.2.3(i).

By the central limit theorem and Lemma 2.1 we first have

S n -µ γ+1 n γ+1 σ √ n d → N (0, 1) as n → ∞,
so that, by Anscombe's theorem [START_REF] Anscombe | Large sample-theory of sequential estimation[END_REF], cf. also [START_REF] Gut | Probability: A Graduate Course, Corr. 2nd printing[END_REF], Section 7.3 or Gut (2009), Section 1.3) and Theorem 2.1,

S τ (t) -(τ (t)) γ+1 µ/(γ + 1) σ (γ+1)t µ 1/(2(γ+1)) d → N (0, 1) as t → ∞. (2.6) 
Proceeding as before, that is, applying (1.4), Lemma 2.2 and some reshuffling, leads to

µ γ + 1 (2γ+3)/(2(γ+1)) • (τ (t)) γ+1 -(γ + 1)t/µ σt 1/(2(γ+1)) d → N (0, 1) as t → ∞.
(2.7)

An elementary renewal theorem

In this section we prove a so-called elementary renewal theorem for the case γ ∈ (0, 1] and α = 0, that is, we determine the asymptotics for the expected value of the first passage time as t → ∞.

We begin with the following preliminary.

Proposition 4.1 Let 0 < γ ≤ 1 and recall that α = 0.

(i) The family {τ (t)/t, t ≥ 1} is uniformly integrable and → 0 as t → ∞, it follows (via e.g. [START_REF] Gut | Probability: A Graduate Course, Corr. 2nd printing[END_REF], Theorem 5.5.2) that E(τ (t)/t) → 0 as t → ∞. (ii): We begin by invoking [START_REF] Gut | Stopped Random Walks[END_REF], Theorem 1.8.1, in order to conclude that {Y ′ τ (t) /t, t ≥ 1} is uniformly integrable. Moreover, by (i) and domination, the family {(τ (t)) γ /t, t ≥ 1} is also uniformly integrable. This, together with (1.3) shows that the same holds true for {X τ (t) /t, t ≥ 1} (check e.g. [START_REF] Gut | Probability: A Graduate Course, Corr. 2nd printing[END_REF], Theorem 5.4.6).

E τ (t) t → 0 as t → ∞; ( 
An appeal to Corollary 2.1 (and Gut (2007), Theorem 5.5.2) finishes that part of the proof. (iii): Since, by (1.4),

1 < S τ (t) t ≤ 1 + X τ (t) t , (4.1) 
it follows, via (ii), that the family {(S τ (t) /t) r , t ≥ 1} is uniformly integrable, after which moment convergence follows via (4.1) and (ii). 2 Here is now the elementary renewal theorem. We begin with the slightly simpler case γ = 1. The "converse" inequality follows from Theorem 2.1 and Fatou's lemma:

Theorem 4.1 Let γ = 1 and suppose, in addition, that E(Y -) 2 < ∞. Then E τ (t) √ t → 2 µ as t → ∞. Proof. Since { n k=1 Y k , n ≥ 1}
2 µ ≤ lim inf t→∞ E τ (t) √ t . 2 
The basis for the proof of the analog for 0 < γ < 1 is the same, but some additional technicalities appear.

Theorem 4.2 Let γ ∈ (0, 1) and suppose, in addition, that E(Y -) γ+1 < ∞. Then E τ (t) t 

  ii) The family {X τ (t) /t, t ≥ 1} is uniformly integrable and Proof. (i): Uniform integrability is an immediate consequence of (1.2) and Lai's theorem[START_REF] Lai | On uniform integrability in renewal theory[END_REF], according to which the family {τ ′ (t)/t, t ≥ 1} is uniformly integrable.Next, since, by Theorem 2.1, τ (t)/t

	E X τ (t) t	→ 0 as t → ∞;
	(iii) The family {S τ (t) /t, t ≥ 1} is uniformly integrable and
	E S τ (t) t	→ 1 as t → ∞.

a.s.

  is a martingale and E τ (t) < ∞, it follows from the first Wald equation (cf. e.g.[START_REF] Gut | Probability: A Graduate Course, Corr. 2nd printing[END_REF], Theorem 10.14.3(i)) that E(

	integrable for all t (Theorem 1.1) we may rewrite this as	τ (t) k=1 Y k ) = 0. Since τ (t) is square
	E S τ (t) =	µ 2	E τ (t)(τ (t) + 1) ≥	µ 2	E(τ (t)) 2 ≥	µ 2	E τ (t)	2 ,
	or, equivalently, as							
			E S τ (t) t	≥	µ 2	•	E τ (t) √ t

2

. Now, since, by Proposition 4.1(iii), the LHS converges to 1 as t → ∞, it follows that

lim sup t→∞ E τ (t) √ t ≤ 2 µ as t → ∞.

  1/(γ+1) → , n ≥ 1} is a martingale and E τ (t) < ∞. Since, by Theorem 1.1, E(τ (t)) γ+1 < ∞, the rewriting of Wald's equation becomesE S τ (t) = Ewhere the inequality is a consequence of Lemma 2.1.By dividing both members in (4.2) with t and by arguing as in the previous proof we then obtainThe lower bound follows from Theorem 2.1 and Fatou's lemma as before.2

				γ + 1 µ	1/(γ+1)	as t → ∞.
	Proof. Once again, {	n k=1 Y k τ (t) k=1	k γ µ ≥	µ γ + 1	E(τ (t)) γ+1 ,	(4.2)
	lim sup t→∞	µ γ + 1	E τ (t) t 1/(γ+1)	γ+1	≤ lim sup

t→∞ E S τ (t) t = 1 as t → ∞.
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ACCEPTED MANUSCRIPT

In order to find the appropriate limit theorem for τ (t) we exploit the delta-method (cf. e.g. [START_REF] Gut | Probability: A Graduate Course, Corr. 2nd printing[END_REF], Section 7.4.1) applied to the function g(x) = x 1/(γ+1) .

Toward this end we first rewrite (2.7) in a form analogous to (2.4), however, keeping track of constants this time:

as t → ∞.

With θ t as above we then obtain

Remark 2.1 By putting γ = 0 in our results we rediscover the well-known results from "renewal theory for random walks" in [START_REF] Gut | On the moments and limit distributions of some first passage times[END_REF], Section 2; cf. also [START_REF] Gut | Stopped Random Walks[END_REF], Chapter 3.

A curved boundary

In this section we replace (1.1) by the more general boundary

for some α ∈ [0, 1); cf. [START_REF] Gut | On the moments and limit distributions of some first passage times[END_REF], Section 3, Gut (2009), Section 4.5. Since the case α = 0 reduces the setup to the earlier one, we assume in the following that 0 < α < 1.

By introducing primed random variables as in the early part of the Introduction, it follows as there (however, cf. [START_REF] Gut | Stopped Random Walks[END_REF], Section 4.5) that τ (t) is finite almost surely.

As for moments of the stopping time we argue as in [START_REF] Gut | On the moments and limit distributions of some first passage times[END_REF], [START_REF] Gut | Stopped Random Walks[END_REF], to obtain the following result.

The analog of Theorem 1.2 follows as above with the modification that we have to replace the sandwich inequality (1.4) by [START_REF] Gut | Stopped Random Walks[END_REF], formula (4.5.14), viz.,

Now we are ready for the limit theorems analogous to those of Section 2. The proofs follow the same general pattern, although with some additional technicalities.

Theorem 3.3 (The strong law)

as t → ∞.

Proof. Applying the sandwich inequality (3.2) to (2.1) yields

The usual corollary turns out as follows.

Corollary 3.1

t (1-rγ)/(r(γ+1-α))

a.s.

→ 0 as t → ∞.

Proof. We proceed as in the proof of Theorem 2.2. Combining (2.3), (3.2), Lemma 2.2 (which remains true also in the present setting), and Theorem 3.3, tells us that

Rewriting this as

where ρ = rγ+r-1 r(γ+1-α) , we obtain, via an application of Theorem 3.3 to the first factor, that

To finish off, Taylor expansion of the function g(x) = x 1/(γ+1-α) at the point (γ + 1)/µ yields

where θ t lies between (τ (t)) γ+1-α /t and (γ + 1)/µ and, via Theorem 3.3, converges almost surely to the latter. The conclusion now follows as before. 2

Theorem 3.5 (The central limit theorem

as t → ∞.

Proof. The analogs of (2.6) and (2.7) turn out as S τ (t) -(τ (t)) γ+1 µ/(γ + 1)

respectively, which, in analogy with the proof of Theorem 3.4, yields

In order to prepare for the delta-method we rewrite this as

as t → ∞ .

And with θ t as before we finally obtain

Remark 3.1 By putting α = 0 in the results of this section we rediscover those from Section 2, and by putting γ = 0 we rediscover results in [START_REF] Gut | On the moments and limit distributions of some first passage times[END_REF], Section 3; cf. also [START_REF] Gut | Stopped Random Walks[END_REF], Section 4.5 (with the regularly varying function there being a power; recall Remark 1.2).